GNU Linux-libre 5.16.19-gnu
[releases.git] / drivers / iio / magnetometer / bmc150_magn.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Bosch BMC150 three-axis magnetic field sensor driver
4  *
5  * Copyright (c) 2015, Intel Corporation.
6  *
7  * This code is based on bmm050_api.c authored by contact@bosch.sensortec.com:
8  *
9  * (C) Copyright 2011~2014 Bosch Sensortec GmbH All Rights Reserved
10  */
11
12 #include <linux/module.h>
13 #include <linux/i2c.h>
14 #include <linux/interrupt.h>
15 #include <linux/delay.h>
16 #include <linux/slab.h>
17 #include <linux/acpi.h>
18 #include <linux/pm.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/iio/iio.h>
21 #include <linux/iio/sysfs.h>
22 #include <linux/iio/buffer.h>
23 #include <linux/iio/events.h>
24 #include <linux/iio/trigger.h>
25 #include <linux/iio/trigger_consumer.h>
26 #include <linux/iio/triggered_buffer.h>
27 #include <linux/regmap.h>
28 #include <linux/regulator/consumer.h>
29
30 #include "bmc150_magn.h"
31
32 #define BMC150_MAGN_DRV_NAME                    "bmc150_magn"
33 #define BMC150_MAGN_IRQ_NAME                    "bmc150_magn_event"
34
35 #define BMC150_MAGN_REG_CHIP_ID                 0x40
36 #define BMC150_MAGN_CHIP_ID_VAL                 0x32
37
38 #define BMC150_MAGN_REG_X_L                     0x42
39 #define BMC150_MAGN_REG_X_M                     0x43
40 #define BMC150_MAGN_REG_Y_L                     0x44
41 #define BMC150_MAGN_REG_Y_M                     0x45
42 #define BMC150_MAGN_SHIFT_XY_L                  3
43 #define BMC150_MAGN_REG_Z_L                     0x46
44 #define BMC150_MAGN_REG_Z_M                     0x47
45 #define BMC150_MAGN_SHIFT_Z_L                   1
46 #define BMC150_MAGN_REG_RHALL_L                 0x48
47 #define BMC150_MAGN_REG_RHALL_M                 0x49
48 #define BMC150_MAGN_SHIFT_RHALL_L               2
49
50 #define BMC150_MAGN_REG_INT_STATUS              0x4A
51
52 #define BMC150_MAGN_REG_POWER                   0x4B
53 #define BMC150_MAGN_MASK_POWER_CTL              BIT(0)
54
55 #define BMC150_MAGN_REG_OPMODE_ODR              0x4C
56 #define BMC150_MAGN_MASK_OPMODE                 GENMASK(2, 1)
57 #define BMC150_MAGN_SHIFT_OPMODE                1
58 #define BMC150_MAGN_MODE_NORMAL                 0x00
59 #define BMC150_MAGN_MODE_FORCED                 0x01
60 #define BMC150_MAGN_MODE_SLEEP                  0x03
61 #define BMC150_MAGN_MASK_ODR                    GENMASK(5, 3)
62 #define BMC150_MAGN_SHIFT_ODR                   3
63
64 #define BMC150_MAGN_REG_INT                     0x4D
65
66 #define BMC150_MAGN_REG_INT_DRDY                0x4E
67 #define BMC150_MAGN_MASK_DRDY_EN                BIT(7)
68 #define BMC150_MAGN_SHIFT_DRDY_EN               7
69 #define BMC150_MAGN_MASK_DRDY_INT3              BIT(6)
70 #define BMC150_MAGN_MASK_DRDY_Z_EN              BIT(5)
71 #define BMC150_MAGN_MASK_DRDY_Y_EN              BIT(4)
72 #define BMC150_MAGN_MASK_DRDY_X_EN              BIT(3)
73 #define BMC150_MAGN_MASK_DRDY_DR_POLARITY       BIT(2)
74 #define BMC150_MAGN_MASK_DRDY_LATCHING          BIT(1)
75 #define BMC150_MAGN_MASK_DRDY_INT3_POLARITY     BIT(0)
76
77 #define BMC150_MAGN_REG_LOW_THRESH              0x4F
78 #define BMC150_MAGN_REG_HIGH_THRESH             0x50
79 #define BMC150_MAGN_REG_REP_XY                  0x51
80 #define BMC150_MAGN_REG_REP_Z                   0x52
81 #define BMC150_MAGN_REG_REP_DATAMASK            GENMASK(7, 0)
82
83 #define BMC150_MAGN_REG_TRIM_START              0x5D
84 #define BMC150_MAGN_REG_TRIM_END                0x71
85
86 #define BMC150_MAGN_XY_OVERFLOW_VAL             -4096
87 #define BMC150_MAGN_Z_OVERFLOW_VAL              -16384
88
89 /* Time from SUSPEND to SLEEP */
90 #define BMC150_MAGN_START_UP_TIME_MS            3
91
92 #define BMC150_MAGN_AUTO_SUSPEND_DELAY_MS       2000
93
94 #define BMC150_MAGN_REGVAL_TO_REPXY(regval) (((regval) * 2) + 1)
95 #define BMC150_MAGN_REGVAL_TO_REPZ(regval) ((regval) + 1)
96 #define BMC150_MAGN_REPXY_TO_REGVAL(rep) (((rep) - 1) / 2)
97 #define BMC150_MAGN_REPZ_TO_REGVAL(rep) ((rep) - 1)
98
99 enum bmc150_magn_axis {
100         AXIS_X,
101         AXIS_Y,
102         AXIS_Z,
103         RHALL,
104         AXIS_XYZ_MAX = RHALL,
105         AXIS_XYZR_MAX,
106 };
107
108 enum bmc150_magn_power_modes {
109         BMC150_MAGN_POWER_MODE_SUSPEND,
110         BMC150_MAGN_POWER_MODE_SLEEP,
111         BMC150_MAGN_POWER_MODE_NORMAL,
112 };
113
114 struct bmc150_magn_trim_regs {
115         s8 x1;
116         s8 y1;
117         __le16 reserved1;
118         u8 reserved2;
119         __le16 z4;
120         s8 x2;
121         s8 y2;
122         __le16 reserved3;
123         __le16 z2;
124         __le16 z1;
125         __le16 xyz1;
126         __le16 z3;
127         s8 xy2;
128         u8 xy1;
129 } __packed;
130
131 struct bmc150_magn_data {
132         struct device *dev;
133         /*
134          * 1. Protect this structure.
