GNU Linux-libre 6.7.9-gnu
[releases.git] / drivers / iio / adc / stm32-dfsdm-adc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file is the ADC part of the STM32 DFSDM driver
4  *
5  * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6  * Author: Arnaud Pouliquen <arnaud.pouliquen@st.com>.
7  */
8
9 #include <linux/dmaengine.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/iio/adc/stm32-dfsdm-adc.h>
12 #include <linux/iio/buffer.h>
13 #include <linux/iio/hw-consumer.h>
14 #include <linux/iio/sysfs.h>
15 #include <linux/iio/timer/stm32-lptim-trigger.h>
16 #include <linux/iio/timer/stm32-timer-trigger.h>
17 #include <linux/iio/trigger.h>
18 #include <linux/iio/trigger_consumer.h>
19 #include <linux/iio/triggered_buffer.h>
20 #include <linux/interrupt.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/of_platform.h>
24 #include <linux/platform_device.h>
25 #include <linux/regmap.h>
26 #include <linux/slab.h>
27
28 #include "stm32-dfsdm.h"
29
30 #define DFSDM_DMA_BUFFER_SIZE (4 * PAGE_SIZE)
31
32 /* Conversion timeout */
33 #define DFSDM_TIMEOUT_US 100000
34 #define DFSDM_TIMEOUT (msecs_to_jiffies(DFSDM_TIMEOUT_US / 1000))
35
36 /* Oversampling attribute default */
37 #define DFSDM_DEFAULT_OVERSAMPLING  100
38
39 /* Oversampling max values */
40 #define DFSDM_MAX_INT_OVERSAMPLING 256
41 #define DFSDM_MAX_FL_OVERSAMPLING 1024
42
43 /* Limit filter output resolution to 31 bits. (i.e. sample range is +/-2^30) */
44 #define DFSDM_DATA_MAX BIT(30)
45 /*
46  * Data are output as two's complement data in a 24 bit field.
47  * Data from filters are in the range +/-2^(n-1)
48  * 2^(n-1) maximum positive value cannot be coded in 2's complement n bits
49  * An extra bit is required to avoid wrap-around of the binary code for 2^(n-1)
50  * So, the resolution of samples from filter is actually limited to 23 bits
51  */
52 #define DFSDM_DATA_RES 24
53
54 /* Filter configuration */
55 #define DFSDM_CR1_CFG_MASK (DFSDM_CR1_RCH_MASK | DFSDM_CR1_RCONT_MASK | \
56                             DFSDM_CR1_RSYNC_MASK | DFSDM_CR1_JSYNC_MASK | \
57                             DFSDM_CR1_JSCAN_MASK)
58
59 enum sd_converter_type {
60         DFSDM_AUDIO,
61         DFSDM_IIO,
62 };
63
64 struct stm32_dfsdm_dev_data {
65         int type;
66         int (*init)(struct device *dev, struct iio_dev *indio_dev);
67         unsigned int num_channels;
68         const struct regmap_config *regmap_cfg;
69 };
70
71 struct stm32_dfsdm_adc {
72         struct stm32_dfsdm *dfsdm;
73         const struct stm32_dfsdm_dev_data *dev_data;
74         unsigned int fl_id;
75         unsigned int nconv;
76         unsigned long smask;
77
78         /* ADC specific */
79         unsigned int oversamp;
80         struct iio_hw_consumer *hwc;
81         struct completion completion;
82         u32 *buffer;
83
84         /* Audio specific */
85         unsigned int spi_freq;  /* SPI bus clock frequency */
86         unsigned int sample_freq; /* Sample frequency after filter decimation */
87         int (*cb)(const void *data, size_t size, void *cb_priv);
88         void *cb_priv;
89
90         /* DMA */
91         u8 *rx_buf;
92         unsigned int bufi; /* Buffer current position */
93         unsigned int buf_sz; /* Buffer size */
94         struct dma_chan *dma_chan;
95         dma_addr_t dma_buf;
96 };
97
98 struct stm32_dfsdm_str2field {
99         const char      *name;
100         unsigned int    val;
101 };
102
103 /* DFSDM channel serial interface type */
104 static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_type[] = {
105         { "SPI_R", 0 }, /* SPI with data on rising edge */
106         { "SPI_F", 1 }, /* SPI with data on falling edge */
107         { "MANCH_R", 2 }, /* Manchester codec, rising edge = logic 0 */
108         { "MANCH_F", 3 }, /* Manchester codec, falling edge = logic 1 */
109         {},
110 };
111
112 /* DFSDM channel clock source */
113 static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_src[] = {
114         /* External SPI clock (CLKIN x) */
115         { "CLKIN", DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL },
116         /* Internal SPI clock (CLKOUT) */
117         { "CLKOUT", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL },
118         /* Internal SPI clock divided by 2 (falling edge) */
119         { "CLKOUT_F", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING },
120         /* Internal SPI clock divided by 2 (falling edge) */
121         { "CLKOUT_R", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING },
122         {},
123 };
124
125 static int stm32_dfsdm_str2val(const char *str,
126                                const struct stm32_dfsdm_str2field *list)
127 {
128         const struct stm32_dfsdm_str2field *p = list;
129
130         for (p = list; p && p->name; p++)
131                 if (!strcmp(p->name, str))
132                         return p->val;
133
134         return -EINVAL;
135 }
136
137 /**
138  * struct stm32_dfsdm_trig_info - DFSDM trigger info
139  * @name:               name of the trigger, corresponding to its source
140  * @jextsel:            trigger signal selection
141  */
142 struct stm32_dfsdm_trig_info {
143         const char *name;
144         unsigned int jextsel;
145 };
146
147 /* hardware injected trigger enable, edge selection */
148 enum stm32_dfsdm_jexten {
149         STM32_DFSDM_JEXTEN_DISABLED,
150         STM32_DFSDM_JEXTEN_RISING_EDGE,
151         STM32_DFSDM_JEXTEN_FALLING_EDGE,
152         STM32_DFSDM_EXTEN_BOTH_EDGES,
153 };
154
155 static const struct stm32_dfsdm_trig_info stm32_dfsdm_trigs[] = {
156         { TIM1_TRGO, 0 },
157         { TIM1_TRGO2, 1 },
158         { TIM8_TRGO, 2 },
159         { TIM8_TRGO2, 3 },
160         { TIM3_TRGO, 4 },
161         { TIM4_TRGO, 5 },
162         { TIM16_OC1, 6 },
163         { TIM6_TRGO, 7 },
164         { TIM7_TRGO, 8 },
165         { LPTIM1_OUT, 26 },
166         { LPTIM2_OUT, 27 },
167         { LPTIM3_OUT, 28 },
168         {},
169 };
170
171 static int stm32_dfsdm_get_jextsel(struct iio_dev *indio_dev,
172                                    struct iio_trigger *trig)
173 {
174         int i;
175
176         /* lookup triggers registered by stm32 timer trigger driver */
177         for (i = 0; stm32_dfsdm_trigs[i].name; i++) {
178                 /**
179                  * Checking both stm32 timer trigger type and trig name
180                  * should be safe against arbitrary trigger names.
181                  */
182                 if ((is_stm32_timer_trigger(trig) ||
183                      is_stm32_lptim_trigger(trig)) &&
184                     !strcmp(stm32_dfsdm_trigs[i].name, trig->name)) {
185                         return stm32_dfsdm_trigs[i].jextsel;
186                 }
187         }
188
189         return -EINVAL;
190 }
191
192 static int stm32_dfsdm_compute_osrs(struct stm32_dfsdm_filter *fl,
193                                     unsigned int fast, unsigned int oversamp)
194 {
195         unsigned int i, d, fosr, iosr;
196         u64 res, max;
197         int bits, shift;
198         unsigned int m = 1;     /* multiplication factor */
199         unsigned int p = fl->ford;      /* filter order (ford) */
200         struct stm32_dfsdm_filter_osr *flo = &fl->flo[fast];
201
202         pr_debug("Requested oversampling: %d\n", oversamp);
203         /*
204          * This function tries to compute filter oversampling and integrator
205          * oversampling, base on oversampling ratio requested by user.
