GNU Linux-libre 5.10.153-gnu1
[releases.git] / drivers / iio / magnetometer / bmc150_magn.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Bosch BMC150 three-axis magnetic field sensor driver
4  *
5  * Copyright (c) 2015, Intel Corporation.
6  *
7  * This code is based on bmm050_api.c authored by contact@bosch.sensortec.com:
8  *
9  * (C) Copyright 2011~2014 Bosch Sensortec GmbH All Rights Reserved
10  */
11
12 #include <linux/module.h>
13 #include <linux/i2c.h>
14 #include <linux/interrupt.h>
15 #include <linux/delay.h>
16 #include <linux/slab.h>
17 #include <linux/acpi.h>
18 #include <linux/pm.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/iio/iio.h>
21 #include <linux/iio/sysfs.h>
22 #include <linux/iio/buffer.h>
23 #include <linux/iio/events.h>
24 #include <linux/iio/trigger.h>
25 #include <linux/iio/trigger_consumer.h>
26 #include <linux/iio/triggered_buffer.h>
27 #include <linux/regmap.h>
28
29 #include "bmc150_magn.h"
30
31 #define BMC150_MAGN_DRV_NAME                    "bmc150_magn"
32 #define BMC150_MAGN_IRQ_NAME                    "bmc150_magn_event"
33
34 #define BMC150_MAGN_REG_CHIP_ID                 0x40
35 #define BMC150_MAGN_CHIP_ID_VAL                 0x32
36
37 #define BMC150_MAGN_REG_X_L                     0x42
38 #define BMC150_MAGN_REG_X_M                     0x43
39 #define BMC150_MAGN_REG_Y_L                     0x44
40 #define BMC150_MAGN_REG_Y_M                     0x45
41 #define BMC150_MAGN_SHIFT_XY_L                  3
42 #define BMC150_MAGN_REG_Z_L                     0x46
43 #define BMC150_MAGN_REG_Z_M                     0x47
44 #define BMC150_MAGN_SHIFT_Z_L                   1
45 #define BMC150_MAGN_REG_RHALL_L                 0x48
46 #define BMC150_MAGN_REG_RHALL_M                 0x49
47 #define BMC150_MAGN_SHIFT_RHALL_L               2
48
49 #define BMC150_MAGN_REG_INT_STATUS              0x4A
50
51 #define BMC150_MAGN_REG_POWER                   0x4B
52 #define BMC150_MAGN_MASK_POWER_CTL              BIT(0)
53
54 #define BMC150_MAGN_REG_OPMODE_ODR              0x4C
55 #define BMC150_MAGN_MASK_OPMODE                 GENMASK(2, 1)
56 #define BMC150_MAGN_SHIFT_OPMODE                1
57 #define BMC150_MAGN_MODE_NORMAL                 0x00
58 #define BMC150_MAGN_MODE_FORCED                 0x01
59 #define BMC150_MAGN_MODE_SLEEP                  0x03
60 #define BMC150_MAGN_MASK_ODR                    GENMASK(5, 3)
61 #define BMC150_MAGN_SHIFT_ODR                   3
62
63 #define BMC150_MAGN_REG_INT                     0x4D
64
65 #define BMC150_MAGN_REG_INT_DRDY                0x4E
66 #define BMC150_MAGN_MASK_DRDY_EN                BIT(7)
67 #define BMC150_MAGN_SHIFT_DRDY_EN               7
68 #define BMC150_MAGN_MASK_DRDY_INT3              BIT(6)
69 #define BMC150_MAGN_MASK_DRDY_Z_EN              BIT(5)
70 #define BMC150_MAGN_MASK_DRDY_Y_EN              BIT(4)
71 #define BMC150_MAGN_MASK_DRDY_X_EN              BIT(3)
72 #define BMC150_MAGN_MASK_DRDY_DR_POLARITY       BIT(2)
73 #define BMC150_MAGN_MASK_DRDY_LATCHING          BIT(1)
74 #define BMC150_MAGN_MASK_DRDY_INT3_POLARITY     BIT(0)
75
76 #define BMC150_MAGN_REG_LOW_THRESH              0x4F
77 #define BMC150_MAGN_REG_HIGH_THRESH             0x50
78 #define BMC150_MAGN_REG_REP_XY                  0x51
79 #define BMC150_MAGN_REG_REP_Z                   0x52
80 #define BMC150_MAGN_REG_REP_DATAMASK            GENMASK(7, 0)
81
82 #define BMC150_MAGN_REG_TRIM_START              0x5D
83 #define BMC150_MAGN_REG_TRIM_END                0x71
84
85 #define BMC150_MAGN_XY_OVERFLOW_VAL             -4096
86 #define BMC150_MAGN_Z_OVERFLOW_VAL              -16384
87
88 /* Time from SUSPEND to SLEEP */
89 #define BMC150_MAGN_START_UP_TIME_MS            3
90
91 #define BMC150_MAGN_AUTO_SUSPEND_DELAY_MS       2000
92
93 #define BMC150_MAGN_REGVAL_TO_REPXY(regval) (((regval) * 2) + 1)
94 #define BMC150_MAGN_REGVAL_TO_REPZ(regval) ((regval) + 1)
95 #define BMC150_MAGN_REPXY_TO_REGVAL(rep) (((rep) - 1) / 2)
96 #define BMC150_MAGN_REPZ_TO_REGVAL(rep) ((rep) - 1)
97
98 enum bmc150_magn_axis {
99         AXIS_X,
100         AXIS_Y,
101         AXIS_Z,
102         RHALL,
103         AXIS_XYZ_MAX = RHALL,
104         AXIS_XYZR_MAX,
105 };
106
107 enum bmc150_magn_power_modes {
108         BMC150_MAGN_POWER_MODE_SUSPEND,
109         BMC150_MAGN_POWER_MODE_SLEEP,
110         BMC150_MAGN_POWER_MODE_NORMAL,
111 };
112
113 struct bmc150_magn_trim_regs {
114         s8 x1;
115         s8 y1;
116         __le16 reserved1;
117         u8 reserved2;
118         __le16 z4;
119         s8 x2;
120         s8 y2;
121         __le16 reserved3;
122         __le16 z2;
123         __le16 z1;
124         __le16 xyz1;
125         __le16 z3;
126         s8 xy2;
127         u8 xy1;
128 } __packed;
129
130 struct bmc150_magn_data {
131         struct device *dev;
132         /*
133          * 1. Protect this structure.
