arm64: dts: qcom: sm8550: add TRNG node
[linux-modified.git] / drivers / iio / afe / iio-rescale.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * IIO rescale driver
4  *
5  * Copyright (C) 2018 Axentia Technologies AB
6  * Copyright (C) 2022 Liam Beguin <liambeguin@gmail.com>
7  *
8  * Author: Peter Rosin <peda@axentia.se>
9  */
10
11 #include <linux/err.h>
12 #include <linux/gcd.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/module.h>
15 #include <linux/platform_device.h>
16 #include <linux/property.h>
17
18 #include <linux/iio/afe/rescale.h>
19 #include <linux/iio/consumer.h>
20 #include <linux/iio/iio.h>
21
22 int rescale_process_scale(struct rescale *rescale, int scale_type,
23                           int *val, int *val2)
24 {
25         s64 tmp;
26         int _val, _val2;
27         s32 rem, rem2;
28         u32 mult;
29         u32 neg;
30
31         switch (scale_type) {
32         case IIO_VAL_INT:
33                 *val *= rescale->numerator;
34                 if (rescale->denominator == 1)
35                         return scale_type;
36                 *val2 = rescale->denominator;
37                 return IIO_VAL_FRACTIONAL;
38         case IIO_VAL_FRACTIONAL:
39                 /*
40                  * When the product of both scales doesn't overflow, avoid
41                  * potential accuracy loss (for in kernel consumers) by
42                  * keeping a fractional representation.
43                  */
44                 if (!check_mul_overflow(*val, rescale->numerator, &_val) &&
45                     !check_mul_overflow(*val2, rescale->denominator, &_val2)) {
46                         *val = _val;
47                         *val2 = _val2;
48                         return IIO_VAL_FRACTIONAL;
49                 }
50                 fallthrough;
51         case IIO_VAL_FRACTIONAL_LOG2:
52                 tmp = (s64)*val * 1000000000LL;
53                 tmp = div_s64(tmp, rescale->denominator);
54                 tmp *= rescale->numerator;
55
56                 tmp = div_s64_rem(tmp, 1000000000LL, &rem);
57                 *val = tmp;
58
59                 if (!rem)
60                         return scale_type;
61
62                 if (scale_type == IIO_VAL_FRACTIONAL)
63                         tmp = *val2;
64                 else
65                         tmp = ULL(1) << *val2;
66
67                 rem2 = *val % (int)tmp;
68                 *val = *val / (int)tmp;
69
70                 *val2 = rem / (int)tmp;
71                 if (rem2)
72                         *val2 += div_s64((s64)rem2 * 1000000000LL, tmp);
73
74                 return IIO_VAL_INT_PLUS_NANO;
75         case IIO_VAL_INT_PLUS_NANO:
76         case IIO_VAL_INT_PLUS_MICRO:
77                 mult = scale_type == IIO_VAL_INT_PLUS_NANO ? 1000000000L : 1000000L;
78
79                 /*
80                  * For IIO_VAL_INT_PLUS_{MICRO,NANO} scale types if either *val
81                  * OR *val2 is negative the schan scale is negative, i.e.
82                  * *val = 1 and *val2 = -0.5 yields -1.5 not -0.5.
83                  */
84                 neg = *val < 0 || *val2 < 0;
85
86                 tmp = (s64)abs(*val) * abs(rescale->numerator);
87                 *val = div_s64_rem(tmp, abs(rescale->denominator), &rem);
88
89                 tmp = (s64)rem * mult + (s64)abs(*val2) * abs(rescale->numerator);
90                 tmp = div_s64(tmp, abs(rescale->denominator));
91
92                 *val += div_s64_rem(tmp, mult, val2);
93
94                 /*
95                  * If only one of the rescaler elements or the schan scale is
96                  * negative, the combined scale is negative.