206          *
207          * Decimation d depends on the filter order and the oversampling ratios.
208          * ford: filter order
209          * fosr: filter over sampling ratio
210          * iosr: integrator over sampling ratio
211          */
212         if (fl->ford == DFSDM_FASTSINC_ORDER) {
213                 m = 2;
214                 p = 2;
215         }
216
217         /*
218          * Look for filter and integrator oversampling ratios which allows
219          * to maximize data output resolution.
220          */
221         for (fosr = 1; fosr <= DFSDM_MAX_FL_OVERSAMPLING; fosr++) {
222                 for (iosr = 1; iosr <= DFSDM_MAX_INT_OVERSAMPLING; iosr++) {
223                         if (fast)
224                                 d = fosr * iosr;
225                         else if (fl->ford == DFSDM_FASTSINC_ORDER)
226                                 d = fosr * (iosr + 3) + 2;
227                         else
228                                 d = fosr * (iosr - 1 + p) + p;
229
230                         if (d > oversamp)
231                                 break;
232                         else if (d != oversamp)
233                                 continue;
234                         /*
235                          * Check resolution (limited to signed 32 bits)
236                          *   res <= 2^31
237                          * Sincx filters:
238                          *   res = m * fosr^p x iosr (with m=1, p=ford)
239                          * FastSinc filter
240                          *   res = m * fosr^p x iosr (with m=2, p=2)
241                          */
242                         res = fosr;
243                         for (i = p - 1; i > 0; i--) {
244                                 res = res * (u64)fosr;
245                                 if (res > DFSDM_DATA_MAX)
246                                         break;
247                         }
248                         if (res > DFSDM_DATA_MAX)
249                                 continue;
250
251                         res = res * (u64)m * (u64)iosr;
252                         if (res > DFSDM_DATA_MAX)
253                                 continue;
254
255                         if (res >= flo->res) {
256                                 flo->res = res;
257                                 flo->fosr = fosr;
258                                 flo->iosr = iosr;
259
260                                 bits = fls(flo->res);
261                                 /* 8 LBSs in data register contain chan info */
262                                 max = flo->res << 8;
263
264                                 /* if resolution is not a power of two */
265                                 if (flo->res > BIT(bits - 1))
266                                         bits++;
267                                 else
268                                         max--;
269
270                                 shift = DFSDM_DATA_RES - bits;
271                                 /*
272                                  * Compute right/left shift
273                                  * Right shift is performed by hardware
274                                  * when transferring samples to data register.
275                                  * Left shift is done by software on buffer
276                                  */
277                                 if (shift > 0) {
278                                         /* Resolution is lower than 24 bits */
279                                         flo->rshift = 0;
280                                         flo->lshift = shift;
281                                 } else {
282                                         /*
283                                          * If resolution is 24 bits or more,
284                                          * max positive value may be ambiguous
285                                          * (equal to max negative value as sign
286                                          * bit is dropped).
287                                          * Reduce resolution to 23 bits (rshift)
288                                          * to keep the sign on bit 23 and treat
289                                          * saturation before rescaling on 24
290                                          * bits (lshift).
291                                          */
292                                         flo->rshift = 1 - shift;
293                                         flo->lshift = 1;
294                                         max >>= flo->rshift;
295                                 }
296                                 flo->max = (s32)max;
297                                 flo->bits = bits;
298
299                                 pr_debug("fast %d, fosr %d, iosr %d, res 0x%llx/%d bits, rshift %d, lshift %d\n",
300                                          fast, flo->fosr, flo->iosr,
301                                          flo->res, bits, flo->rshift,
302                                          flo->lshift);
303                         }
304                 }
305         }
306
307         if (!flo->res)
308                 return -EINVAL;
309
310         return 0;
311 }
312
313 static int stm32_dfsdm_compute_all_osrs(struct iio_dev *indio_dev,
314                                         unsigned int oversamp)
315 {
316         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
317         struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
318         int ret0, ret1;
319
320         memset(&fl->flo[0], 0, sizeof(fl->flo[0]));
321         memset(&fl->flo[1], 0, sizeof(fl->flo[1]));
322
323         ret0 = stm32_dfsdm_compute_osrs(fl, 0, oversamp);
324         ret1 = stm32_dfsdm_compute_osrs(fl, 1, oversamp);
325         if (ret0 < 0 && ret1 < 0) {
326                 dev_err(&indio_dev->dev,
327                         "Filter parameters not found: errors %d/%d\n",
328                         ret0, ret1);
329                 return -EINVAL;
330         }
331
332         return 0;
333 }
334
335 static int stm32_dfsdm_start_channel(struct iio_dev *indio_dev)
336 {
337         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
338         struct regmap *regmap = adc->dfsdm->regmap;
339         const struct iio_chan_spec *chan;
340         unsigned int bit;
341         int ret;
342
343         for_each_set_bit(bit, &adc->smask, sizeof(adc->smask) * BITS_PER_BYTE) {
344                 chan = indio_dev->channels + bit;
345                 ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(chan->channel),
346                                          DFSDM_CHCFGR1_CHEN_MASK,
347                                          DFSDM_CHCFGR1_CHEN(1));
348                 if (ret < 0)
349                         return ret;
350         }
351
352         return 0;
353 }
354
355 static void stm32_dfsdm_stop_channel(struct iio_dev *indio_dev)
356 {
357         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
358         struct regmap *regmap = adc->dfsdm->regmap;
359         const struct iio_chan_spec *chan;
360         unsigned int bit;
361
362         for_each_set_bit(bit, &adc->smask, sizeof(adc->smask) * BITS_PER_BYTE) {
363                 chan = indio_dev->channels + bit;
364                 regmap_update_bits(regmap, DFSDM_CHCFGR1(chan->channel),
365                                    DFSDM_CHCFGR1_CHEN_MASK,
366                                    DFSDM_CHCFGR1_CHEN(0));
367         }
368 }
369
370 static int stm32_dfsdm_chan_configure(struct stm32_dfsdm *dfsdm,
371                                       struct stm32_dfsdm_channel *ch)
372 {
373         unsigned int id = ch->id;
374         struct regmap *regmap = dfsdm->regmap;
375         int ret;
376
377         ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
378                                  DFSDM_CHCFGR1_SITP_MASK,
379                                  DFSDM_CHCFGR1_SITP(ch->type));
380         if (ret < 0)
381                 return ret;
382         ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
383                                  DFSDM_CHCFGR1_SPICKSEL_MASK,
384                                  DFSDM_CHCFGR1_SPICKSEL(ch->src));
385         if (ret < 0)
386                 return ret;
387         return regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
388                                   DFSDM_CHCFGR1_CHINSEL_MASK,
389                                   DFSDM_CHCFGR1_CHINSEL(ch->alt_si));
390 }
391
392 static int stm32_dfsdm_start_filter(struct stm32_dfsdm_adc *adc,
393                                     unsigned int fl_id,
394                                     struct iio_trigger *trig)
395 {
396         struct stm32_dfsdm *dfsdm = adc->dfsdm;
397         int ret;
398
399         /* Enable filter */
400         ret = regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
401                                  DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(1));
402         if (ret < 0)
403                 return ret;
404
405         /* Nothing more to do for injected (scan mode/triggered) conversions */
406         if (adc->nconv > 1 || trig)
407                 return 0;
408
409         /* Software start (single or continuous) regular conversion */
410         return regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
411                                   DFSDM_CR1_RSWSTART_MASK,
412                                   DFSDM_CR1_RSWSTART(1));
413 }
414
415 static void stm32_dfsdm_stop_filter(struct stm32_dfsdm *dfsdm,
416                                     unsigned int fl_id)
417 {
418         /* Disable conversion */
419         regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
420                            DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(0));
421 }
422
423 static int stm32_dfsdm_filter_set_trig(struct iio_dev *indio_dev,
424                                        unsigned int fl_id,
425                                        struct iio_trigger *trig)
426 {
427         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
428         struct regmap *regmap = adc->dfsdm->regmap;
429         u32 jextsel = 0, jexten = STM32_DFSDM_JEXTEN_DISABLED;
430         int ret;
431
432         if (trig) {
433                 ret = stm32_dfsdm_get_jextsel(indio_dev, trig);
434                 if (ret < 0)
435                         return ret;
436
437                 /* set trigger source and polarity (default to rising edge) */
438                 jextsel = ret;
439                 jexten = STM32_DFSDM_JEXTEN_RISING_EDGE;
440         }
441
442         ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id),
443                                  DFSDM_CR1_JEXTSEL_MASK | DFSDM_CR1_JEXTEN_MASK,
444                                  DFSDM_CR1_JEXTSEL(jextsel) |
445                                  DFSDM_CR1_JEXTEN(jexten));
446         if (ret < 0)
447                 return ret;
448
449         return 0;
450 }
451
452 static int stm32_dfsdm_channels_configure(struct iio_dev *indio_dev,
453                                           unsigned int fl_id,
454                                           struct iio_trigger *trig)
455 {
456         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
457         struct regmap *regmap = adc->dfsdm->regmap;
458         struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[fl_id];
459         struct stm32_dfsdm_filter_osr *flo = &fl->flo[0];
460         const struct iio_chan_spec *chan;
461         unsigned int bit;
462         int ret;
463
464         fl->fast = 0;
465
466         /*
467          * In continuous mode, use fast mode configuration,
468          * if it provides a better resolution.
