GNU Linux-libre 6.7.9-gnu
[releases.git] / drivers / iio / imu / st_lsm6dsx / st_lsm6dsx_buffer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * STMicroelectronics st_lsm6dsx FIFO buffer library driver
4  *
5  * LSM6DS3/LSM6DS3H/LSM6DSL/LSM6DSM/ISM330DLC/LSM6DS3TR-C:
6  * The FIFO buffer can be configured to store data from gyroscope and
7  * accelerometer. Samples are queued without any tag according to a
8  * specific pattern based on 'FIFO data sets' (6 bytes each):
9  *  - 1st data set is reserved for gyroscope data
10  *  - 2nd data set is reserved for accelerometer data
11  * The FIFO pattern changes depending on the ODRs and decimation factors
12  * assigned to the FIFO data sets. The first sequence of data stored in FIFO
13  * buffer contains the data of all the enabled FIFO data sets
14  * (e.g. Gx, Gy, Gz, Ax, Ay, Az), then data are repeated depending on the
15  * value of the decimation factor and ODR set for each FIFO data set.
16  *
17  * LSM6DSO/LSM6DSOX/ASM330LHH/ASM330LHHX/LSM6DSR/LSM6DSRX/ISM330DHCX/
18  * LSM6DST/LSM6DSOP/LSM6DSTX/LSM6DSV/ASM330LHB:
19  * The FIFO buffer can be configured to store data from gyroscope and
20  * accelerometer. Each sample is queued with a tag (1B) indicating data
21  * source (gyroscope, accelerometer, hw timer).
22  *
23  * FIFO supported modes:
24  *  - BYPASS: FIFO disabled
25  *  - CONTINUOUS: FIFO enabled. When the buffer is full, the FIFO index
26  *    restarts from the beginning and the oldest sample is overwritten
27  *
28  * Copyright 2016 STMicroelectronics Inc.
29  *
30  * Lorenzo Bianconi <lorenzo.bianconi@st.com>
31  * Denis Ciocca <denis.ciocca@st.com>
32  */
33 #include <linux/module.h>
34 #include <linux/iio/kfifo_buf.h>
35 #include <linux/iio/iio.h>
36 #include <linux/iio/buffer.h>
37 #include <linux/regmap.h>
38 #include <linux/bitfield.h>
39
40 #include <linux/platform_data/st_sensors_pdata.h>
41
42 #include "st_lsm6dsx.h"
43
44 #define ST_LSM6DSX_REG_FIFO_MODE_ADDR           0x0a
45 #define ST_LSM6DSX_FIFO_MODE_MASK               GENMASK(2, 0)
46 #define ST_LSM6DSX_FIFO_ODR_MASK                GENMASK(6, 3)
47 #define ST_LSM6DSX_FIFO_EMPTY_MASK              BIT(12)
48 #define ST_LSM6DSX_REG_FIFO_OUTL_ADDR           0x3e
49 #define ST_LSM6DSX_REG_FIFO_OUT_TAG_ADDR        0x78
50 #define ST_LSM6DSX_REG_TS_RESET_ADDR            0x42
51
52 #define ST_LSM6DSX_MAX_FIFO_ODR_VAL             0x08
53
54 #define ST_LSM6DSX_TS_RESET_VAL                 0xaa
55
56 struct st_lsm6dsx_decimator_entry {
57         u8 decimator;
58         u8 val;
59 };
60
61 enum st_lsm6dsx_fifo_tag {
62         ST_LSM6DSX_GYRO_TAG = 0x01,
63         ST_LSM6DSX_ACC_TAG = 0x02,
64         ST_LSM6DSX_TS_TAG = 0x04,
65         ST_LSM6DSX_EXT0_TAG = 0x0f,
66         ST_LSM6DSX_EXT1_TAG = 0x10,
67         ST_LSM6DSX_EXT2_TAG = 0x11,
68 };
69
70 static const
71 struct st_lsm6dsx_decimator_entry st_lsm6dsx_decimator_table[] = {
72         {  0, 0x0 },
73         {  1, 0x1 },
74         {  2, 0x2 },
75         {  3, 0x3 },
76         {  4, 0x4 },
77         {  8, 0x5 },
78         { 16, 0x6 },
79         { 32, 0x7 },
80 };
81
82 static int
83 st_lsm6dsx_get_decimator_val(struct st_lsm6dsx_sensor *sensor, u32 max_odr)
84 {
85         const int max_size = ARRAY_SIZE(st_lsm6dsx_decimator_table);
86         u32 decimator =  max_odr / sensor->odr;
87         int i;
88
89         if (decimator > 1)
90                 decimator = round_down(decimator, 2);
91
92         for (i = 0; i < max_size; i++) {
93                 if (st_lsm6dsx_decimator_table[i].decimator == decimator)
94                         break;
95         }
96
97         sensor->decimator = decimator;
98         return i == max_size ? 0 : st_lsm6dsx_decimator_table[i].val;
99 }
100
101 static void st_lsm6dsx_get_max_min_odr(struct st_lsm6dsx_hw *hw,
102                                        u32 *max_odr, u32 *min_odr)
103 {
104         struct st_lsm6dsx_sensor *sensor;
105         int i;
106