135          * 2. Serialize sequences that power on/off the device and access HW.
136          */
137         struct mutex mutex;
138         struct regmap *regmap;
139         struct regulator_bulk_data regulators[2];
140         struct iio_mount_matrix orientation;
141         /* Ensure timestamp is naturally aligned */
142         struct {
143                 s32 chans[3];
144                 s64 timestamp __aligned(8);
145         } scan;
146         struct iio_trigger *dready_trig;
147         bool dready_trigger_on;
148         int max_odr;
149         int irq;
150 };
151
152 static const struct {
153         int freq;
154         u8 reg_val;
155 } bmc150_magn_samp_freq_table[] = { {2, 0x01},
156                                     {6, 0x02},
157                                     {8, 0x03},
158                                     {10, 0x00},
159                                     {15, 0x04},
160                                     {20, 0x05},
161                                     {25, 0x06},
162                                     {30, 0x07} };
163
164 enum bmc150_magn_presets {
165         LOW_POWER_PRESET,
166         REGULAR_PRESET,
167         ENHANCED_REGULAR_PRESET,
168         HIGH_ACCURACY_PRESET
169 };
170
171 static const struct bmc150_magn_preset {
172         u8 rep_xy;
173         u8 rep_z;
174         u8 odr;
175 } bmc150_magn_presets_table[] = {
176         [LOW_POWER_PRESET] = {3, 3, 10},
177         [REGULAR_PRESET] =  {9, 15, 10},
178         [ENHANCED_REGULAR_PRESET] =  {15, 27, 10},
179         [HIGH_ACCURACY_PRESET] =  {47, 83, 20},
180 };
181
182 #define BMC150_MAGN_DEFAULT_PRESET REGULAR_PRESET
183
184 static bool bmc150_magn_is_writeable_reg(struct device *dev, unsigned int reg)
185 {
186         switch (reg) {
187         case BMC150_MAGN_REG_POWER:
188         case BMC150_MAGN_REG_OPMODE_ODR:
189         case BMC150_MAGN_REG_INT:
190         case BMC150_MAGN_REG_INT_DRDY:
191         case BMC150_MAGN_REG_LOW_THRESH:
192         case BMC150_MAGN_REG_HIGH_THRESH:
193         case BMC150_MAGN_REG_REP_XY:
194         case BMC150_MAGN_REG_REP_Z:
195                 return true;
196         default:
197                 return false;
198         }
199 }
200
201 static bool bmc150_magn_is_volatile_reg(struct device *dev, unsigned int reg)
202 {
203         switch (reg) {
204         case BMC150_MAGN_REG_X_L:
205         case BMC150_MAGN_REG_X_M:
206         case BMC150_MAGN_REG_Y_L:
207         case BMC150_MAGN_REG_Y_M:
208         case BMC150_MAGN_REG_Z_L:
209         case BMC150_MAGN_REG_Z_M:
210         case BMC150_MAGN_REG_RHALL_L:
211         case BMC150_MAGN_REG_RHALL_M:
212         case BMC150_MAGN_REG_INT_STATUS:
213                 return true;
214         default:
215                 return false;
216         }
217 }
218
219 const struct regmap_config bmc150_magn_regmap_config = {
220         .reg_bits = 8,
221         .val_bits = 8,
222
223         .max_register = BMC150_MAGN_REG_TRIM_END,
224         .cache_type = REGCACHE_RBTREE,
225
226         .writeable_reg = bmc150_magn_is_writeable_reg,
227         .volatile_reg = bmc150_magn_is_volatile_reg,
228 };
229 EXPORT_SYMBOL(bmc150_magn_regmap_config);
230
231 static int bmc150_magn_set_power_mode(struct bmc150_magn_data *data,
232                                       enum bmc150_magn_power_modes mode,
233                                       bool state)
234 {
235         int ret;
236
237         switch (mode) {
238         case BMC150_MAGN_POWER_MODE_SUSPEND:
239                 ret = regmap_update_bits(data->regmap, BMC150_MAGN_REG_POWER,
240                                          BMC150_MAGN_MASK_POWER_CTL, !state);
241                 if (ret < 0)
242                         return ret;
243                 usleep_range(BMC150_MAGN_START_UP_TIME_MS * 1000, 20000);
244                 return 0;
245         case BMC150_MAGN_POWER_MODE_SLEEP:
246                 return regmap_update_bits(data->regmap,
247                                           BMC150_MAGN_REG_OPMODE_ODR,
248                                           BMC150_MAGN_MASK_OPMODE,
249                                           BMC150_MAGN_MODE_SLEEP <<
250                                           BMC150_MAGN_SHIFT_OPMODE);
251         case BMC150_MAGN_POWER_MODE_NORMAL:
252                 return regmap_update_bits(data->regmap,
253                                           BMC150_MAGN_REG_OPMODE_ODR,
254                                           BMC150_MAGN_MASK_OPMODE,
255                                           BMC150_MAGN_MODE_NORMAL <<
