Linux 6.7-rc7
[linux-modified.git] / drivers / iio / pressure / bmp280-core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2010 Christoph Mair <christoph.mair@gmail.com>
4  * Copyright (c) 2012 Bosch Sensortec GmbH
5  * Copyright (c) 2012 Unixphere AB
6  * Copyright (c) 2014 Intel Corporation
7  * Copyright (c) 2016 Linus Walleij <linus.walleij@linaro.org>
8  *
9  * Driver for Bosch Sensortec BMP180 and BMP280 digital pressure sensor.
10  *
11  * Datasheet:
12  * https://cdn-shop.adafruit.com/datasheets/BST-BMP180-DS000-09.pdf
13  * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp280-ds001.pdf
14  * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme280-ds002.pdf
15  * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp388-ds001.pdf
16  * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp581-ds004.pdf
17  *
18  * Notice:
19  * The link to the bmp180 datasheet points to an outdated version missing these changes:
20  * - Changed document referral from ANP015 to BST-MPS-AN004-00 on page 26
21  * - Updated equation for B3 param on section 3.5 to ((((long)AC1 * 4 + X3) << oss) + 2) / 4
22  * - Updated RoHS directive to 2011/65/EU effective 8 June 2011 on page 26
23  */
24
25 #define pr_fmt(fmt) "bmp280: " fmt
26
27 #include <linux/bitops.h>
28 #include <linux/bitfield.h>
29 #include <linux/device.h>
30 #include <linux/module.h>
31 #include <linux/nvmem-provider.h>
32 #include <linux/regmap.h>
33 #include <linux/delay.h>
34 #include <linux/iio/iio.h>
35 #include <linux/iio/sysfs.h>
36 #include <linux/gpio/consumer.h>
37 #include <linux/regulator/consumer.h>
38 #include <linux/interrupt.h>
39 #include <linux/irq.h> /* For irq_get_irq_data() */
40 #include <linux/completion.h>
41 #include <linux/pm_runtime.h>
42 #include <linux/random.h>
43
44 #include <asm/unaligned.h>
45
46 #include "bmp280.h"
47
48 /*
49  * These enums are used for indexing into the array of calibration
50  * coefficients for BMP180.
51  */
52 enum { AC1, AC2, AC3, AC4, AC5, AC6, B1, B2, MB, MC, MD };
53
54
55 enum bmp380_odr {
56         BMP380_ODR_200HZ,
57         BMP380_ODR_100HZ,
58         BMP380_ODR_50HZ,
59         BMP380_ODR_25HZ,
60         BMP380_ODR_12_5HZ,
61         BMP380_ODR_6_25HZ,
62         BMP380_ODR_3_125HZ,
63         BMP380_ODR_1_5625HZ,
64         BMP380_ODR_0_78HZ,
65         BMP380_ODR_0_39HZ,
66         BMP380_ODR_0_2HZ,
67         BMP380_ODR_0_1HZ,
68         BMP380_ODR_0_05HZ,
69         BMP380_ODR_0_02HZ,
70         BMP380_ODR_0_01HZ,
71         BMP380_ODR_0_006HZ,
72         BMP380_ODR_0_003HZ,
73         BMP380_ODR_0_0015HZ,
74 };
75
76 enum bmp580_odr {
77         BMP580_ODR_240HZ,
78         BMP580_ODR_218HZ,
79         BMP580_ODR_199HZ,
80         BMP580_ODR_179HZ,
81         BMP580_ODR_160HZ,
82         BMP580_ODR_149HZ,
83         BMP580_ODR_140HZ,
84         BMP580_ODR_129HZ,
85         BMP580_ODR_120HZ,
86         BMP580_ODR_110HZ,
87         BMP580_ODR_100HZ,
88         BMP580_ODR_89HZ,
89         BMP580_ODR_80HZ,
90         BMP580_ODR_70HZ,
91         BMP580_ODR_60HZ,
92         BMP580_ODR_50HZ,
93         BMP580_ODR_45HZ,
94         BMP580_ODR_40HZ,
95         BMP580_ODR_35HZ,
96         BMP580_ODR_30HZ,
97         BMP580_ODR_25HZ,
98         BMP580_ODR_20HZ,
99         BMP580_ODR_15HZ,
100         BMP580_ODR_10HZ,
101         BMP580_ODR_5HZ,
102         BMP580_ODR_4HZ,
103         BMP580_ODR_3HZ,
104         BMP580_ODR_2HZ,
105         BMP580_ODR_1HZ,
106         BMP580_ODR_0_5HZ,
107         BMP580_ODR_0_25HZ,
108         BMP580_ODR_0_125HZ,
109 };
110
111 /*
112  * These enums are used for indexing into the array of compensation
113  * parameters for BMP280.
114  */
115 enum { T1, T2, T3, P1, P2, P3, P4, P5, P6, P7, P8, P9 };
116
117 enum {
118         /* Temperature calib indexes */
119         BMP380_T1 = 0,
120         BMP380_T2 = 2,
121         BMP380_T3 = 4,
122         /* Pressure calib indexes */
123         BMP380_P1 = 5,
124         BMP380_P2 = 7,
125         BMP380_P3 = 9,
126         BMP380_P4 = 10,
127         BMP380_P5 = 11,
128         BMP380_P6 = 13,
129         BMP380_P7 = 15,
130         BMP380_P8 = 16,
131         BMP380_P9 = 17,
132         BMP380_P10 = 19,
133         BMP380_P11 = 20,
134 };
135
136 static const struct iio_chan_spec bmp280_channels[] = {
137         {
138                 .type = IIO_PRESSURE,
139                 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
140                                       BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
141         },
142         {
143                 .type = IIO_TEMP,
144                 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
145                                       BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
146         },
147         {
148                 .type = IIO_HUMIDITYRELATIVE,
149                 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
150                                       BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
151         },
152 };
153
154 static const struct iio_chan_spec bmp380_channels[] = {
155         {
156                 .type = IIO_PRESSURE,
157                 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
158                                       BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
159                 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) |
160                                            BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),
161         },
162         {
163                 .type = IIO_TEMP,
164                 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
165                                       BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
166                 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) |
167                                            BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),
168         },
169         {
170                 .type = IIO_HUMIDITYRELATIVE,
171                 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
172                                       BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
173                 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) |
174                                            BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),
175         },
176 };
177
178 static int bmp280_read_calib(struct bmp280_data *data)
179 {
180         struct bmp280_calib *calib = &data->calib.bmp280;
181         int ret;
182
183
184         /* Read temperature and pressure calibration values. */
185         ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_TEMP_START,
186                                data->bmp280_cal_buf, sizeof(data->bmp280_cal_buf));
187         if (ret < 0) {
188                 dev_err(data->dev,
189                         "failed to read temperature and pressure calibration parameters\n");
190                 return ret;
191         }
192
193         /* Toss the temperature and pressure calibration data into the entropy pool */
194         add_device_randomness(data->bmp280_cal_buf, sizeof(data->bmp280_cal_buf));
195
196         /* Parse temperature calibration values. */
197         calib->T1 = le16_to_cpu(data->bmp280_cal_buf[T1]);
198         calib->T2 = le16_to_cpu(data->bmp280_cal_buf[T2]);
199         calib->T3 = le16_to_cpu(data->bmp280_cal_buf[T3]);
200
201         /* Parse pressure calibration values. */
202         calib->P1 = le16_to_cpu(data->bmp280_cal_buf[P1]);
203         calib->P2 = le16_to_cpu(data->bmp280_cal_buf[P2]);
204         calib->P3 = le16_to_cpu(data->bmp280_cal_buf[P3]);
205         calib->P4 = le16_to_cpu(data->bmp280_cal_buf[P4]);
206         calib->P5 = le16_to_cpu(data->bmp280_cal_buf[P5]);
207         calib->P6 = le16_to_cpu(data->bmp280_cal_buf[P6]);
208         calib->P7 = le16_to_cpu(data->bmp280_cal_buf[P7]);
209         calib->P8 = le16_to_cpu(data->bmp280_cal_buf[P8]);
210         calib->P9 = le16_to_cpu(data->bmp280_cal_buf[P9]);
211
212         return 0;
213 }
214
215 static int bme280_read_calib(struct bmp280_data *data)
216 {
217         struct bmp280_calib *calib = &data->calib.bmp280;
218         struct device *dev = data->dev;
219         unsigned int tmp;
220         int ret;
221
222         /* Load shared calibration params with bmp280 first */
223         ret = bmp280_read_calib(data);
224         if  (ret < 0) {
225                 dev_err(dev, "failed to read common bmp280 calibration parameters\n");
226                 return ret;
227         }
228
229         /*
230          * Read humidity calibration values.
231          * Due to some odd register addressing we cannot just
232          * do a big bulk read. Instead, we have to read each Hx
233          * value separately and sometimes do some bit shifting...
234          * Humidity data is only available on BME280.
235          */
236
237         ret = regmap_read(data->regmap, BMP280_REG_COMP_H1, &tmp);
238         if (ret < 0) {
239                 dev_err(dev, "failed to read H1 comp value\n");
240                 return ret;
241         }
242         calib->H1 = tmp;
243
244         ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H2,
245                                &data->le16, sizeof(data->le16));
246         if (ret < 0) {
247                 dev_err(dev, "failed to read H2 comp value\n");
248                 return ret;
249         }
250         calib->H2 = sign_extend32(le16_to_cpu(data->le16), 15);
251
252         ret = regmap_read(data->regmap, BMP280_REG_COMP_H3, &tmp);
253         if (ret < 0) {
254                 dev_err(dev, "failed to read H3 comp value\n");
255                 return ret;
256         }
257         calib->H3 = tmp;
258
259         ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H4,
260                                &data->be16, sizeof(data->be16));
261         if (ret < 0) {
262                 dev_err(dev, "failed to read H4 comp value\n");
263                 return ret;
264         }
265         calib->H4 = sign_extend32(((be16_to_cpu(data->be16) >> 4) & 0xff0) |
266                                   (be16_to_cpu(data->be16) & 0xf), 11);
267
268         ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H5,
269                                &data->le16, sizeof(data->le16));
270         if (ret < 0) {
271                 dev_err(dev, "failed to read H5 comp value\n");
272                 return ret;
273         }
274         calib->H5 = sign_extend32(FIELD_GET(BMP280_COMP_H5_MASK, le16_to_cpu(data->le16)), 11);
275
276         ret = regmap_read(data->regmap, BMP280_REG_COMP_H6, &tmp);
277         if (ret < 0) {
278                 dev_err(dev, "failed to read H6 comp value\n");
279                 return ret;
280         }
281         calib->H6 = sign_extend32(tmp, 7);
282
283         return 0;
284 }
285 /*
286  * Returns humidity in percent, resolution is 0.01 percent. Output value of
287  * "47445" represents 47445/1024 = 46.333 %RH.
288  *
289  * Taken from BME280 datasheet, Section 4.2.3, "Compensation formula".