97                  */
98                 if (neg ^ ((rescale->numerator < 0) ^ (rescale->denominator < 0))) {
99                         if (*val)
100                                 *val = -*val;
101                         else
102                                 *val2 = -*val2;
103                 }
104
105                 return scale_type;
106         default:
107                 return -EOPNOTSUPP;
108         }
109 }
110 EXPORT_SYMBOL_NS_GPL(rescale_process_scale, IIO_RESCALE);
111
112 int rescale_process_offset(struct rescale *rescale, int scale_type,
113                            int scale, int scale2, int schan_off,
114                            int *val, int *val2)
115 {
116         s64 tmp, tmp2;
117
118         switch (scale_type) {
119         case IIO_VAL_FRACTIONAL:
120                 tmp = (s64)rescale->offset * scale2;
121                 *val = div_s64(tmp, scale) + schan_off;
122                 return IIO_VAL_INT;
123         case IIO_VAL_INT:
124                 *val = div_s64(rescale->offset, scale) + schan_off;
125                 return IIO_VAL_INT;
126         case IIO_VAL_FRACTIONAL_LOG2:
127                 tmp = (s64)rescale->offset * (1 << scale2);
128                 *val = div_s64(tmp, scale) + schan_off;
129                 return IIO_VAL_INT;
130         case IIO_VAL_INT_PLUS_NANO:
131                 tmp = (s64)rescale->offset * 1000000000LL;
132                 tmp2 = ((s64)scale * 1000000000LL) + scale2;
133                 *val = div64_s64(tmp, tmp2) + schan_off;
134                 return IIO_VAL_INT;
135         case IIO_VAL_INT_PLUS_MICRO:
136                 tmp = (s64)rescale->offset * 1000000LL;
137                 tmp2 = ((s64)scale * 1000000LL) + scale2;
138                 *val = div64_s64(tmp, tmp2) + schan_off;
139                 return IIO_VAL_INT;
140         default:
141                 return -EOPNOTSUPP;
142         }
143 }
144 EXPORT_SYMBOL_NS_GPL(rescale_process_offset, IIO_RESCALE);
145
146 static int rescale_read_raw(struct iio_dev *indio_dev,
147                             struct iio_chan_spec const *chan,
148                             int *val, int *val2, long mask)
149 {
150         struct rescale *rescale = iio_priv(indio_dev);
151         int scale, scale2;
152         int schan_off = 0;
153         int ret;
154
155         switch (mask) {
156         case IIO_CHAN_INFO_RAW:
157                 if (rescale->chan_processed)
158                         /*
159                          * When only processed channels are supported, we
160                          * read the processed data and scale it by 1/1
161                          * augmented with whatever the rescaler has calculated.
162                          */
163                         return iio_read_channel_processed(rescale->source, val);
164                 else
165                         return iio_read_channel_raw(rescale->source, val);
166
167         case IIO_CHAN_INFO_SCALE:
168                 if (rescale->chan_processed) {
169                         /*
170                          * Processed channels are scaled 1-to-1
171                          */
172                         *val = 1;
173                         *val2 = 1;
174                         ret = IIO_VAL_FRACTIONAL;
175                 } else {
176                         ret = iio_read_channel_scale(rescale->source, val, val2);
177                 }
178                 return rescale_process_scale(rescale, ret, val, val2);
179         case IIO_CHAN_INFO_OFFSET:
180                 /*
181                  * Processed channels are scaled 1-to-1 and source offset is
182                  * already taken into account.
183                  *
184                  * In other cases, real world measurement are expressed as:
185                  *
186                  *      schan_scale * (raw + schan_offset)
187                  *
188                  * Given that the rescaler parameters are applied recursively:
189                  *
190                  *      rescaler_scale * (schan_scale * (raw + schan_offset) +
191                  *              rescaler_offset)
192                  *
193                  * Or,
194                  *
195                  *      (rescaler_scale * schan_scale) * (raw +
196                  *              (schan_offset + rescaler_offset / schan_scale)
197                  *
198                  * Thus, reusing the original expression the parameters exposed
199                  * to userspace are:
200                  *
201                  *      scale = schan_scale * rescaler_scale
202                  *      offset = schan_offset + rescaler_offset / schan_scale
203                  */
204                 if (rescale->chan_processed) {
205                         *val = rescale->offset;
206                         return IIO_VAL_INT;
207                 }
208
209                 if (iio_channel_has_info(rescale->source->channel,
210                                          IIO_CHAN_INFO_OFFSET)) {
211                         ret = iio_read_channel_offset(rescale->source,
212                                                       &schan_off, NULL);
213                         if (ret != IIO_VAL_INT)
214                                 return ret < 0 ? ret : -EOPNOTSUPP;
215                 }
216
217                 if (iio_channel_has_info(rescale->source->channel,
218                                          IIO_CHAN_INFO_SCALE)) {
219                         ret = iio_read_channel_scale(rescale->source, &scale, &scale2);
220                         return rescale_process_offset(rescale, ret, scale, scale2,
221                                                       schan_off, val, val2);
222                 }
223
224                 /*
225                  * If we get here we have no scale so scale 1:1 but apply
226                  * rescaler and offset, if any.