134          * 2. Serialize sequences that power on/off the device and access HW.
135          */
136         struct mutex mutex;
137         struct regmap *regmap;
138         struct iio_mount_matrix orientation;
139         /* Ensure timestamp is naturally aligned */
140         struct {
141                 s32 chans[3];
142                 s64 timestamp __aligned(8);
143         } scan;
144         struct iio_trigger *dready_trig;
145         bool dready_trigger_on;
146         int max_odr;
147         int irq;
148 };
149
150 static const struct {
151         int freq;
152         u8 reg_val;
153 } bmc150_magn_samp_freq_table[] = { {2, 0x01},
154                                     {6, 0x02},
155                                     {8, 0x03},
156                                     {10, 0x00},
157                                     {15, 0x04},
158                                     {20, 0x05},
159                                     {25, 0x06},
160                                     {30, 0x07} };
161
162 enum bmc150_magn_presets {
163         LOW_POWER_PRESET,
164         REGULAR_PRESET,
165         ENHANCED_REGULAR_PRESET,
166         HIGH_ACCURACY_PRESET
167 };
168
169 static const struct bmc150_magn_preset {
170         u8 rep_xy;
171         u8 rep_z;
172         u8 odr;
173 } bmc150_magn_presets_table[] = {
174         [LOW_POWER_PRESET] = {3, 3, 10},
175         [REGULAR_PRESET] =  {9, 15, 10},
176         [ENHANCED_REGULAR_PRESET] =  {15, 27, 10},
177         [HIGH_ACCURACY_PRESET] =  {47, 83, 20},
178 };
179
180 #define BMC150_MAGN_DEFAULT_PRESET REGULAR_PRESET
181
182 static bool bmc150_magn_is_writeable_reg(struct device *dev, unsigned int reg)
183 {
184         switch (reg) {
185         case BMC150_MAGN_REG_POWER:
186         case BMC150_MAGN_REG_OPMODE_ODR:
187         case BMC150_MAGN_REG_INT:
188         case BMC150_MAGN_REG_INT_DRDY:
189         case BMC150_MAGN_REG_LOW_THRESH:
190         case BMC150_MAGN_REG_HIGH_THRESH:
191         case BMC150_MAGN_REG_REP_XY:
192         case BMC150_MAGN_REG_REP_Z:
193                 return true;
194         default:
195                 return false;
196         };
197 }
198
199 static bool bmc150_magn_is_volatile_reg(struct device *dev, unsigned int reg)
200 {
201         switch (reg) {
202         case BMC150_MAGN_REG_X_L:
203         case BMC150_MAGN_REG_X_M:
204         case BMC150_MAGN_REG_Y_L:
205         case BMC150_MAGN_REG_Y_M:
206         case BMC150_MAGN_REG_Z_L:
207         case BMC150_MAGN_REG_Z_M:
208         case BMC150_MAGN_REG_RHALL_L:
209         case BMC150_MAGN_REG_RHALL_M:
210         case BMC150_MAGN_REG_INT_STATUS:
211                 return true;
212         default:
213                 return false;
214         }
215 }
216
217 const struct regmap_config bmc150_magn_regmap_config = {
218         .reg_bits = 8,
219         .val_bits = 8,
220
221         .max_register = BMC150_MAGN_REG_TRIM_END,
222         .cache_type = REGCACHE_RBTREE,
223
224         .writeable_reg = bmc150_magn_is_writeable_reg,
225         .volatile_reg = bmc150_magn_is_volatile_reg,
226 };
227 EXPORT_SYMBOL(bmc150_magn_regmap_config);
228
229 static int bmc150_magn_set_power_mode(struct bmc150_magn_data *data,
230                                       enum bmc150_magn_power_modes mode,
231                                       bool state)
232 {
233         int ret;
234
235         switch (mode) {
236         case BMC150_MAGN_POWER_MODE_SUSPEND:
237                 ret = regmap_update_bits(data->regmap, BMC150_MAGN_REG_POWER,
238                                          BMC150_MAGN_MASK_POWER_CTL, !state);
239                 if (ret < 0)
240                         return ret;
241                 usleep_range(BMC150_MAGN_START_UP_TIME_MS * 1000, 20000);
242                 return 0;
243         case BMC150_MAGN_POWER_MODE_SLEEP:
244                 return regmap_update_bits(data->regmap,
245                                           BMC150_MAGN_REG_OPMODE_ODR,
246                                           BMC150_MAGN_MASK_OPMODE,
247                                           BMC150_MAGN_MODE_SLEEP <<
248                                           BMC150_MAGN_SHIFT_OPMODE);
249         case BMC150_MAGN_POWER_MODE_NORMAL:
250                 return regmap_update_bits(data->regmap,
251                                           BMC150_MAGN_REG_OPMODE_ODR,
252                                           BMC150_MAGN_MASK_OPMODE,
253                                           BMC150_MAGN_MODE_NORMAL <<