256                                           BMC150_MAGN_SHIFT_OPMODE);
257         }
258
259         return -EINVAL;
260 }
261
262 static int bmc150_magn_set_power_state(struct bmc150_magn_data *data, bool on)
263 {
264 #ifdef CONFIG_PM
265         int ret;
266
267         if (on) {
268                 ret = pm_runtime_resume_and_get(data->dev);
269         } else {
270                 pm_runtime_mark_last_busy(data->dev);
271                 ret = pm_runtime_put_autosuspend(data->dev);
272         }
273
274         if (ret < 0) {
275                 dev_err(data->dev,
276                         "failed to change power state to %d\n", on);
277                 return ret;
278         }
279 #endif
280
281         return 0;
282 }
283
284 static int bmc150_magn_get_odr(struct bmc150_magn_data *data, int *val)
285 {
286         int ret, reg_val;
287         u8 i, odr_val;
288
289         ret = regmap_read(data->regmap, BMC150_MAGN_REG_OPMODE_ODR, &reg_val);
290         if (ret < 0)
291                 return ret;
292         odr_val = (reg_val & BMC150_MAGN_MASK_ODR) >> BMC150_MAGN_SHIFT_ODR;
293
294         for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++)
295                 if (bmc150_magn_samp_freq_table[i].reg_val == odr_val) {
296                         *val = bmc150_magn_samp_freq_table[i].freq;
297                         return 0;
298                 }
299
300         return -EINVAL;
301 }
302
303 static int bmc150_magn_set_odr(struct bmc150_magn_data *data, int val)
304 {
305         int ret;
306         u8 i;
307
308         for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++) {
309                 if (bmc150_magn_samp_freq_table[i].freq == val) {
310                         ret = regmap_update_bits(data->regmap,
311                                                  BMC150_MAGN_REG_OPMODE_ODR,
312                                                  BMC150_MAGN_MASK_ODR,
313                                                  bmc150_magn_samp_freq_table[i].
314                                                  reg_val <<
315                                                  BMC150_MAGN_SHIFT_ODR);
316                         if (ret < 0)
317                                 return ret;
318                         return 0;
319                 }
320         }
321
322         return -EINVAL;
323 }
324
325 static int bmc150_magn_set_max_odr(struct bmc150_magn_data *data, int rep_xy,
326                                    int rep_z, int odr)
327 {
328         int ret, reg_val, max_odr;
329
330         if (rep_xy <= 0) {
331                 ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_XY,
332                                   &reg_val);
333                 if (ret < 0)
334                         return ret;
335                 rep_xy = BMC150_MAGN_REGVAL_TO_REPXY(reg_val);
336         }
337         if (rep_z <= 0) {
338                 ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_Z,
339                                   &reg_val);
340                 if (ret < 0)
341                         return ret;
342                 rep_z = BMC150_MAGN_REGVAL_TO_REPZ(reg_val);
343         }
344         if (odr <= 0) {
345                 ret = bmc150_magn_get_odr(data, &odr);
346                 if (ret < 0)
347                         return ret;
348         }
349         /* the maximum selectable read-out frequency from datasheet */
350         max_odr = 1000000 / (145 * rep_xy + 500 * rep_z + 980);
351         if (odr > max_odr) {
352                 dev_err(data->dev,
353                         "Can't set oversampling with sampling freq %d\n",
354                         odr);
355                 return -EINVAL;
356         }
357         data->max_odr = max_odr;
358
359         return 0;
360 }
361
362 static s32 bmc150_magn_compensate_x(struct bmc150_magn_trim_regs *tregs, s16 x,
363                                     u16 rhall)
364 {
365         s16 val;
366         u16 xyz1 = le16_to_cpu(tregs->xyz1);
367
368         if (x == BMC150_MAGN_XY_OVERFLOW_VAL)
369                 return S32_MIN;
370
371         if (!rhall)
372                 rhall = xyz1;
373
374         val = ((s16)(((u16)((((s32)xyz1) << 14) / rhall)) - ((u16)0x4000)));
375         val = ((s16)((((s32)x) * ((((((((s32)tregs->xy2) * ((((s32)val) *
376               ((s32)val)) >> 7)) + (((s32)val) *
377               ((s32)(((s16)tregs->xy1) << 7)))) >> 9) + ((s32)0x100000)) *
378               ((s32)(((s16)tregs->x2) + ((s16)0xA0)))) >> 12)) >> 13)) +
