GNU Linux-libre 5.16.19-gnu
[releases.git] / drivers / iio / magnetometer / ak8974.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for the Asahi Kasei EMD Corporation AK8974
4  * and Aichi Steel AMI305 magnetometer chips.
5  * Based on a patch from Samu Onkalo and the AK8975 IIO driver.
6  *
7  * Copyright (C) 2010 Nokia Corporation and/or its subsidiary(-ies).
8  * Copyright (c) 2010 NVIDIA Corporation.
9  * Copyright (C) 2016 Linaro Ltd.
10  *
11  * Author: Samu Onkalo <samu.p.onkalo@nokia.com>
12  * Author: Linus Walleij <linus.walleij@linaro.org>
13  */
14 #include <linux/module.h>
15 #include <linux/mod_devicetable.h>
16 #include <linux/kernel.h>
17 #include <linux/i2c.h>
18 #include <linux/interrupt.h>
19 #include <linux/irq.h> /* For irq_get_irq_data() */
20 #include <linux/completion.h>
21 #include <linux/err.h>
22 #include <linux/mutex.h>
23 #include <linux/delay.h>
24 #include <linux/bitops.h>
25 #include <linux/random.h>
26 #include <linux/regmap.h>
27 #include <linux/regulator/consumer.h>
28 #include <linux/pm_runtime.h>
29
30 #include <linux/iio/iio.h>
31 #include <linux/iio/sysfs.h>
32 #include <linux/iio/buffer.h>
33 #include <linux/iio/trigger.h>
34 #include <linux/iio/trigger_consumer.h>
35 #include <linux/iio/triggered_buffer.h>
36
37 /*
38  * 16-bit registers are little-endian. LSB is at the address defined below
39  * and MSB is at the next higher address.
40  */
41
42 /* These registers are common for AK8974 and AMI30x */
43 #define AK8974_SELFTEST         0x0C
44 #define AK8974_SELFTEST_IDLE    0x55
45 #define AK8974_SELFTEST_OK      0xAA
46
47 #define AK8974_INFO             0x0D
48
49 #define AK8974_WHOAMI           0x0F
50 #define AK8974_WHOAMI_VALUE_AMI306 0x46
51 #define AK8974_WHOAMI_VALUE_AMI305 0x47
52 #define AK8974_WHOAMI_VALUE_AK8974 0x48
53 #define AK8974_WHOAMI_VALUE_HSCDTD008A 0x49
54
55 #define AK8974_DATA_X           0x10
56 #define AK8974_DATA_Y           0x12
57 #define AK8974_DATA_Z           0x14
58 #define AK8974_INT_SRC          0x16
59 #define AK8974_STATUS           0x18
60 #define AK8974_INT_CLEAR        0x1A
61 #define AK8974_CTRL1            0x1B
62 #define AK8974_CTRL2            0x1C
63 #define AK8974_CTRL3            0x1D
64 #define AK8974_INT_CTRL         0x1E
65 #define AK8974_INT_THRES        0x26  /* Absolute any axis value threshold */
66 #define AK8974_PRESET           0x30
67
68 /* AK8974-specific offsets */
69 #define AK8974_OFFSET_X         0x20
70 #define AK8974_OFFSET_Y         0x22
71 #define AK8974_OFFSET_Z         0x24
72 /* AMI305-specific offsets */
73 #define AMI305_OFFSET_X         0x6C
74 #define AMI305_OFFSET_Y         0x72
75 #define AMI305_OFFSET_Z         0x78
76
77 /* Different temperature registers */
78 #define AK8974_TEMP             0x31
79 #define AMI305_TEMP             0x60
80
81 /* AMI306-specific control register */
82 #define AMI306_CTRL4            0x5C
83
84 /* AMI306 factory calibration data */
85
86 /* fine axis sensitivity */
87 #define AMI306_FINEOUTPUT_X     0x90
88 #define AMI306_FINEOUTPUT_Y     0x92
89 #define AMI306_FINEOUTPUT_Z     0x94
90
91 /* axis sensitivity */
92 #define AMI306_SENS_X           0x96
93 #define AMI306_SENS_Y           0x98
94 #define AMI306_SENS_Z           0x9A
95
96 /* axis cross-interference */
97 #define AMI306_GAIN_PARA_XZ     0x9C
98 #define AMI306_GAIN_PARA_XY     0x9D
99 #define AMI306_GAIN_PARA_YZ     0x9E
100 #define AMI306_GAIN_PARA_YX     0x9F
101 #define AMI306_GAIN_PARA_ZY     0xA0
102 #define AMI306_GAIN_PARA_ZX     0xA1
103
104 /* offset at ZERO magnetic field */
105 #define AMI306_OFFZERO_X        0xF8
106 #define AMI306_OFFZERO_Y        0xFA
107 #define AMI306_OFFZERO_Z        0xFC
108
109
110 #define AK8974_INT_X_HIGH       BIT(7) /* Axis over +threshold  */
111 #define AK8974_INT_Y_HIGH       BIT(6)
112 #define AK8974_INT_Z_HIGH       BIT(5)
113 #define AK8974_INT_X_LOW        BIT(4) /* Axis below -threshold */
114 #define AK8974_INT_Y_LOW        BIT(3)
115 #define AK8974_INT_Z_LOW        BIT(2)
116 #define AK8974_INT_RANGE        BIT(1) /* Range overflow (any axis) */
117
118 #define AK8974_STATUS_DRDY      BIT(6) /* Data ready */
119 #define AK8974_STATUS_OVERRUN   BIT(5) /* Data overrun */
120 #define AK8974_STATUS_INT       BIT(4) /* Interrupt occurred */
121
122 #define AK8974_CTRL1_POWER      BIT(7) /* 0 = standby; 1 = active */
123 #define AK8974_CTRL1_RATE       BIT(4) /* 0 = 10 Hz; 1 = 20 Hz   */
124 #define AK8974_CTRL1_FORCE_EN   BIT(1) /* 0 = normal; 1 = force  */
125 #define AK8974_CTRL1_MODE2      BIT(0) /* 0 */
126
127 #define AK8974_CTRL2_INT_EN     BIT(4)  /* 1 = enable interrupts              */
128 #define AK8974_CTRL2_DRDY_EN    BIT(3)  /* 1 = enable data ready signal */