107         *max_odr = 0, *min_odr = ~0;
108         for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
109                 if (!hw->iio_devs[i])
110                         continue;
111
112                 sensor = iio_priv(hw->iio_devs[i]);
113
114                 if (!(hw->enable_mask & BIT(sensor->id)))
115                         continue;
116
117                 *max_odr = max_t(u32, *max_odr, sensor->odr);
118                 *min_odr = min_t(u32, *min_odr, sensor->odr);
119         }
120 }
121
122 static u8 st_lsm6dsx_get_sip(struct st_lsm6dsx_sensor *sensor, u32 min_odr)
123 {
124         u8 sip = sensor->odr / min_odr;
125
126         return sip > 1 ? round_down(sip, 2) : sip;
127 }
128
129 static int st_lsm6dsx_update_decimators(struct st_lsm6dsx_hw *hw)
130 {
131         const struct st_lsm6dsx_reg *ts_dec_reg;
132         struct st_lsm6dsx_sensor *sensor;
133         u16 sip = 0, ts_sip = 0;
134         u32 max_odr, min_odr;
135         int err = 0, i;
136         u8 data;
137
138         st_lsm6dsx_get_max_min_odr(hw, &max_odr, &min_odr);
139
140         for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
141                 const struct st_lsm6dsx_reg *dec_reg;
142
143                 if (!hw->iio_devs[i])
144                         continue;
145
146                 sensor = iio_priv(hw->iio_devs[i]);
147                 /* update fifo decimators and sample in pattern */
148                 if (hw->enable_mask & BIT(sensor->id)) {
149                         sensor->sip = st_lsm6dsx_get_sip(sensor, min_odr);
150                         data = st_lsm6dsx_get_decimator_val(sensor, max_odr);
151                 } else {
152                         sensor->sip = 0;
153                         data = 0;
154                 }
155                 ts_sip = max_t(u16, ts_sip, sensor->sip);
156
157                 dec_reg = &hw->settings->decimator[sensor->id];
158                 if (dec_reg->addr) {
159                         int val = ST_LSM6DSX_SHIFT_VAL(data, dec_reg->mask);
160
161                         err = st_lsm6dsx_update_bits_locked(hw, dec_reg->addr,
162                                                             dec_reg->mask,
163                                                             val);
164                         if (err < 0)
165                                 return err;
166                 }
167                 sip += sensor->sip;
168         }
169         hw->sip = sip + ts_sip;
170         hw->ts_sip = ts_sip;
171
172         /*
173          * update hw ts decimator if necessary. Decimator for hw timestamp
174          * is always 1 or 0 in order to have a ts sample for each data
175          * sample in FIFO
176          */
177         ts_dec_reg = &hw->settings->ts_settings.decimator;
178         if (ts_dec_reg->addr) {
179                 int val, ts_dec = !!hw->ts_sip;
180
181                 val = ST_LSM6DSX_SHIFT_VAL(ts_dec, ts_dec_reg->mask);
182                 err = st_lsm6dsx_update_bits_locked(hw, ts_dec_reg->addr,
183                                                     ts_dec_reg->mask, val);
184         }
185         return err;
186 }
187
188 static int st_lsm6dsx_set_fifo_mode(struct st_lsm6dsx_hw *hw,
189                                     enum st_lsm6dsx_fifo_mode fifo_mode)
190 {
191         unsigned int data;
192
193         data = FIELD_PREP(ST_LSM6DSX_FIFO_MODE_MASK, fifo_mode);
194         return st_lsm6dsx_update_bits_locked(hw, ST_LSM6DSX_REG_FIFO_MODE_ADDR,
195                                              ST_LSM6DSX_FIFO_MODE_MASK, data);
196 }
197
198 static int st_lsm6dsx_set_fifo_odr(struct st_lsm6dsx_sensor *sensor,
199                                    bool enable)
200 {
201         struct st_lsm6dsx_hw *hw = sensor->hw;
202         const struct st_lsm6dsx_reg *batch_reg;
203         u8 data;
204
205         batch_reg = &hw->settings->batch[sensor->id];
206         if (batch_reg->addr) {
207                 int val;
208