290  */
291 static u32 bmp280_compensate_humidity(struct bmp280_data *data,
292                                       s32 adc_humidity)
293 {
294         struct bmp280_calib *calib = &data->calib.bmp280;
295         s32 var;
296
297         var = ((s32)data->t_fine) - (s32)76800;
298         var = ((((adc_humidity << 14) - (calib->H4 << 20) - (calib->H5 * var))
299                 + (s32)16384) >> 15) * (((((((var * calib->H6) >> 10)
300                 * (((var * (s32)calib->H3) >> 11) + (s32)32768)) >> 10)
301                 + (s32)2097152) * calib->H2 + 8192) >> 14);
302         var -= ((((var >> 15) * (var >> 15)) >> 7) * (s32)calib->H1) >> 4;
303
304         var = clamp_val(var, 0, 419430400);
305
306         return var >> 12;
307 };
308
309 /*
310  * Returns temperature in DegC, resolution is 0.01 DegC.  Output value of
311  * "5123" equals 51.23 DegC.  t_fine carries fine temperature as global
312  * value.
313  *
314  * Taken from datasheet, Section 3.11.3, "Compensation formula".
315  */
316 static s32 bmp280_compensate_temp(struct bmp280_data *data,
317                                   s32 adc_temp)
318 {
319         struct bmp280_calib *calib = &data->calib.bmp280;
320         s32 var1, var2;
321
322         var1 = (((adc_temp >> 3) - ((s32)calib->T1 << 1)) *
323                 ((s32)calib->T2)) >> 11;
324         var2 = (((((adc_temp >> 4) - ((s32)calib->T1)) *
325                   ((adc_temp >> 4) - ((s32)calib->T1))) >> 12) *
326                 ((s32)calib->T3)) >> 14;
327         data->t_fine = var1 + var2;
328
329         return (data->t_fine * 5 + 128) >> 8;
330 }
331
332 /*
333  * Returns pressure in Pa as unsigned 32 bit integer in Q24.8 format (24
334  * integer bits and 8 fractional bits).  Output value of "24674867"
335  * represents 24674867/256 = 96386.2 Pa = 963.862 hPa
336  *
337  * Taken from datasheet, Section 3.11.3, "Compensation formula".
338  */
339 static u32 bmp280_compensate_press(struct bmp280_data *data,
340                                    s32 adc_press)
341 {
342         struct bmp280_calib *calib = &data->calib.bmp280;
343         s64 var1, var2, p;
344
345         var1 = ((s64)data->t_fine) - 128000;
346         var2 = var1 * var1 * (s64)calib->P6;
347         var2 += (var1 * (s64)calib->P5) << 17;
348         var2 += ((s64)calib->P4) << 35;
349         var1 = ((var1 * var1 * (s64)calib->P3) >> 8) +
350                 ((var1 * (s64)calib->P2) << 12);
351         var1 = ((((s64)1) << 47) + var1) * ((s64)calib->P1) >> 33;
352
353         if (var1 == 0)
354                 return 0;
355
356         p = ((((s64)1048576 - adc_press) << 31) - var2) * 3125;
357         p = div64_s64(p, var1);
358         var1 = (((s64)calib->P9) * (p >> 13) * (p >> 13)) >> 25;
359         var2 = ((s64)(calib->P8) * p) >> 19;
360         p = ((p + var1 + var2) >> 8) + (((s64)calib->P7) << 4);
361
362         return (u32)p;
363 }
364
365 static int bmp280_read_temp(struct bmp280_data *data,
366                             int *val, int *val2)
367 {
368         s32 adc_temp, comp_temp;
369         int ret;
370
371         ret = regmap_bulk_read(data->regmap, BMP280_REG_TEMP_MSB,
372                                data->buf, sizeof(data->buf));
373         if (ret < 0) {
374                 dev_err(data->dev, "failed to read temperature\n");
375                 return ret;
376         }
377
378         adc_temp = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(data->buf));
379         if (adc_temp == BMP280_TEMP_SKIPPED) {
380                 /* reading was skipped */
381                 dev_err(data->dev, "reading temperature skipped\n");
382                 return -EIO;
383         }
384         comp_temp = bmp280_compensate_temp(data, adc_temp);
385
386         /*
387          * val might be NULL if we're called by the read_press routine,
388          * who only cares about the carry over t_fine value.
389          */
390         if (val) {
391                 *val = comp_temp * 10;
392                 return IIO_VAL_INT;
393         }
394
395         return 0;
396 }
397
398 static int bmp280_read_press(struct bmp280_data *data,
399                              int *val, int *val2)
400 {
401         u32 comp_press;
402         s32 adc_press;
403         int ret;
404
405         /* Read and compensate temperature so we get a reading of t_fine. */
406         ret = bmp280_read_temp(data, NULL, NULL);
407         if (ret < 0)
408                 return ret;
409
410         ret = regmap_bulk_read(data->regmap, BMP280_REG_PRESS_MSB,
411                                data->buf, sizeof(data->buf));
412         if (ret < 0) {
413                 dev_err(data->dev, "failed to read pressure\n");
414                 return ret;
415         }
416
417         adc_press = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(data->buf));
418         if (adc_press == BMP280_PRESS_SKIPPED) {
419                 /* reading was skipped */
420                 dev_err(data->dev, "reading pressure skipped\n");
421                 return -EIO;
422         }
423         comp_press = bmp280_compensate_press(data, adc_press);
424
425         *val = comp_press;
426         *val2 = 256000;
427
428         return IIO_VAL_FRACTIONAL;
429 }
430
431 static int bmp280_read_humid(struct bmp280_data *data, int *val, int *val2)
432 {
433         u32 comp_humidity;
434         s32 adc_humidity;
435         int ret;
436
437         /* Read and compensate temperature so we get a reading of t_fine. */
438         ret = bmp280_read_temp(data, NULL, NULL);
439         if (ret < 0)
440                 return ret;
441
442         ret = regmap_bulk_read(data->regmap, BMP280_REG_HUMIDITY_MSB,
443                                &data->be16, sizeof(data->be16));
444         if (ret < 0) {
445                 dev_err(data->dev, "failed to read humidity\n");
446                 return ret;
447         }
448
449         adc_humidity = be16_to_cpu(data->be16);
450         if (adc_humidity == BMP280_HUMIDITY_SKIPPED) {
451                 /* reading was skipped */
452                 dev_err(data->dev, "reading humidity skipped\n");
453                 return -EIO;
454         }
455         comp_humidity = bmp280_compensate_humidity(data, adc_humidity);
456
457         *val = comp_humidity * 1000 / 1024;
458
459         return IIO_VAL_INT;
460 }
461
462 static int bmp280_read_raw(struct iio_dev *indio_dev,
463                            struct iio_chan_spec const *chan,
464                            int *val, int *val2, long mask)
465 {
466         struct bmp280_data *data = iio_priv(indio_dev);
467         int ret;
468
469         pm_runtime_get_sync(data->dev);
470         mutex_lock(&data->lock);
471
472         switch (mask) {
473         case IIO_CHAN_INFO_PROCESSED:
474                 switch (chan->type) {
475                 case IIO_HUMIDITYRELATIVE:
476                         ret = data->chip_info->read_humid(data, val, val2);
477                         break;
478                 case IIO_PRESSURE:
479                         ret = data->chip_info->read_press(data, val, val2);
480                         break;
481                 case IIO_TEMP:
482                         ret = data->chip_info->read_temp(data, val, val2);
483                         break;
484                 default:
485                         ret = -EINVAL;
486                         break;
487                 }
488                 break;
489         case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
490                 switch (chan->type) {
491                 case IIO_HUMIDITYRELATIVE:
492                         *val = 1 << data->oversampling_humid;
493                         ret = IIO_VAL_INT;
494                         break;
495                 case IIO_PRESSURE:
496                         *val = 1 << data->oversampling_press;
497                         ret = IIO_VAL_INT;
498                         break;
499                 case IIO_TEMP:
500                         *val = 1 << data->oversampling_temp;
501                         ret = IIO_VAL_INT;
502                         break;
503                 default:
504                         ret = -EINVAL;
505                         break;
506                 }
507                 break;
508         case IIO_CHAN_INFO_SAMP_FREQ:
509                 if (!data->chip_info->sampling_freq_avail) {
510                         ret = -EINVAL;
511                         break;
512                 }
513
514                 *val = data->chip_info->sampling_freq_avail[data->sampling_freq][0];
515                 *val2 = data->chip_info->sampling_freq_avail[data->sampling_freq][1];
516                 ret = IIO_VAL_INT_PLUS_MICRO;
517                 break;
518         case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
519                 if (!data->chip_info->iir_filter_coeffs_avail) {
520                         ret = -EINVAL;
521                         break;
522                 }
523
524                 *val = (1 << data->iir_filter_coeff) - 1;
525                 ret = IIO_VAL_INT;
526                 break;
527         default:
528                 ret = -EINVAL;
529                 break;
530         }
531
532         mutex_unlock(&data->lock);
533         pm_runtime_mark_last_busy(data->dev);
534         pm_runtime_put_autosuspend(data->dev);
535
536         return ret;
537 }
538
539 static int bmp280_write_oversampling_ratio_humid(struct bmp280_data *data,
540                                                int val)
541 {
542         const int *avail = data->chip_info->oversampling_humid_avail;
543         const int n = data->chip_info->num_oversampling_humid_avail;
544         int ret, prev;
545         int i;
546
547         for (i = 0; i < n; i++) {
548                 if (avail[i] == val) {
549                         prev = data->oversampling_humid;
550                         data->oversampling_humid = ilog2(val);
551
552                         ret = data->chip_info->chip_config(data);
553                         if (ret) {
554                                 data->oversampling_humid = prev;
555                                 data->chip_info->chip_config(data);
556                                 return ret;
557                         }
558                         return 0;
559                 }
560         }
561         return -EINVAL;
562 }
563
564 static int bmp280_write_oversampling_ratio_temp(struct bmp280_data *data,
565                                                int val)
566 {
567         const int *avail = data->chip_info->oversampling_temp_avail;
568         const int n = data->chip_info->num_oversampling_temp_avail;
569         int ret, prev;
570         int i;
571
572         for (i = 0; i < n; i++) {
573                 if (avail[i] == val) {
574                         prev = data->oversampling_temp;
575                         data->oversampling_temp = ilog2(val);
576
577                         ret = data->chip_info->chip_config(data);
578                         if (ret) {
579                                 data->oversampling_temp = prev;
580                                 data->chip_info->chip_config(data);
581                                 return ret;
582                         }
583                         return 0;
584                 }
585         }
586         return -EINVAL;
587 }
588
589 static int bmp280_write_oversampling_ratio_press(struct bmp280_data *data,
590                                                int val)
591 {
592         const int *avail = data->chip_info->oversampling_press_avail;
593         const int n = data->chip_info->num_oversampling_press_avail;
594         int ret, prev;
595         int i;
596
597         for (i = 0; i < n; i++) {
598                 if (avail[i] == val) {
599                         prev = data->oversampling_press;
600                         data->oversampling_press = ilog2(val);
601
602                         ret = data->chip_info->chip_config(data);
603                         if (ret) {
604                                 data->oversampling_press = prev;
605                                 data->chip_info->chip_config(data);
606                                 return ret;
607                         }
608                         return 0;
609                 }
610         }
611         return -EINVAL;
612 }
613
614 static int bmp280_write_sampling_frequency(struct bmp280_data *data,
615                                            int val, int val2)
616 {
617         const int (*avail)[2] = data->chip_info->sampling_freq_avail;
618         const int n = data->chip_info->num_sampling_freq_avail;
619         int ret, prev;
620         int i;
621
622         for (i = 0; i < n; i++) {
623                 if (avail[i][0] == val && avail[i][1] == val2) {
624                         prev = data->sampling_freq;
625                         data->sampling_freq = i;
626
627                         ret = data->chip_info->chip_config(data);
628                         if (ret) {
629                                 data->sampling_freq = prev;
630                                 data->chip_info->chip_config(data);
631                                 return ret;
632                         }
633                         return 0;
634                 }
635         }
636         return -EINVAL;
637 }
638
639 static int bmp280_write_iir_filter_coeffs(struct bmp280_data *data, int val)
640 {
641         const int *avail = data->chip_info->iir_filter_coeffs_avail;
642         const int n = data->chip_info->num_iir_filter_coeffs_avail;
643         int ret, prev;
644         int i;
645
646         for (i = 0; i < n; i++) {
647                 if (avail[i] - 1  == val) {
648                         prev = data->iir_filter_coeff;
649                         data->iir_filter_coeff = i;
650
651                         ret = data->chip_info->chip_config(data);
652                         if (ret) {
653                                 data->iir_filter_coeff = prev;
654                                 data->chip_info->chip_config(data);
655                                 return ret;
656
657                         }
658                         return 0;
659                 }
660         }
661         return -EINVAL;
662 }
663
664 static int bmp280_write_raw(struct iio_dev *indio_dev,
665                             struct iio_chan_spec const *chan,
666                             int val, int val2, long mask)
667 {
668         struct bmp280_data *data = iio_priv(indio_dev);
669         int ret = 0;
670
671         /*
672          * Helper functions to update sensor running configuration.