254                                           BMC150_MAGN_SHIFT_OPMODE);
255         }
256
257         return -EINVAL;
258 }
259
260 static int bmc150_magn_set_power_state(struct bmc150_magn_data *data, bool on)
261 {
262 #ifdef CONFIG_PM
263         int ret;
264
265         if (on) {
266                 ret = pm_runtime_resume_and_get(data->dev);
267         } else {
268                 pm_runtime_mark_last_busy(data->dev);
269                 ret = pm_runtime_put_autosuspend(data->dev);
270         }
271
272         if (ret < 0) {
273                 dev_err(data->dev,
274                         "failed to change power state to %d\n", on);
275                 return ret;
276         }
277 #endif
278
279         return 0;
280 }
281
282 static int bmc150_magn_get_odr(struct bmc150_magn_data *data, int *val)
283 {
284         int ret, reg_val;
285         u8 i, odr_val;
286
287         ret = regmap_read(data->regmap, BMC150_MAGN_REG_OPMODE_ODR, &reg_val);
288         if (ret < 0)
289                 return ret;
290         odr_val = (reg_val & BMC150_MAGN_MASK_ODR) >> BMC150_MAGN_SHIFT_ODR;
291
292         for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++)
293                 if (bmc150_magn_samp_freq_table[i].reg_val == odr_val) {
294                         *val = bmc150_magn_samp_freq_table[i].freq;
295                         return 0;
296                 }
297
298         return -EINVAL;
299 }
300
301 static int bmc150_magn_set_odr(struct bmc150_magn_data *data, int val)
302 {
303         int ret;
304         u8 i;
305
306         for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++) {
307                 if (bmc150_magn_samp_freq_table[i].freq == val) {
308                         ret = regmap_update_bits(data->regmap,
309                                                  BMC150_MAGN_REG_OPMODE_ODR,
310                                                  BMC150_MAGN_MASK_ODR,
311                                                  bmc150_magn_samp_freq_table[i].
312                                                  reg_val <<
313                                                  BMC150_MAGN_SHIFT_ODR);
314                         if (ret < 0)
315                                 return ret;
316                         return 0;
317                 }
318         }
319
320         return -EINVAL;
321 }
322
323 static int bmc150_magn_set_max_odr(struct bmc150_magn_data *data, int rep_xy,
324                                    int rep_z, int odr)
325 {
326         int ret, reg_val, max_odr;
327
328         if (rep_xy <= 0) {
329                 ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_XY,
330                                   &reg_val);
331                 if (ret < 0)
332                         return ret;
333                 rep_xy = BMC150_MAGN_REGVAL_TO_REPXY(reg_val);
334         }
335         if (rep_z <= 0) {
336                 ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_Z,
337                                   &reg_val);
338                 if (ret < 0)
339                         return ret;
340                 rep_z = BMC150_MAGN_REGVAL_TO_REPZ(reg_val);
341         }
342         if (odr <= 0) {
343                 ret = bmc150_magn_get_odr(data, &odr);
344                 if (ret < 0)
345                         return ret;
346         }
347         /* the maximum selectable read-out frequency from datasheet */
348         max_odr = 1000000 / (145 * rep_xy + 500 * rep_z + 980);
349         if (odr > max_odr) {
350                 dev_err(data->dev,
351                         "Can't set oversampling with sampling freq %d\n",
352                         odr);
353                 return -EINVAL;
354         }
355         data->max_odr = max_odr;
356
357         return 0;
358 }
359
360 static s32 bmc150_magn_compensate_x(struct bmc150_magn_trim_regs *tregs, s16 x,
361                                     u16 rhall)
362 {
363         s16 val;
364         u16 xyz1 = le16_to_cpu(tregs->xyz1);
365
366         if (x == BMC150_MAGN_XY_OVERFLOW_VAL)
367                 return S32_MIN;
368
369         if (!rhall)
370                 rhall = xyz1;
371
372         val = ((s16)(((u16)((((s32)xyz1) << 14) / rhall)) - ((u16)0x4000)));
373         val = ((s16)((((s32)x) * ((((((((s32)tregs->xy2) * ((((s32)val) *
374               ((s32)val)) >> 7)) + (((s32)val) *
375               ((s32)(((s16)tregs->xy1) << 7)))) >> 9) + ((s32)0x100000)) *
376               ((s32)(((s16)tregs->x2) + ((s16)0xA0)))) >> 12)) >> 13)) +
377               (((s16)tregs->x1) << 3);