209                 if (enable) {
210                         int err;
211
212                         err = st_lsm6dsx_check_odr(sensor, sensor->odr,
213                                                    &data);
214                         if (err < 0)
215                                 return err;
216                 } else {
217                         data = 0;
218                 }
219                 val = ST_LSM6DSX_SHIFT_VAL(data, batch_reg->mask);
220                 return st_lsm6dsx_update_bits_locked(hw, batch_reg->addr,
221                                                      batch_reg->mask, val);
222         } else {
223                 data = hw->enable_mask ? ST_LSM6DSX_MAX_FIFO_ODR_VAL : 0;
224                 return st_lsm6dsx_update_bits_locked(hw,
225                                         ST_LSM6DSX_REG_FIFO_MODE_ADDR,
226                                         ST_LSM6DSX_FIFO_ODR_MASK,
227                                         FIELD_PREP(ST_LSM6DSX_FIFO_ODR_MASK,
228                                                    data));
229         }
230 }
231
232 int st_lsm6dsx_update_watermark(struct st_lsm6dsx_sensor *sensor, u16 watermark)
233 {
234         u16 fifo_watermark = ~0, cur_watermark, fifo_th_mask;
235         struct st_lsm6dsx_hw *hw = sensor->hw;
236         struct st_lsm6dsx_sensor *cur_sensor;
237         int i, err, data;
238         __le16 wdata;
239
240         if (!hw->sip)
241                 return 0;
242
243         for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
244                 if (!hw->iio_devs[i])
245                         continue;
246
247                 cur_sensor = iio_priv(hw->iio_devs[i]);
248
249                 if (!(hw->enable_mask & BIT(cur_sensor->id)))
250                         continue;
251
252                 cur_watermark = (cur_sensor == sensor) ? watermark
253                                                        : cur_sensor->watermark;
254
255                 fifo_watermark = min_t(u16, fifo_watermark, cur_watermark);
256         }
257
258         fifo_watermark = max_t(u16, fifo_watermark, hw->sip);
259         fifo_watermark = (fifo_watermark / hw->sip) * hw->sip;
260         fifo_watermark = fifo_watermark * hw->settings->fifo_ops.th_wl;
261
262         mutex_lock(&hw->page_lock);
263         err = regmap_read(hw->regmap, hw->settings->fifo_ops.fifo_th.addr + 1,
264                           &data);
265         if (err < 0)
266                 goto out;
267
268         fifo_th_mask = hw->settings->fifo_ops.fifo_th.mask;
269         fifo_watermark = ((data << 8) & ~fifo_th_mask) |
270                          (fifo_watermark & fifo_th_mask);
271
272         wdata = cpu_to_le16(fifo_watermark);
273         err = regmap_bulk_write(hw->regmap,
274                                 hw->settings->fifo_ops.fifo_th.addr,
275                                 &wdata, sizeof(wdata));
276 out:
277         mutex_unlock(&hw->page_lock);
278         return err;
279 }
280
281 static int st_lsm6dsx_reset_hw_ts(struct st_lsm6dsx_hw *hw)
282 {
283         struct st_lsm6dsx_sensor *sensor;
284         int i, err;
285
286         /* reset hw ts counter */
287         err = st_lsm6dsx_write_locked(hw, ST_LSM6DSX_REG_TS_RESET_ADDR,
288                                       ST_LSM6DSX_TS_RESET_VAL);
289         if (err < 0)
290                 return err;
291
292         for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
293                 if (!hw->iio_devs[i])
294                         continue;
295
296                 sensor = iio_priv(hw->iio_devs[i]);
297                 /*
298                  * store enable buffer timestamp as reference for
299                  * hw timestamp
300                  */
301                 sensor->ts_ref = iio_get_time_ns(hw->iio_devs[i]);
302         }
303         return 0;
304 }
305
306 int st_lsm6dsx_resume_fifo(struct st_lsm6dsx_hw *hw)
307 {
308         int err;
309
310         /* reset hw ts counter */