673          * If an error happens applying new settings, will try restore
674          * previous parameters to ensure the sensor is left in a known
675          * working configuration.
676          */
677         switch (mask) {
678         case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
679                 pm_runtime_get_sync(data->dev);
680                 mutex_lock(&data->lock);
681                 switch (chan->type) {
682                 case IIO_HUMIDITYRELATIVE:
683                         ret = bmp280_write_oversampling_ratio_humid(data, val);
684                         break;
685                 case IIO_PRESSURE:
686                         ret = bmp280_write_oversampling_ratio_press(data, val);
687                         break;
688                 case IIO_TEMP:
689                         ret = bmp280_write_oversampling_ratio_temp(data, val);
690                         break;
691                 default:
692                         ret = -EINVAL;
693                         break;
694                 }
695                 mutex_unlock(&data->lock);
696                 pm_runtime_mark_last_busy(data->dev);
697                 pm_runtime_put_autosuspend(data->dev);
698                 break;
699         case IIO_CHAN_INFO_SAMP_FREQ:
700                 pm_runtime_get_sync(data->dev);
701                 mutex_lock(&data->lock);
702                 ret = bmp280_write_sampling_frequency(data, val, val2);
703                 mutex_unlock(&data->lock);
704                 pm_runtime_mark_last_busy(data->dev);
705                 pm_runtime_put_autosuspend(data->dev);
706                 break;
707         case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
708                 pm_runtime_get_sync(data->dev);
709                 mutex_lock(&data->lock);
710                 ret = bmp280_write_iir_filter_coeffs(data, val);
711                 mutex_unlock(&data->lock);
712                 pm_runtime_mark_last_busy(data->dev);
713                 pm_runtime_put_autosuspend(data->dev);
714                 break;
715         default:
716                 return -EINVAL;
717         }
718
719         return ret;
720 }
721
722 static int bmp280_read_avail(struct iio_dev *indio_dev,
723                              struct iio_chan_spec const *chan,
724                              const int **vals, int *type, int *length,
725                              long mask)
726 {
727         struct bmp280_data *data = iio_priv(indio_dev);
728
729         switch (mask) {
730         case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
731                 switch (chan->type) {
732                 case IIO_PRESSURE:
733                         *vals = data->chip_info->oversampling_press_avail;
734                         *length = data->chip_info->num_oversampling_press_avail;
735                         break;
736                 case IIO_TEMP:
737                         *vals = data->chip_info->oversampling_temp_avail;
738                         *length = data->chip_info->num_oversampling_temp_avail;
739                         break;
740                 default:
741                         return -EINVAL;
742                 }
743                 *type = IIO_VAL_INT;
744                 return IIO_AVAIL_LIST;
745         case IIO_CHAN_INFO_SAMP_FREQ:
746                 *vals = (const int *)data->chip_info->sampling_freq_avail;
747                 *type = IIO_VAL_INT_PLUS_MICRO;
748                 /* Values are stored in a 2D matrix */
749                 *length = data->chip_info->num_sampling_freq_avail;
750                 return IIO_AVAIL_LIST;
751         case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
752                 *vals = data->chip_info->iir_filter_coeffs_avail;
753                 *type = IIO_VAL_INT;
754                 *length = data->chip_info->num_iir_filter_coeffs_avail;
755                 return IIO_AVAIL_LIST;
756         default:
757                 return -EINVAL;
758         }
759 }
760
761 static const struct iio_info bmp280_info = {
762         .read_raw = &bmp280_read_raw,
763         .read_avail = &bmp280_read_avail,
764         .write_raw = &bmp280_write_raw,
765 };
766
767 static int bmp280_chip_config(struct bmp280_data *data)
768 {
769         u8 osrs = FIELD_PREP(BMP280_OSRS_TEMP_MASK, data->oversampling_temp + 1) |
770                   FIELD_PREP(BMP280_OSRS_PRESS_MASK, data->oversampling_press + 1);
771         int ret;
772
773         ret = regmap_write_bits(data->regmap, BMP280_REG_CTRL_MEAS,
774                                  BMP280_OSRS_TEMP_MASK |
775                                  BMP280_OSRS_PRESS_MASK |
776                                  BMP280_MODE_MASK,
777                                  osrs | BMP280_MODE_NORMAL);
778         if (ret < 0) {
779                 dev_err(data->dev,
780                         "failed to write ctrl_meas register\n");
781                 return ret;
782         }
783
784         ret = regmap_update_bits(data->regmap, BMP280_REG_CONFIG,
785                                  BMP280_FILTER_MASK,
786                                  BMP280_FILTER_4X);
787         if (ret < 0) {
788                 dev_err(data->dev,
789                         "failed to write config register\n");
790                 return ret;
791         }
792
793         return ret;
794 }
795
796 static const int bmp280_oversampling_avail[] = { 1, 2, 4, 8, 16 };
797
798 const struct bmp280_chip_info bmp280_chip_info = {
799         .id_reg = BMP280_REG_ID,
800         .chip_id = BMP280_CHIP_ID,
801         .regmap_config = &bmp280_regmap_config,
802         .start_up_time = 2000,
803         .channels = bmp280_channels,
804         .num_channels = 2,
805
806         .oversampling_temp_avail = bmp280_oversampling_avail,
807         .num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail),
808         /*
809          * Oversampling config values on BMx280 have one additional setting
810          * that other generations of the family don't:
811          * The value 0 means the measurement is bypassed instead of
812          * oversampling set to x1.
813          *
814          * To account for this difference, and preserve the same common
815          * config logic, this is handled later on chip_config callback
816          * incrementing one unit the oversampling setting.
817          */
818         .oversampling_temp_default = BMP280_OSRS_TEMP_2X - 1,
819
820         .oversampling_press_avail = bmp280_oversampling_avail,
821         .num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail),
822         .oversampling_press_default = BMP280_OSRS_PRESS_16X - 1,
823
824         .chip_config = bmp280_chip_config,
825         .read_temp = bmp280_read_temp,
826         .read_press = bmp280_read_press,
827         .read_calib = bmp280_read_calib,
828 };
829 EXPORT_SYMBOL_NS(bmp280_chip_info, IIO_BMP280);
830
831 static int bme280_chip_config(struct bmp280_data *data)
832 {
833         u8 osrs = FIELD_PREP(BMP280_OSRS_HUMIDITY_MASK, data->oversampling_humid + 1);
834         int ret;
835
836         /*
837          * Oversampling of humidity must be set before oversampling of
838          * temperature/pressure is set to become effective.
839          */
840         ret = regmap_update_bits(data->regmap, BMP280_REG_CTRL_HUMIDITY,
841                                   BMP280_OSRS_HUMIDITY_MASK, osrs);
842
843         if (ret < 0)
844                 return ret;
845
846         return bmp280_chip_config(data);
847 }
848
849 const struct bmp280_chip_info bme280_chip_info = {
850         .id_reg = BMP280_REG_ID,
851         .chip_id = BME280_CHIP_ID,
852         .regmap_config = &bmp280_regmap_config,
853         .start_up_time = 2000,
854         .channels = bmp280_channels,
855         .num_channels = 3,
856
857         .oversampling_temp_avail = bmp280_oversampling_avail,
858         .num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail),
859         .oversampling_temp_default = BMP280_OSRS_TEMP_2X - 1,
860
861         .oversampling_press_avail = bmp280_oversampling_avail,
862         .num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail),
863         .oversampling_press_default = BMP280_OSRS_PRESS_16X - 1,
864
865         .oversampling_humid_avail = bmp280_oversampling_avail,
866         .num_oversampling_humid_avail = ARRAY_SIZE(bmp280_oversampling_avail),
867         .oversampling_humid_default = BMP280_OSRS_HUMIDITY_16X - 1,
868
869         .chip_config = bme280_chip_config,
870         .read_temp = bmp280_read_temp,
871         .read_press = bmp280_read_press,
872         .read_humid = bmp280_read_humid,
873         .read_calib = bme280_read_calib,
874 };
875 EXPORT_SYMBOL_NS(bme280_chip_info, IIO_BMP280);
876
877 /*
878  * Helper function to send a command to BMP3XX sensors.
879  *
880  * Sensor processes commands written to the CMD register and signals
881  * execution result through "cmd_rdy" and "cmd_error" flags available on
882  * STATUS and ERROR registers.
883  */
884 static int bmp380_cmd(struct bmp280_data *data, u8 cmd)
885 {
886         unsigned int reg;
887         int ret;
888
889         /* Check if device is ready to process a command */
890         ret = regmap_read(data->regmap, BMP380_REG_STATUS, &reg);
891         if (ret) {
892                 dev_err(data->dev, "failed to read error register\n");
893                 return ret;
894         }
895         if (!(reg & BMP380_STATUS_CMD_RDY_MASK)) {
896                 dev_err(data->dev, "device is not ready to accept commands\n");
897                 return -EBUSY;
898         }
899
900         /* Send command to process */
901         ret = regmap_write(data->regmap, BMP380_REG_CMD, cmd);
902         if (ret) {
903                 dev_err(data->dev, "failed to send command to device\n");
904                 return ret;
905         }
906         /* Wait for 2ms for command to be processed */
907         usleep_range(data->start_up_time, data->start_up_time + 100);
908         /* Check for command processing error */
909         ret = regmap_read(data->regmap, BMP380_REG_ERROR, &reg);
910         if (ret) {
911                 dev_err(data->dev, "error reading ERROR reg\n");
912                 return ret;
913         }
914         if (reg & BMP380_ERR_CMD_MASK) {
915                 dev_err(data->dev, "error processing command 0x%X\n", cmd);
916                 return -EINVAL;
917         }
918
919         return 0;
920 }
921
922 /*
923  * Returns temperature in Celsius dregrees, resolution is 0.01º C. Output value of
924  * "5123" equals 51.2º C. t_fine carries fine temperature as global value.