129 #define AK8974_CTRL2_DRDY_POL   BIT(2)  /* 1 = data ready active high   */
130 #define AK8974_CTRL2_RESDEF     (AK8974_CTRL2_DRDY_POL)
131
132 #define AK8974_CTRL3_RESET      BIT(7) /* Software reset                  */
133 #define AK8974_CTRL3_FORCE      BIT(6) /* Start forced measurement */
134 #define AK8974_CTRL3_SELFTEST   BIT(4) /* Set selftest register   */
135 #define AK8974_CTRL3_RESDEF     0x00
136
137 #define AK8974_INT_CTRL_XEN     BIT(7) /* Enable interrupt for this axis */
138 #define AK8974_INT_CTRL_YEN     BIT(6)
139 #define AK8974_INT_CTRL_ZEN     BIT(5)
140 #define AK8974_INT_CTRL_XYZEN   (BIT(7)|BIT(6)|BIT(5))
141 #define AK8974_INT_CTRL_POL     BIT(3) /* 0 = active low; 1 = active high */
142 #define AK8974_INT_CTRL_PULSE   BIT(1) /* 0 = latched; 1 = pulse (50 usec) */
143 #define AK8974_INT_CTRL_RESDEF  (AK8974_INT_CTRL_XYZEN | AK8974_INT_CTRL_POL)
144
145 /* HSCDTD008A-specific control register */
146 #define HSCDTD008A_CTRL4        0x1E
147 #define HSCDTD008A_CTRL4_MMD    BIT(7)  /* must be set to 1 */
148 #define HSCDTD008A_CTRL4_RANGE  BIT(4)  /* 0 = 14-bit output; 1 = 15-bit output */
149 #define HSCDTD008A_CTRL4_RESDEF (HSCDTD008A_CTRL4_MMD | HSCDTD008A_CTRL4_RANGE)
150
151 /* The AMI305 has elaborate FW version and serial number registers */
152 #define AMI305_VER              0xE8
153 #define AMI305_SN               0xEA
154
155 #define AK8974_MAX_RANGE        2048
156
157 #define AK8974_POWERON_DELAY    50
158 #define AK8974_ACTIVATE_DELAY   1
159 #define AK8974_SELFTEST_DELAY   1
160 /*
161  * Set the autosuspend to two orders of magnitude larger than the poweron
162  * delay to make sane reasonable power tradeoff savings (5 seconds in
163  * this case).
164  */
165 #define AK8974_AUTOSUSPEND_DELAY 5000
166
167 #define AK8974_MEASTIME         3
168
169 #define AK8974_PWR_ON           1
170 #define AK8974_PWR_OFF          0
171
172 /**
173  * struct ak8974 - state container for the AK8974 driver
174  * @i2c: parent I2C client
175  * @orientation: mounting matrix, flipped axis etc
176  * @map: regmap to access the AK8974 registers over I2C
177  * @regs: the avdd and dvdd power regulators
178  * @name: the name of the part
179  * @variant: the whoami ID value (for selecting code paths)
180  * @lock: locks the magnetometer for exclusive use during a measurement
181  * @drdy_irq: uses the DRDY IRQ line
182  * @drdy_complete: completion for DRDY
183  * @drdy_active_low: the DRDY IRQ is active low
184  * @scan: timestamps
185  */
186 struct ak8974 {
187         struct i2c_client *i2c;
188         struct iio_mount_matrix orientation;
189         struct regmap *map;
190         struct regulator_bulk_data regs[2];
191         const char *name;
192         u8 variant;
193         struct mutex lock;
194         bool drdy_irq;
195         struct completion drdy_complete;
196         bool drdy_active_low;
197         /* Ensure timestamp is naturally aligned */
198         struct {
199                 __le16 channels[3];
200                 s64 ts __aligned(8);
201         } scan;
202 };
203
204 static const char ak8974_reg_avdd[] = "avdd";
205 static const char ak8974_reg_dvdd[] = "dvdd";
206
207 static int ak8974_get_u16_val(struct ak8974 *ak8974, u8 reg, u16 *val)
208 {
209         int ret;
210         __le16 bulk;
211
212         ret = regmap_bulk_read(ak8974->map, reg, &bulk, 2);
213         if (ret)
214                 return ret;
215         *val = le16_to_cpu(bulk);
216
217         return 0;
218 }
219
220 static int ak8974_set_u16_val(struct ak8974 *ak8974, u8 reg, u16 val)
221 {
222         __le16 bulk = cpu_to_le16(val);
223
224         return regmap_bulk_write(ak8974->map, reg, &bulk, 2);
225 }
226
227 static int ak8974_set_power(struct ak8974 *ak8974, bool mode)
228 {
229         int ret;
230         u8 val;
231
232         val = mode ? AK8974_CTRL1_POWER : 0;
233         val |= AK8974_CTRL1_FORCE_EN;
234         ret = regmap_write(ak8974->map, AK8974_CTRL1, val);
235         if (ret < 0)
236                 return ret;
237
238         if (mode)
239                 msleep(AK8974_ACTIVATE_DELAY);
240
241         return 0;
242 }
243
244 static int ak8974_reset(struct ak8974 *ak8974)
245 {
246         int ret;
247
248         /* Power on to get register access. Sets CTRL1 reg to reset state */
249         ret = ak8974_set_power(ak8974, AK8974_PWR_ON);
250         if (ret)
251                 return ret;
252         ret = regmap_write(ak8974->map, AK8974_CTRL2, AK8974_CTRL2_RESDEF);
253         if (ret)
254                 return ret;
255         ret = regmap_write(ak8974->map, AK8974_CTRL3, AK8974_CTRL3_RESDEF);
256         if (ret)
257                 return ret;
258         if (ak8974->variant != AK8974_WHOAMI_VALUE_HSCDTD008A) {