311         err = st_lsm6dsx_reset_hw_ts(hw);
312         if (err < 0)
313                 return err;
314
315         return st_lsm6dsx_set_fifo_mode(hw, ST_LSM6DSX_FIFO_CONT);
316 }
317
318 /*
319  * Set max bulk read to ST_LSM6DSX_MAX_WORD_LEN/ST_LSM6DSX_MAX_TAGGED_WORD_LEN
320  * in order to avoid a kmalloc for each bus access
321  */
322 static inline int st_lsm6dsx_read_block(struct st_lsm6dsx_hw *hw, u8 addr,
323                                         u8 *data, unsigned int data_len,
324                                         unsigned int max_word_len)
325 {
326         unsigned int word_len, read_len = 0;
327         int err;
328
329         while (read_len < data_len) {
330                 word_len = min_t(unsigned int, data_len - read_len,
331                                  max_word_len);
332                 err = st_lsm6dsx_read_locked(hw, addr, data + read_len,
333                                              word_len);
334                 if (err < 0)
335                         return err;
336                 read_len += word_len;
337         }
338         return 0;
339 }
340
341 #define ST_LSM6DSX_IIO_BUFF_SIZE        (ALIGN(ST_LSM6DSX_SAMPLE_SIZE, \
342                                                sizeof(s64)) + sizeof(s64))
343 /**
344  * st_lsm6dsx_read_fifo() - hw FIFO read routine
345  * @hw: Pointer to instance of struct st_lsm6dsx_hw.
346  *
347  * Read samples from the hw FIFO and push them to IIO buffers.
348  *
349  * Return: Number of bytes read from the FIFO
350  */
351 int st_lsm6dsx_read_fifo(struct st_lsm6dsx_hw *hw)
352 {
353         struct st_lsm6dsx_sensor *acc_sensor, *gyro_sensor, *ext_sensor = NULL;
354         int err, sip, acc_sip, gyro_sip, ts_sip, ext_sip, read_len, offset;
355         u16 fifo_len, pattern_len = hw->sip * ST_LSM6DSX_SAMPLE_SIZE;
356         u16 fifo_diff_mask = hw->settings->fifo_ops.fifo_diff.mask;
357         bool reset_ts = false;
358         __le16 fifo_status;
359         s64 ts = 0;
360
361         err = st_lsm6dsx_read_locked(hw,
362                                      hw->settings->fifo_ops.fifo_diff.addr,
363                                      &fifo_status, sizeof(fifo_status));
364         if (err < 0) {
365                 dev_err(hw->dev, "failed to read fifo status (err=%d)\n",
366                         err);
367                 return err;
368         }
369
370         if (fifo_status & cpu_to_le16(ST_LSM6DSX_FIFO_EMPTY_MASK))
371                 return 0;
372
373         fifo_len = (le16_to_cpu(fifo_status) & fifo_diff_mask) *
374                    ST_LSM6DSX_CHAN_SIZE;
375         fifo_len = (fifo_len / pattern_len) * pattern_len;
376
377         acc_sensor = iio_priv(hw->iio_devs[ST_LSM6DSX_ID_ACC]);
378         gyro_sensor = iio_priv(hw->iio_devs[ST_LSM6DSX_ID_GYRO]);
379         if (hw->iio_devs[ST_LSM6DSX_ID_EXT0])
380                 ext_sensor = iio_priv(hw->iio_devs[ST_LSM6DSX_ID_EXT0]);
381
382         for (read_len = 0; read_len < fifo_len; read_len += pattern_len) {
383                 err = st_lsm6dsx_read_block(hw, ST_LSM6DSX_REG_FIFO_OUTL_ADDR,
384                                             hw->buff, pattern_len,
385                                             ST_LSM6DSX_MAX_WORD_LEN);
386                 if (err < 0) {
387                         dev_err(hw->dev,
388                                 "failed to read pattern from fifo (err=%d)\n",
389                                 err);
390                         return err;
391                 }
392
393                 /*
394                  * Data are written to the FIFO with a specific pattern
395                  * depending on the configured ODRs. The first sequence of data
396                  * stored in FIFO contains the data of all enabled sensors
397                  * (e.g. Gx, Gy, Gz, Ax, Ay, Az, Ts), then data are repeated
398                  * depending on the value of the decimation factor set for each
399                  * sensor.