925  *
926  * Taken from datasheet, Section Appendix 9, "Compensation formula" and repo
927  * https://github.com/BoschSensortec/BMP3-Sensor-API.
928  */
929 static s32 bmp380_compensate_temp(struct bmp280_data *data, u32 adc_temp)
930 {
931         s64 var1, var2, var3, var4, var5, var6, comp_temp;
932         struct bmp380_calib *calib = &data->calib.bmp380;
933
934         var1 = ((s64) adc_temp) - (((s64) calib->T1) << 8);
935         var2 = var1 * ((s64) calib->T2);
936         var3 = var1 * var1;
937         var4 = var3 * ((s64) calib->T3);
938         var5 = (var2 << 18) + var4;
939         var6 = var5 >> 32;
940         data->t_fine = (s32) var6;
941         comp_temp = (var6 * 25) >> 14;
942
943         comp_temp = clamp_val(comp_temp, BMP380_MIN_TEMP, BMP380_MAX_TEMP);
944         return (s32) comp_temp;
945 }
946
947 /*
948  * Returns pressure in Pa as an unsigned 32 bit integer in fractional Pascal.
949  * Output value of "9528709" represents 9528709/100 = 95287.09 Pa = 952.8709 hPa.
950  *
951  * Taken from datasheet, Section 9.3. "Pressure compensation" and repository
952  * https://github.com/BoschSensortec/BMP3-Sensor-API.
953  */
954 static u32 bmp380_compensate_press(struct bmp280_data *data, u32 adc_press)
955 {
956         s64 var1, var2, var3, var4, var5, var6, offset, sensitivity;
957         struct bmp380_calib *calib = &data->calib.bmp380;
958         u32 comp_press;
959
960         var1 = (s64)data->t_fine * (s64)data->t_fine;
961         var2 = var1 >> 6;
962         var3 = (var2 * ((s64) data->t_fine)) >> 8;
963         var4 = ((s64)calib->P8 * var3) >> 5;
964         var5 = ((s64)calib->P7 * var1) << 4;
965         var6 = ((s64)calib->P6 * (s64)data->t_fine) << 22;
966         offset = ((s64)calib->P5 << 47) + var4 + var5 + var6;
967         var2 = ((s64)calib->P4 * var3) >> 5;
968         var4 = ((s64)calib->P3 * var1) << 2;
969         var5 = ((s64)calib->P2 - ((s64)1 << 14)) *
970                ((s64)data->t_fine << 21);
971         sensitivity = (((s64) calib->P1 - ((s64) 1 << 14)) << 46) +
972                         var2 + var4 + var5;
973         var1 = (sensitivity >> 24) * (s64)adc_press;
974         var2 = (s64)calib->P10 * (s64)data->t_fine;
975         var3 = var2 + ((s64)calib->P9 << 16);
976         var4 = (var3 * (s64)adc_press) >> 13;
977
978         /*
979          * Dividing by 10 followed by multiplying by 10 to avoid
980          * possible overflow caused by (uncomp_data->pressure * partial_data4).
981          */
982         var5 = ((s64)adc_press * div_s64(var4, 10)) >> 9;
983         var5 *= 10;
984         var6 = (s64)adc_press * (s64)adc_press;
985         var2 = ((s64)calib->P11 * var6) >> 16;
986         var3 = (var2 * (s64)adc_press) >> 7;
987         var4 = (offset >> 2) + var1 + var5 + var3;
988         comp_press = ((u64)var4 * 25) >> 40;
989
990         comp_press = clamp_val(comp_press, BMP380_MIN_PRES, BMP380_MAX_PRES);
991         return comp_press;
992 }
993
994 static int bmp380_read_temp(struct bmp280_data *data, int *val, int *val2)
995 {
996         s32 comp_temp;
997         u32 adc_temp;
998         int ret;
999
1000         ret = regmap_bulk_read(data->regmap, BMP380_REG_TEMP_XLSB,
1001                                data->buf, sizeof(data->buf));
1002         if (ret) {
1003                 dev_err(data->dev, "failed to read temperature\n");
1004                 return ret;
1005         }
1006
1007         adc_temp = get_unaligned_le24(data->buf);
1008         if (adc_temp == BMP380_TEMP_SKIPPED) {
1009                 dev_err(data->dev, "reading temperature skipped\n");
1010                 return -EIO;
1011         }
1012         comp_temp = bmp380_compensate_temp(data, adc_temp);
1013
1014         /*
1015          * Val might be NULL if we're called by the read_press routine,
1016          * who only cares about the carry over t_fine value.
1017          */
1018         if (val) {
1019                 /* IIO reports temperatures in milli Celsius */
1020                 *val = comp_temp * 10;
1021                 return IIO_VAL_INT;
1022         }
1023
1024         return 0;
1025 }
1026
1027 static int bmp380_read_press(struct bmp280_data *data, int *val, int *val2)
1028 {
1029         s32 comp_press;
1030         u32 adc_press;
1031         int ret;
1032
1033         /* Read and compensate for temperature so we get a reading of t_fine */
1034         ret = bmp380_read_temp(data, NULL, NULL);
1035         if (ret)
1036                 return ret;
1037
1038         ret = regmap_bulk_read(data->regmap, BMP380_REG_PRESS_XLSB,
1039                                data->buf, sizeof(data->buf));
1040         if (ret) {
1041                 dev_err(data->dev, "failed to read pressure\n");
1042                 return ret;
1043         }
1044
1045         adc_press = get_unaligned_le24(data->buf);
1046         if (adc_press == BMP380_PRESS_SKIPPED) {
1047                 dev_err(data->dev, "reading pressure skipped\n");
1048                 return -EIO;
1049         }
1050         comp_press = bmp380_compensate_press(data, adc_press);
1051
1052         *val = comp_press;
1053         /* Compensated pressure is in cPa (centipascals) */
1054         *val2 = 100000;
1055
1056         return IIO_VAL_FRACTIONAL;
1057 }
1058
1059 static int bmp380_read_calib(struct bmp280_data *data)
1060 {
1061         struct bmp380_calib *calib = &data->calib.bmp380;
1062         int ret;
1063
1064         /* Read temperature and pressure calibration data */
1065         ret = regmap_bulk_read(data->regmap, BMP380_REG_CALIB_TEMP_START,
1066                                data->bmp380_cal_buf, sizeof(data->bmp380_cal_buf));
1067         if (ret) {
1068                 dev_err(data->dev,
1069                         "failed to read temperature calibration parameters\n");
1070                 return ret;
1071         }
1072
1073         /* Toss the temperature calibration data into the entropy pool */
1074         add_device_randomness(data->bmp380_cal_buf, sizeof(data->bmp380_cal_buf));
1075
1076         /* Parse calibration values */
1077         calib->T1 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_T1]);
1078         calib->T2 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_T2]);
1079         calib->T3 = data->bmp380_cal_buf[BMP380_T3];
1080         calib->P1 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P1]);
1081         calib->P2 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P2]);
1082         calib->P3 = data->bmp380_cal_buf[BMP380_P3];
1083         calib->P4 = data->bmp380_cal_buf[BMP380_P4];
1084         calib->P5 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P5]);
1085         calib->P6 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P6]);
1086         calib->P7 = data->bmp380_cal_buf[BMP380_P7];
1087         calib->P8 = data->bmp380_cal_buf[BMP380_P8];
1088         calib->P9 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P9]);
1089         calib->P10 = data->bmp380_cal_buf[BMP380_P10];
1090         calib->P11 = data->bmp380_cal_buf[BMP380_P11];
1091
1092         return 0;
1093 }
1094
1095 static const int bmp380_odr_table[][2] = {
1096         [BMP380_ODR_200HZ]      = {200, 0},
1097         [BMP380_ODR_100HZ]      = {100, 0},
1098         [BMP380_ODR_50HZ]       = {50, 0},
1099         [BMP380_ODR_25HZ]       = {25, 0},
1100         [BMP380_ODR_12_5HZ]     = {12, 500000},
1101         [BMP380_ODR_6_25HZ]     = {6, 250000},
1102         [BMP380_ODR_3_125HZ]    = {3, 125000},
1103         [BMP380_ODR_1_5625HZ]   = {1, 562500},
1104         [BMP380_ODR_0_78HZ]     = {0, 781250},
1105         [BMP380_ODR_0_39HZ]     = {0, 390625},
1106         [BMP380_ODR_0_2HZ]      = {0, 195313},
1107         [BMP380_ODR_0_1HZ]      = {0, 97656},
1108         [BMP380_ODR_0_05HZ]     = {0, 48828},
1109         [BMP380_ODR_0_02HZ]     = {0, 24414},
1110         [BMP380_ODR_0_01HZ]     = {0, 12207},
1111         [BMP380_ODR_0_006HZ]    = {0, 6104},
1112         [BMP380_ODR_0_003HZ]    = {0, 3052},
1113         [BMP380_ODR_0_0015HZ]   = {0, 1526},
1114 };
1115
1116 static int bmp380_preinit(struct bmp280_data *data)
1117 {
1118         /* BMP3xx requires soft-reset as part of initialization */
1119         return bmp380_cmd(data, BMP380_CMD_SOFT_RESET);
1120 }
1121
1122 static int bmp380_chip_config(struct bmp280_data *data)
1123 {
1124         bool change = false, aux;
1125         unsigned int tmp;
1126         u8 osrs;
1127         int ret;
1128
1129         /* Configure power control register */
1130         ret = regmap_update_bits(data->regmap, BMP380_REG_POWER_CONTROL,
1131                                  BMP380_CTRL_SENSORS_MASK,
1132                                  BMP380_CTRL_SENSORS_PRESS_EN |
1133                                  BMP380_CTRL_SENSORS_TEMP_EN);
1134         if (ret) {
1135                 dev_err(data->dev,
1136                         "failed to write operation control register\n");
1137                 return ret;
1138         }
1139
1140         /* Configure oversampling */
1141         osrs = FIELD_PREP(BMP380_OSRS_TEMP_MASK, data->oversampling_temp) |
1142                FIELD_PREP(BMP380_OSRS_PRESS_MASK, data->oversampling_press);
1143
1144         ret = regmap_update_bits_check(data->regmap, BMP380_REG_OSR,
1145                                        BMP380_OSRS_TEMP_MASK |
1146                                        BMP380_OSRS_PRESS_MASK,
1147                                        osrs, &aux);
1148         if (ret) {
1149                 dev_err(data->dev, "failed to write oversampling register\n");
1150                 return ret;
1151         }
1152         change = change || aux;
1153
1154         /* Configure output data rate */
1155         ret = regmap_update_bits_check(data->regmap, BMP380_REG_ODR,
1156                                        BMP380_ODRS_MASK, data->sampling_freq, &aux);
1157         if (ret) {
1158                 dev_err(data->dev, "failed to write ODR selection register\n");
1159                 return ret;
1160         }
1161         change = change || aux;
1162
1163         /* Set filter data */
1164         ret = regmap_update_bits_check(data->regmap, BMP380_REG_CONFIG, BMP380_FILTER_MASK,
1165                                        FIELD_PREP(BMP380_FILTER_MASK, data->iir_filter_coeff),
1166                                        &aux);
1167         if (ret) {
1168                 dev_err(data->dev, "failed to write config register\n");
1169                 return ret;
1170         }
1171         change = change || aux;
1172
1173         if (change) {
1174                 /*
1175                  * The configurations errors are detected on the fly during a measurement
1176                  * cycle. If the sampling frequency is too low, it's faster to reset
1177                  * the measurement loop than wait until the next measurement is due.