469          */
470         if (adc->nconv == 1 && !trig && iio_buffer_enabled(indio_dev)) {
471                 if (fl->flo[1].res >= fl->flo[0].res) {
472                         fl->fast = 1;
473                         flo = &fl->flo[1];
474                 }
475         }
476
477         if (!flo->res)
478                 return -EINVAL;
479
480         dev_dbg(&indio_dev->dev, "Samples actual resolution: %d bits",
481                 min(flo->bits, (u32)DFSDM_DATA_RES - 1));
482
483         for_each_set_bit(bit, &adc->smask,
484                          sizeof(adc->smask) * BITS_PER_BYTE) {
485                 chan = indio_dev->channels + bit;
486
487                 ret = regmap_update_bits(regmap,
488                                          DFSDM_CHCFGR2(chan->channel),
489                                          DFSDM_CHCFGR2_DTRBS_MASK,
490                                          DFSDM_CHCFGR2_DTRBS(flo->rshift));
491                 if (ret)
492                         return ret;
493         }
494
495         return 0;
496 }
497
498 static int stm32_dfsdm_filter_configure(struct iio_dev *indio_dev,
499                                         unsigned int fl_id,
500                                         struct iio_trigger *trig)
501 {
502         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
503         struct regmap *regmap = adc->dfsdm->regmap;
504         struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[fl_id];
505         struct stm32_dfsdm_filter_osr *flo = &fl->flo[fl->fast];
506         u32 cr1;
507         const struct iio_chan_spec *chan;
508         unsigned int bit, jchg = 0;
509         int ret;
510
511         /* Average integrator oversampling */
512         ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_IOSR_MASK,
513                                  DFSDM_FCR_IOSR(flo->iosr - 1));
514         if (ret)
515                 return ret;
516
517         /* Filter order and Oversampling */
518         ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FOSR_MASK,
519                                  DFSDM_FCR_FOSR(flo->fosr - 1));
520         if (ret)
521                 return ret;
522
523         ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FORD_MASK,
524                                  DFSDM_FCR_FORD(fl->ford));
525         if (ret)
526                 return ret;
527
528         ret = stm32_dfsdm_filter_set_trig(indio_dev, fl_id, trig);
529         if (ret)
530                 return ret;
531
532         ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id),
533                                  DFSDM_CR1_FAST_MASK,
534                                  DFSDM_CR1_FAST(fl->fast));
535         if (ret)
536                 return ret;
537
538         /*
539          * DFSDM modes configuration W.R.T audio/iio type modes
540          * ----------------------------------------------------------------
541          * Modes         | regular |  regular     | injected | injected   |
542          *               |         |  continuous  |          | + scan     |
543          * --------------|---------|--------------|----------|------------|
544          * single conv   |    x    |              |          |            |
545          * (1 chan)      |         |              |          |            |
546          * --------------|---------|--------------|----------|------------|
547          * 1 Audio chan  |         | sample freq  |          |            |
548          *               |         | or sync_mode |          |            |
549          * --------------|---------|--------------|----------|------------|
550          * 1 IIO chan    |         | sample freq  | trigger  |            |
551          *               |         | or sync_mode |          |            |
552          * --------------|---------|--------------|----------|------------|
553          * 2+ IIO chans  |         |              |          | trigger or |
554          *               |         |              |          | sync_mode  |
555          * ----------------------------------------------------------------
556          */
557         if (adc->nconv == 1 && !trig) {
558                 bit = __ffs(adc->smask);
559                 chan = indio_dev->channels + bit;
560
561                 /* Use regular conversion for single channel without trigger */
562                 cr1 = DFSDM_CR1_RCH(chan->channel);
563
564                 /* Continuous conversions triggered by SPI clk in buffer mode */
565                 if (iio_buffer_enabled(indio_dev))
566                         cr1 |= DFSDM_CR1_RCONT(1);
567
568                 cr1 |= DFSDM_CR1_RSYNC(fl->sync_mode);
569         } else {
570                 /* Use injected conversion for multiple channels */
571                 for_each_set_bit(bit, &adc->smask,
572                                  sizeof(adc->smask) * BITS_PER_BYTE) {
573                         chan = indio_dev->channels + bit;
574                         jchg |= BIT(chan->channel);
575                 }
576                 ret = regmap_write(regmap, DFSDM_JCHGR(fl_id), jchg);
577                 if (ret < 0)
578                         return ret;
579
580                 /* Use scan mode for multiple channels */
581                 cr1 = DFSDM_CR1_JSCAN((adc->nconv > 1) ? 1 : 0);
582
583                 /*
584                  * Continuous conversions not supported in injected mode,
585                  * either use:
586                  * - conversions in sync with filter 0
587                  * - triggered conversions
588                  */
589                 if (!fl->sync_mode && !trig)
590                         return -EINVAL;
591                 cr1 |= DFSDM_CR1_JSYNC(fl->sync_mode);
592         }
593
594         return regmap_update_bits(regmap, DFSDM_CR1(fl_id), DFSDM_CR1_CFG_MASK,
595                                   cr1);
596 }
597
598 static int stm32_dfsdm_channel_parse_of(struct stm32_dfsdm *dfsdm,
599                                         struct iio_dev *indio_dev,
600                                         struct iio_chan_spec *ch)
601 {
602         struct stm32_dfsdm_channel *df_ch;
603         const char *of_str;
604         int chan_idx = ch->scan_index;
605         int ret, val;
606
607         ret = of_property_read_u32_index(indio_dev->dev.of_node,
608                                          "st,adc-channels", chan_idx,
609                                          &ch->channel);
610         if (ret < 0) {
611                 dev_err(&indio_dev->dev,
612                         " Error parsing 'st,adc-channels' for idx %d\n",
613                         chan_idx);
614                 return ret;
615         }
616         if (ch->channel >= dfsdm->num_chs) {
617                 dev_err(&indio_dev->dev,
618                         " Error bad channel number %d (max = %d)\n",
619                         ch->channel, dfsdm->num_chs);
620                 return -EINVAL;
621         }
622
623         ret = of_property_read_string_index(indio_dev->dev.of_node,
624                                             "st,adc-channel-names", chan_idx,
625                                             &ch->datasheet_name);
626         if (ret < 0) {
627                 dev_err(&indio_dev->dev,
628                         " Error parsing 'st,adc-channel-names' for idx %d\n",
629                         chan_idx);
630                 return ret;
631         }
632
633         df_ch =  &dfsdm->ch_list[ch->channel];
634         df_ch->id = ch->channel;
635
636         ret = of_property_read_string_index(indio_dev->dev.of_node,
637                                             "st,adc-channel-types", chan_idx,