259                 ret = regmap_write(ak8974->map, AK8974_INT_CTRL,
260                                    AK8974_INT_CTRL_RESDEF);
261                 if (ret)
262                         return ret;
263         } else {
264                 ret = regmap_write(ak8974->map, HSCDTD008A_CTRL4,
265                                    HSCDTD008A_CTRL4_RESDEF);
266                 if (ret)
267                         return ret;
268         }
269
270         /* After reset, power off is default state */
271         return ak8974_set_power(ak8974, AK8974_PWR_OFF);
272 }
273
274 static int ak8974_configure(struct ak8974 *ak8974)
275 {
276         int ret;
277
278         ret = regmap_write(ak8974->map, AK8974_CTRL2, AK8974_CTRL2_DRDY_EN |
279                            AK8974_CTRL2_INT_EN);
280         if (ret)
281                 return ret;
282         ret = regmap_write(ak8974->map, AK8974_CTRL3, 0);
283         if (ret)
284                 return ret;
285         if (ak8974->variant == AK8974_WHOAMI_VALUE_AMI306) {
286                 /* magic from datasheet: set high-speed measurement mode */
287                 ret = ak8974_set_u16_val(ak8974, AMI306_CTRL4, 0xA07E);
288                 if (ret)
289                         return ret;
290         }
291         if (ak8974->variant == AK8974_WHOAMI_VALUE_HSCDTD008A)
292                 return 0;
293         ret = regmap_write(ak8974->map, AK8974_INT_CTRL, AK8974_INT_CTRL_POL);
294         if (ret)
295                 return ret;
296
297         return regmap_write(ak8974->map, AK8974_PRESET, 0);
298 }
299
300 static int ak8974_trigmeas(struct ak8974 *ak8974)
301 {
302         unsigned int clear;
303         u8 mask;
304         u8 val;
305         int ret;
306
307         /* Clear any previous measurement overflow status */
308         ret = regmap_read(ak8974->map, AK8974_INT_CLEAR, &clear);
309         if (ret)
310                 return ret;
311
312         /* If we have a DRDY IRQ line, use it */
313         if (ak8974->drdy_irq) {
314                 mask = AK8974_CTRL2_INT_EN |
315                         AK8974_CTRL2_DRDY_EN |
316                         AK8974_CTRL2_DRDY_POL;
317                 val = AK8974_CTRL2_DRDY_EN;
318
319                 if (!ak8974->drdy_active_low)
320                         val |= AK8974_CTRL2_DRDY_POL;
321
322                 init_completion(&ak8974->drdy_complete);
323                 ret = regmap_update_bits(ak8974->map, AK8974_CTRL2,
324                                          mask, val);
325                 if (ret)
326                         return ret;
327         }
328
329         /* Force a measurement */
330         return regmap_update_bits(ak8974->map,
331                                   AK8974_CTRL3,
332                                   AK8974_CTRL3_FORCE,
333                                   AK8974_CTRL3_FORCE);
334 }
335
336 static int ak8974_await_drdy(struct ak8974 *ak8974)
337 {
338         int timeout = 2;
339         unsigned int val;
340         int ret;
341
342         if (ak8974->drdy_irq) {
343                 ret = wait_for_completion_timeout(&ak8974->drdy_complete,
344                                         1 + msecs_to_jiffies(1000));
345                 if (!ret) {
346                         dev_err(&ak8974->i2c->dev,
347                                 "timeout waiting for DRDY IRQ\n");
348                         return -ETIMEDOUT;
349                 }
350                 return 0;
351         }
352
353         /* Default delay-based poll loop */
354         do {
355                 msleep(AK8974_MEASTIME);
356                 ret = regmap_read(ak8974->map, AK8974_STATUS, &val);
357                 if (ret < 0)
358                         return ret;
359                 if (val & AK8974_STATUS_DRDY)
360                         return 0;
361         } while (--timeout);
362
363         dev_err(&ak8974->i2c->dev, "timeout waiting for DRDY\n");
364         return -ETIMEDOUT;
365 }
366
367 static int ak8974_getresult(struct ak8974 *ak8974, __le16 *result)
368 {
369         unsigned int src;
370         int ret;
371
372         ret = ak8974_await_drdy(ak8974);
373         if (ret)
374                 return ret;
375         ret = regmap_read(ak8974->map, AK8974_INT_SRC, &src);
376         if (ret < 0)
377                 return ret;
378
379         /* Out of range overflow! Strong magnet close? */
380         if (src & AK8974_INT_RANGE) {
381                 dev_err(&ak8974->i2c->dev,
382                         "range overflow in sensor\n");
383                 return -ERANGE;
384         }
385
386         ret = regmap_bulk_read(ak8974->map, AK8974_DATA_X, result, 6);
387         if (ret)
388                 return ret;
389
390         return ret;
391 }
392