1178                  *
1179                  * Resets sensor measurement loop toggling between sleep and normal
1180                  * operating modes.
1181                  */
1182                 ret = regmap_write_bits(data->regmap, BMP380_REG_POWER_CONTROL,
1183                                         BMP380_MODE_MASK,
1184                                         FIELD_PREP(BMP380_MODE_MASK, BMP380_MODE_SLEEP));
1185                 if (ret) {
1186                         dev_err(data->dev, "failed to set sleep mode\n");
1187                         return ret;
1188                 }
1189                 usleep_range(2000, 2500);
1190                 ret = regmap_write_bits(data->regmap, BMP380_REG_POWER_CONTROL,
1191                                         BMP380_MODE_MASK,
1192                                         FIELD_PREP(BMP380_MODE_MASK, BMP380_MODE_NORMAL));
1193                 if (ret) {
1194                         dev_err(data->dev, "failed to set normal mode\n");
1195                         return ret;
1196                 }
1197                 /*
1198                  * Waits for measurement before checking configuration error flag.
1199                  * Selected longest measure time indicated in section 3.9.1
1200                  * in the datasheet.
1201                  */
1202                 msleep(80);
1203
1204                 /* Check config error flag */
1205                 ret = regmap_read(data->regmap, BMP380_REG_ERROR, &tmp);
1206                 if (ret) {
1207                         dev_err(data->dev,
1208                                 "failed to read error register\n");
1209                         return ret;
1210                 }
1211                 if (tmp & BMP380_ERR_CONF_MASK) {
1212                         dev_warn(data->dev,
1213                                 "sensor flagged configuration as incompatible\n");
1214                         return -EINVAL;
1215                 }
1216         }
1217
1218         return 0;
1219 }
1220
1221 static const int bmp380_oversampling_avail[] = { 1, 2, 4, 8, 16, 32 };
1222 static const int bmp380_iir_filter_coeffs_avail[] = { 1, 2, 4, 8, 16, 32, 64, 128};
1223
1224 const struct bmp280_chip_info bmp380_chip_info = {
1225         .id_reg = BMP380_REG_ID,
1226         .chip_id = BMP380_CHIP_ID,
1227         .regmap_config = &bmp380_regmap_config,
1228         .start_up_time = 2000,
1229         .channels = bmp380_channels,
1230         .num_channels = 2,
1231
1232         .oversampling_temp_avail = bmp380_oversampling_avail,
1233         .num_oversampling_temp_avail = ARRAY_SIZE(bmp380_oversampling_avail),
1234         .oversampling_temp_default = ilog2(1),
1235
1236         .oversampling_press_avail = bmp380_oversampling_avail,
1237         .num_oversampling_press_avail = ARRAY_SIZE(bmp380_oversampling_avail),
1238         .oversampling_press_default = ilog2(4),
1239
1240         .sampling_freq_avail = bmp380_odr_table,
1241         .num_sampling_freq_avail = ARRAY_SIZE(bmp380_odr_table) * 2,
1242         .sampling_freq_default = BMP380_ODR_50HZ,
1243
1244         .iir_filter_coeffs_avail = bmp380_iir_filter_coeffs_avail,
1245         .num_iir_filter_coeffs_avail = ARRAY_SIZE(bmp380_iir_filter_coeffs_avail),
1246         .iir_filter_coeff_default = 2,
1247
1248         .chip_config = bmp380_chip_config,
1249         .read_temp = bmp380_read_temp,
1250         .read_press = bmp380_read_press,
1251         .read_calib = bmp380_read_calib,
1252         .preinit = bmp380_preinit,
1253 };
1254 EXPORT_SYMBOL_NS(bmp380_chip_info, IIO_BMP280);
1255
1256 static int bmp580_soft_reset(struct bmp280_data *data)
1257 {
1258         unsigned int reg;
1259         int ret;
1260
1261         ret = regmap_write(data->regmap, BMP580_REG_CMD, BMP580_CMD_SOFT_RESET);
1262         if (ret) {
1263                 dev_err(data->dev, "failed to send reset command to device\n");
1264                 return ret;
1265         }
1266         usleep_range(2000, 2500);
1267
1268         /* Dummy read of chip_id */
1269         ret = regmap_read(data->regmap, BMP580_REG_CHIP_ID, &reg);
1270         if (ret) {
1271                 dev_err(data->dev, "failed to reestablish comms after reset\n");
1272                 return ret;
1273         }
1274
1275         ret = regmap_read(data->regmap, BMP580_REG_INT_STATUS, &reg);
1276         if (ret) {
1277                 dev_err(data->dev, "error reading interrupt status register\n");
1278                 return ret;
1279         }
1280         if (!(reg & BMP580_INT_STATUS_POR_MASK)) {
1281                 dev_err(data->dev, "error resetting sensor\n");
1282                 return -EINVAL;
1283         }
1284
1285         return 0;
1286 }
1287
1288 /**
1289  * bmp580_nvm_operation() - Helper function to commit NVM memory operations
1290  * @data: sensor data struct
1291  * @is_write: flag to signal write operation
1292  */
1293 static int bmp580_nvm_operation(struct bmp280_data *data, bool is_write)
1294 {
1295         unsigned long timeout, poll;
1296         unsigned int reg;
1297         int ret;
1298
1299         /* Check NVM ready flag */
1300         ret = regmap_read(data->regmap, BMP580_REG_STATUS, &reg);
1301         if (ret) {
1302                 dev_err(data->dev, "failed to check nvm status\n");
1303                 return ret;
1304         }
1305         if (!(reg & BMP580_STATUS_NVM_RDY_MASK)) {
1306                 dev_err(data->dev, "sensor's nvm is not ready\n");
1307                 return -EIO;
1308         }
1309
1310         /* Start NVM operation sequence */
1311         ret = regmap_write(data->regmap, BMP580_REG_CMD, BMP580_CMD_NVM_OP_SEQ_0);
1312         if (ret) {
1313                 dev_err(data->dev, "failed to send nvm operation's first sequence\n");
1314                 return ret;
1315         }
1316         if (is_write) {
1317                 /* Send NVM write sequence */
1318                 ret = regmap_write(data->regmap, BMP580_REG_CMD,
1319                                    BMP580_CMD_NVM_WRITE_SEQ_1);
1320                 if (ret) {
1321                         dev_err(data->dev, "failed to send nvm write sequence\n");
1322                         return ret;
1323                 }
1324                 /* Datasheet says on 4.8.1.2 it takes approximately 10ms */
1325                 poll = 2000;
1326                 timeout = 12000;
1327         } else {
1328                 /* Send NVM read sequence */
1329                 ret = regmap_write(data->regmap, BMP580_REG_CMD,
1330                                    BMP580_CMD_NVM_READ_SEQ_1);
1331                 if (ret) {
1332                         dev_err(data->dev, "failed to send nvm read sequence\n");
1333                         return ret;
1334                 }
1335                 /* Datasheet says on 4.8.1.1 it takes approximately 200us */
1336                 poll = 50;
1337                 timeout = 400;
1338         }
1339         if (ret) {
1340                 dev_err(data->dev, "failed to write command sequence\n");
1341                 return -EIO;
1342         }
1343
1344         /* Wait until NVM is ready again */
1345         ret = regmap_read_poll_timeout(data->regmap, BMP580_REG_STATUS, reg,
1346                                        (reg & BMP580_STATUS_NVM_RDY_MASK),
1347                                        poll, timeout);
1348         if (ret) {
1349                 dev_err(data->dev, "error checking nvm operation status\n");
1350                 return ret;
1351         }
1352
1353         /* Check NVM error flags */
1354         if ((reg & BMP580_STATUS_NVM_ERR_MASK) || (reg & BMP580_STATUS_NVM_CMD_ERR_MASK)) {
1355                 dev_err(data->dev, "error processing nvm operation\n");
1356                 return -EIO;
1357         }
1358
1359         return 0;
1360 }
1361
1362 /*
1363  * Contrary to previous sensors families, compensation algorithm is builtin.
1364  * We are only required to read the register raw data and adapt the ranges
1365  * for what is expected on IIO ABI.
1366  */
1367
1368 static int bmp580_read_temp(struct bmp280_data *data, int *val, int *val2)
1369 {
1370         s32 raw_temp;
1371         int ret;
1372
1373         ret = regmap_bulk_read(data->regmap, BMP580_REG_TEMP_XLSB, data->buf,
1374                                sizeof(data->buf));
1375         if (ret) {
1376                 dev_err(data->dev, "failed to read temperature\n");
1377                 return ret;
1378         }
1379
1380         raw_temp = get_unaligned_le24(data->buf);
1381         if (raw_temp == BMP580_TEMP_SKIPPED) {
1382                 dev_err(data->dev, "reading temperature skipped\n");
1383                 return -EIO;
1384         }
1385
1386         /*
1387          * Temperature is returned in Celsius degrees in fractional
1388          * form down 2^16. We reescale by x1000 to return milli Celsius
1389          * to respect IIO ABI.
1390          */
1391         *val = raw_temp * 1000;
1392         *val2 = 16;
1393         return IIO_VAL_FRACTIONAL_LOG2;
1394 }
1395
1396 static int bmp580_read_press(struct bmp280_data *data, int *val, int *val2)
1397 {
1398         u32 raw_press;
1399         int ret;
1400
1401         ret = regmap_bulk_read(data->regmap, BMP580_REG_PRESS_XLSB, data->buf,
1402                                sizeof(data->buf));
1403         if (ret) {
1404                 dev_err(data->dev, "failed to read pressure\n");
1405                 return ret;
1406         }
1407
1408         raw_press = get_unaligned_le24(data->buf);
1409         if (raw_press == BMP580_PRESS_SKIPPED) {
1410                 dev_err(data->dev, "reading pressure skipped\n");
1411                 return -EIO;
1412         }
1413         /*
1414          * Pressure is returned in Pascals in fractional form down 2^16.
1415          * We reescale /1000 to convert to kilopascal to respect IIO ABI.