638                                             &of_str);
639         if (!ret) {
640                 val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_type);
641                 if (val < 0)
642                         return val;
643         } else {
644                 val = 0;
645         }
646         df_ch->type = val;
647
648         ret = of_property_read_string_index(indio_dev->dev.of_node,
649                                             "st,adc-channel-clk-src", chan_idx,
650                                             &of_str);
651         if (!ret) {
652                 val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_src);
653                 if (val < 0)
654                         return val;
655         } else {
656                 val = 0;
657         }
658         df_ch->src = val;
659
660         ret = of_property_read_u32_index(indio_dev->dev.of_node,
661                                          "st,adc-alt-channel", chan_idx,
662                                          &df_ch->alt_si);
663         if (ret < 0)
664                 df_ch->alt_si = 0;
665
666         return 0;
667 }
668
669 static ssize_t dfsdm_adc_audio_get_spiclk(struct iio_dev *indio_dev,
670                                           uintptr_t priv,
671                                           const struct iio_chan_spec *chan,
672                                           char *buf)
673 {
674         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
675
676         return snprintf(buf, PAGE_SIZE, "%d\n", adc->spi_freq);
677 }
678
679 static int dfsdm_adc_set_samp_freq(struct iio_dev *indio_dev,
680                                    unsigned int sample_freq,
681                                    unsigned int spi_freq)
682 {
683         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
684         unsigned int oversamp;
685         int ret;
686
687         oversamp = DIV_ROUND_CLOSEST(spi_freq, sample_freq);
688         if (spi_freq % sample_freq)
689                 dev_dbg(&indio_dev->dev,
690                         "Rate not accurate. requested (%u), actual (%u)\n",
691                         sample_freq, spi_freq / oversamp);
692
693         ret = stm32_dfsdm_compute_all_osrs(indio_dev, oversamp);
694         if (ret < 0)
695                 return ret;
696
697         adc->sample_freq = spi_freq / oversamp;
698         adc->oversamp = oversamp;
699
700         return 0;
701 }
702
703 static ssize_t dfsdm_adc_audio_set_spiclk(struct iio_dev *indio_dev,
704                                           uintptr_t priv,
705                                           const struct iio_chan_spec *chan,
706                                           const char *buf, size_t len)
707 {
708         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
709         struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
710         unsigned int sample_freq = adc->sample_freq;
711         unsigned int spi_freq;
712         int ret;
713
714         dev_err(&indio_dev->dev, "enter %s\n", __func__);
715         /* If DFSDM is master on SPI, SPI freq can not be updated */
716         if (ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
717                 return -EPERM;
718
719         ret = kstrtoint(buf, 0, &spi_freq);
720         if (ret)
721                 return ret;
722
723         if (!spi_freq)
724                 return -EINVAL;
725
726         if (sample_freq) {
727                 ret = dfsdm_adc_set_samp_freq(indio_dev, sample_freq, spi_freq);
728                 if (ret < 0)
729                         return ret;
730         }
731         adc->spi_freq = spi_freq;
732
733         return len;
734 }
735
736 static int stm32_dfsdm_start_conv(struct iio_dev *indio_dev,
737                                   struct iio_trigger *trig)
738 {
739         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
740         struct regmap *regmap = adc->dfsdm->regmap;
741         int ret;
742
743         ret = stm32_dfsdm_channels_configure(indio_dev, adc->fl_id, trig);
744         if (ret < 0)
745                 return ret;
746
747         ret = stm32_dfsdm_start_channel(indio_dev);
748         if (ret < 0)
749                 return ret;
750
751         ret = stm32_dfsdm_filter_configure(indio_dev, adc->fl_id, trig);
752         if (ret < 0)
753                 goto stop_channels;
754
755         ret = stm32_dfsdm_start_filter(adc, adc->fl_id, trig);
756         if (ret < 0)
757                 goto filter_unconfigure;
758
759         return 0;
760
761 filter_unconfigure:
762         regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
763                            DFSDM_CR1_CFG_MASK, 0);
764 stop_channels:
765         stm32_dfsdm_stop_channel(indio_dev);
766
767         return ret;
768 }
769
770 static void stm32_dfsdm_stop_conv(struct iio_dev *indio_dev)
771 {
772         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
773         struct regmap *regmap = adc->dfsdm->regmap;
774
775         stm32_dfsdm_stop_filter(adc->dfsdm, adc->fl_id);
776
777         regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
778                            DFSDM_CR1_CFG_MASK, 0);
779
780         stm32_dfsdm_stop_channel(indio_dev);
781 }
782
783 static int stm32_dfsdm_set_watermark(struct iio_dev *indio_dev,
784                                      unsigned int val)
785 {
786         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
787         unsigned int watermark = DFSDM_DMA_BUFFER_SIZE / 2;
788         unsigned int rx_buf_sz = DFSDM_DMA_BUFFER_SIZE;
789
790         /*
791          * DMA cyclic transfers are used, buffer is split into two periods.
792          * There should be :
793          * - always one buffer (period) DMA is working on
794          * - one buffer (period) driver pushed to ASoC side.
795          */
796         watermark = min(watermark, val * (unsigned int)(sizeof(u32)));
797         adc->buf_sz = min(rx_buf_sz, watermark * 2 * adc->nconv);
798
799         return 0;
800 }
801
802 static unsigned int stm32_dfsdm_adc_dma_residue(struct stm32_dfsdm_adc *adc)
803 {
804         struct dma_tx_state state;
805         enum dma_status status;
806
807         status = dmaengine_tx_status(adc->dma_chan,
808                                      adc->dma_chan->cookie,
809                                      &state);
810         if (status == DMA_IN_PROGRESS) {
811                 /* Residue is size in bytes from end of buffer */
812                 unsigned int i = adc->buf_sz - state.residue;
813                 unsigned int size;
814
815                 /* Return available bytes */
816                 if (i >= adc->bufi)
817                         size = i - adc->bufi;
818                 else
819                         size = adc->buf_sz + i - adc->bufi;
820
821                 return size;
822         }
823
824         return 0;
825 }
826
827 static inline void stm32_dfsdm_process_data(struct stm32_dfsdm_adc *adc,
828                                             s32 *buffer)
829 {
830         struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
831         struct stm32_dfsdm_filter_osr *flo = &fl->flo[fl->fast];
832         unsigned int i = adc->nconv;
833         s32 *ptr = buffer;
834
835         while (i--) {
836                 /* Mask 8 LSB that contains the channel ID */
837                 *ptr &= 0xFFFFFF00;
838                 /* Convert 2^(n-1) sample to 2^(n-1)-1 to avoid wrap-around */
839                 if (*ptr > flo->max)
840                         *ptr -= 1;
841                 /*
842                  * Samples from filter are retrieved with 23 bits resolution
843                  * or less. Shift left to align MSB on 24 bits.