379               (((s16)tregs->x1) << 3);
380
381         return (s32)val;
382 }
383
384 static s32 bmc150_magn_compensate_y(struct bmc150_magn_trim_regs *tregs, s16 y,
385                                     u16 rhall)
386 {
387         s16 val;
388         u16 xyz1 = le16_to_cpu(tregs->xyz1);
389
390         if (y == BMC150_MAGN_XY_OVERFLOW_VAL)
391                 return S32_MIN;
392
393         if (!rhall)
394                 rhall = xyz1;
395
396         val = ((s16)(((u16)((((s32)xyz1) << 14) / rhall)) - ((u16)0x4000)));
397         val = ((s16)((((s32)y) * ((((((((s32)tregs->xy2) * ((((s32)val) *
398               ((s32)val)) >> 7)) + (((s32)val) *
399               ((s32)(((s16)tregs->xy1) << 7)))) >> 9) + ((s32)0x100000)) *
400               ((s32)(((s16)tregs->y2) + ((s16)0xA0)))) >> 12)) >> 13)) +
401               (((s16)tregs->y1) << 3);
402
403         return (s32)val;
404 }
405
406 static s32 bmc150_magn_compensate_z(struct bmc150_magn_trim_regs *tregs, s16 z,
407                                     u16 rhall)
408 {
409         s32 val;
410         u16 xyz1 = le16_to_cpu(tregs->xyz1);
411         u16 z1 = le16_to_cpu(tregs->z1);
412         s16 z2 = le16_to_cpu(tregs->z2);
413         s16 z3 = le16_to_cpu(tregs->z3);
414         s16 z4 = le16_to_cpu(tregs->z4);
415
416         if (z == BMC150_MAGN_Z_OVERFLOW_VAL)
417                 return S32_MIN;
418
419         val = (((((s32)(z - z4)) << 15) - ((((s32)z3) * ((s32)(((s16)rhall) -
420               ((s16)xyz1)))) >> 2)) / (z2 + ((s16)(((((s32)z1) *
421               ((((s16)rhall) << 1))) + (1 << 15)) >> 16))));
422
423         return val;
424 }
425
426 static int bmc150_magn_read_xyz(struct bmc150_magn_data *data, s32 *buffer)
427 {
428         int ret;
429         __le16 values[AXIS_XYZR_MAX];
430         s16 raw_x, raw_y, raw_z;
431         u16 rhall;
432         struct bmc150_magn_trim_regs tregs;
433
434         ret = regmap_bulk_read(data->regmap, BMC150_MAGN_REG_X_L,
435                                values, sizeof(values));
436         if (ret < 0)
437                 return ret;
438
439         raw_x = (s16)le16_to_cpu(values[AXIS_X]) >> BMC150_MAGN_SHIFT_XY_L;
440         raw_y = (s16)le16_to_cpu(values[AXIS_Y]) >> BMC150_MAGN_SHIFT_XY_L;
441         raw_z = (s16)le16_to_cpu(values[AXIS_Z]) >> BMC150_MAGN_SHIFT_Z_L;
442         rhall = le16_to_cpu(values[RHALL]) >> BMC150_MAGN_SHIFT_RHALL_L;
443
444         ret = regmap_bulk_read(data->regmap, BMC150_MAGN_REG_TRIM_START,
445                                &tregs, sizeof(tregs));
446         if (ret < 0)
447                 return ret;
448
449         buffer[AXIS_X] = bmc150_magn_compensate_x(&tregs, raw_x, rhall);
450         buffer[AXIS_Y] = bmc150_magn_compensate_y(&tregs, raw_y, rhall);
451         buffer[AXIS_Z] = bmc150_magn_compensate_z(&tregs, raw_z, rhall);
452
453         return 0;
454 }
455
456 static int bmc150_magn_read_raw(struct iio_dev *indio_dev,
457                                 struct iio_chan_spec const *chan,
458                                 int *val, int *val2, long mask)
459 {
460         struct bmc150_magn_data *data = iio_priv(indio_dev);
461         int ret, tmp;
462         s32 values[AXIS_XYZ_MAX];
463
464         switch (mask) {
465         case IIO_CHAN_INFO_RAW:
466                 if (iio_buffer_enabled(indio_dev))
467                         return -EBUSY;
468                 mutex_lock(&data->mutex);
469
470                 ret = bmc150_magn_set_power_state(data, true);
471                 if (ret < 0) {
472                         mutex_unlock(&data->mutex);
473                         return ret;
474                 }
475
476                 ret = bmc150_magn_read_xyz(data, values);
477                 if (ret < 0) {
478                         bmc150_magn_set_power_state(data, false);
479                         mutex_unlock(&data->mutex);
480                         return ret;
481                 }
482                 *val = values[chan->scan_index];
483
484                 ret = bmc150_magn_set_power_state(data, false);
485                 if (ret < 0) {
486                         mutex_unlock(&data->mutex);
487                         return ret;
488                 }
489
490                 mutex_unlock(&data->mutex);
491                 return IIO_VAL_INT;
492         case IIO_CHAN_INFO_SCALE:
493                 /*
494                  * The API/driver performs an off-chip temperature
495                  * compensation and outputs x/y/z magnetic field data in
496                  * 16 LSB/uT to the upper application layer.