1416          */
1417         *val = raw_press;
1418         *val2 = 64000; /* 2^6 * 1000 */
1419         return IIO_VAL_FRACTIONAL;
1420 }
1421
1422 static const int bmp580_odr_table[][2] = {
1423         [BMP580_ODR_240HZ] =    {240, 0},
1424         [BMP580_ODR_218HZ] =    {218, 0},
1425         [BMP580_ODR_199HZ] =    {199, 0},
1426         [BMP580_ODR_179HZ] =    {179, 0},
1427         [BMP580_ODR_160HZ] =    {160, 0},
1428         [BMP580_ODR_149HZ] =    {149, 0},
1429         [BMP580_ODR_140HZ] =    {140, 0},
1430         [BMP580_ODR_129HZ] =    {129, 0},
1431         [BMP580_ODR_120HZ] =    {120, 0},
1432         [BMP580_ODR_110HZ] =    {110, 0},
1433         [BMP580_ODR_100HZ] =    {100, 0},
1434         [BMP580_ODR_89HZ] =     {89, 0},
1435         [BMP580_ODR_80HZ] =     {80, 0},
1436         [BMP580_ODR_70HZ] =     {70, 0},
1437         [BMP580_ODR_60HZ] =     {60, 0},
1438         [BMP580_ODR_50HZ] =     {50, 0},
1439         [BMP580_ODR_45HZ] =     {45, 0},
1440         [BMP580_ODR_40HZ] =     {40, 0},
1441         [BMP580_ODR_35HZ] =     {35, 0},
1442         [BMP580_ODR_30HZ] =     {30, 0},
1443         [BMP580_ODR_25HZ] =     {25, 0},
1444         [BMP580_ODR_20HZ] =     {20, 0},
1445         [BMP580_ODR_15HZ] =     {15, 0},
1446         [BMP580_ODR_10HZ] =     {10, 0},
1447         [BMP580_ODR_5HZ] =      {5, 0},
1448         [BMP580_ODR_4HZ] =      {4, 0},
1449         [BMP580_ODR_3HZ] =      {3, 0},
1450         [BMP580_ODR_2HZ] =      {2, 0},
1451         [BMP580_ODR_1HZ] =      {1, 0},
1452         [BMP580_ODR_0_5HZ] =    {0, 500000},
1453         [BMP580_ODR_0_25HZ] =   {0, 250000},
1454         [BMP580_ODR_0_125HZ] =  {0, 125000},
1455 };
1456
1457 static const int bmp580_nvmem_addrs[] = { 0x20, 0x21, 0x22 };
1458
1459 static int bmp580_nvmem_read(void *priv, unsigned int offset, void *val,
1460                              size_t bytes)
1461 {
1462         struct bmp280_data *data = priv;
1463         u16 *dst = val;
1464         int ret, addr;
1465
1466         pm_runtime_get_sync(data->dev);
1467         mutex_lock(&data->lock);
1468
1469         /* Set sensor in standby mode */
1470         ret = regmap_update_bits(data->regmap, BMP580_REG_ODR_CONFIG,
1471                                  BMP580_MODE_MASK | BMP580_ODR_DEEPSLEEP_DIS,
1472                                  BMP580_ODR_DEEPSLEEP_DIS |
1473                                  FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_SLEEP));
1474         if (ret) {
1475                 dev_err(data->dev, "failed to change sensor to standby mode\n");
1476                 goto exit;
1477         }
1478         /* Wait standby transition time */
1479         usleep_range(2500, 3000);
1480
1481         while (bytes >= sizeof(*dst)) {
1482                 addr = bmp580_nvmem_addrs[offset / sizeof(*dst)];
1483
1484                 ret = regmap_write(data->regmap, BMP580_REG_NVM_ADDR,
1485                                    FIELD_PREP(BMP580_NVM_ROW_ADDR_MASK, addr));
1486                 if (ret) {
1487                         dev_err(data->dev, "error writing nvm address\n");
1488                         goto exit;
1489                 }
1490
1491                 ret = bmp580_nvm_operation(data, false);
1492                 if (ret)
1493                         goto exit;
1494
1495                 ret = regmap_bulk_read(data->regmap, BMP580_REG_NVM_DATA_LSB, &data->le16,
1496                                        sizeof(data->le16));
1497                 if (ret) {
1498                         dev_err(data->dev, "error reading nvm data regs\n");
1499                         goto exit;
1500                 }
1501
1502                 *dst++ = le16_to_cpu(data->le16);
1503                 bytes -= sizeof(*dst);
1504                 offset += sizeof(*dst);
1505         }
1506 exit:
1507         /* Restore chip config */
1508         data->chip_info->chip_config(data);
1509         mutex_unlock(&data->lock);
1510         pm_runtime_mark_last_busy(data->dev);
1511         pm_runtime_put_autosuspend(data->dev);
1512         return ret;
1513 }
1514
1515 static int bmp580_nvmem_write(void *priv, unsigned int offset, void *val,
1516                               size_t bytes)
1517 {
1518         struct bmp280_data *data = priv;
1519         u16 *buf = val;
1520         int ret, addr;
1521
1522         pm_runtime_get_sync(data->dev);
1523         mutex_lock(&data->lock);
1524
1525         /* Set sensor in standby mode */
1526         ret = regmap_update_bits(data->regmap, BMP580_REG_ODR_CONFIG,
1527                                  BMP580_MODE_MASK | BMP580_ODR_DEEPSLEEP_DIS,
1528                                  BMP580_ODR_DEEPSLEEP_DIS |
1529                                  FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_SLEEP));
1530         if (ret) {
1531                 dev_err(data->dev, "failed to change sensor to standby mode\n");
1532                 goto exit;
1533         }
1534         /* Wait standby transition time */
1535         usleep_range(2500, 3000);
1536
1537         while (bytes >= sizeof(*buf)) {
1538                 addr = bmp580_nvmem_addrs[offset / sizeof(*buf)];
1539
1540                 ret = regmap_write(data->regmap, BMP580_REG_NVM_ADDR, BMP580_NVM_PROG_EN |
1541                                    FIELD_PREP(BMP580_NVM_ROW_ADDR_MASK, addr));
1542                 if (ret) {
1543                         dev_err(data->dev, "error writing nvm address\n");
1544                         goto exit;
1545                 }
1546                 data->le16 = cpu_to_le16(*buf++);
1547
1548                 ret = regmap_bulk_write(data->regmap, BMP580_REG_NVM_DATA_LSB, &data->le16,
1549                                         sizeof(data->le16));
1550                 if (ret) {
1551                         dev_err(data->dev, "error writing LSB NVM data regs\n");
1552                         goto exit;
1553                 }
1554
1555                 ret = bmp580_nvm_operation(data, true);
1556                 if (ret)
1557                         goto exit;
1558
1559                 /* Disable programming mode bit */
1560                 ret = regmap_update_bits(data->regmap, BMP580_REG_NVM_ADDR,
1561                                          BMP580_NVM_PROG_EN, 0);
1562                 if (ret) {
1563                         dev_err(data->dev, "error resetting nvm write\n");
1564                         goto exit;
1565                 }
1566
1567                 bytes -= sizeof(*buf);
1568                 offset += sizeof(*buf);
1569         }
1570 exit:
1571         /* Restore chip config */
1572         data->chip_info->chip_config(data);
1573         mutex_unlock(&data->lock);
1574         pm_runtime_mark_last_busy(data->dev);
1575         pm_runtime_put_autosuspend(data->dev);
1576         return ret;
1577 }
1578
1579 static int bmp580_preinit(struct bmp280_data *data)
1580 {
1581         struct nvmem_config config = {
1582                 .dev = data->dev,
1583                 .priv = data,
1584                 .name = "bmp580_nvmem",
1585                 .word_size = sizeof(u16),
1586                 .stride = sizeof(u16),
1587                 .size = 3 * sizeof(u16),
1588                 .reg_read = bmp580_nvmem_read,
1589                 .reg_write = bmp580_nvmem_write,
1590         };
1591         unsigned int reg;
1592         int ret;
1593
1594         /* Issue soft-reset command */
1595         ret = bmp580_soft_reset(data);
1596         if (ret)
1597                 return ret;
1598
1599         /* Post powerup sequence */
1600         ret = regmap_read(data->regmap, BMP580_REG_CHIP_ID, &reg);
1601         if (ret)
1602                 return ret;
1603
1604         /* Print warn message if we don't know the chip id */
1605         if (reg != BMP580_CHIP_ID && reg != BMP580_CHIP_ID_ALT)
1606                 dev_warn(data->dev, "preinit: unexpected chip_id\n");
1607
1608         ret = regmap_read(data->regmap, BMP580_REG_STATUS, &reg);
1609         if (ret)
1610                 return ret;
1611
1612         /* Check nvm status */
1613         if (!(reg & BMP580_STATUS_NVM_RDY_MASK) || (reg & BMP580_STATUS_NVM_ERR_MASK)) {
1614                 dev_err(data->dev, "preinit: nvm error on powerup sequence\n");
1615                 return -EIO;
1616         }
1617
1618         /* Register nvmem device */
1619         return PTR_ERR_OR_ZERO(devm_nvmem_register(config.dev, &config));
1620 }
1621
1622 static int bmp580_chip_config(struct bmp280_data *data)
1623 {
1624         bool change = false, aux;
1625         unsigned int tmp;
1626         u8 reg_val;
1627         int ret;
1628
1629         /* Sets sensor in standby mode */
1630         ret = regmap_update_bits(data->regmap, BMP580_REG_ODR_CONFIG,
1631                                  BMP580_MODE_MASK | BMP580_ODR_DEEPSLEEP_DIS,
1632                                  BMP580_ODR_DEEPSLEEP_DIS |
1633                                  FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_SLEEP));
1634         if (ret) {
1635                 dev_err(data->dev, "failed to change sensor to standby mode\n");
1636                 return ret;
1637         }
1638         /* From datasheet's table 4: electrical characteristics */
1639         usleep_range(2500, 3000);
1640
1641         /* Set default DSP mode settings */
1642         reg_val = FIELD_PREP(BMP580_DSP_COMP_MASK, BMP580_DSP_PRESS_TEMP_COMP_EN) |
1643                   BMP580_DSP_SHDW_IIR_TEMP_EN | BMP580_DSP_SHDW_IIR_PRESS_EN;
1644
1645         ret = regmap_update_bits(data->regmap, BMP580_REG_DSP_CONFIG,
1646                                  BMP580_DSP_COMP_MASK |
1647                                  BMP580_DSP_SHDW_IIR_TEMP_EN |
1648                                  BMP580_DSP_SHDW_IIR_PRESS_EN, reg_val);
1649
1650         /* Configure oversampling */
1651         reg_val = FIELD_PREP(BMP580_OSR_TEMP_MASK, data->oversampling_temp) |
1652                   FIELD_PREP(BMP580_OSR_PRESS_MASK, data->oversampling_press) |
1653                   BMP580_OSR_PRESS_EN;
1654
1655         ret = regmap_update_bits_check(data->regmap, BMP580_REG_OSR_CONFIG,
1656                                        BMP580_OSR_TEMP_MASK | BMP580_OSR_PRESS_MASK |
1657                                        BMP580_OSR_PRESS_EN,
1658                                        reg_val, &aux);
1659         if (ret) {
1660                 dev_err(data->dev, "failed to write oversampling register\n");
1661                 return ret;
1662         }
1663         change = change || aux;
1664
1665         /* Configure output data rate */
1666         ret = regmap_update_bits_check(data->regmap, BMP580_REG_ODR_CONFIG, BMP580_ODR_MASK,
1667                                        FIELD_PREP(BMP580_ODR_MASK, data->sampling_freq),
1668                                        &aux);
1669         if (ret) {
1670                 dev_err(data->dev, "failed to write ODR configuration register\n");
1671                 return ret;
1672         }
1673         change = change || aux;
1674
1675         /* Set filter data */
1676         reg_val = FIELD_PREP(BMP580_DSP_IIR_PRESS_MASK, data->iir_filter_coeff) |
1677                   FIELD_PREP(BMP580_DSP_IIR_TEMP_MASK, data->iir_filter_coeff);
1678
1679         ret = regmap_update_bits_check(data->regmap, BMP580_REG_DSP_IIR,
1680                                        BMP580_DSP_IIR_PRESS_MASK |
1681                                        BMP580_DSP_IIR_TEMP_MASK,
1682                                        reg_val, &aux);
1683         if (ret) {
1684                 dev_err(data->dev, "failed to write config register\n");
1685                 return ret;
1686         }
1687         change = change || aux;
1688
1689         /* Restore sensor to normal operation mode */
1690         ret = regmap_write_bits(data->regmap, BMP580_REG_ODR_CONFIG,
1691                                 BMP580_MODE_MASK,
1692                                 FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_NORMAL));
1693         if (ret) {
1694                 dev_err(data->dev, "failed to set normal mode\n");
1695                 return ret;
1696         }
1697         /* From datasheet's table 4: electrical characteristics */
1698         usleep_range(3000, 3500);
1699
1700         if (change) {
1701                 /*
1702                  * Check if ODR and OSR settings are valid or we are
1703                  * operating in a degraded mode.