393 static irqreturn_t ak8974_drdy_irq(int irq, void *d)
394 {
395         struct ak8974 *ak8974 = d;
396
397         if (!ak8974->drdy_irq)
398                 return IRQ_NONE;
399
400         /* TODO: timestamp here to get good measurement stamps */
401         return IRQ_WAKE_THREAD;
402 }
403
404 static irqreturn_t ak8974_drdy_irq_thread(int irq, void *d)
405 {
406         struct ak8974 *ak8974 = d;
407         unsigned int val;
408         int ret;
409
410         /* Check if this was a DRDY from us */
411         ret = regmap_read(ak8974->map, AK8974_STATUS, &val);
412         if (ret < 0) {
413                 dev_err(&ak8974->i2c->dev, "error reading DRDY status\n");
414                 return IRQ_HANDLED;
415         }
416         if (val & AK8974_STATUS_DRDY) {
417                 /* Yes this was our IRQ */
418                 complete(&ak8974->drdy_complete);
419                 return IRQ_HANDLED;
420         }
421
422         /* We may be on a shared IRQ, let the next client check */
423         return IRQ_NONE;
424 }
425
426 static int ak8974_selftest(struct ak8974 *ak8974)
427 {
428         struct device *dev = &ak8974->i2c->dev;
429         unsigned int val;
430         int ret;
431
432         ret = regmap_read(ak8974->map, AK8974_SELFTEST, &val);
433         if (ret)
434                 return ret;
435         if (val != AK8974_SELFTEST_IDLE) {
436                 dev_err(dev, "selftest not idle before test\n");
437                 return -EIO;
438         }
439
440         /* Trigger self-test */
441         ret = regmap_update_bits(ak8974->map,
442                         AK8974_CTRL3,
443                         AK8974_CTRL3_SELFTEST,
444                         AK8974_CTRL3_SELFTEST);
445         if (ret) {
446                 dev_err(dev, "could not write CTRL3\n");
447                 return ret;
448         }
449
450         msleep(AK8974_SELFTEST_DELAY);
451
452         ret = regmap_read(ak8974->map, AK8974_SELFTEST, &val);
453         if (ret)
454                 return ret;
455         if (val != AK8974_SELFTEST_OK) {
456                 dev_err(dev, "selftest result NOT OK (%02x)\n", val);
457                 return -EIO;
458         }
459
460         ret = regmap_read(ak8974->map, AK8974_SELFTEST, &val);
461         if (ret)
462                 return ret;
463         if (val != AK8974_SELFTEST_IDLE) {
464                 dev_err(dev, "selftest not idle after test (%02x)\n", val);
465                 return -EIO;
466         }
467         dev_dbg(dev, "passed self-test\n");
468
469         return 0;
470 }
471
472 static void ak8974_read_calib_data(struct ak8974 *ak8974, unsigned int reg,
473                                    __le16 *tab, size_t tab_size)
474 {
475         int ret = regmap_bulk_read(ak8974->map, reg, tab, tab_size);
476         if (ret) {
477                 memset(tab, 0xFF, tab_size);
478                 dev_warn(&ak8974->i2c->dev,
479                          "can't read calibration data (regs %u..%zu): %d\n",
480                          reg, reg + tab_size - 1, ret);
481         } else {
482                 add_device_randomness(tab, tab_size);
483         }
484 }
485
486 static int ak8974_detect(struct ak8974 *ak8974)
487 {
488         unsigned int whoami;
489         const char *name;
490         int ret;
491         unsigned int fw;
492         u16 sn;
493
494         ret = regmap_read(ak8974->map, AK8974_WHOAMI, &whoami);
495         if (ret)
496                 return ret;
497
498         name = "ami305";
499
500         switch (whoami) {
501         case AK8974_WHOAMI_VALUE_AMI306:
502                 name = "ami306";
503                 fallthrough;
504         case AK8974_WHOAMI_VALUE_AMI305:
505                 ret = regmap_read(ak8974->map, AMI305_VER, &fw);
506                 if (ret)
507                         return ret;
508                 fw &= 0x7f; /* only bits 0 thru 6 valid */
509                 ret = ak8974_get_u16_val(ak8974, AMI305_SN, &sn);
510                 if (ret)
511                         return ret;
512                 add_device_randomness(&sn, sizeof(sn));
513                 dev_info(&ak8974->i2c->dev,
514                          "detected %s, FW ver %02x, S/N: %04x\n",
515                          name, fw, sn);
516                 break;
517         case AK8974_WHOAMI_VALUE_AK8974:
518                 name = "ak8974";
519                 dev_info(&ak8974->i2c->dev, "detected AK8974\n");
520                 break;
521         case AK8974_WHOAMI_VALUE_HSCDTD008A:
522                 name = "hscdtd008a";
523                 dev_info(&ak8974->i2c->dev, "detected hscdtd008a\n");
524                 break;
525         default:
526                 dev_err(&ak8974->i2c->dev, "unsupported device (%02x) ",