378
379         return (s32)val;
380 }
381
382 static s32 bmc150_magn_compensate_y(struct bmc150_magn_trim_regs *tregs, s16 y,
383                                     u16 rhall)
384 {
385         s16 val;
386         u16 xyz1 = le16_to_cpu(tregs->xyz1);
387
388         if (y == BMC150_MAGN_XY_OVERFLOW_VAL)
389                 return S32_MIN;
390
391         if (!rhall)
392                 rhall = xyz1;
393
394         val = ((s16)(((u16)((((s32)xyz1) << 14) / rhall)) - ((u16)0x4000)));
395         val = ((s16)((((s32)y) * ((((((((s32)tregs->xy2) * ((((s32)val) *
396               ((s32)val)) >> 7)) + (((s32)val) *
397               ((s32)(((s16)tregs->xy1) << 7)))) >> 9) + ((s32)0x100000)) *
398               ((s32)(((s16)tregs->y2) + ((s16)0xA0)))) >> 12)) >> 13)) +
399               (((s16)tregs->y1) << 3);
400
401         return (s32)val;
402 }
403
404 static s32 bmc150_magn_compensate_z(struct bmc150_magn_trim_regs *tregs, s16 z,
405                                     u16 rhall)
406 {
407         s32 val;
408         u16 xyz1 = le16_to_cpu(tregs->xyz1);
409         u16 z1 = le16_to_cpu(tregs->z1);
410         s16 z2 = le16_to_cpu(tregs->z2);
411         s16 z3 = le16_to_cpu(tregs->z3);
412         s16 z4 = le16_to_cpu(tregs->z4);
413
414         if (z == BMC150_MAGN_Z_OVERFLOW_VAL)
415                 return S32_MIN;
416
417         val = (((((s32)(z - z4)) << 15) - ((((s32)z3) * ((s32)(((s16)rhall) -
418               ((s16)xyz1)))) >> 2)) / (z2 + ((s16)(((((s32)z1) *
419               ((((s16)rhall) << 1))) + (1 << 15)) >> 16))));
420
421         return val;
422 }
423
424 static int bmc150_magn_read_xyz(struct bmc150_magn_data *data, s32 *buffer)
425 {
426         int ret;
427         __le16 values[AXIS_XYZR_MAX];
428         s16 raw_x, raw_y, raw_z;
429         u16 rhall;
430         struct bmc150_magn_trim_regs tregs;
431
432         ret = regmap_bulk_read(data->regmap, BMC150_MAGN_REG_X_L,
433                                values, sizeof(values));
434         if (ret < 0)
435                 return ret;
436
437         raw_x = (s16)le16_to_cpu(values[AXIS_X]) >> BMC150_MAGN_SHIFT_XY_L;
438         raw_y = (s16)le16_to_cpu(values[AXIS_Y]) >> BMC150_MAGN_SHIFT_XY_L;
439         raw_z = (s16)le16_to_cpu(values[AXIS_Z]) >> BMC150_MAGN_SHIFT_Z_L;
440         rhall = le16_to_cpu(values[RHALL]) >> BMC150_MAGN_SHIFT_RHALL_L;
441
442         ret = regmap_bulk_read(data->regmap, BMC150_MAGN_REG_TRIM_START,
443                                &tregs, sizeof(tregs));
444         if (ret < 0)
445                 return ret;
446
447         buffer[AXIS_X] = bmc150_magn_compensate_x(&tregs, raw_x, rhall);
448         buffer[AXIS_Y] = bmc150_magn_compensate_y(&tregs, raw_y, rhall);
449         buffer[AXIS_Z] = bmc150_magn_compensate_z(&tregs, raw_z, rhall);
450
451         return 0;
452 }
453
454 static int bmc150_magn_read_raw(struct iio_dev *indio_dev,
455                                 struct iio_chan_spec const *chan,
456                                 int *val, int *val2, long mask)
457 {
458         struct bmc150_magn_data *data = iio_priv(indio_dev);
459         int ret, tmp;
460         s32 values[AXIS_XYZ_MAX];
461
462         switch (mask) {
463         case IIO_CHAN_INFO_RAW:
464                 if (iio_buffer_enabled(indio_dev))
465                         return -EBUSY;
466                 mutex_lock(&data->mutex);
467
468                 ret = bmc150_magn_set_power_state(data, true);
469                 if (ret < 0) {
470                         mutex_unlock(&data->mutex);
471                         return ret;
472                 }
473
474                 ret = bmc150_magn_read_xyz(data, values);
475                 if (ret < 0) {
476                         bmc150_magn_set_power_state(data, false);
477                         mutex_unlock(&data->mutex);
478                         return ret;
479                 }
480                 *val = values[chan->scan_index];
481
482                 ret = bmc150_magn_set_power_state(data, false);
483                 if (ret < 0) {
484                         mutex_unlock(&data->mutex);
485                         return ret;
486                 }
487
488                 mutex_unlock(&data->mutex);
489                 return IIO_VAL_INT;
490         case IIO_CHAN_INFO_SCALE:
491                 /*
492                  * The API/driver performs an off-chip temperature
493                  * compensation and outputs x/y/z magnetic field data in
494                  * 16 LSB/uT to the upper application layer.