400                  *
401                  * Supposing the FIFO is storing data from gyroscope and
402                  * accelerometer at different ODRs:
403                  *   - gyroscope ODR = 208Hz, accelerometer ODR = 104Hz
404                  * Since the gyroscope ODR is twice the accelerometer one, the
405                  * following pattern is repeated every 9 samples:
406                  *   - Gx, Gy, Gz, Ax, Ay, Az, Ts, Gx, Gy, Gz, Ts, Gx, ..
407                  */
408                 ext_sip = ext_sensor ? ext_sensor->sip : 0;
409                 gyro_sip = gyro_sensor->sip;
410                 acc_sip = acc_sensor->sip;
411                 ts_sip = hw->ts_sip;
412                 offset = 0;
413                 sip = 0;
414
415                 while (acc_sip > 0 || gyro_sip > 0 || ext_sip > 0) {
416                         if (gyro_sip > 0 && !(sip % gyro_sensor->decimator)) {
417                                 memcpy(hw->scan[ST_LSM6DSX_ID_GYRO].channels,
418                                        &hw->buff[offset],
419                                        sizeof(hw->scan[ST_LSM6DSX_ID_GYRO].channels));
420                                 offset += sizeof(hw->scan[ST_LSM6DSX_ID_GYRO].channels);
421                         }
422                         if (acc_sip > 0 && !(sip % acc_sensor->decimator)) {
423                                 memcpy(hw->scan[ST_LSM6DSX_ID_ACC].channels,
424                                        &hw->buff[offset],
425                                        sizeof(hw->scan[ST_LSM6DSX_ID_ACC].channels));
426                                 offset += sizeof(hw->scan[ST_LSM6DSX_ID_ACC].channels);
427                         }
428                         if (ext_sip > 0 && !(sip % ext_sensor->decimator)) {
429                                 memcpy(hw->scan[ST_LSM6DSX_ID_EXT0].channels,
430                                        &hw->buff[offset],
431                                        sizeof(hw->scan[ST_LSM6DSX_ID_EXT0].channels));
432                                 offset += sizeof(hw->scan[ST_LSM6DSX_ID_EXT0].channels);
433                         }
434
435                         if (ts_sip-- > 0) {
436                                 u8 data[ST_LSM6DSX_SAMPLE_SIZE];
437
438                                 memcpy(data, &hw->buff[offset], sizeof(data));
439                                 /*
440                                  * hw timestamp is 3B long and it is stored
441                                  * in FIFO using 6B as 4th FIFO data set
442                                  * according to this schema:
443                                  * B0 = ts[15:8], B1 = ts[23:16], B3 = ts[7:0]
444                                  */
445                                 ts = data[1] << 16 | data[0] << 8 | data[3];
446                                 /*
447                                  * check if hw timestamp engine is going to
448                                  * reset (the sensor generates an interrupt
449                                  * to signal the hw timestamp will reset in
450                                  * 1.638s)
451                                  */
452                                 if (!reset_ts && ts >= 0xff0000)
453                                         reset_ts = true;
454                                 ts *= hw->ts_gain;
455
456                                 offset += ST_LSM6DSX_SAMPLE_SIZE;
457                         }
458
459                         if (gyro_sip > 0 && !(sip % gyro_sensor->decimator)) {
460                                 /*
461                                  * We need to discards gyro samples during
462                                  * filters settling time
463                                  */
464                                 if (gyro_sensor->samples_to_discard > 0)
465                                         gyro_sensor->samples_to_discard--;
466                                 else
467                                         iio_push_to_buffers_with_timestamp(
468                                                 hw->iio_devs[ST_LSM6DSX_ID_GYRO],
469                                                 &hw->scan[ST_LSM6DSX_ID_GYRO],
470                                                 gyro_sensor->ts_ref + ts);