844                  */
845                 *ptr <<= flo->lshift;
846
847                 ptr++;
848         }
849 }
850
851 static void stm32_dfsdm_dma_buffer_done(void *data)
852 {
853         struct iio_dev *indio_dev = data;
854         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
855         int available = stm32_dfsdm_adc_dma_residue(adc);
856         size_t old_pos;
857
858         /*
859          * FIXME: In Kernel interface does not support cyclic DMA buffer,and
860          * offers only an interface to push data samples per samples.
861          * For this reason IIO buffer interface is not used and interface is
862          * bypassed using a private callback registered by ASoC.
863          * This should be a temporary solution waiting a cyclic DMA engine
864          * support in IIO.
865          */
866
867         dev_dbg(&indio_dev->dev, "pos = %d, available = %d\n",
868                 adc->bufi, available);
869         old_pos = adc->bufi;
870
871         while (available >= indio_dev->scan_bytes) {
872                 s32 *buffer = (s32 *)&adc->rx_buf[adc->bufi];
873
874                 stm32_dfsdm_process_data(adc, buffer);
875
876                 available -= indio_dev->scan_bytes;
877                 adc->bufi += indio_dev->scan_bytes;
878                 if (adc->bufi >= adc->buf_sz) {
879                         if (adc->cb)
880                                 adc->cb(&adc->rx_buf[old_pos],
881                                          adc->buf_sz - old_pos, adc->cb_priv);
882                         adc->bufi = 0;
883                         old_pos = 0;
884                 }
885                 /*
886                  * In DMA mode the trigger services of IIO are not used
887                  * (e.g. no call to iio_trigger_poll).
888                  * Calling irq handler associated to the hardware trigger is not
889                  * relevant as the conversions have already been done. Data
890                  * transfers are performed directly in DMA callback instead.
891                  * This implementation avoids to call trigger irq handler that
892                  * may sleep, in an atomic context (DMA irq handler context).
893                  */
894                 if (adc->dev_data->type == DFSDM_IIO)
895                         iio_push_to_buffers(indio_dev, buffer);
896         }
897         if (adc->cb)
898                 adc->cb(&adc->rx_buf[old_pos], adc->bufi - old_pos,
899                         adc->cb_priv);
900 }
901
902 static int stm32_dfsdm_adc_dma_start(struct iio_dev *indio_dev)
903 {
904         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
905         /*
906          * The DFSDM supports half-word transfers. However, for 16 bits record,
907          * 4 bytes buswidth is kept, to avoid losing samples LSBs when left
908          * shift is required.
909          */
910         struct dma_slave_config config = {
911                 .src_addr = (dma_addr_t)adc->dfsdm->phys_base,
912                 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
913         };
914         struct dma_async_tx_descriptor *desc;
915         dma_cookie_t cookie;
916         int ret;
917
918         if (!adc->dma_chan)
919                 return -EINVAL;
920
921         dev_dbg(&indio_dev->dev, "size=%d watermark=%d\n",
922                 adc->buf_sz, adc->buf_sz / 2);
923
924         if (adc->nconv == 1 && !indio_dev->trig)
925                 config.src_addr += DFSDM_RDATAR(adc->fl_id);
926         else
927                 config.src_addr += DFSDM_JDATAR(adc->fl_id);
928         ret = dmaengine_slave_config(adc->dma_chan, &config);
929         if (ret)
930                 return ret;
931
932         /* Prepare a DMA cyclic transaction */
933         desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
934                                          adc->dma_buf,
935                                          adc->buf_sz, adc->buf_sz / 2,
936                                          DMA_DEV_TO_MEM,
937                                          DMA_PREP_INTERRUPT);
938         if (!desc)
939                 return -EBUSY;
940
941         desc->callback = stm32_dfsdm_dma_buffer_done;
942         desc->callback_param = indio_dev;
943
944         cookie = dmaengine_submit(desc);
945         ret = dma_submit_error(cookie);
946         if (ret)
947                 goto err_stop_dma;
948
949         /* Issue pending DMA requests */
950         dma_async_issue_pending(adc->dma_chan);
951
952         if (adc->nconv == 1 && !indio_dev->trig) {
953                 /* Enable regular DMA transfer*/
954                 ret = regmap_update_bits(adc->dfsdm->regmap,
955                                          DFSDM_CR1(adc->fl_id),
956                                          DFSDM_CR1_RDMAEN_MASK,
957                                          DFSDM_CR1_RDMAEN_MASK);
958         } else {
959                 /* Enable injected DMA transfer*/
960                 ret = regmap_update_bits(adc->dfsdm->regmap,
961                                          DFSDM_CR1(adc->fl_id),
962                                          DFSDM_CR1_JDMAEN_MASK,
963                                          DFSDM_CR1_JDMAEN_MASK);
964         }
965
966         if (ret < 0)
967                 goto err_stop_dma;
968
969         return 0;
970
971 err_stop_dma:
972         dmaengine_terminate_all(adc->dma_chan);
973
974         return ret;
975 }
976
977 static void stm32_dfsdm_adc_dma_stop(struct iio_dev *indio_dev)
978 {
979         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
980
981         if (!adc->dma_chan)
982                 return;
983
984         regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR1(adc->fl_id),
985                            DFSDM_CR1_RDMAEN_MASK | DFSDM_CR1_JDMAEN_MASK, 0);
986         dmaengine_terminate_all(adc->dma_chan);
987 }
988
989 static int stm32_dfsdm_update_scan_mode(struct iio_dev *indio_dev,
990                                         const unsigned long *scan_mask)
991 {
992         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
993
994         adc->nconv = bitmap_weight(scan_mask, indio_dev->masklength);
995         adc->smask = *scan_mask;
996
997         dev_dbg(&indio_dev->dev, "nconv=%d mask=%lx\n", adc->nconv, *scan_mask);
998
999         return 0;
1000 }
1001
1002 static int stm32_dfsdm_postenable(struct iio_dev *indio_dev)
1003 {
1004         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1005         int ret;
1006
1007         /* Reset adc buffer index */
1008         adc->bufi = 0;
1009
1010         if (adc->hwc) {
1011                 ret = iio_hw_consumer_enable(adc->hwc);
1012                 if (ret < 0)
1013                         return ret;
1014         }
1015
1016         ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
1017         if (ret < 0)
1018                 goto err_stop_hwc;
1019
1020         ret = stm32_dfsdm_adc_dma_start(indio_dev);
1021         if (ret) {
1022                 dev_err(&indio_dev->dev, "Can't start DMA\n");
1023                 goto stop_dfsdm;
1024         }
1025
1026         ret = stm32_dfsdm_start_conv(indio_dev, indio_dev->trig);
1027         if (ret) {
1028                 dev_err(&indio_dev->dev, "Can't start conversion\n");
1029                 goto err_stop_dma;
1030         }
1031
1032         return 0;
1033
1034 err_stop_dma:
1035         stm32_dfsdm_adc_dma_stop(indio_dev);
1036 stop_dfsdm:
1037         stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1038 err_stop_hwc:
1039         if (adc->hwc)
1040                 iio_hw_consumer_disable(adc->hwc);
1041
1042         return ret;
1043 }
1044
1045 static int stm32_dfsdm_predisable(struct iio_dev *indio_dev)
1046 {
1047         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1048
1049         stm32_dfsdm_stop_conv(indio_dev);
1050
1051         stm32_dfsdm_adc_dma_stop(indio_dev);
1052
1053         stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1054
1055         if (adc->hwc)
1056                 iio_hw_consumer_disable(adc->hwc);
1057
1058         return 0;
1059 }
1060
1061 static const struct iio_buffer_setup_ops stm32_dfsdm_buffer_setup_ops = {
1062         .postenable = &stm32_dfsdm_postenable,
1063         .predisable = &stm32_dfsdm_predisable,
1064 };
1065
1066 /**
1067  * stm32_dfsdm_get_buff_cb() - register a callback that will be called when
1068  *                             DMA transfer period is achieved.
1069  *
1070  * @iio_dev: Handle to IIO device.