527                         whoami);
528                 return -ENODEV;
529         }
530
531         ak8974->name = name;
532         ak8974->variant = whoami;
533
534         if (whoami == AK8974_WHOAMI_VALUE_AMI306) {
535                 __le16 fab_data1[9], fab_data2[3];
536                 int i;
537
538                 ak8974_read_calib_data(ak8974, AMI306_FINEOUTPUT_X,
539                                        fab_data1, sizeof(fab_data1));
540                 ak8974_read_calib_data(ak8974, AMI306_OFFZERO_X,
541                                        fab_data2, sizeof(fab_data2));
542
543                 for (i = 0; i < 3; ++i) {
544                         static const char axis[3] = "XYZ";
545                         static const char pgaxis[6] = "ZYZXYX";
546                         unsigned offz = le16_to_cpu(fab_data2[i]) & 0x7F;
547                         unsigned fine = le16_to_cpu(fab_data1[i]);
548                         unsigned sens = le16_to_cpu(fab_data1[i + 3]);
549                         unsigned pgain1 = le16_to_cpu(fab_data1[i + 6]);
550                         unsigned pgain2 = pgain1 >> 8;
551
552                         pgain1 &= 0xFF;
553
554                         dev_info(&ak8974->i2c->dev,
555                                  "factory calibration for axis %c: offz=%u sens=%u fine=%u pga%c=%u pga%c=%u\n",
556                                  axis[i], offz, sens, fine, pgaxis[i * 2],
557                                  pgain1, pgaxis[i * 2 + 1], pgain2);
558                 }
559         }
560
561         return 0;
562 }
563
564 static int ak8974_measure_channel(struct ak8974 *ak8974, unsigned long address,
565                                   int *val)
566 {
567         __le16 hw_values[3];
568         int ret;
569
570         pm_runtime_get_sync(&ak8974->i2c->dev);
571         mutex_lock(&ak8974->lock);
572
573         /*
574          * We read all axes and discard all but one, for optimized
575          * reading, use the triggered buffer.
576          */
577         ret = ak8974_trigmeas(ak8974);
578         if (ret)
579                 goto out_unlock;
580         ret = ak8974_getresult(ak8974, hw_values);
581         if (ret)
582                 goto out_unlock;
583         /*
584          * This explicit cast to (s16) is necessary as the measurement
585          * is done in 2's complement with positive and negative values.
586          * The follwing assignment to *val will then convert the signed
587          * s16 value to a signed int value.
588          */
589         *val = (s16)le16_to_cpu(hw_values[address]);
590 out_unlock:
591         mutex_unlock(&ak8974->lock);
592         pm_runtime_mark_last_busy(&ak8974->i2c->dev);
593         pm_runtime_put_autosuspend(&ak8974->i2c->dev);
594
595         return ret;
596 }
597
598 static int ak8974_read_raw(struct iio_dev *indio_dev,
599                            struct iio_chan_spec const *chan,
600                            int *val, int *val2,
601                            long mask)
602 {
603         struct ak8974 *ak8974 = iio_priv(indio_dev);
604         int ret;
605
606         switch (mask) {
607         case IIO_CHAN_INFO_RAW:
608                 if (chan->address > 2) {
609                         dev_err(&ak8974->i2c->dev, "faulty channel address\n");
610                         return -EIO;
611                 }
612                 ret = ak8974_measure_channel(ak8974, chan->address, val);
613                 if (ret)
614                         return ret;
615                 return IIO_VAL_INT;
616         case IIO_CHAN_INFO_SCALE:
617                 switch (ak8974->variant) {
618                 case AK8974_WHOAMI_VALUE_AMI306:
619                 case AK8974_WHOAMI_VALUE_AMI305:
620                         /*
621                          * The datasheet for AMI305 and AMI306, page 6
622                          * specifies the range of the sensor to be
623                          * +/- 12 Gauss.
624                          */
625                         *val = 12;
626                         /*
627                          * 12 bits are used, +/- 2^11
628                          * [ -2048 .. 2047 ] (manual page 20)
629                          * [ 0xf800 .. 0x07ff ]
630                          */
631                         *val2 = 11;
632                         return IIO_VAL_FRACTIONAL_LOG2;
633                 case AK8974_WHOAMI_VALUE_HSCDTD008A:
634                         /*
635                          * The datasheet for HSCDTF008A, page 3 specifies the
636                          * range of the sensor as +/- 2.4 mT per axis, which
637                          * corresponds to +/- 2400 uT = +/- 24 Gauss.