471                                 gyro_sip--;
472                         }
473                         if (acc_sip > 0 && !(sip % acc_sensor->decimator)) {
474                                 /*
475                                  * We need to discards accel samples during
476                                  * filters settling time
477                                  */
478                                 if (acc_sensor->samples_to_discard > 0)
479                                         acc_sensor->samples_to_discard--;
480                                 else
481                                         iio_push_to_buffers_with_timestamp(
482                                                 hw->iio_devs[ST_LSM6DSX_ID_ACC],
483                                                 &hw->scan[ST_LSM6DSX_ID_ACC],
484                                                 acc_sensor->ts_ref + ts);
485                                 acc_sip--;
486                         }
487                         if (ext_sip > 0 && !(sip % ext_sensor->decimator)) {
488                                 iio_push_to_buffers_with_timestamp(
489                                         hw->iio_devs[ST_LSM6DSX_ID_EXT0],
490                                         &hw->scan[ST_LSM6DSX_ID_EXT0],
491                                         ext_sensor->ts_ref + ts);
492                                 ext_sip--;
493                         }
494                         sip++;
495                 }
496         }
497
498         if (unlikely(reset_ts)) {
499                 err = st_lsm6dsx_reset_hw_ts(hw);
500                 if (err < 0) {
501                         dev_err(hw->dev, "failed to reset hw ts (err=%d)\n",
502                                 err);
503                         return err;
504                 }
505         }
506         return read_len;
507 }
508
509 #define ST_LSM6DSX_INVALID_SAMPLE       0x7ffd
510 static int
511 st_lsm6dsx_push_tagged_data(struct st_lsm6dsx_hw *hw, u8 tag,
512                             u8 *data, s64 ts)
513 {
514         s16 val = le16_to_cpu(*(__le16 *)data);
515         struct st_lsm6dsx_sensor *sensor;
516         struct iio_dev *iio_dev;
517
518         /* invalid sample during bootstrap phase */
519         if (val >= ST_LSM6DSX_INVALID_SAMPLE)
520                 return -EINVAL;
521
522         /*
523          * EXT_TAG are managed in FIFO fashion so ST_LSM6DSX_EXT0_TAG
524          * corresponds to the first enabled channel, ST_LSM6DSX_EXT1_TAG
525          * to the second one and ST_LSM6DSX_EXT2_TAG to the last enabled
526          * channel
527          */
528         switch (tag) {
529         case ST_LSM6DSX_GYRO_TAG:
530                 iio_dev = hw->iio_devs[ST_LSM6DSX_ID_GYRO];
531                 break;
532         case ST_LSM6DSX_ACC_TAG:
533                 iio_dev = hw->iio_devs[ST_LSM6DSX_ID_ACC];
534                 break;
535         case ST_LSM6DSX_EXT0_TAG:
536                 if (hw->enable_mask & BIT(ST_LSM6DSX_ID_EXT0))
537                         iio_dev = hw->iio_devs[ST_LSM6DSX_ID_EXT0];
538                 else if (hw->enable_mask & BIT(ST_LSM6DSX_ID_EXT1))
539                         iio_dev = hw->iio_devs[ST_LSM6DSX_ID_EXT1];
540                 else
541                         iio_dev = hw->iio_devs[ST_LSM6DSX_ID_EXT2];
542                 break;
543         case ST_LSM6DSX_EXT1_TAG:
544                 if ((hw->enable_mask & BIT(ST_LSM6DSX_ID_EXT0)) &&
545                     (hw->enable_mask & BIT(ST_LSM6DSX_ID_EXT1)))
546                         iio_dev = hw->iio_devs[ST_LSM6DSX_ID_EXT1];
547                 else
548                         iio_dev = hw->iio_devs[ST_LSM6DSX_ID_EXT2];
549                 break;
550         case ST_LSM6DSX_EXT2_TAG:
551                 iio_dev = hw->iio_devs[ST_LSM6DSX_ID_EXT2];
552                 break;
553         default:
554                 return -EINVAL;
555         }
556
557         sensor = iio_priv(iio_dev);
558         iio_push_to_buffers_with_timestamp(iio_dev, data,
559                                            ts + sensor->ts_ref);
560
561         return 0;
562 }
563
564 /**
565  * st_lsm6dsx_read_tagged_fifo() - tagged hw FIFO read routine
566  * @hw: Pointer to instance of struct st_lsm6dsx_hw.