495                  */
496                 *val = 0;
497                 *val2 = 625;
498                 return IIO_VAL_INT_PLUS_MICRO;
499         case IIO_CHAN_INFO_SAMP_FREQ:
500                 ret = bmc150_magn_get_odr(data, val);
501                 if (ret < 0)
502                         return ret;
503                 return IIO_VAL_INT;
504         case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
505                 switch (chan->channel2) {
506                 case IIO_MOD_X:
507                 case IIO_MOD_Y:
508                         ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_XY,
509                                           &tmp);
510                         if (ret < 0)
511                                 return ret;
512                         *val = BMC150_MAGN_REGVAL_TO_REPXY(tmp);
513                         return IIO_VAL_INT;
514                 case IIO_MOD_Z:
515                         ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_Z,
516                                           &tmp);
517                         if (ret < 0)
518                                 return ret;
519                         *val = BMC150_MAGN_REGVAL_TO_REPZ(tmp);
520                         return IIO_VAL_INT;
521                 default:
522                         return -EINVAL;
523                 }
524         default:
525                 return -EINVAL;
526         }
527 }
528
529 static int bmc150_magn_write_raw(struct iio_dev *indio_dev,
530                                  struct iio_chan_spec const *chan,
531                                  int val, int val2, long mask)
532 {
533         struct bmc150_magn_data *data = iio_priv(indio_dev);
534         int ret;
535
536         switch (mask) {
537         case IIO_CHAN_INFO_SAMP_FREQ:
538                 if (val > data->max_odr)
539                         return -EINVAL;
540                 mutex_lock(&data->mutex);
541                 ret = bmc150_magn_set_odr(data, val);
542                 mutex_unlock(&data->mutex);
543                 return ret;
544         case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
545                 switch (chan->channel2) {
546                 case IIO_MOD_X:
547                 case IIO_MOD_Y:
548                         if (val < 1 || val > 511)
549                                 return -EINVAL;
550                         mutex_lock(&data->mutex);
551                         ret = bmc150_magn_set_max_odr(data, val, 0, 0);
552                         if (ret < 0) {
553                                 mutex_unlock(&data->mutex);
554                                 return ret;
555                         }
556                         ret = regmap_update_bits(data->regmap,
557                                                  BMC150_MAGN_REG_REP_XY,
558                                                  BMC150_MAGN_REG_REP_DATAMASK,
559                                                  BMC150_MAGN_REPXY_TO_REGVAL
560                                                  (val));
561                         mutex_unlock(&data->mutex);
562                         return ret;
563                 case IIO_MOD_Z:
564                         if (val < 1 || val > 256)
565                                 return -EINVAL;
566                         mutex_lock(&data->mutex);
567                         ret = bmc150_magn_set_max_odr(data, 0, val, 0);
568                         if (ret < 0) {
569                                 mutex_unlock(&data->mutex);
570                                 return ret;
571                         }
572                         ret = regmap_update_bits(data->regmap,
573                                                  BMC150_MAGN_REG_REP_Z,
574                                                  BMC150_MAGN_REG_REP_DATAMASK,
575                                                  BMC150_MAGN_REPZ_TO_REGVAL
576                                                  (val));
577                         mutex_unlock(&data->mutex);
578                         return ret;
579                 default:
580                         return -EINVAL;
581                 }
582         default:
583                 return -EINVAL;
584         }
585 }
586
587 static ssize_t bmc150_magn_show_samp_freq_avail(struct device *dev,
588                                                 struct device_attribute *attr,
589                                                 char *buf)
590 {
591         struct iio_dev *indio_dev = dev_to_iio_dev(dev);
592         struct bmc150_magn_data *data = iio_priv(indio_dev);
593         size_t len = 0;
594         u8 i;
595
596         for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++) {
597                 if (bmc150_magn_samp_freq_table[i].freq > data->max_odr)
598                         break;
599                 len += scnprintf(buf + len, PAGE_SIZE - len, "%d ",
600                                  bmc150_magn_samp_freq_table[i].freq);
601         }
602         /* replace last space with a newline */
603         buf[len - 1] = '\n';
604
605         return len;
606 }
607
608 static const struct iio_mount_matrix *
609 bmc150_magn_get_mount_matrix(const struct iio_dev *indio_dev,
610                               const struct iio_chan_spec *chan)
611 {
612         struct bmc150_magn_data *data = iio_priv(indio_dev);
613
614         return &data->orientation;
615 }
616
617 static const struct iio_chan_spec_ext_info bmc150_magn_ext_info[] = {
618         IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bmc150_magn_get_mount_matrix),
619         { }
620 };
621
622 static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(bmc150_magn_show_samp_freq_avail);
623