638                          */
639                         *val = 24;
640                         /*
641                          * 15 bits are used (set up in CTRL4), +/- 2^14
642                          * [ -16384 .. 16383 ] (manual page 24)
643                          * [ 0xc000 .. 0x3fff ]
644                          */
645                         *val2 = 14;
646                         return IIO_VAL_FRACTIONAL_LOG2;
647                 default:
648                         /* GUESSING +/- 12 Gauss */
649                         *val = 12;
650                         /* GUESSING 12 bits ADC +/- 2^11 */
651                         *val2 = 11;
652                         return IIO_VAL_FRACTIONAL_LOG2;
653                 }
654                 break;
655         default:
656                 /* Unknown request */
657                 break;
658         }
659
660         return -EINVAL;
661 }
662
663 static void ak8974_fill_buffer(struct iio_dev *indio_dev)
664 {
665         struct ak8974 *ak8974 = iio_priv(indio_dev);
666         int ret;
667
668         pm_runtime_get_sync(&ak8974->i2c->dev);
669         mutex_lock(&ak8974->lock);
670
671         ret = ak8974_trigmeas(ak8974);
672         if (ret) {
673                 dev_err(&ak8974->i2c->dev, "error triggering measure\n");
674                 goto out_unlock;
675         }
676         ret = ak8974_getresult(ak8974, ak8974->scan.channels);
677         if (ret) {
678                 dev_err(&ak8974->i2c->dev, "error getting measures\n");
679                 goto out_unlock;
680         }
681
682         iio_push_to_buffers_with_timestamp(indio_dev, &ak8974->scan,
683                                            iio_get_time_ns(indio_dev));
684
685  out_unlock:
686         mutex_unlock(&ak8974->lock);
687         pm_runtime_mark_last_busy(&ak8974->i2c->dev);
688         pm_runtime_put_autosuspend(&ak8974->i2c->dev);
689 }
690
691 static irqreturn_t ak8974_handle_trigger(int irq, void *p)
692 {
693         const struct iio_poll_func *pf = p;
694         struct iio_dev *indio_dev = pf->indio_dev;
695
696         ak8974_fill_buffer(indio_dev);
697         iio_trigger_notify_done(indio_dev->trig);
698
699         return IRQ_HANDLED;
700 }
701
702 static const struct iio_mount_matrix *
703 ak8974_get_mount_matrix(const struct iio_dev *indio_dev,
704                         const struct iio_chan_spec *chan)
705 {
706         struct ak8974 *ak8974 = iio_priv(indio_dev);
707
708         return &ak8974->orientation;
709 }
710
711 static const struct iio_chan_spec_ext_info ak8974_ext_info[] = {
712         IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, ak8974_get_mount_matrix),
713         { },
714 };
715
716 #define AK8974_AXIS_CHANNEL(axis, index, bits)                          \
717         {                                                               \
718                 .type = IIO_MAGN,                                       \
719                 .modified = 1,                                          \
720                 .channel2 = IIO_MOD_##axis,                             \
721                 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |          \
722                         BIT(IIO_CHAN_INFO_SCALE),                       \
723                 .ext_info = ak8974_ext_info,                            \
724                 .address = index,                                       \
725                 .scan_index = index,                                    \
726                 .scan_type = {                                          \
727                         .sign = 's',                                    \
728                         .realbits = bits,                               \
729                         .storagebits = 16,                              \
730                         .endianness = IIO_LE                            \
731                 },                                                      \
732         }
733
734 /*
735  * We have no datasheet for the AK8974 but we guess that its
736  * ADC is 12 bits. The AMI305 and AMI306 certainly has 12bit
737  * ADC.
738  */
739 static const struct iio_chan_spec ak8974_12_bits_channels[] = {
740         AK8974_AXIS_CHANNEL(X, 0, 12),
741         AK8974_AXIS_CHANNEL(Y, 1, 12),
742         AK8974_AXIS_CHANNEL(Z, 2, 12),
743         IIO_CHAN_SOFT_TIMESTAMP(3),
744 };
745
746 /*
747  * The HSCDTD008A has 15 bits resolution the way we set it up
748  * in CTRL4.
749  */
750 static const struct iio_chan_spec ak8974_15_bits_channels[] = {
751         AK8974_AXIS_CHANNEL(X, 0, 15),
752         AK8974_AXIS_CHANNEL(Y, 1, 15),
753         AK8974_AXIS_CHANNEL(Z, 2, 15),
754         IIO_CHAN_SOFT_TIMESTAMP(3),
755 };
756
757 static const unsigned long ak8974_scan_masks[] = { 0x7, 0 };
758
759 static const struct iio_info ak8974_info = {
760         .read_raw = &ak8974_read_raw,
761 };
762
763 static bool ak8974_writeable_reg(struct device *dev, unsigned int reg)
764 {
765         struct i2c_client *i2c = to_i2c_client(dev);
766         struct iio_dev *indio_dev = i2c_get_clientdata(i2c);
767         struct ak8974 *ak8974 = iio_priv(indio_dev);
768
769         switch (reg) {
770         case AK8974_CTRL1:
771         case AK8974_CTRL2:
772         case AK8974_CTRL3:
773         case AK8974_INT_CTRL:
774         case AK8974_INT_THRES:
775         case AK8974_INT_THRES + 1:
776                 return true;
777         case AK8974_PRESET:
778         case AK8974_PRESET + 1:
779                 return ak8974->variant != AK8974_WHOAMI_VALUE_HSCDTD008A;
780         case AK8974_OFFSET_X:
781         case AK8974_OFFSET_X + 1:
782         case AK8974_OFFSET_Y:
783         case AK8974_OFFSET_Y + 1:
784         case AK8974_OFFSET_Z:
785         case AK8974_OFFSET_Z + 1:
786                 return ak8974->variant == AK8974_WHOAMI_VALUE_AK8974 ||
787                        ak8974->variant == AK8974_WHOAMI_VALUE_HSCDTD008A;
788         case AMI305_OFFSET_X:
789         case AMI305_OFFSET_X + 1:
790         case AMI305_OFFSET_Y:
791         case AMI305_OFFSET_Y + 1:
792         case AMI305_OFFSET_Z:
793         case AMI305_OFFSET_Z + 1:
794                 return ak8974->variant == AK8974_WHOAMI_VALUE_AMI305 ||
795                        ak8974->variant == AK8974_WHOAMI_VALUE_AMI306;
796         case AMI306_CTRL4:
797         case AMI306_CTRL4 + 1:
798                 return ak8974->variant == AK8974_WHOAMI_VALUE_AMI306;
799         default:
800                 return false;
801         }
802 }
803
804 static bool ak8974_precious_reg(struct device *dev, unsigned int reg)
805 {
806         return reg == AK8974_INT_CLEAR;
807 }
808
809 static const struct regmap_config ak8974_regmap_config = {
810         .reg_bits = 8,
811         .val_bits = 8,
812         .max_register = 0xff,
813         .writeable_reg = ak8974_writeable_reg,
814         .precious_reg = ak8974_precious_reg,
815 };
816
817 static int ak8974_probe(struct i2c_client *i2c,
818                         const struct i2c_device_id *id)
819 {
820         struct iio_dev *indio_dev;
821         struct ak8974 *ak8974;
822         unsigned long irq_trig;
823         int irq = i2c->irq;
824         int ret;
825
826         /* Register with IIO */
827         indio_dev = devm_iio_device_alloc(&i2c->dev, sizeof(*ak8974));
828         if (indio_dev == NULL)
829                 return -ENOMEM;
830
831         ak8974 = iio_priv(indio_dev);
832         i2c_set_clientdata(i2c, indio_dev);
833         ak8974->i2c = i2c;
834         mutex_init(&ak8974->lock);
835
836         ret = iio_read_mount_matrix(&i2c->dev, &ak8974->orientation);
837         if (ret)
838                 return ret;
839
840         ak8974->regs[0].supply = ak8974_reg_avdd;
841         ak8974->regs[1].supply = ak8974_reg_dvdd;
842
843         ret = devm_regulator_bulk_get(&i2c->dev,
844                                       ARRAY_SIZE(ak8974->regs),
845                                       ak8974->regs);
846         if (ret < 0)
847                 return dev_err_probe(&i2c->dev, ret, "cannot get regulators\n");
848
849         ret = regulator_bulk_enable(ARRAY_SIZE(ak8974->regs), ak8974->regs);
850         if (ret < 0) {
851                 dev_err(&i2c->dev, "cannot enable regulators\n");
852                 return ret;
853         }
854
855         /* Take runtime PM online */
856         pm_runtime_get_noresume(&i2c->dev);
857         pm_runtime_set_active(&i2c->dev);
858         pm_runtime_enable(&i2c->dev);
859
860         ak8974->map = devm_regmap_init_i2c(i2c, &ak8974_regmap_config);
861         if (IS_ERR(ak8974->map)) {
862                 dev_err(&i2c->dev, "failed to allocate register map\n");
863                 pm_runtime_put_noidle(&i2c->dev);
864                 pm_runtime_disable(&i2c->dev);
865                 return PTR_ERR(ak8974->map);
866         }
867
868         ret = ak8974_set_power(ak8974, AK8974_PWR_ON);
869         if (ret) {
870                 dev_err(&i2c->dev, "could not power on\n");
871                 goto disable_pm;
872         }
873
874         ret = ak8974_detect(ak8974);
875         if (ret) {
876                 dev_err(&i2c->dev, "neither AK8974 nor AMI30x found\n");
877                 goto disable_pm;
878         }
879
880         ret = ak8974_selftest(ak8974);
881         if (ret)
882                 dev_err(&i2c->dev, "selftest failed (continuing anyway)\n");
883
884         ret = ak8974_reset(ak8974);
885         if (ret) {
886                 dev_err(&i2c->dev, "AK8974 reset failed\n");
887                 goto disable_pm;
888         }
889
890         switch (ak8974->variant) {
891         case AK8974_WHOAMI_VALUE_AMI306:
892         case AK8974_WHOAMI_VALUE_AMI305:
893                 indio_dev->channels = ak8974_12_bits_channels;
894                 indio_dev->num_channels = ARRAY_SIZE(ak8974_12_bits_channels);
895                 break;
896         case AK8974_WHOAMI_VALUE_HSCDTD008A:
897                 indio_dev->channels = ak8974_15_bits_channels;
898                 indio_dev->num_channels = ARRAY_SIZE(ak8974_15_bits_channels);
899                 break;
900         default:
901                 indio_dev->channels = ak8974_12_bits_channels;
902                 indio_dev->num_channels = ARRAY_SIZE(ak8974_12_bits_channels);
903                 break;
904         }
905         indio_dev->info = &ak8974_info;
906         indio_dev->available_scan_masks = ak8974_scan_masks;
907         indio_dev->modes = INDIO_DIRECT_MODE;
908         indio_dev->name = ak8974->name;
909
910         ret = iio_triggered_buffer_setup(indio_dev, NULL,
911                                          ak8974_handle_trigger,
912                                          NULL);
913         if (ret) {
914                 dev_err(&i2c->dev, "triggered buffer setup failed\n");
915                 goto disable_pm;
916         }
917
918         /* If we have a valid DRDY IRQ, make use of it */