567  *
568  * Read samples from the hw FIFO and push them to IIO buffers.
569  *
570  * Return: Number of bytes read from the FIFO
571  */
572 int st_lsm6dsx_read_tagged_fifo(struct st_lsm6dsx_hw *hw)
573 {
574         u16 pattern_len = hw->sip * ST_LSM6DSX_TAGGED_SAMPLE_SIZE;
575         u16 fifo_len, fifo_diff_mask;
576         /*
577          * Alignment needed as this can ultimately be passed to a
578          * call to iio_push_to_buffers_with_timestamp() which
579          * must be passed a buffer that is aligned to 8 bytes so
580          * as to allow insertion of a naturally aligned timestamp.
581          */
582         u8 iio_buff[ST_LSM6DSX_IIO_BUFF_SIZE] __aligned(8);
583         u8 tag;
584         bool reset_ts = false;
585         int i, err, read_len;
586         __le16 fifo_status;
587         s64 ts = 0;
588
589         err = st_lsm6dsx_read_locked(hw,
590                                      hw->settings->fifo_ops.fifo_diff.addr,
591                                      &fifo_status, sizeof(fifo_status));
592         if (err < 0) {
593                 dev_err(hw->dev, "failed to read fifo status (err=%d)\n",
594                         err);
595                 return err;
596         }
597
598         fifo_diff_mask = hw->settings->fifo_ops.fifo_diff.mask;
599         fifo_len = (le16_to_cpu(fifo_status) & fifo_diff_mask) *
600                    ST_LSM6DSX_TAGGED_SAMPLE_SIZE;
601         if (!fifo_len)
602                 return 0;
603
604         for (read_len = 0; read_len < fifo_len; read_len += pattern_len) {
605                 err = st_lsm6dsx_read_block(hw,
606                                             ST_LSM6DSX_REG_FIFO_OUT_TAG_ADDR,
607                                             hw->buff, pattern_len,
608                                             ST_LSM6DSX_MAX_TAGGED_WORD_LEN);
609                 if (err < 0) {
610                         dev_err(hw->dev,
611                                 "failed to read pattern from fifo (err=%d)\n",
612                                 err);
613                         return err;
614                 }
615
616                 for (i = 0; i < pattern_len;
617                      i += ST_LSM6DSX_TAGGED_SAMPLE_SIZE) {
618                         memcpy(iio_buff, &hw->buff[i + ST_LSM6DSX_TAG_SIZE],
619                                ST_LSM6DSX_SAMPLE_SIZE);
620
621                         tag = hw->buff[i] >> 3;
622                         if (tag == ST_LSM6DSX_TS_TAG) {
623                                 /*
624                                  * hw timestamp is 4B long and it is stored
625                                  * in FIFO according to this schema:
626                                  * B0 = ts[7:0], B1 = ts[15:8], B2 = ts[23:16],
627                                  * B3 = ts[31:24]
628                                  */
629                                 ts = le32_to_cpu(*((__le32 *)iio_buff));
630                                 /*
631                                  * check if hw timestamp engine is going to
632                                  * reset (the sensor generates an interrupt
633                                  * to signal the hw timestamp will reset in
634                                  * 1.638s)
635                                  */
636                                 if (!reset_ts && ts >= 0xffff0000)
637                                         reset_ts = true;
638                                 ts *= hw->ts_gain;
639                         } else {
640                                 st_lsm6dsx_push_tagged_data(hw, tag, iio_buff,
641                                                             ts);
642                         }
643                 }
644         }
645
646         if (unlikely(reset_ts)) {
647                 err = st_lsm6dsx_reset_hw_ts(hw);
648                 if (err < 0)
649                         return err;
650         }
651         return read_len;
652 }
653
654 int st_lsm6dsx_flush_fifo(struct st_lsm6dsx_hw *hw)
655 {
656         int err;
657
658         if (!hw->settings->fifo_ops.read_fifo)