1704                  */
1705                 ret = regmap_read(data->regmap, BMP580_REG_EFF_OSR, &tmp);
1706                 if (ret) {
1707                         dev_err(data->dev, "error reading effective OSR register\n");
1708                         return ret;
1709                 }
1710                 if (!(tmp & BMP580_EFF_OSR_VALID_ODR)) {
1711                         dev_warn(data->dev, "OSR and ODR incompatible settings detected\n");
1712                         /* Set current OSR settings from data on effective OSR */
1713                         data->oversampling_temp = FIELD_GET(BMP580_EFF_OSR_TEMP_MASK, tmp);
1714                         data->oversampling_press = FIELD_GET(BMP580_EFF_OSR_PRESS_MASK, tmp);
1715                         return -EINVAL;
1716                 }
1717         }
1718
1719         return 0;
1720 }
1721
1722 static const int bmp580_oversampling_avail[] = { 1, 2, 4, 8, 16, 32, 64, 128 };
1723
1724 const struct bmp280_chip_info bmp580_chip_info = {
1725         .id_reg = BMP580_REG_CHIP_ID,
1726         .chip_id = BMP580_CHIP_ID,
1727         .regmap_config = &bmp580_regmap_config,
1728         .start_up_time = 2000,
1729         .channels = bmp380_channels,
1730         .num_channels = 2,
1731
1732         .oversampling_temp_avail = bmp580_oversampling_avail,
1733         .num_oversampling_temp_avail = ARRAY_SIZE(bmp580_oversampling_avail),
1734         .oversampling_temp_default = ilog2(1),
1735
1736         .oversampling_press_avail = bmp580_oversampling_avail,
1737         .num_oversampling_press_avail = ARRAY_SIZE(bmp580_oversampling_avail),
1738         .oversampling_press_default = ilog2(4),
1739
1740         .sampling_freq_avail = bmp580_odr_table,
1741         .num_sampling_freq_avail = ARRAY_SIZE(bmp580_odr_table) * 2,
1742         .sampling_freq_default = BMP580_ODR_50HZ,
1743
1744         .iir_filter_coeffs_avail = bmp380_iir_filter_coeffs_avail,
1745         .num_iir_filter_coeffs_avail = ARRAY_SIZE(bmp380_iir_filter_coeffs_avail),
1746         .iir_filter_coeff_default = 2,
1747
1748         .chip_config = bmp580_chip_config,
1749         .read_temp = bmp580_read_temp,
1750         .read_press = bmp580_read_press,
1751         .preinit = bmp580_preinit,
1752 };
1753 EXPORT_SYMBOL_NS(bmp580_chip_info, IIO_BMP280);
1754
1755 static int bmp180_measure(struct bmp280_data *data, u8 ctrl_meas)
1756 {
1757         const int conversion_time_max[] = { 4500, 7500, 13500, 25500 };
1758         unsigned int delay_us;
1759         unsigned int ctrl;
1760         int ret;
1761
1762         if (data->use_eoc)
1763                 reinit_completion(&data->done);
1764
1765         ret = regmap_write(data->regmap, BMP280_REG_CTRL_MEAS, ctrl_meas);
1766         if (ret)
1767                 return ret;
1768
1769         if (data->use_eoc) {
1770                 /*
1771                  * If we have a completion interrupt, use it, wait up to
1772                  * 100ms. The longest conversion time listed is 76.5 ms for
1773                  * advanced resolution mode.
1774                  */
1775                 ret = wait_for_completion_timeout(&data->done,
1776                                                   1 + msecs_to_jiffies(100));
1777                 if (!ret)
1778                         dev_err(data->dev, "timeout waiting for completion\n");
1779         } else {
1780                 if (FIELD_GET(BMP180_MEAS_CTRL_MASK, ctrl_meas) == BMP180_MEAS_TEMP)
1781                         delay_us = 4500;
1782                 else
1783                         delay_us =
1784                                 conversion_time_max[data->oversampling_press];
1785
1786                 usleep_range(delay_us, delay_us + 1000);
1787         }
1788
1789         ret = regmap_read(data->regmap, BMP280_REG_CTRL_MEAS, &ctrl);
1790         if (ret)
1791                 return ret;
1792
1793         /* The value of this bit reset to "0" after conversion is complete */
1794         if (ctrl & BMP180_MEAS_SCO)
1795                 return -EIO;
1796
1797         return 0;
1798 }
1799
1800 static int bmp180_read_adc_temp(struct bmp280_data *data, int *val)
1801 {
1802         int ret;
1803
1804         ret = bmp180_measure(data,
1805                              FIELD_PREP(BMP180_MEAS_CTRL_MASK, BMP180_MEAS_TEMP) |
1806                              BMP180_MEAS_SCO);
1807         if (ret)
1808                 return ret;
1809
1810         ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB,
1811                                &data->be16, sizeof(data->be16));
1812         if (ret)
1813                 return ret;
1814
1815         *val = be16_to_cpu(data->be16);
1816
1817         return 0;
1818 }
1819
1820 static int bmp180_read_calib(struct bmp280_data *data)
1821 {
1822         struct bmp180_calib *calib = &data->calib.bmp180;
1823         int ret;
1824         int i;
1825
1826         ret = regmap_bulk_read(data->regmap, BMP180_REG_CALIB_START,
1827                                data->bmp180_cal_buf, sizeof(data->bmp180_cal_buf));
1828
1829         if (ret < 0)
1830                 return ret;
1831
1832         /* None of the words has the value 0 or 0xFFFF */
1833         for (i = 0; i < ARRAY_SIZE(data->bmp180_cal_buf); i++) {
1834                 if (data->bmp180_cal_buf[i] == cpu_to_be16(0) ||
1835                     data->bmp180_cal_buf[i] == cpu_to_be16(0xffff))
1836                         return -EIO;
1837         }
1838
1839         /* Toss the calibration data into the entropy pool */
1840         add_device_randomness(data->bmp180_cal_buf, sizeof(data->bmp180_cal_buf));
1841
1842         calib->AC1 = be16_to_cpu(data->bmp180_cal_buf[AC1]);
1843         calib->AC2 = be16_to_cpu(data->bmp180_cal_buf[AC2]);
1844         calib->AC3 = be16_to_cpu(data->bmp180_cal_buf[AC3]);
1845         calib->AC4 = be16_to_cpu(data->bmp180_cal_buf[AC4]);
1846         calib->AC5 = be16_to_cpu(data->bmp180_cal_buf[AC5]);
1847         calib->AC6 = be16_to_cpu(data->bmp180_cal_buf[AC6]);
1848         calib->B1 = be16_to_cpu(data->bmp180_cal_buf[B1]);
1849         calib->B2 = be16_to_cpu(data->bmp180_cal_buf[B2]);
1850         calib->MB = be16_to_cpu(data->bmp180_cal_buf[MB]);
1851         calib->MC = be16_to_cpu(data->bmp180_cal_buf[MC]);
1852         calib->MD = be16_to_cpu(data->bmp180_cal_buf[MD]);
1853
1854         return 0;
1855 }
1856
1857 /*
1858  * Returns temperature in DegC, resolution is 0.1 DegC.
1859  * t_fine carries fine temperature as global value.
1860  *
1861  * Taken from datasheet, Section 3.5, "Calculating pressure and temperature".
1862  */
1863 static s32 bmp180_compensate_temp(struct bmp280_data *data, s32 adc_temp)
1864 {
1865         struct bmp180_calib *calib = &data->calib.bmp180;
1866         s32 x1, x2;
1867
1868         x1 = ((adc_temp - calib->AC6) * calib->AC5) >> 15;
1869         x2 = (calib->MC << 11) / (x1 + calib->MD);
1870         data->t_fine = x1 + x2;
1871
1872         return (data->t_fine + 8) >> 4;
1873 }
1874
1875 static int bmp180_read_temp(struct bmp280_data *data, int *val, int *val2)
1876 {
1877         s32 adc_temp, comp_temp;
1878         int ret;
1879
1880         ret = bmp180_read_adc_temp(data, &adc_temp);
1881         if (ret)
1882                 return ret;
1883
1884         comp_temp = bmp180_compensate_temp(data, adc_temp);
1885
1886         /*
1887          * val might be NULL if we're called by the read_press routine,
1888          * who only cares about the carry over t_fine value.
1889          */
1890         if (val) {
1891                 *val = comp_temp * 100;
1892                 return IIO_VAL_INT;
1893         }
1894
1895         return 0;
1896 }
1897
1898 static int bmp180_read_adc_press(struct bmp280_data *data, int *val)
1899 {
1900         u8 oss = data->oversampling_press;
1901         int ret;
1902
1903         ret = bmp180_measure(data,
1904                              FIELD_PREP(BMP180_MEAS_CTRL_MASK, BMP180_MEAS_PRESS) |
1905                              FIELD_PREP(BMP180_OSRS_PRESS_MASK, oss) |
1906                              BMP180_MEAS_SCO);
1907         if (ret)
1908                 return ret;
1909
1910         ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB,
1911                                data->buf, sizeof(data->buf));
1912         if (ret)
1913                 return ret;
1914
1915         *val = get_unaligned_be24(data->buf) >> (8 - oss);
1916
1917         return 0;
1918 }
1919
1920 /*
1921  * Returns pressure in Pa, resolution is 1 Pa.
1922  *
1923  * Taken from datasheet, Section 3.5, "Calculating pressure and temperature".