227                  */
228                 return rescale_process_offset(rescale, IIO_VAL_FRACTIONAL, 1, 1,
229                                               schan_off, val, val2);
230         default:
231                 return -EINVAL;
232         }
233 }
234
235 static int rescale_read_avail(struct iio_dev *indio_dev,
236                               struct iio_chan_spec const *chan,
237                               const int **vals, int *type, int *length,
238                               long mask)
239 {
240         struct rescale *rescale = iio_priv(indio_dev);
241
242         switch (mask) {
243         case IIO_CHAN_INFO_RAW:
244                 *type = IIO_VAL_INT;
245                 return iio_read_avail_channel_raw(rescale->source,
246                                                   vals, length);
247         default:
248                 return -EINVAL;
249         }
250 }
251
252 static const struct iio_info rescale_info = {
253         .read_raw = rescale_read_raw,
254         .read_avail = rescale_read_avail,
255 };
256
257 static ssize_t rescale_read_ext_info(struct iio_dev *indio_dev,
258                                      uintptr_t private,
259                                      struct iio_chan_spec const *chan,
260                                      char *buf)
261 {
262         struct rescale *rescale = iio_priv(indio_dev);
263
264         return iio_read_channel_ext_info(rescale->source,
265                                          rescale->ext_info[private].name,
266                                          buf);
267 }
268
269 static ssize_t rescale_write_ext_info(struct iio_dev *indio_dev,
270                                       uintptr_t private,
271                                       struct iio_chan_spec const *chan,
272                                       const char *buf, size_t len)
273 {
274         struct rescale *rescale = iio_priv(indio_dev);
275
276         return iio_write_channel_ext_info(rescale->source,
277                                           rescale->ext_info[private].name,
278                                           buf, len);
279 }
280
281 static int rescale_configure_channel(struct device *dev,
282                                      struct rescale *rescale)
283 {
284         struct iio_chan_spec *chan = &rescale->chan;
285         struct iio_chan_spec const *schan = rescale->source->channel;
286
287         chan->indexed = 1;
288         chan->output = schan->output;
289         chan->ext_info = rescale->ext_info;
290         chan->type = rescale->cfg->type;
291
292         if (iio_channel_has_info(schan, IIO_CHAN_INFO_RAW) &&
293             (iio_channel_has_info(schan, IIO_CHAN_INFO_SCALE) ||
294              iio_channel_has_info(schan, IIO_CHAN_INFO_OFFSET))) {
295                 dev_info(dev, "using raw+scale/offset source channel\n");
296         } else if (iio_channel_has_info(schan, IIO_CHAN_INFO_PROCESSED)) {
297                 dev_info(dev, "using processed channel\n");
298                 rescale->chan_processed = true;
299         } else {
300                 dev_err(dev, "source channel is not supported\n");
301                 return -EINVAL;
302         }
303
304         chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
305                 BIT(IIO_CHAN_INFO_SCALE);
306
307         if (rescale->offset)
308                 chan->info_mask_separate |= BIT(IIO_CHAN_INFO_OFFSET);
309
310         /*
311          * Using .read_avail() is fringe to begin with and makes no sense
312          * whatsoever for processed channels, so we make sure that this cannot
313          * be called on a processed channel.
314          */
315         if (iio_channel_has_available(schan, IIO_CHAN_INFO_RAW) &&
316             !rescale->chan_processed)
317                 chan->info_mask_separate_available |= BIT(IIO_CHAN_INFO_RAW);
318
319         return 0;
320 }
321
322 static int rescale_current_sense_amplifier_props(struct device *dev,
323                                                  struct rescale *rescale)
324 {
325         u32 sense;
326         u32 gain_mult = 1;
327         u32 gain_div = 1;
328         u32 factor;
329         int ret;
330
331         ret = device_property_read_u32(dev, "sense-resistor-micro-ohms",
332                                        &sense);
333         if (ret) {
334                 dev_err(dev, "failed to read the sense resistance: %d\n", ret);
335                 return ret;
336         }
337
338         device_property_read_u32(dev, "sense-gain-mult", &gain_mult);
339         device_property_read_u32(dev, "sense-gain-div", &gain_div);
340
341         /*
342          * Calculate the scaling factor, 1 / (gain * sense), or
343          * gain_div / (gain_mult * sense), while trying to keep the
344          * numerator/denominator from overflowing.