497                  */
498                 *val = 0;
499                 *val2 = 625;
500                 return IIO_VAL_INT_PLUS_MICRO;
501         case IIO_CHAN_INFO_SAMP_FREQ:
502                 ret = bmc150_magn_get_odr(data, val);
503                 if (ret < 0)
504                         return ret;
505                 return IIO_VAL_INT;
506         case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
507                 switch (chan->channel2) {
508                 case IIO_MOD_X:
509                 case IIO_MOD_Y:
510                         ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_XY,
511                                           &tmp);
512                         if (ret < 0)
513                                 return ret;
514                         *val = BMC150_MAGN_REGVAL_TO_REPXY(tmp);
515                         return IIO_VAL_INT;
516                 case IIO_MOD_Z:
517                         ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_Z,
518                                           &tmp);
519                         if (ret < 0)
520                                 return ret;
521                         *val = BMC150_MAGN_REGVAL_TO_REPZ(tmp);
522                         return IIO_VAL_INT;
523                 default:
524                         return -EINVAL;
525                 }
526         default:
527                 return -EINVAL;
528         }
529 }
530
531 static int bmc150_magn_write_raw(struct iio_dev *indio_dev,
532                                  struct iio_chan_spec const *chan,
533                                  int val, int val2, long mask)
534 {
535         struct bmc150_magn_data *data = iio_priv(indio_dev);
536         int ret;
537
538         switch (mask) {
539         case IIO_CHAN_INFO_SAMP_FREQ:
540                 if (val > data->max_odr)
541                         return -EINVAL;
542                 mutex_lock(&data->mutex);
543                 ret = bmc150_magn_set_odr(data, val);
544                 mutex_unlock(&data->mutex);
545                 return ret;
546         case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
547                 switch (chan->channel2) {
548                 case IIO_MOD_X:
549                 case IIO_MOD_Y:
550                         if (val < 1 || val > 511)
551                                 return -EINVAL;
552                         mutex_lock(&data->mutex);
553                         ret = bmc150_magn_set_max_odr(data, val, 0, 0);
554                         if (ret < 0) {
555                                 mutex_unlock(&data->mutex);
556                                 return ret;
557                         }
558                         ret = regmap_update_bits(data->regmap,
559                                                  BMC150_MAGN_REG_REP_XY,
560                                                  BMC150_MAGN_REG_REP_DATAMASK,
561                                                  BMC150_MAGN_REPXY_TO_REGVAL
562                                                  (val));
563                         mutex_unlock(&data->mutex);
564                         return ret;
565                 case IIO_MOD_Z:
566                         if (val < 1 || val > 256)
567                                 return -EINVAL;
568                         mutex_lock(&data->mutex);
569                         ret = bmc150_magn_set_max_odr(data, 0, val, 0);
570                         if (ret < 0) {
571                                 mutex_unlock(&data->mutex);
572                                 return ret;
573                         }
574                         ret = regmap_update_bits(data->regmap,
575                                                  BMC150_MAGN_REG_REP_Z,
576                                                  BMC150_MAGN_REG_REP_DATAMASK,
577                                                  BMC150_MAGN_REPZ_TO_REGVAL
578                                                  (val));
579                         mutex_unlock(&data->mutex);
580                         return ret;
581                 default:
582                         return -EINVAL;
583                 }
584         default:
585                 return -EINVAL;
586         }
587 }
588
589 static ssize_t bmc150_magn_show_samp_freq_avail(struct device *dev,
590                                                 struct device_attribute *attr,
591                                                 char *buf)
592 {
593         struct iio_dev *indio_dev = dev_to_iio_dev(dev);
594         struct bmc150_magn_data *data = iio_priv(indio_dev);
595         size_t len = 0;
596         u8 i;
597
598         for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++) {
599                 if (bmc150_magn_samp_freq_table[i].freq > data->max_odr)
600                         break;
601                 len += scnprintf(buf + len, PAGE_SIZE - len, "%d ",
602                                  bmc150_magn_samp_freq_table[i].freq);
603         }
604         /* replace last space with a newline */
605         buf[len - 1] = '\n';
606
607         return len;
608 }
609
610 static const struct iio_mount_matrix *
611 bmc150_magn_get_mount_matrix(const struct iio_dev *indio_dev,
612                               const struct iio_chan_spec *chan)
613 {
614         struct bmc150_magn_data *data = iio_priv(indio_dev);
615
616         return &data->orientation;
617 }
618
619 static const struct iio_chan_spec_ext_info bmc150_magn_ext_info[] = {
620         IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bmc150_magn_get_mount_matrix),
621         { }
622 };
623
624 static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(bmc150_magn_show_samp_freq_avail);
625
626 static struct attribute *bmc150_magn_attributes[] = {
627         &iio_dev_attr_sampling_frequency_available.dev_attr.attr,
628         NULL,
629 };
630
631 static const struct attribute_group bmc150_magn_attrs_group = {
632         .attrs = bmc150_magn_attributes,
633 };
634