1071  * @cb: Pointer to callback function:
1072  *      - data: pointer to data buffer
1073  *      - size: size in byte of the data buffer
1074  *      - private: pointer to consumer private structure.
1075  * @private: Pointer to consumer private structure.
1076  */
1077 int stm32_dfsdm_get_buff_cb(struct iio_dev *iio_dev,
1078                             int (*cb)(const void *data, size_t size,
1079                                       void *private),
1080                             void *private)
1081 {
1082         struct stm32_dfsdm_adc *adc;
1083
1084         if (!iio_dev)
1085                 return -EINVAL;
1086         adc = iio_priv(iio_dev);
1087
1088         adc->cb = cb;
1089         adc->cb_priv = private;
1090
1091         return 0;
1092 }
1093 EXPORT_SYMBOL_GPL(stm32_dfsdm_get_buff_cb);
1094
1095 /**
1096  * stm32_dfsdm_release_buff_cb - unregister buffer callback
1097  *
1098  * @iio_dev: Handle to IIO device.
1099  */
1100 int stm32_dfsdm_release_buff_cb(struct iio_dev *iio_dev)
1101 {
1102         struct stm32_dfsdm_adc *adc;
1103
1104         if (!iio_dev)
1105                 return -EINVAL;
1106         adc = iio_priv(iio_dev);
1107
1108         adc->cb = NULL;
1109         adc->cb_priv = NULL;
1110
1111         return 0;
1112 }
1113 EXPORT_SYMBOL_GPL(stm32_dfsdm_release_buff_cb);
1114
1115 static int stm32_dfsdm_single_conv(struct iio_dev *indio_dev,
1116                                    const struct iio_chan_spec *chan, int *res)
1117 {
1118         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1119         long timeout;
1120         int ret;
1121
1122         reinit_completion(&adc->completion);
1123
1124         adc->buffer = res;
1125
1126         ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
1127         if (ret < 0)
1128                 return ret;
1129
1130         ret = regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1131                                  DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(1));
1132         if (ret < 0)
1133                 goto stop_dfsdm;
1134
1135         adc->nconv = 1;
1136         adc->smask = BIT(chan->scan_index);
1137         ret = stm32_dfsdm_start_conv(indio_dev, NULL);
1138         if (ret < 0) {
1139                 regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1140                                    DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
1141                 goto stop_dfsdm;
1142         }
1143
1144         timeout = wait_for_completion_interruptible_timeout(&adc->completion,
1145                                                             DFSDM_TIMEOUT);
1146
1147         /* Mask IRQ for regular conversion achievement*/
1148         regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1149                            DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
1150
1151         if (timeout == 0)
1152                 ret = -ETIMEDOUT;
1153         else if (timeout < 0)
1154                 ret = timeout;
1155         else
1156                 ret = IIO_VAL_INT;
1157
1158         stm32_dfsdm_stop_conv(indio_dev);
1159
1160         stm32_dfsdm_process_data(adc, res);
1161
1162 stop_dfsdm:
1163         stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1164
1165         return ret;
1166 }
1167
1168 static int stm32_dfsdm_write_raw(struct iio_dev *indio_dev,
1169                                  struct iio_chan_spec const *chan,
1170                                  int val, int val2, long mask)
1171 {
1172         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1173         struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
1174         unsigned int spi_freq;
1175         int ret = -EINVAL;
1176
1177         switch (ch->src) {
1178         case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL:
1179                 spi_freq = adc->dfsdm->spi_master_freq;
1180                 break;
1181         case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING:
1182         case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING:
1183                 spi_freq = adc->dfsdm->spi_master_freq / 2;
1184                 break;
1185         default:
1186                 spi_freq = adc->spi_freq;
1187         }
1188
1189         switch (mask) {
1190         case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1191                 ret = iio_device_claim_direct_mode(indio_dev);
1192                 if (ret)
1193                         return ret;
1194
1195                 ret = stm32_dfsdm_compute_all_osrs(indio_dev, val);
1196                 if (!ret) {
1197                         dev_dbg(&indio_dev->dev,
1198                                 "Sampling rate changed from (%u) to (%u)\n",
1199                                 adc->sample_freq, spi_freq / val);
1200                         adc->oversamp = val;
1201                         adc->sample_freq = spi_freq / val;
1202                 }
1203                 iio_device_release_direct_mode(indio_dev);
1204                 return ret;
1205
1206         case IIO_CHAN_INFO_SAMP_FREQ:
1207                 if (!val)
1208                         return -EINVAL;
1209
1210                 ret = iio_device_claim_direct_mode(indio_dev);
1211                 if (ret)
1212                         return ret;
1213
1214                 ret = dfsdm_adc_set_samp_freq(indio_dev, val, spi_freq);
1215                 iio_device_release_direct_mode(indio_dev);
1216                 return ret;
1217         }
1218
1219         return -EINVAL;
1220 }
1221
1222 static int stm32_dfsdm_read_raw(struct iio_dev *indio_dev,
1223                                 struct iio_chan_spec const *chan, int *val,
1224                                 int *val2, long mask)
1225 {
1226         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1227         int ret;
1228
1229         switch (mask) {
1230         case IIO_CHAN_INFO_RAW:
1231                 ret = iio_device_claim_direct_mode(indio_dev);
1232                 if (ret)
1233                         return ret;
1234                 ret = iio_hw_consumer_enable(adc->hwc);
1235                 if (ret < 0) {
1236                         dev_err(&indio_dev->dev,
1237                                 "%s: IIO enable failed (channel %d)\n",
1238                                 __func__, chan->channel);
1239                         iio_device_release_direct_mode(indio_dev);
1240                         return ret;
1241                 }
1242                 ret = stm32_dfsdm_single_conv(indio_dev, chan, val);
1243                 iio_hw_consumer_disable(adc->hwc);
1244                 if (ret < 0) {
1245                         dev_err(&indio_dev->dev,
1246                                 "%s: Conversion failed (channel %d)\n",
1247                                 __func__, chan->channel);
1248                         iio_device_release_direct_mode(indio_dev);
1249                         return ret;
1250                 }
1251                 iio_device_release_direct_mode(indio_dev);
1252                 return IIO_VAL_INT;
1253
1254         case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1255                 *val = adc->oversamp;
1256
1257                 return IIO_VAL_INT;
1258
1259         case IIO_CHAN_INFO_SAMP_FREQ:
1260                 *val = adc->sample_freq;
1261
1262                 return IIO_VAL_INT;
1263         }
1264
1265         return -EINVAL;
1266 }
1267
1268 static int stm32_dfsdm_validate_trigger(struct iio_dev *indio_dev,
1269                                         struct iio_trigger *trig)
1270 {
1271         return stm32_dfsdm_get_jextsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1272 }
1273
1274 static const struct iio_info stm32_dfsdm_info_audio = {