345          */
346         factor = gcd(sense, 1000000);
347         rescale->numerator = 1000000 / factor;
348         rescale->denominator = sense / factor;
349
350         factor = gcd(rescale->numerator, gain_mult);
351         rescale->numerator /= factor;
352         rescale->denominator *= gain_mult / factor;
353
354         factor = gcd(rescale->denominator, gain_div);
355         rescale->numerator *= gain_div / factor;
356         rescale->denominator /= factor;
357
358         return 0;
359 }
360
361 static int rescale_current_sense_shunt_props(struct device *dev,
362                                              struct rescale *rescale)
363 {
364         u32 shunt;
365         u32 factor;
366         int ret;
367
368         ret = device_property_read_u32(dev, "shunt-resistor-micro-ohms",
369                                        &shunt);
370         if (ret) {
371                 dev_err(dev, "failed to read the shunt resistance: %d\n", ret);
372                 return ret;
373         }
374
375         factor = gcd(shunt, 1000000);
376         rescale->numerator = 1000000 / factor;
377         rescale->denominator = shunt / factor;
378
379         return 0;
380 }
381
382 static int rescale_voltage_divider_props(struct device *dev,
383                                          struct rescale *rescale)
384 {
385         int ret;
386         u32 factor;
387
388         ret = device_property_read_u32(dev, "output-ohms",
389                                        &rescale->denominator);
390         if (ret) {
391                 dev_err(dev, "failed to read output-ohms: %d\n", ret);
392                 return ret;
393         }
394
395         ret = device_property_read_u32(dev, "full-ohms",
396                                        &rescale->numerator);
397         if (ret) {
398                 dev_err(dev, "failed to read full-ohms: %d\n", ret);
399                 return ret;
400         }
401
402         factor = gcd(rescale->numerator, rescale->denominator);
403         rescale->numerator /= factor;
404         rescale->denominator /= factor;
405
406         return 0;
407 }
408
409 static int rescale_temp_sense_rtd_props(struct device *dev,
410                                         struct rescale *rescale)
411 {
412         u32 factor;
413         u32 alpha;
414         u32 iexc;
415         u32 tmp;
416         int ret;
417         u32 r0;
418
419         ret = device_property_read_u32(dev, "excitation-current-microamp",
420                                        &iexc);
421         if (ret) {
422                 dev_err(dev, "failed to read excitation-current-microamp: %d\n",
423                         ret);
424                 return ret;
425         }
426
427         ret = device_property_read_u32(dev, "alpha-ppm-per-celsius", &alpha);
428         if (ret) {
429                 dev_err(dev, "failed to read alpha-ppm-per-celsius: %d\n",
430                         ret);
431                 return ret;
432         }
433
434         ret = device_property_read_u32(dev, "r-naught-ohms", &r0);
435         if (ret) {
436                 dev_err(dev, "failed to read r-naught-ohms: %d\n", ret);
437                 return ret;
438         }
439
440         tmp = r0 * iexc * alpha / 1000000;
441         factor = gcd(tmp, 1000000);
442         rescale->numerator = 1000000 / factor;
443         rescale->denominator = tmp / factor;
444
445         rescale->offset = -1 * ((r0 * iexc) / 1000);
446
447         return 0;
448 }
449
450 static int rescale_temp_transducer_props(struct device *dev,
451                                          struct rescale *rescale)
452 {
453         s32 offset = 0;
454         s32 sense = 1;
455         s32 alpha;
456         int ret;
457
458         device_property_read_u32(dev, "sense-offset-millicelsius", &offset);
459         device_property_read_u32(dev, "sense-resistor-ohms", &sense);
460         ret = device_property_read_u32(dev, "alpha-ppm-per-celsius", &alpha);
461         if (ret) {
462                 dev_err(dev, "failed to read alpha-ppm-per-celsius: %d\n", ret);
463                 return ret;
464         }
465
466         rescale->numerator = 1000000;
467         rescale->denominator = alpha * sense;
468
469         rescale->offset = div_s64((s64)offset * rescale->denominator,
470                                   rescale->numerator);
471
472         return 0;
473 }
474
475 enum rescale_variant {
476         CURRENT_SENSE_AMPLIFIER,
477         CURRENT_SENSE_SHUNT,
478         VOLTAGE_DIVIDER,
479         TEMP_SENSE_RTD,
480         TEMP_TRANSDUCER,
481 };
482
483 static const struct rescale_cfg rescale_cfg[] = {
484         [CURRENT_SENSE_AMPLIFIER] = {
485                 .type = IIO_CURRENT,