635 #define BMC150_MAGN_CHANNEL(_axis) {                                    \
636         .type = IIO_MAGN,                                               \
637         .modified = 1,                                                  \
638         .channel2 = IIO_MOD_##_axis,                                    \
639         .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |                  \
640                               BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),    \
641         .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ) |      \
642                                     BIT(IIO_CHAN_INFO_SCALE),           \
643         .scan_index = AXIS_##_axis,                                     \
644         .scan_type = {                                                  \
645                 .sign = 's',                                            \
646                 .realbits = 32,                                         \
647                 .storagebits = 32,                                      \
648                 .endianness = IIO_LE                                    \
649         },                                                              \
650         .ext_info = bmc150_magn_ext_info,                               \
651 }
652
653 static const struct iio_chan_spec bmc150_magn_channels[] = {
654         BMC150_MAGN_CHANNEL(X),
655         BMC150_MAGN_CHANNEL(Y),
656         BMC150_MAGN_CHANNEL(Z),
657         IIO_CHAN_SOFT_TIMESTAMP(3),
658 };
659
660 static const struct iio_info bmc150_magn_info = {
661         .attrs = &bmc150_magn_attrs_group,
662         .read_raw = bmc150_magn_read_raw,
663         .write_raw = bmc150_magn_write_raw,
664 };
665
666 static const unsigned long bmc150_magn_scan_masks[] = {
667                                         BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
668                                         0};
669
670 static irqreturn_t bmc150_magn_trigger_handler(int irq, void *p)
671 {
672         struct iio_poll_func *pf = p;
673         struct iio_dev *indio_dev = pf->indio_dev;
674         struct bmc150_magn_data *data = iio_priv(indio_dev);
675         int ret;
676
677         mutex_lock(&data->mutex);
678         ret = bmc150_magn_read_xyz(data, data->scan.chans);
679         if (ret < 0)
680                 goto err;
681
682         iio_push_to_buffers_with_timestamp(indio_dev, &data->scan,
683                                            pf->timestamp);
684
685 err:
686         mutex_unlock(&data->mutex);
687         iio_trigger_notify_done(indio_dev->trig);
688
689         return IRQ_HANDLED;
690 }
691
692 static int bmc150_magn_init(struct bmc150_magn_data *data)
693 {
694         int ret, chip_id;
695         struct bmc150_magn_preset preset;
696
697         ret = regulator_bulk_enable(ARRAY_SIZE(data->regulators),
698                                     data->regulators);
699         if (ret < 0) {
700                 dev_err(data->dev, "Failed to enable regulators: %d\n", ret);
701                 return ret;
702         }
703         /*
704          * 3ms power-on time according to datasheet, let's better
705          * be safe than sorry and set this delay to 5ms.
706          */
707         msleep(5);
708
709         ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND,
710                                          false);
711         if (ret < 0) {
712                 dev_err(data->dev,
713                         "Failed to bring up device from suspend mode\n");
714                 goto err_regulator_disable;
715         }
716
717         ret = regmap_read(data->regmap, BMC150_MAGN_REG_CHIP_ID, &chip_id);
718         if (ret < 0) {
719                 dev_err(data->dev, "Failed reading chip id\n");
720                 goto err_poweroff;
721         }
722         if (chip_id != BMC150_MAGN_CHIP_ID_VAL) {
723                 dev_err(data->dev, "Invalid chip id 0x%x\n", chip_id);
724                 ret = -ENODEV;
725                 goto err_poweroff;
726         }
727         dev_dbg(data->dev, "Chip id %x\n", chip_id);
728
729         preset = bmc150_magn_presets_table[BMC150_MAGN_DEFAULT_PRESET];
730         ret = bmc150_magn_set_odr(data, preset.odr);
731         if (ret < 0) {
732                 dev_err(data->dev, "Failed to set ODR to %d\n",
733                         preset.odr);
734                 goto err_poweroff;
735         }
736
737         ret = regmap_write(data->regmap, BMC150_MAGN_REG_REP_XY,
738                            BMC150_MAGN_REPXY_TO_REGVAL(preset.rep_xy));
739         if (ret < 0) {
740                 dev_err(data->dev, "Failed to set REP XY to %d\n",
741                         preset.rep_xy);
742                 goto err_poweroff;
743         }
744
745         ret = regmap_write(data->regmap, BMC150_MAGN_REG_REP_Z,
746                            BMC150_MAGN_REPZ_TO_REGVAL(preset.rep_z));
747         if (ret < 0) {
748                 dev_err(data->dev, "Failed to set REP Z to %d\n",
749                         preset.rep_z);
750                 goto err_poweroff;
751         }
752
753         ret = bmc150_magn_set_max_odr(data, preset.rep_xy, preset.rep_z,
754                                       preset.odr);
755         if (ret < 0)
756                 goto err_poweroff;
757
758         ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL,
759                                          true);
760         if (ret < 0) {
761                 dev_err(data->dev, "Failed to power on device\n");
762                 goto err_poweroff;
763         }
764
765         return 0;
766
767 err_poweroff:
768         bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true);
769 err_regulator_disable:
770         regulator_bulk_disable(ARRAY_SIZE(data->regulators), data->regulators);
771         return ret;
772 }
773
774 static int bmc150_magn_reset_intr(struct bmc150_magn_data *data)
775 {
776         int tmp;
777
778         /*
779          * Data Ready (DRDY) is always cleared after
780          * readout of data registers ends.