1275         .hwfifo_set_watermark = stm32_dfsdm_set_watermark,
1276         .read_raw = stm32_dfsdm_read_raw,
1277         .write_raw = stm32_dfsdm_write_raw,
1278         .update_scan_mode = stm32_dfsdm_update_scan_mode,
1279 };
1280
1281 static const struct iio_info stm32_dfsdm_info_adc = {
1282         .hwfifo_set_watermark = stm32_dfsdm_set_watermark,
1283         .read_raw = stm32_dfsdm_read_raw,
1284         .write_raw = stm32_dfsdm_write_raw,
1285         .update_scan_mode = stm32_dfsdm_update_scan_mode,
1286         .validate_trigger = stm32_dfsdm_validate_trigger,
1287 };
1288
1289 static irqreturn_t stm32_dfsdm_irq(int irq, void *arg)
1290 {
1291         struct iio_dev *indio_dev = arg;
1292         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1293         struct regmap *regmap = adc->dfsdm->regmap;
1294         unsigned int status, int_en;
1295
1296         regmap_read(regmap, DFSDM_ISR(adc->fl_id), &status);
1297         regmap_read(regmap, DFSDM_CR2(adc->fl_id), &int_en);
1298
1299         if (status & DFSDM_ISR_REOCF_MASK) {
1300                 /* Read the data register clean the IRQ status */
1301                 regmap_read(regmap, DFSDM_RDATAR(adc->fl_id), adc->buffer);
1302                 complete(&adc->completion);
1303         }
1304
1305         if (status & DFSDM_ISR_ROVRF_MASK) {
1306                 if (int_en & DFSDM_CR2_ROVRIE_MASK)
1307                         dev_warn(&indio_dev->dev, "Overrun detected\n");
1308                 regmap_update_bits(regmap, DFSDM_ICR(adc->fl_id),
1309                                    DFSDM_ICR_CLRROVRF_MASK,
1310                                    DFSDM_ICR_CLRROVRF_MASK);
1311         }
1312
1313         return IRQ_HANDLED;
1314 }
1315
1316 /*
1317  * Define external info for SPI Frequency and audio sampling rate that can be
1318  * configured by ASoC driver through consumer.h API
1319  */
1320 static const struct iio_chan_spec_ext_info dfsdm_adc_audio_ext_info[] = {
1321         /* spi_clk_freq : clock freq on SPI/manchester bus used by channel */
1322         {
1323                 .name = "spi_clk_freq",
1324                 .shared = IIO_SHARED_BY_TYPE,
1325                 .read = dfsdm_adc_audio_get_spiclk,
1326                 .write = dfsdm_adc_audio_set_spiclk,
1327         },
1328         {},
1329 };
1330
1331 static void stm32_dfsdm_dma_release(struct iio_dev *indio_dev)
1332 {
1333         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1334
1335         if (adc->dma_chan) {
1336                 dma_free_coherent(adc->dma_chan->device->dev,
1337                                   DFSDM_DMA_BUFFER_SIZE,
1338                                   adc->rx_buf, adc->dma_buf);
1339                 dma_release_channel(adc->dma_chan);
1340         }
1341 }
1342
1343 static int stm32_dfsdm_dma_request(struct device *dev,
1344                                    struct iio_dev *indio_dev)
1345 {
1346         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1347
1348         adc->dma_chan = dma_request_chan(dev, "rx");
1349         if (IS_ERR(adc->dma_chan)) {
1350                 int ret = PTR_ERR(adc->dma_chan);
1351
1352                 adc->dma_chan = NULL;
1353                 return ret;
1354         }
1355
1356         adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
1357                                          DFSDM_DMA_BUFFER_SIZE,
1358                                          &adc->dma_buf, GFP_KERNEL);
1359         if (!adc->rx_buf) {
1360                 dma_release_channel(adc->dma_chan);
1361                 return -ENOMEM;
1362         }
1363
1364         indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1365         indio_dev->setup_ops = &stm32_dfsdm_buffer_setup_ops;
1366
1367         return 0;
1368 }
1369
1370 static int stm32_dfsdm_adc_chan_init_one(struct iio_dev *indio_dev,
1371                                          struct iio_chan_spec *ch)
1372 {
1373         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1374         int ret;
1375
1376         ret = stm32_dfsdm_channel_parse_of(adc->dfsdm, indio_dev, ch);
1377         if (ret < 0)
1378                 return ret;
1379
1380         ch->type = IIO_VOLTAGE;
1381         ch->indexed = 1;
1382
1383         /*
1384          * IIO_CHAN_INFO_RAW: used to compute regular conversion
1385          * IIO_CHAN_INFO_OVERSAMPLING_RATIO: used to set oversampling
1386          */
1387         ch->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1388         ch->info_mask_shared_by_all = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO) |
1389                                         BIT(IIO_CHAN_INFO_SAMP_FREQ);
1390
1391         if (adc->dev_data->type == DFSDM_AUDIO) {
1392                 ch->ext_info = dfsdm_adc_audio_ext_info;
1393         } else {
1394                 ch->scan_type.shift = 8;
1395         }
1396         ch->scan_type.sign = 's';
1397         ch->scan_type.realbits = 24;
1398         ch->scan_type.storagebits = 32;
1399
1400         return stm32_dfsdm_chan_configure(adc->dfsdm,
1401                                           &adc->dfsdm->ch_list[ch->channel]);
1402 }
1403
1404 static int stm32_dfsdm_audio_init(struct device *dev, struct iio_dev *indio_dev)
1405 {
1406         struct iio_chan_spec *ch;
1407         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1408         struct stm32_dfsdm_channel *d_ch;
1409         int ret;
1410
1411         ch = devm_kzalloc(&indio_dev->dev, sizeof(*ch), GFP_KERNEL);
1412         if (!ch)
1413                 return -ENOMEM;
1414
1415         ch->scan_index = 0;
1416
1417         ret = stm32_dfsdm_adc_chan_init_one(indio_dev, ch);
1418         if (ret < 0) {
1419                 dev_err(&indio_dev->dev, "Channels init failed\n");
1420                 return ret;
1421         }
1422         ch->info_mask_separate = BIT(IIO_CHAN_INFO_SAMP_FREQ);
1423
1424         d_ch = &adc->dfsdm->ch_list[ch->channel];
1425         if (d_ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
1426                 adc->spi_freq = adc->dfsdm->spi_master_freq;
1427
1428         indio_dev->num_channels = 1;
1429         indio_dev->channels = ch;
1430
1431         return stm32_dfsdm_dma_request(dev, indio_dev);
1432 }
1433
1434 static int stm32_dfsdm_adc_init(struct device *dev, struct iio_dev *indio_dev)
1435 {
1436         struct iio_chan_spec *ch;
1437         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1438         int num_ch;
1439         int ret, chan_idx;
1440
1441         adc->oversamp = DFSDM_DEFAULT_OVERSAMPLING;
1442         ret = stm32_dfsdm_compute_all_osrs(indio_dev, adc->oversamp);
1443         if (ret < 0)
1444                 return ret;
1445
1446         num_ch = of_property_count_u32_elems(indio_dev->dev.of_node,
1447                                              "st,adc-channels");
1448         if (num_ch < 0 || num_ch > adc->dfsdm->num_chs) {
1449                 dev_err(&indio_dev->dev, "Bad st,adc-channels\n");
1450                 return num_ch < 0 ? num_ch : -EINVAL;
1451         }
1452
1453         /* Bind to SD modulator IIO device */
1454         adc->hwc = devm_iio_hw_consumer_alloc(&indio_dev->dev);
1455         if (IS_ERR(adc->hwc))
1456                 return -EPROBE_DEFER;
1457
1458         ch = devm_kcalloc(&indio_dev->dev, num_ch, sizeof(*ch),
1459                           GFP_KERNEL);
1460         if (!ch)
1461                 return -ENOMEM;
1462
1463         for (chan_idx = 0; chan_idx < num_ch; chan_idx++) {
1464                 ch[chan_idx].scan_index = chan_idx;
1465                 ret = stm32_dfsdm_adc_chan_init_one(indio_dev, &ch[chan_idx]);
1466                 if (ret < 0) {
1467                         dev_err(&indio_dev->dev, "Channels init failed\n");
1468                         return ret;
1469                 }