624 static struct attribute *bmc150_magn_attributes[] = {
625         &iio_dev_attr_sampling_frequency_available.dev_attr.attr,
626         NULL,
627 };
628
629 static const struct attribute_group bmc150_magn_attrs_group = {
630         .attrs = bmc150_magn_attributes,
631 };
632
633 #define BMC150_MAGN_CHANNEL(_axis) {                                    \
634         .type = IIO_MAGN,                                               \
635         .modified = 1,                                                  \
636         .channel2 = IIO_MOD_##_axis,                                    \
637         .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |                  \
638                               BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),    \
639         .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ) |      \
640                                     BIT(IIO_CHAN_INFO_SCALE),           \
641         .scan_index = AXIS_##_axis,                                     \
642         .scan_type = {                                                  \
643                 .sign = 's',                                            \
644                 .realbits = 32,                                         \
645                 .storagebits = 32,                                      \
646                 .endianness = IIO_LE                                    \
647         },                                                              \
648         .ext_info = bmc150_magn_ext_info,                               \
649 }
650
651 static const struct iio_chan_spec bmc150_magn_channels[] = {
652         BMC150_MAGN_CHANNEL(X),
653         BMC150_MAGN_CHANNEL(Y),
654         BMC150_MAGN_CHANNEL(Z),
655         IIO_CHAN_SOFT_TIMESTAMP(3),
656 };
657
658 static const struct iio_info bmc150_magn_info = {
659         .attrs = &bmc150_magn_attrs_group,
660         .read_raw = bmc150_magn_read_raw,
661         .write_raw = bmc150_magn_write_raw,
662 };
663
664 static const unsigned long bmc150_magn_scan_masks[] = {
665                                         BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
666                                         0};
667
668 static irqreturn_t bmc150_magn_trigger_handler(int irq, void *p)
669 {
670         struct iio_poll_func *pf = p;
671         struct iio_dev *indio_dev = pf->indio_dev;
672         struct bmc150_magn_data *data = iio_priv(indio_dev);
673         int ret;
674
675         mutex_lock(&data->mutex);
676         ret = bmc150_magn_read_xyz(data, data->scan.chans);
677         if (ret < 0)
678                 goto err;
679
680         iio_push_to_buffers_with_timestamp(indio_dev, &data->scan,
681                                            pf->timestamp);
682
683 err:
684         mutex_unlock(&data->mutex);
685         iio_trigger_notify_done(indio_dev->trig);
686
687         return IRQ_HANDLED;
688 }
689
690 static int bmc150_magn_init(struct bmc150_magn_data *data)
691 {
692         int ret, chip_id;
693         struct bmc150_magn_preset preset;
694
695         ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND,
696                                          false);
697         if (ret < 0) {
698                 dev_err(data->dev,
699                         "Failed to bring up device from suspend mode\n");
700                 return ret;
701         }
702
703         ret = regmap_read(data->regmap, BMC150_MAGN_REG_CHIP_ID, &chip_id);
704         if (ret < 0) {
705                 dev_err(data->dev, "Failed reading chip id\n");
706                 goto err_poweroff;
707         }
708         if (chip_id != BMC150_MAGN_CHIP_ID_VAL) {
709                 dev_err(data->dev, "Invalid chip id 0x%x\n", chip_id);
710                 ret = -ENODEV;
711                 goto err_poweroff;
712         }
713         dev_dbg(data->dev, "Chip id %x\n", chip_id);
714
715         preset = bmc150_magn_presets_table[BMC150_MAGN_DEFAULT_PRESET];
716         ret = bmc150_magn_set_odr(data, preset.odr);
717         if (ret < 0) {
718                 dev_err(data->dev, "Failed to set ODR to %d\n",
719                         preset.odr);
720                 goto err_poweroff;
721         }
722
723         ret = regmap_write(data->regmap, BMC150_MAGN_REG_REP_XY,
724                            BMC150_MAGN_REPXY_TO_REGVAL(preset.rep_xy));
725         if (ret < 0) {
726                 dev_err(data->dev, "Failed to set REP XY to %d\n",
727                         preset.rep_xy);
728                 goto err_poweroff;
729         }
730
731         ret = regmap_write(data->regmap, BMC150_MAGN_REG_REP_Z,
732                            BMC150_MAGN_REPZ_TO_REGVAL(preset.rep_z));
733         if (ret < 0) {
734                 dev_err(data->dev, "Failed to set REP Z to %d\n",
735                         preset.rep_z);
736                 goto err_poweroff;
737         }
738
739         ret = bmc150_magn_set_max_odr(data, preset.rep_xy, preset.rep_z,
740                                       preset.odr);
741         if (ret < 0)
742                 goto err_poweroff;
743
744         ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL,
745                                          true);
746         if (ret < 0) {
747                 dev_err(data->dev, "Failed to power on device\n");
748                 goto err_poweroff;
749         }
750
751         return 0;
752
753 err_poweroff:
754         bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true);
755         return ret;
756 }
757
758 static int bmc150_magn_reset_intr(struct bmc150_magn_data *data)
759 {
760         int tmp;
761
762         /*
763          * Data Ready (DRDY) is always cleared after
764          * readout of data registers ends.