659                 return -ENOTSUPP;
660
661         mutex_lock(&hw->fifo_lock);
662
663         hw->settings->fifo_ops.read_fifo(hw);
664         err = st_lsm6dsx_set_fifo_mode(hw, ST_LSM6DSX_FIFO_BYPASS);
665
666         mutex_unlock(&hw->fifo_lock);
667
668         return err;
669 }
670
671 static void
672 st_lsm6dsx_update_samples_to_discard(struct st_lsm6dsx_sensor *sensor)
673 {
674         const struct st_lsm6dsx_samples_to_discard *data;
675         struct st_lsm6dsx_hw *hw = sensor->hw;
676         int i;
677
678         if (sensor->id != ST_LSM6DSX_ID_GYRO &&
679             sensor->id != ST_LSM6DSX_ID_ACC)
680                 return;
681
682         /* check if drdy mask is supported in hw */
683         if (hw->settings->drdy_mask.addr)
684                 return;
685
686         data = &hw->settings->samples_to_discard[sensor->id];
687         for (i = 0; i < ST_LSM6DSX_ODR_LIST_SIZE; i++) {
688                 if (data->val[i].milli_hz == sensor->odr) {
689                         sensor->samples_to_discard = data->val[i].samples;
690                         return;
691                 }
692         }
693 }
694
695 int st_lsm6dsx_update_fifo(struct st_lsm6dsx_sensor *sensor, bool enable)
696 {
697         struct st_lsm6dsx_hw *hw = sensor->hw;
698         u8 fifo_mask;
699         int err;
700
701         mutex_lock(&hw->conf_lock);
702
703         if (enable)
704                 fifo_mask = hw->fifo_mask | BIT(sensor->id);
705         else
706                 fifo_mask = hw->fifo_mask & ~BIT(sensor->id);
707
708         if (hw->fifo_mask) {
709                 err = st_lsm6dsx_flush_fifo(hw);
710                 if (err < 0)
711                         goto out;
712         }
713
714         if (enable)
715                 st_lsm6dsx_update_samples_to_discard(sensor);
716
717         err = st_lsm6dsx_device_set_enable(sensor, enable);
718         if (err < 0)
719                 goto out;
720
721         err = st_lsm6dsx_set_fifo_odr(sensor, enable);
722         if (err < 0)
723                 goto out;
724
725         err = st_lsm6dsx_update_decimators(hw);
726         if (err < 0)
727                 goto out;
728
729         err = st_lsm6dsx_update_watermark(sensor, sensor->watermark);
730         if (err < 0)
731                 goto out;
732
733         if (fifo_mask) {
734                 err = st_lsm6dsx_resume_fifo(hw);
735                 if (err < 0)
736                         goto out;
737         }
738
739         hw->fifo_mask = fifo_mask;
740
741 out:
742         mutex_unlock(&hw->conf_lock);
743
744         return err;
745 }
746
747 static int st_lsm6dsx_buffer_preenable(struct iio_dev *iio_dev)
748 {
749         struct st_lsm6dsx_sensor *sensor = iio_priv(iio_dev);
750         struct st_lsm6dsx_hw *hw = sensor->hw;
751
752         if (!hw->settings->fifo_ops.update_fifo)
753                 return -ENOTSUPP;
754
755         return hw->settings->fifo_ops.update_fifo(sensor, true);
756 }
757
758 static int st_lsm6dsx_buffer_postdisable(struct iio_dev *iio_dev)
759 {
760         struct st_lsm6dsx_sensor *sensor = iio_priv(iio_dev);
761         struct st_lsm6dsx_hw *hw = sensor->hw;
762
763         if (!hw->settings->fifo_ops.update_fifo)
764                 return -ENOTSUPP;
765
766         return hw->settings->fifo_ops.update_fifo(sensor, false);
767 }
768
769 static const struct iio_buffer_setup_ops st_lsm6dsx_buffer_ops = {
770         .preenable = st_lsm6dsx_buffer_preenable,
771         .postdisable = st_lsm6dsx_buffer_postdisable,
772 };
773
774 int st_lsm6dsx_fifo_setup(struct st_lsm6dsx_hw *hw)
775 {
776         int i, ret;
777
778         for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
779                 if (!hw->iio_devs[i])
780                         continue;
781
782                 ret = devm_iio_kfifo_buffer_setup(hw->dev, hw->iio_devs[i],
783                                                   &st_lsm6dsx_buffer_ops);
784                 if (ret)
785                         return ret;
786         }
787
788         return 0;
789 }