1470         }
1471
1472         indio_dev->num_channels = num_ch;
1473         indio_dev->channels = ch;
1474
1475         init_completion(&adc->completion);
1476
1477         /* Optionally request DMA */
1478         ret = stm32_dfsdm_dma_request(dev, indio_dev);
1479         if (ret) {
1480                 if (ret != -ENODEV)
1481                         return dev_err_probe(dev, ret,
1482                                              "DMA channel request failed with\n");
1483
1484                 dev_dbg(dev, "No DMA support\n");
1485                 return 0;
1486         }
1487
1488         ret = iio_triggered_buffer_setup(indio_dev,
1489                                          &iio_pollfunc_store_time, NULL,
1490                                          &stm32_dfsdm_buffer_setup_ops);
1491         if (ret) {
1492                 stm32_dfsdm_dma_release(indio_dev);
1493                 dev_err(&indio_dev->dev, "buffer setup failed\n");
1494                 return ret;
1495         }
1496
1497         /* lptimer/timer hardware triggers */
1498         indio_dev->modes |= INDIO_HARDWARE_TRIGGERED;
1499
1500         return 0;
1501 }
1502
1503 static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_adc_data = {
1504         .type = DFSDM_IIO,
1505         .init = stm32_dfsdm_adc_init,
1506 };
1507
1508 static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_audio_data = {
1509         .type = DFSDM_AUDIO,
1510         .init = stm32_dfsdm_audio_init,
1511 };
1512
1513 static const struct of_device_id stm32_dfsdm_adc_match[] = {
1514         {
1515                 .compatible = "st,stm32-dfsdm-adc",
1516                 .data = &stm32h7_dfsdm_adc_data,
1517         },
1518         {
1519                 .compatible = "st,stm32-dfsdm-dmic",
1520                 .data = &stm32h7_dfsdm_audio_data,
1521         },
1522         {}
1523 };
1524 MODULE_DEVICE_TABLE(of, stm32_dfsdm_adc_match);
1525
1526 static int stm32_dfsdm_adc_probe(struct platform_device *pdev)
1527 {
1528         struct device *dev = &pdev->dev;
1529         struct stm32_dfsdm_adc *adc;
1530         struct device_node *np = dev->of_node;
1531         const struct stm32_dfsdm_dev_data *dev_data;
1532         struct iio_dev *iio;
1533         char *name;
1534         int ret, irq, val;
1535
1536         dev_data = of_device_get_match_data(dev);
1537         iio = devm_iio_device_alloc(dev, sizeof(*adc));
1538         if (!iio) {
1539                 dev_err(dev, "%s: Failed to allocate IIO\n", __func__);
1540                 return -ENOMEM;
1541         }
1542
1543         adc = iio_priv(iio);
1544         adc->dfsdm = dev_get_drvdata(dev->parent);
1545
1546         iio->dev.of_node = np;
1547         iio->modes = INDIO_DIRECT_MODE;
1548
1549         platform_set_drvdata(pdev, iio);
1550
1551         ret = of_property_read_u32(dev->of_node, "reg", &adc->fl_id);
1552         if (ret != 0 || adc->fl_id >= adc->dfsdm->num_fls) {
1553                 dev_err(dev, "Missing or bad reg property\n");
1554                 return -EINVAL;
1555         }
1556
1557         name = devm_kzalloc(dev, sizeof("dfsdm-adc0"), GFP_KERNEL);
1558         if (!name)
1559                 return -ENOMEM;
1560         if (dev_data->type == DFSDM_AUDIO) {
1561                 iio->info = &stm32_dfsdm_info_audio;
1562                 snprintf(name, sizeof("dfsdm-pdm0"), "dfsdm-pdm%d", adc->fl_id);
1563         } else {
1564                 iio->info = &stm32_dfsdm_info_adc;
1565                 snprintf(name, sizeof("dfsdm-adc0"), "dfsdm-adc%d", adc->fl_id);
1566         }
1567         iio->name = name;
1568
1569         /*
1570          * In a first step IRQs generated for channels are not treated.
1571          * So IRQ associated to filter instance 0 is dedicated to the Filter 0.
1572          */
1573         irq = platform_get_irq(pdev, 0);
1574         if (irq < 0)
1575                 return irq;
1576
1577         ret = devm_request_irq(dev, irq, stm32_dfsdm_irq,
1578                                0, pdev->name, iio);
1579         if (ret < 0) {
1580                 dev_err(dev, "Failed to request IRQ\n");
1581                 return ret;
1582         }
1583
1584         ret = of_property_read_u32(dev->of_node, "st,filter-order", &val);
1585         if (ret < 0) {
1586                 dev_err(dev, "Failed to set filter order\n");
1587                 return ret;
1588         }
1589
1590         adc->dfsdm->fl_list[adc->fl_id].ford = val;
1591
1592         ret = of_property_read_u32(dev->of_node, "st,filter0-sync", &val);
1593         if (!ret)
1594                 adc->dfsdm->fl_list[adc->fl_id].sync_mode = val;
1595
1596         adc->dev_data = dev_data;
1597         ret = dev_data->init(dev, iio);
1598         if (ret < 0)
1599                 return ret;
1600
1601         ret = iio_device_register(iio);
1602         if (ret < 0)
1603                 goto err_cleanup;
1604
1605         if (dev_data->type == DFSDM_AUDIO) {
1606                 ret = of_platform_populate(np, NULL, NULL, dev);
1607                 if (ret < 0) {
1608                         dev_err(dev, "Failed to find an audio DAI\n");
1609                         goto err_unregister;
1610                 }
1611         }
1612
1613         return 0;
1614
1615 err_unregister:
1616         iio_device_unregister(iio);
1617 err_cleanup:
1618         stm32_dfsdm_dma_release(iio);
1619
1620         return ret;
1621 }
1622
1623 static void stm32_dfsdm_adc_remove(struct platform_device *pdev)
1624 {
1625         struct iio_dev *indio_dev = platform_get_drvdata(pdev);
1626         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1627
1628         if (adc->dev_data->type == DFSDM_AUDIO)
1629                 of_platform_depopulate(&pdev->dev);
1630         iio_device_unregister(indio_dev);
1631         stm32_dfsdm_dma_release(indio_dev);
1632 }
1633
1634 static int stm32_dfsdm_adc_suspend(struct device *dev)
1635 {
1636         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1637
1638         if (iio_buffer_enabled(indio_dev))
1639                 stm32_dfsdm_predisable(indio_dev);
1640
1641         return 0;
1642 }
1643
1644 static int stm32_dfsdm_adc_resume(struct device *dev)
1645 {
1646         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1647         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1648         const struct iio_chan_spec *chan;
1649         struct stm32_dfsdm_channel *ch;
1650         int i, ret;
1651
1652         /* restore channels configuration */
1653         for (i = 0; i < indio_dev->num_channels; i++) {
1654                 chan = indio_dev->channels + i;
1655                 ch = &adc->dfsdm->ch_list[chan->channel];
1656                 ret = stm32_dfsdm_chan_configure(adc->dfsdm, ch);
1657                 if (ret)
1658                         return ret;
1659         }
1660
1661         if (iio_buffer_enabled(indio_dev))
1662                 stm32_dfsdm_postenable(indio_dev);
1663
1664         return 0;
1665 }
1666
1667 static DEFINE_SIMPLE_DEV_PM_OPS(stm32_dfsdm_adc_pm_ops,
1668                                 stm32_dfsdm_adc_suspend,
1669                                 stm32_dfsdm_adc_resume);
1670
1671 static struct platform_driver stm32_dfsdm_adc_driver = {
1672         .driver = {
1673                 .name = "stm32-dfsdm-adc",
1674                 .of_match_table = stm32_dfsdm_adc_match,
1675                 .pm = pm_sleep_ptr(&stm32_dfsdm_adc_pm_ops),
1676         },
1677         .probe = stm32_dfsdm_adc_probe,
1678         .remove_new = stm32_dfsdm_adc_remove,
1679 };
1680 module_platform_driver(stm32_dfsdm_adc_driver);
1681
1682 MODULE_DESCRIPTION("STM32 sigma delta ADC");
1683 MODULE_AUTHOR("Arnaud Pouliquen <arnaud.pouliquen@st.com>");
1684 MODULE_LICENSE("GPL v2");