781          */
782         return regmap_read(data->regmap, BMC150_MAGN_REG_X_L, &tmp);
783 }
784
785 static void bmc150_magn_trig_reen(struct iio_trigger *trig)
786 {
787         struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
788         struct bmc150_magn_data *data = iio_priv(indio_dev);
789         int ret;
790
791         if (!data->dready_trigger_on)
792                 return;
793
794         mutex_lock(&data->mutex);
795         ret = bmc150_magn_reset_intr(data);
796         mutex_unlock(&data->mutex);
797         if (ret)
798                 dev_err(data->dev, "Failed to reset interrupt\n");
799 }
800
801 static int bmc150_magn_data_rdy_trigger_set_state(struct iio_trigger *trig,
802                                                   bool state)
803 {
804         struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
805         struct bmc150_magn_data *data = iio_priv(indio_dev);
806         int ret = 0;
807
808         mutex_lock(&data->mutex);
809         if (state == data->dready_trigger_on)
810                 goto err_unlock;
811
812         ret = regmap_update_bits(data->regmap, BMC150_MAGN_REG_INT_DRDY,
813                                  BMC150_MAGN_MASK_DRDY_EN,
814                                  state << BMC150_MAGN_SHIFT_DRDY_EN);
815         if (ret < 0)
816                 goto err_unlock;
817
818         data->dready_trigger_on = state;
819
820         if (state) {
821                 ret = bmc150_magn_reset_intr(data);
822                 if (ret < 0)
823                         goto err_unlock;
824         }
825         mutex_unlock(&data->mutex);
826
827         return 0;
828
829 err_unlock:
830         mutex_unlock(&data->mutex);
831         return ret;
832 }
833
834 static const struct iio_trigger_ops bmc150_magn_trigger_ops = {
835         .set_trigger_state = bmc150_magn_data_rdy_trigger_set_state,
836         .reenable = bmc150_magn_trig_reen,
837 };
838
839 static int bmc150_magn_buffer_preenable(struct iio_dev *indio_dev)
840 {
841         struct bmc150_magn_data *data = iio_priv(indio_dev);
842
843         return bmc150_magn_set_power_state(data, true);
844 }
845
846 static int bmc150_magn_buffer_postdisable(struct iio_dev *indio_dev)
847 {
848         struct bmc150_magn_data *data = iio_priv(indio_dev);
849
850         return bmc150_magn_set_power_state(data, false);
851 }
852
853 static const struct iio_buffer_setup_ops bmc150_magn_buffer_setup_ops = {
854         .preenable = bmc150_magn_buffer_preenable,
855         .postdisable = bmc150_magn_buffer_postdisable,
856 };
857
858 static const char *bmc150_magn_match_acpi_device(struct device *dev)
859 {
860         const struct acpi_device_id *id;
861
862         id = acpi_match_device(dev->driver->acpi_match_table, dev);
863         if (!id)
864                 return NULL;
865
866         return dev_name(dev);
867 }
868
869 int bmc150_magn_probe(struct device *dev, struct regmap *regmap,
870                       int irq, const char *name)
871 {
872         struct bmc150_magn_data *data;
873         struct iio_dev *indio_dev;
874         int ret;
875
876         indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
877         if (!indio_dev)
878                 return -ENOMEM;
879
880         data = iio_priv(indio_dev);
881         dev_set_drvdata(dev, indio_dev);
882         data->regmap = regmap;
883         data->irq = irq;
884         data->dev = dev;
885
886         data->regulators[0].supply = "vdd";
887         data->regulators[1].supply = "vddio";
888         ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(data->regulators),
889                                       data->regulators);
890         if (ret)
891                 return dev_err_probe(dev, ret, "failed to get regulators\n");
892
893         ret = iio_read_mount_matrix(dev, &data->orientation);
894         if (ret)
895                 return ret;
896
897         if (!name && ACPI_HANDLE(dev))
898                 name = bmc150_magn_match_acpi_device(dev);
899
900         mutex_init(&data->mutex);
901
902         ret = bmc150_magn_init(data);
903         if (ret < 0)
904                 return ret;
905
906         indio_dev->channels = bmc150_magn_channels;
907         indio_dev->num_channels = ARRAY_SIZE(bmc150_magn_channels);
908         indio_dev->available_scan_masks = bmc150_magn_scan_masks;
909         indio_dev->name = name;
910         indio_dev->modes = INDIO_DIRECT_MODE;
911         indio_dev->info = &bmc150_magn_info;
912
913         if (irq > 0) {
914                 data->dready_trig = devm_iio_trigger_alloc(dev,
915                                                            "%s-dev%d",
916                                                            indio_dev->name,
917                                                            iio_device_id(indio_dev));
918                 if (!data->dready_trig) {
919                         ret = -ENOMEM;
920                         dev_err(dev, "iio trigger alloc failed\n");
921                         goto err_poweroff;
922                 }
923
924                 data->dready_trig->ops = &bmc150_magn_trigger_ops;
925                 iio_trigger_set_drvdata(data->dready_trig, indio_dev);
926                 ret = iio_trigger_register(data->dready_trig);
927                 if (ret) {
928                         dev_err(dev, "iio trigger register failed\n");
929                         goto err_poweroff;
930                 }
931
932                 ret = request_threaded_irq(irq,