919         if (irq > 0) {
920                 irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq));
921                 if (irq_trig == IRQF_TRIGGER_RISING) {
922                         dev_info(&i2c->dev, "enable rising edge DRDY IRQ\n");
923                 } else if (irq_trig == IRQF_TRIGGER_FALLING) {
924                         ak8974->drdy_active_low = true;
925                         dev_info(&i2c->dev, "enable falling edge DRDY IRQ\n");
926                 } else {
927                         irq_trig = IRQF_TRIGGER_RISING;
928                 }
929                 irq_trig |= IRQF_ONESHOT;
930                 irq_trig |= IRQF_SHARED;
931
932                 ret = devm_request_threaded_irq(&i2c->dev,
933                                                 irq,
934                                                 ak8974_drdy_irq,
935                                                 ak8974_drdy_irq_thread,
936                                                 irq_trig,
937                                                 ak8974->name,
938                                                 ak8974);
939                 if (ret) {
940                         dev_err(&i2c->dev, "unable to request DRDY IRQ "
941                                 "- proceeding without IRQ\n");
942                         goto no_irq;
943                 }
944                 ak8974->drdy_irq = true;
945         }
946
947 no_irq:
948         ret = iio_device_register(indio_dev);
949         if (ret) {
950                 dev_err(&i2c->dev, "device register failed\n");
951                 goto cleanup_buffer;
952         }
953
954         pm_runtime_set_autosuspend_delay(&i2c->dev,
955                                          AK8974_AUTOSUSPEND_DELAY);
956         pm_runtime_use_autosuspend(&i2c->dev);
957         pm_runtime_put(&i2c->dev);
958
959         return 0;
960
961 cleanup_buffer:
962         iio_triggered_buffer_cleanup(indio_dev);
963 disable_pm:
964         pm_runtime_put_noidle(&i2c->dev);
965         pm_runtime_disable(&i2c->dev);
966         ak8974_set_power(ak8974, AK8974_PWR_OFF);
967         regulator_bulk_disable(ARRAY_SIZE(ak8974->regs), ak8974->regs);
968
969         return ret;
970 }
971
972 static int ak8974_remove(struct i2c_client *i2c)
973 {
974         struct iio_dev *indio_dev = i2c_get_clientdata(i2c);
975         struct ak8974 *ak8974 = iio_priv(indio_dev);
976
977         iio_device_unregister(indio_dev);
978         iio_triggered_buffer_cleanup(indio_dev);
979         pm_runtime_get_sync(&i2c->dev);
980         pm_runtime_put_noidle(&i2c->dev);
981         pm_runtime_disable(&i2c->dev);
982         ak8974_set_power(ak8974, AK8974_PWR_OFF);
983         regulator_bulk_disable(ARRAY_SIZE(ak8974->regs), ak8974->regs);
984
985         return 0;
986 }
987
988 static int __maybe_unused ak8974_runtime_suspend(struct device *dev)
989 {
990         struct ak8974 *ak8974 =
991                 iio_priv(i2c_get_clientdata(to_i2c_client(dev)));
992
993         ak8974_set_power(ak8974, AK8974_PWR_OFF);
994         regulator_bulk_disable(ARRAY_SIZE(ak8974->regs), ak8974->regs);
995
996         return 0;
997 }
998
999 static int __maybe_unused ak8974_runtime_resume(struct device *dev)
1000 {
1001         struct ak8974 *ak8974 =
1002                 iio_priv(i2c_get_clientdata(to_i2c_client(dev)));
1003         int ret;
1004
1005         ret = regulator_bulk_enable(ARRAY_SIZE(ak8974->regs), ak8974->regs);
1006         if (ret)
1007                 return ret;
1008         msleep(AK8974_POWERON_DELAY);
1009         ret = ak8974_set_power(ak8974, AK8974_PWR_ON);
1010         if (ret)
1011                 goto out_regulator_disable;
1012
1013         ret = ak8974_configure(ak8974);
1014         if (ret)
1015                 goto out_disable_power;
1016
1017         return 0;
1018
1019 out_disable_power:
1020         ak8974_set_power(ak8974, AK8974_PWR_OFF);
1021 out_regulator_disable:
1022         regulator_bulk_disable(ARRAY_SIZE(ak8974->regs), ak8974->regs);
1023
1024         return ret;
1025 }
1026
1027 static const struct dev_pm_ops ak8974_dev_pm_ops = {
1028         SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1029                                 pm_runtime_force_resume)
1030         SET_RUNTIME_PM_OPS(ak8974_runtime_suspend,
1031                            ak8974_runtime_resume, NULL)
1032 };
1033
1034 static const struct i2c_device_id ak8974_id[] = {
1035         {"ami305", 0 },
1036         {"ami306", 0 },
1037         {"ak8974", 0 },
1038         {"hscdtd008a", 0 },
1039         {}
1040 };
1041 MODULE_DEVICE_TABLE(i2c, ak8974_id);
1042
1043 static const struct of_device_id ak8974_of_match[] = {
1044         { .compatible = "asahi-kasei,ak8974", },
1045         { .compatible = "alps,hscdtd008a", },
1046         {}
1047 };
1048 MODULE_DEVICE_TABLE(of, ak8974_of_match);
1049
1050 static struct i2c_driver ak8974_driver = {
1051         .driver  = {
1052                 .name   = "ak8974",
1053                 .pm = &ak8974_dev_pm_ops,
1054                 .of_match_table = ak8974_of_match,
1055         },
1056         .probe    = ak8974_probe,
1057         .remove   = ak8974_remove,
1058         .id_table = ak8974_id,
1059 };
1060 module_i2c_driver(ak8974_driver);
1061
1062 MODULE_DESCRIPTION("AK8974 and AMI30x 3-axis magnetometer driver");
1063 MODULE_AUTHOR("Samu Onkalo");
1064 MODULE_AUTHOR("Linus Walleij");
1065 MODULE_LICENSE("GPL v2");