486                 .props = rescale_current_sense_amplifier_props,
487         },
488         [CURRENT_SENSE_SHUNT] = {
489                 .type = IIO_CURRENT,
490                 .props = rescale_current_sense_shunt_props,
491         },
492         [VOLTAGE_DIVIDER] = {
493                 .type = IIO_VOLTAGE,
494                 .props = rescale_voltage_divider_props,
495         },
496         [TEMP_SENSE_RTD] = {
497                 .type = IIO_TEMP,
498                 .props = rescale_temp_sense_rtd_props,
499         },
500         [TEMP_TRANSDUCER] = {
501                 .type = IIO_TEMP,
502                 .props = rescale_temp_transducer_props,
503         },
504 };
505
506 static const struct of_device_id rescale_match[] = {
507         { .compatible = "current-sense-amplifier",
508           .data = &rescale_cfg[CURRENT_SENSE_AMPLIFIER], },
509         { .compatible = "current-sense-shunt",
510           .data = &rescale_cfg[CURRENT_SENSE_SHUNT], },
511         { .compatible = "voltage-divider",
512           .data = &rescale_cfg[VOLTAGE_DIVIDER], },
513         { .compatible = "temperature-sense-rtd",
514           .data = &rescale_cfg[TEMP_SENSE_RTD], },
515         { .compatible = "temperature-transducer",
516           .data = &rescale_cfg[TEMP_TRANSDUCER], },
517         { /* sentinel */ }
518 };
519 MODULE_DEVICE_TABLE(of, rescale_match);
520
521 static int rescale_probe(struct platform_device *pdev)
522 {
523         struct device *dev = &pdev->dev;
524         struct iio_dev *indio_dev;
525         struct iio_channel *source;
526         struct rescale *rescale;
527         int sizeof_ext_info;
528         int sizeof_priv;
529         int i;
530         int ret;
531
532         source = devm_iio_channel_get(dev, NULL);
533         if (IS_ERR(source))
534                 return dev_err_probe(dev, PTR_ERR(source),
535                                      "failed to get source channel\n");
536
537         sizeof_ext_info = iio_get_channel_ext_info_count(source);
538         if (sizeof_ext_info) {
539                 sizeof_ext_info += 1; /* one extra entry for the sentinel */
540                 sizeof_ext_info *= sizeof(*rescale->ext_info);
541         }
542
543         sizeof_priv = sizeof(*rescale) + sizeof_ext_info;
544
545         indio_dev = devm_iio_device_alloc(dev, sizeof_priv);
546         if (!indio_dev)
547                 return -ENOMEM;
548
549         rescale = iio_priv(indio_dev);
550
551         rescale->cfg = device_get_match_data(dev);
552         rescale->numerator = 1;
553         rescale->denominator = 1;
554         rescale->offset = 0;
555
556         ret = rescale->cfg->props(dev, rescale);
557         if (ret)
558                 return ret;
559
560         if (!rescale->numerator || !rescale->denominator) {
561                 dev_err(dev, "invalid scaling factor.\n");
562                 return -EINVAL;
563         }
564
565         platform_set_drvdata(pdev, indio_dev);
566
567         rescale->source = source;
568
569         indio_dev->name = dev_name(dev);
570         indio_dev->info = &rescale_info;
571         indio_dev->modes = INDIO_DIRECT_MODE;
572         indio_dev->channels = &rescale->chan;
573         indio_dev->num_channels = 1;
574         if (sizeof_ext_info) {
575                 rescale->ext_info = devm_kmemdup(dev,
576                                                  source->channel->ext_info,
577                                                  sizeof_ext_info, GFP_KERNEL);
578                 if (!rescale->ext_info)
579                         return -ENOMEM;
580
581                 for (i = 0; rescale->ext_info[i].name; ++i) {
582                         struct iio_chan_spec_ext_info *ext_info =
583                                 &rescale->ext_info[i];
584
585                         if (source->channel->ext_info[i].read)
586                                 ext_info->read = rescale_read_ext_info;
587                         if (source->channel->ext_info[i].write)
588                                 ext_info->write = rescale_write_ext_info;
589                         ext_info->private = i;
590                 }
591         }
592
593         ret = rescale_configure_channel(dev, rescale);
594         if (ret)
595                 return ret;
596
597         return devm_iio_device_register(dev, indio_dev);
598 }
599
600 static struct platform_driver rescale_driver = {
601         .probe = rescale_probe,
602         .driver = {
603                 .name = "iio-rescale",
604                 .of_match_table = rescale_match,
605         },
606 };
607 module_platform_driver(rescale_driver);
608
609 MODULE_DESCRIPTION("IIO rescale driver");
610 MODULE_AUTHOR("Peter Rosin <peda@axentia.se>");
611 MODULE_LICENSE("GPL v2");