765          */
766         return regmap_read(data->regmap, BMC150_MAGN_REG_X_L, &tmp);
767 }
768
769 static int bmc150_magn_trig_try_reen(struct iio_trigger *trig)
770 {
771         struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
772         struct bmc150_magn_data *data = iio_priv(indio_dev);
773         int ret;
774
775         if (!data->dready_trigger_on)
776                 return 0;
777
778         mutex_lock(&data->mutex);
779         ret = bmc150_magn_reset_intr(data);
780         mutex_unlock(&data->mutex);
781
782         return ret;
783 }
784
785 static int bmc150_magn_data_rdy_trigger_set_state(struct iio_trigger *trig,
786                                                   bool state)
787 {
788         struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
789         struct bmc150_magn_data *data = iio_priv(indio_dev);
790         int ret = 0;
791
792         mutex_lock(&data->mutex);
793         if (state == data->dready_trigger_on)
794                 goto err_unlock;
795
796         ret = regmap_update_bits(data->regmap, BMC150_MAGN_REG_INT_DRDY,
797                                  BMC150_MAGN_MASK_DRDY_EN,
798                                  state << BMC150_MAGN_SHIFT_DRDY_EN);
799         if (ret < 0)
800                 goto err_unlock;
801
802         data->dready_trigger_on = state;
803
804         if (state) {
805                 ret = bmc150_magn_reset_intr(data);
806                 if (ret < 0)
807                         goto err_unlock;
808         }
809         mutex_unlock(&data->mutex);
810
811         return 0;
812
813 err_unlock:
814         mutex_unlock(&data->mutex);
815         return ret;
816 }
817
818 static const struct iio_trigger_ops bmc150_magn_trigger_ops = {
819         .set_trigger_state = bmc150_magn_data_rdy_trigger_set_state,
820         .try_reenable = bmc150_magn_trig_try_reen,
821 };
822
823 static int bmc150_magn_buffer_preenable(struct iio_dev *indio_dev)
824 {
825         struct bmc150_magn_data *data = iio_priv(indio_dev);
826
827         return bmc150_magn_set_power_state(data, true);
828 }
829
830 static int bmc150_magn_buffer_postdisable(struct iio_dev *indio_dev)
831 {
832         struct bmc150_magn_data *data = iio_priv(indio_dev);
833
834         return bmc150_magn_set_power_state(data, false);
835 }
836
837 static const struct iio_buffer_setup_ops bmc150_magn_buffer_setup_ops = {
838         .preenable = bmc150_magn_buffer_preenable,
839         .postdisable = bmc150_magn_buffer_postdisable,
840 };
841
842 static const char *bmc150_magn_match_acpi_device(struct device *dev)
843 {
844         const struct acpi_device_id *id;
845
846         id = acpi_match_device(dev->driver->acpi_match_table, dev);
847         if (!id)
848                 return NULL;
849
850         return dev_name(dev);
851 }
852
853 int bmc150_magn_probe(struct device *dev, struct regmap *regmap,
854                       int irq, const char *name)
855 {
856         struct bmc150_magn_data *data;
857         struct iio_dev *indio_dev;
858         int ret;
859
860         indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
861         if (!indio_dev)
862                 return -ENOMEM;
863
864         data = iio_priv(indio_dev);
865         dev_set_drvdata(dev, indio_dev);
866         data->regmap = regmap;
867         data->irq = irq;
868         data->dev = dev;
869
870         ret = iio_read_mount_matrix(dev, "mount-matrix",
871                                 &data->orientation);
872         if (ret)
873                 return ret;
874
875         if (!name && ACPI_HANDLE(dev))
876                 name = bmc150_magn_match_acpi_device(dev);
877
878         mutex_init(&data->mutex);
879
880         ret = bmc150_magn_init(data);
881         if (ret < 0)
882                 return ret;
883
884         indio_dev->channels = bmc150_magn_channels;
885         indio_dev->num_channels = ARRAY_SIZE(bmc150_magn_channels);
886         indio_dev->available_scan_masks = bmc150_magn_scan_masks;
887         indio_dev->name = name;
888         indio_dev->modes = INDIO_DIRECT_MODE;
889         indio_dev->info = &bmc150_magn_info;
890
891         if (irq > 0) {
892                 data->dready_trig = devm_iio_trigger_alloc(dev,
893                                                            "%s-dev%d",
894                                                            indio_dev->name,
895                                                            indio_dev->id);
896                 if (!data->dready_trig) {
897                         ret = -ENOMEM;
898                         dev_err(dev, "iio trigger alloc failed\n");
899                         goto err_poweroff;
900                 }
901
902                 data->dready_trig->dev.parent = dev;
903                 data->dready_trig->ops = &bmc150_magn_trigger_ops;
904                 iio_trigger_set_drvdata(data->dready_trig, indio_dev);
905                 ret = iio_trigger_register(data->dready_trig);
906                 if (ret) {
907                         dev_err(dev, "iio trigger register failed\n");
908                         goto err_poweroff;
909                 }
910
911                 ret = request_threaded_irq(irq,
912                                            iio_trigger_generic_data_rdy_poll,
913                                            NULL,