933                                            iio_trigger_generic_data_rdy_poll,
934                                            NULL,
935                                            IRQF_TRIGGER_RISING | IRQF_ONESHOT,
936                                            BMC150_MAGN_IRQ_NAME,
937                                            data->dready_trig);
938                 if (ret < 0) {
939                         dev_err(dev, "request irq %d failed\n", irq);
940                         goto err_trigger_unregister;
941                 }
942         }
943
944         ret = iio_triggered_buffer_setup(indio_dev,
945                                          iio_pollfunc_store_time,
946                                          bmc150_magn_trigger_handler,
947                                          &bmc150_magn_buffer_setup_ops);
948         if (ret < 0) {
949                 dev_err(dev, "iio triggered buffer setup failed\n");
950                 goto err_free_irq;
951         }
952
953         ret = pm_runtime_set_active(dev);
954         if (ret)
955                 goto err_buffer_cleanup;
956
957         pm_runtime_enable(dev);
958         pm_runtime_set_autosuspend_delay(dev,
959                                          BMC150_MAGN_AUTO_SUSPEND_DELAY_MS);
960         pm_runtime_use_autosuspend(dev);
961
962         ret = iio_device_register(indio_dev);
963         if (ret < 0) {
964                 dev_err(dev, "unable to register iio device\n");
965                 goto err_pm_cleanup;
966         }
967
968         dev_dbg(dev, "Registered device %s\n", name);
969         return 0;
970
971 err_pm_cleanup:
972         pm_runtime_dont_use_autosuspend(dev);
973         pm_runtime_disable(dev);
974 err_buffer_cleanup:
975         iio_triggered_buffer_cleanup(indio_dev);
976 err_free_irq:
977         if (irq > 0)
978                 free_irq(irq, data->dready_trig);
979 err_trigger_unregister:
980         if (data->dready_trig)
981                 iio_trigger_unregister(data->dready_trig);
982 err_poweroff:
983         bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true);
984         return ret;
985 }
986 EXPORT_SYMBOL(bmc150_magn_probe);
987
988 int bmc150_magn_remove(struct device *dev)
989 {
990         struct iio_dev *indio_dev = dev_get_drvdata(dev);
991         struct bmc150_magn_data *data = iio_priv(indio_dev);
992
993         iio_device_unregister(indio_dev);
994
995         pm_runtime_disable(dev);
996         pm_runtime_set_suspended(dev);
997
998         iio_triggered_buffer_cleanup(indio_dev);
999
1000         if (data->irq > 0)
1001                 free_irq(data->irq, data->dready_trig);
1002
1003         if (data->dready_trig)
1004                 iio_trigger_unregister(data->dready_trig);
1005
1006         mutex_lock(&data->mutex);
1007         bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true);
1008         mutex_unlock(&data->mutex);
1009
1010         regulator_bulk_disable(ARRAY_SIZE(data->regulators), data->regulators);
1011         return 0;
1012 }
1013 EXPORT_SYMBOL(bmc150_magn_remove);
1014
1015 #ifdef CONFIG_PM
1016 static int bmc150_magn_runtime_suspend(struct device *dev)
1017 {
1018         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1019         struct bmc150_magn_data *data = iio_priv(indio_dev);
1020         int ret;
1021
1022         mutex_lock(&data->mutex);
1023         ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SLEEP,
1024                                          true);
1025         mutex_unlock(&data->mutex);
1026         if (ret < 0) {
1027                 dev_err(dev, "powering off device failed\n");
1028                 return ret;
1029         }
1030         return 0;
1031 }
1032
1033 /*
1034  * Should be called with data->mutex held.
1035  */
1036 static int bmc150_magn_runtime_resume(struct device *dev)
1037 {
1038         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1039         struct bmc150_magn_data *data = iio_priv(indio_dev);
1040
1041         return bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL,
1042                                           true);
1043 }
1044 #endif
1045
1046 #ifdef CONFIG_PM_SLEEP
1047 static int bmc150_magn_suspend(struct device *dev)
1048 {
1049         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1050         struct bmc150_magn_data *data = iio_priv(indio_dev);
1051         int ret;
1052
1053         mutex_lock(&data->mutex);
1054         ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SLEEP,
1055                                          true);
1056         mutex_unlock(&data->mutex);
1057
1058         return ret;
1059 }
1060
1061 static int bmc150_magn_resume(struct device *dev)
1062 {
1063         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1064         struct bmc150_magn_data *data = iio_priv(indio_dev);
1065         int ret;
1066
1067         mutex_lock(&data->mutex);
1068         ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL,
1069                                          true);
1070         mutex_unlock(&data->mutex);
1071
1072         return ret;
1073 }
1074 #endif
1075
1076 const struct dev_pm_ops bmc150_magn_pm_ops = {
1077         SET_SYSTEM_SLEEP_PM_OPS(bmc150_magn_suspend, bmc150_magn_resume)
1078         SET_RUNTIME_PM_OPS(bmc150_magn_runtime_suspend,
1079                            bmc150_magn_runtime_resume, NULL)
1080 };
1081 EXPORT_SYMBOL(bmc150_magn_pm_ops);
1082
1083 MODULE_AUTHOR("Irina Tirdea <irina.tirdea@intel.com>");
1084 MODULE_LICENSE("GPL v2");
1085 MODULE_DESCRIPTION("BMC150 magnetometer core driver");