1924  */
1925 static u32 bmp180_compensate_press(struct bmp280_data *data, s32 adc_press)
1926 {
1927         struct bmp180_calib *calib = &data->calib.bmp180;
1928         s32 oss = data->oversampling_press;
1929         s32 x1, x2, x3, p;
1930         s32 b3, b6;
1931         u32 b4, b7;
1932
1933         b6 = data->t_fine - 4000;
1934         x1 = (calib->B2 * (b6 * b6 >> 12)) >> 11;
1935         x2 = calib->AC2 * b6 >> 11;
1936         x3 = x1 + x2;
1937         b3 = ((((s32)calib->AC1 * 4 + x3) << oss) + 2) / 4;
1938         x1 = calib->AC3 * b6 >> 13;
1939         x2 = (calib->B1 * ((b6 * b6) >> 12)) >> 16;
1940         x3 = (x1 + x2 + 2) >> 2;
1941         b4 = calib->AC4 * (u32)(x3 + 32768) >> 15;
1942         b7 = ((u32)adc_press - b3) * (50000 >> oss);
1943         if (b7 < 0x80000000)
1944                 p = (b7 * 2) / b4;
1945         else
1946                 p = (b7 / b4) * 2;
1947
1948         x1 = (p >> 8) * (p >> 8);
1949         x1 = (x1 * 3038) >> 16;
1950         x2 = (-7357 * p) >> 16;
1951
1952         return p + ((x1 + x2 + 3791) >> 4);
1953 }
1954
1955 static int bmp180_read_press(struct bmp280_data *data,
1956                              int *val, int *val2)
1957 {
1958         u32 comp_press;
1959         s32 adc_press;
1960         int ret;
1961
1962         /* Read and compensate temperature so we get a reading of t_fine. */
1963         ret = bmp180_read_temp(data, NULL, NULL);
1964         if (ret)
1965                 return ret;
1966
1967         ret = bmp180_read_adc_press(data, &adc_press);
1968         if (ret)
1969                 return ret;
1970
1971         comp_press = bmp180_compensate_press(data, adc_press);
1972
1973         *val = comp_press;
1974         *val2 = 1000;
1975
1976         return IIO_VAL_FRACTIONAL;
1977 }
1978
1979 static int bmp180_chip_config(struct bmp280_data *data)
1980 {
1981         return 0;
1982 }
1983
1984 static const int bmp180_oversampling_temp_avail[] = { 1 };
1985 static const int bmp180_oversampling_press_avail[] = { 1, 2, 4, 8 };
1986
1987 const struct bmp280_chip_info bmp180_chip_info = {
1988         .id_reg = BMP280_REG_ID,
1989         .chip_id = BMP180_CHIP_ID,
1990         .regmap_config = &bmp180_regmap_config,
1991         .start_up_time = 2000,
1992         .channels = bmp280_channels,
1993         .num_channels = 2,
1994
1995         .oversampling_temp_avail = bmp180_oversampling_temp_avail,
1996         .num_oversampling_temp_avail =
1997                 ARRAY_SIZE(bmp180_oversampling_temp_avail),
1998         .oversampling_temp_default = 0,
1999
2000         .oversampling_press_avail = bmp180_oversampling_press_avail,
2001         .num_oversampling_press_avail =
2002                 ARRAY_SIZE(bmp180_oversampling_press_avail),
2003         .oversampling_press_default = BMP180_MEAS_PRESS_8X,
2004
2005         .chip_config = bmp180_chip_config,
2006         .read_temp = bmp180_read_temp,
2007         .read_press = bmp180_read_press,
2008         .read_calib = bmp180_read_calib,
2009 };
2010 EXPORT_SYMBOL_NS(bmp180_chip_info, IIO_BMP280);
2011
2012 static irqreturn_t bmp085_eoc_irq(int irq, void *d)
2013 {
2014         struct bmp280_data *data = d;
2015
2016         complete(&data->done);
2017
2018         return IRQ_HANDLED;
2019 }
2020
2021 static int bmp085_fetch_eoc_irq(struct device *dev,
2022                                 const char *name,
2023                                 int irq,
2024                                 struct bmp280_data *data)
2025 {
2026         unsigned long irq_trig;
2027         int ret;
2028
2029         irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq));
2030         if (irq_trig != IRQF_TRIGGER_RISING) {
2031                 dev_err(dev, "non-rising trigger given for EOC interrupt, trying to enforce it\n");
2032                 irq_trig = IRQF_TRIGGER_RISING;
2033         }
2034
2035         init_completion(&data->done);
2036
2037         ret = devm_request_threaded_irq(dev,
2038                         irq,
2039                         bmp085_eoc_irq,
2040                         NULL,
2041                         irq_trig,
2042                         name,
2043                         data);
2044         if (ret) {
2045                 /* Bail out without IRQ but keep the driver in place */
2046                 dev_err(dev, "unable to request DRDY IRQ\n");
2047                 return 0;
2048         }
2049
2050         data->use_eoc = true;
2051         return 0;
2052 }
2053
2054 static void bmp280_pm_disable(void *data)
2055 {
2056         struct device *dev = data;
2057
2058         pm_runtime_get_sync(dev);
2059         pm_runtime_put_noidle(dev);
2060         pm_runtime_disable(dev);
2061 }
2062
2063 static void bmp280_regulators_disable(void *data)
2064 {
2065         struct regulator_bulk_data *supplies = data;
2066
2067         regulator_bulk_disable(BMP280_NUM_SUPPLIES, supplies);
2068 }
2069
2070 int bmp280_common_probe(struct device *dev,
2071                         struct regmap *regmap,
2072                         const struct bmp280_chip_info *chip_info,
2073                         const char *name,
2074                         int irq)
2075 {
2076         struct iio_dev *indio_dev;
2077         struct bmp280_data *data;
2078         struct gpio_desc *gpiod;
2079         unsigned int chip_id;
2080         int ret;
2081
2082         indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
2083         if (!indio_dev)
2084                 return -ENOMEM;
2085
2086         data = iio_priv(indio_dev);
2087         mutex_init(&data->lock);
2088         data->dev = dev;
2089
2090         indio_dev->name = name;
2091         indio_dev->info = &bmp280_info;
2092         indio_dev->modes = INDIO_DIRECT_MODE;
2093
2094         data->chip_info = chip_info;
2095
2096         /* Apply initial values from chip info structure */
2097         indio_dev->channels = chip_info->channels;
2098         indio_dev->num_channels = chip_info->num_channels;
2099         data->oversampling_press = chip_info->oversampling_press_default;
2100         data->oversampling_humid = chip_info->oversampling_humid_default;
2101         data->oversampling_temp = chip_info->oversampling_temp_default;
2102         data->iir_filter_coeff = chip_info->iir_filter_coeff_default;
2103         data->sampling_freq = chip_info->sampling_freq_default;
2104         data->start_up_time = chip_info->start_up_time;
2105
2106         /* Bring up regulators */
2107         regulator_bulk_set_supply_names(data->supplies,
2108                                         bmp280_supply_names,
2109                                         BMP280_NUM_SUPPLIES);
2110
2111         ret = devm_regulator_bulk_get(dev,
2112                                       BMP280_NUM_SUPPLIES, data->supplies);
2113         if (ret) {
2114                 dev_err(dev, "failed to get regulators\n");
2115                 return ret;
2116         }
2117
2118         ret = regulator_bulk_enable(BMP280_NUM_SUPPLIES, data->supplies);
2119         if (ret) {
2120                 dev_err(dev, "failed to enable regulators\n");
2121                 return ret;
2122         }
2123
2124         ret = devm_add_action_or_reset(dev, bmp280_regulators_disable,
2125                                        data->supplies);
2126         if (ret)
2127                 return ret;
2128
2129         /* Wait to make sure we started up properly */
2130         usleep_range(data->start_up_time, data->start_up_time + 100);
2131
2132         /* Bring chip out of reset if there is an assigned GPIO line */
2133         gpiod = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH);
2134         /* Deassert the signal */
2135         if (gpiod) {
2136                 dev_info(dev, "release reset\n");
2137                 gpiod_set_value(gpiod, 0);
2138         }
2139
2140         data->regmap = regmap;
2141
2142         ret = regmap_read(regmap, data->chip_info->id_reg, &chip_id);
2143         if (ret < 0)
2144                 return ret;
2145         if (chip_id != data->chip_info->chip_id) {
2146                 dev_err(dev, "bad chip id: expected %x got %x\n",
2147                         data->chip_info->chip_id, chip_id);
2148                 return -EINVAL;
2149         }
2150
2151         if (data->chip_info->preinit) {
2152                 ret = data->chip_info->preinit(data);
2153                 if (ret)
2154                         return dev_err_probe(data->dev, ret,
2155                                              "error running preinit tasks\n");
2156         }
2157
2158         ret = data->chip_info->chip_config(data);
2159         if (ret < 0)
2160                 return ret;
2161
2162         dev_set_drvdata(dev, indio_dev);
2163
2164         /*
2165          * Some chips have calibration parameters "programmed into the devices'
2166          * non-volatile memory during production". Let's read them out at probe
2167          * time once. They will not change.
2168          */
2169
2170         if (data->chip_info->read_calib) {
2171                 ret = data->chip_info->read_calib(data);
2172                 if (ret < 0)
2173                         return dev_err_probe(data->dev, ret,
2174                                              "failed to read calibration coefficients\n");
2175         }
2176
2177         /*
2178          * Attempt to grab an optional EOC IRQ - only the BMP085 has this
2179          * however as it happens, the BMP085 shares the chip ID of BMP180
2180          * so we look for an IRQ if we have that.
2181          */
2182         if (irq > 0 && (chip_id  == BMP180_CHIP_ID)) {
2183                 ret = bmp085_fetch_eoc_irq(dev, name, irq, data);
2184                 if (ret)
2185                         return ret;
2186         }
2187
2188         /* Enable runtime PM */
2189         pm_runtime_get_noresume(dev);
2190         pm_runtime_set_active(dev);
2191         pm_runtime_enable(dev);
2192         /*
2193          * Set autosuspend to two orders of magnitude larger than the
2194          * start-up time.
2195          */
2196         pm_runtime_set_autosuspend_delay(dev, data->start_up_time / 10);
2197         pm_runtime_use_autosuspend(dev);
2198         pm_runtime_put(dev);
2199
2200         ret = devm_add_action_or_reset(dev, bmp280_pm_disable, dev);
2201         if (ret)
2202                 return ret;
2203
2204         return devm_iio_device_register(dev, indio_dev);
2205 }
2206 EXPORT_SYMBOL_NS(bmp280_common_probe, IIO_BMP280);
2207
2208 static int bmp280_runtime_suspend(struct device *dev)
2209 {
2210         struct iio_dev *indio_dev = dev_get_drvdata(dev);
2211         struct bmp280_data *data = iio_priv(indio_dev);
2212
2213         return regulator_bulk_disable(BMP280_NUM_SUPPLIES, data->supplies);
2214 }
2215
2216 static int bmp280_runtime_resume(struct device *dev)
2217 {
2218         struct iio_dev *indio_dev = dev_get_drvdata(dev);
2219         struct bmp280_data *data = iio_priv(indio_dev);
2220         int ret;
2221
2222         ret = regulator_bulk_enable(BMP280_NUM_SUPPLIES, data->supplies);
2223         if (ret)
2224                 return ret;
2225         usleep_range(data->start_up_time, data->start_up_time + 100);
2226         return data->chip_info->chip_config(data);
2227 }
2228
2229 EXPORT_RUNTIME_DEV_PM_OPS(bmp280_dev_pm_ops, bmp280_runtime_suspend,
2230                           bmp280_runtime_resume, NULL);
2231
2232 MODULE_AUTHOR("Vlad Dogaru <vlad.dogaru@intel.com>");
2233 MODULE_DESCRIPTION("Driver for Bosch Sensortec BMP180/BMP280 pressure and temperature sensor");
2234 MODULE_LICENSE("GPL v2");