914                                            IRQF_TRIGGER_RISING | IRQF_ONESHOT,
915                                            BMC150_MAGN_IRQ_NAME,
916                                            data->dready_trig);
917                 if (ret < 0) {
918                         dev_err(dev, "request irq %d failed\n", irq);
919                         goto err_trigger_unregister;
920                 }
921         }
922
923         ret = iio_triggered_buffer_setup(indio_dev,
924                                          iio_pollfunc_store_time,
925                                          bmc150_magn_trigger_handler,
926                                          &bmc150_magn_buffer_setup_ops);
927         if (ret < 0) {
928                 dev_err(dev, "iio triggered buffer setup failed\n");
929                 goto err_free_irq;
930         }
931
932         ret = pm_runtime_set_active(dev);
933         if (ret)
934                 goto err_buffer_cleanup;
935
936         pm_runtime_enable(dev);
937         pm_runtime_set_autosuspend_delay(dev,
938                                          BMC150_MAGN_AUTO_SUSPEND_DELAY_MS);
939         pm_runtime_use_autosuspend(dev);
940
941         ret = iio_device_register(indio_dev);
942         if (ret < 0) {
943                 dev_err(dev, "unable to register iio device\n");
944                 goto err_pm_cleanup;
945         }
946
947         dev_dbg(dev, "Registered device %s\n", name);
948         return 0;
949
950 err_pm_cleanup:
951         pm_runtime_dont_use_autosuspend(dev);
952         pm_runtime_disable(dev);
953 err_buffer_cleanup:
954         iio_triggered_buffer_cleanup(indio_dev);
955 err_free_irq:
956         if (irq > 0)
957                 free_irq(irq, data->dready_trig);
958 err_trigger_unregister:
959         if (data->dready_trig)
960                 iio_trigger_unregister(data->dready_trig);
961 err_poweroff:
962         bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true);
963         return ret;
964 }
965 EXPORT_SYMBOL(bmc150_magn_probe);
966
967 int bmc150_magn_remove(struct device *dev)
968 {
969         struct iio_dev *indio_dev = dev_get_drvdata(dev);
970         struct bmc150_magn_data *data = iio_priv(indio_dev);
971
972         iio_device_unregister(indio_dev);
973
974         pm_runtime_disable(dev);
975         pm_runtime_set_suspended(dev);
976
977         iio_triggered_buffer_cleanup(indio_dev);
978
979         if (data->irq > 0)
980                 free_irq(data->irq, data->dready_trig);
981
982         if (data->dready_trig)
983                 iio_trigger_unregister(data->dready_trig);
984
985         mutex_lock(&data->mutex);
986         bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true);
987         mutex_unlock(&data->mutex);
988
989         return 0;
990 }
991 EXPORT_SYMBOL(bmc150_magn_remove);
992
993 #ifdef CONFIG_PM
994 static int bmc150_magn_runtime_suspend(struct device *dev)
995 {
996         struct iio_dev *indio_dev = dev_get_drvdata(dev);
997         struct bmc150_magn_data *data = iio_priv(indio_dev);
998         int ret;
999
1000         mutex_lock(&data->mutex);
1001         ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SLEEP,
1002                                          true);
1003         mutex_unlock(&data->mutex);
1004         if (ret < 0) {
1005                 dev_err(dev, "powering off device failed\n");
1006                 return ret;
1007         }
1008         return 0;
1009 }
1010
1011 /*
1012  * Should be called with data->mutex held.
1013  */
1014 static int bmc150_magn_runtime_resume(struct device *dev)
1015 {
1016         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1017         struct bmc150_magn_data *data = iio_priv(indio_dev);
1018
1019         return bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL,
1020                                           true);
1021 }
1022 #endif
1023
1024 #ifdef CONFIG_PM_SLEEP
1025 static int bmc150_magn_suspend(struct device *dev)
1026 {
1027         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1028         struct bmc150_magn_data *data = iio_priv(indio_dev);
1029         int ret;
1030
1031         mutex_lock(&data->mutex);
1032         ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SLEEP,
1033                                          true);
1034         mutex_unlock(&data->mutex);
1035
1036         return ret;
1037 }
1038
1039 static int bmc150_magn_resume(struct device *dev)
1040 {
1041         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1042         struct bmc150_magn_data *data = iio_priv(indio_dev);
1043         int ret;
1044
1045         mutex_lock(&data->mutex);
1046         ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL,
1047                                          true);
1048         mutex_unlock(&data->mutex);
1049
1050         return ret;
1051 }
1052 #endif
1053
1054 const struct dev_pm_ops bmc150_magn_pm_ops = {
1055         SET_SYSTEM_SLEEP_PM_OPS(bmc150_magn_suspend, bmc150_magn_resume)
1056         SET_RUNTIME_PM_OPS(bmc150_magn_runtime_suspend,
1057                            bmc150_magn_runtime_resume, NULL)
1058 };
1059 EXPORT_SYMBOL(bmc150_magn_pm_ops);
1060
1061 MODULE_AUTHOR("Irina Tirdea <irina.tirdea@intel.com>");
1062 MODULE_LICENSE("GPL v2");
1063 MODULE_DESCRIPTION("BMC150 magnetometer core driver");