GNU Linux-libre 5.10.153-gnu1
[releases.git] / drivers / iio / adc / stm32-dfsdm-adc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file is the ADC part of the STM32 DFSDM driver
4  *
5  * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6  * Author: Arnaud Pouliquen <arnaud.pouliquen@st.com>.
7  */
8
9 #include <linux/dmaengine.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/iio/adc/stm32-dfsdm-adc.h>
12 #include <linux/iio/buffer.h>
13 #include <linux/iio/hw-consumer.h>
14 #include <linux/iio/sysfs.h>
15 #include <linux/iio/timer/stm32-lptim-trigger.h>
16 #include <linux/iio/timer/stm32-timer-trigger.h>
17 #include <linux/iio/trigger.h>
18 #include <linux/iio/trigger_consumer.h>
19 #include <linux/iio/triggered_buffer.h>
20 #include <linux/interrupt.h>
21 #include <linux/module.h>
22 #include <linux/of_device.h>
23 #include <linux/platform_device.h>
24 #include <linux/regmap.h>
25 #include <linux/slab.h>
26
27 #include "stm32-dfsdm.h"
28
29 #define DFSDM_DMA_BUFFER_SIZE (4 * PAGE_SIZE)
30
31 /* Conversion timeout */
32 #define DFSDM_TIMEOUT_US 100000
33 #define DFSDM_TIMEOUT (msecs_to_jiffies(DFSDM_TIMEOUT_US / 1000))
34
35 /* Oversampling attribute default */
36 #define DFSDM_DEFAULT_OVERSAMPLING  100
37
38 /* Oversampling max values */
39 #define DFSDM_MAX_INT_OVERSAMPLING 256
40 #define DFSDM_MAX_FL_OVERSAMPLING 1024
41
42 /* Limit filter output resolution to 31 bits. (i.e. sample range is +/-2^30) */
43 #define DFSDM_DATA_MAX BIT(30)
44 /*
45  * Data are output as two's complement data in a 24 bit field.
46  * Data from filters are in the range +/-2^(n-1)
47  * 2^(n-1) maximum positive value cannot be coded in 2's complement n bits
48  * An extra bit is required to avoid wrap-around of the binary code for 2^(n-1)
49  * So, the resolution of samples from filter is actually limited to 23 bits
50  */
51 #define DFSDM_DATA_RES 24
52
53 /* Filter configuration */
54 #define DFSDM_CR1_CFG_MASK (DFSDM_CR1_RCH_MASK | DFSDM_CR1_RCONT_MASK | \
55                             DFSDM_CR1_RSYNC_MASK | DFSDM_CR1_JSYNC_MASK | \
56                             DFSDM_CR1_JSCAN_MASK)
57
58 enum sd_converter_type {
59         DFSDM_AUDIO,
60         DFSDM_IIO,
61 };
62
63 struct stm32_dfsdm_dev_data {
64         int type;
65         int (*init)(struct device *dev, struct iio_dev *indio_dev);
66         unsigned int num_channels;
67         const struct regmap_config *regmap_cfg;
68 };
69
70 struct stm32_dfsdm_adc {
71         struct stm32_dfsdm *dfsdm;
72         const struct stm32_dfsdm_dev_data *dev_data;
73         unsigned int fl_id;
74         unsigned int nconv;
75         unsigned long smask;
76
77         /* ADC specific */
78         unsigned int oversamp;
79         struct iio_hw_consumer *hwc;
80         struct completion completion;
81         u32 *buffer;
82
83         /* Audio specific */
84         unsigned int spi_freq;  /* SPI bus clock frequency */
85         unsigned int sample_freq; /* Sample frequency after filter decimation */
86         int (*cb)(const void *data, size_t size, void *cb_priv);
87         void *cb_priv;
88
89         /* DMA */
90         u8 *rx_buf;
91         unsigned int bufi; /* Buffer current position */
92         unsigned int buf_sz; /* Buffer size */
93         struct dma_chan *dma_chan;
94         dma_addr_t dma_buf;
95 };
96
97 struct stm32_dfsdm_str2field {
98         const char      *name;
99         unsigned int    val;
100 };
101
102 /* DFSDM channel serial interface type */
103 static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_type[] = {
104         { "SPI_R", 0 }, /* SPI with data on rising edge */
105         { "SPI_F", 1 }, /* SPI with data on falling edge */
106         { "MANCH_R", 2 }, /* Manchester codec, rising edge = logic 0 */
107         { "MANCH_F", 3 }, /* Manchester codec, falling edge = logic 1 */
108         {},
109 };
110
111 /* DFSDM channel clock source */
112 static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_src[] = {
113         /* External SPI clock (CLKIN x) */
114         { "CLKIN", DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL },
115         /* Internal SPI clock (CLKOUT) */
116         { "CLKOUT", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL },
117         /* Internal SPI clock divided by 2 (falling edge) */
118         { "CLKOUT_F", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING },
119         /* Internal SPI clock divided by 2 (falling edge) */
120         { "CLKOUT_R", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING },
121         {},
122 };
123
124 static int stm32_dfsdm_str2val(const char *str,
125                                const struct stm32_dfsdm_str2field *list)
126 {
127         const struct stm32_dfsdm_str2field *p = list;
128
129         for (p = list; p && p->name; p++)
130                 if (!strcmp(p->name, str))
131                         return p->val;
132
133         return -EINVAL;
134 }
135
136 /**
137  * struct stm32_dfsdm_trig_info - DFSDM trigger info
138  * @name:               name of the trigger, corresponding to its source
139  * @jextsel:            trigger signal selection
140  */
141 struct stm32_dfsdm_trig_info {
142         const char *name;
143         unsigned int jextsel;
144 };
145
146 /* hardware injected trigger enable, edge selection */
147 enum stm32_dfsdm_jexten {
148         STM32_DFSDM_JEXTEN_DISABLED,
149         STM32_DFSDM_JEXTEN_RISING_EDGE,
150         STM32_DFSDM_JEXTEN_FALLING_EDGE,
151         STM32_DFSDM_EXTEN_BOTH_EDGES,
152 };
153
154 static const struct stm32_dfsdm_trig_info stm32_dfsdm_trigs[] = {
155         { TIM1_TRGO, 0 },
156         { TIM1_TRGO2, 1 },
157         { TIM8_TRGO, 2 },
158         { TIM8_TRGO2, 3 },
159         { TIM3_TRGO, 4 },
160         { TIM4_TRGO, 5 },
161         { TIM16_OC1, 6 },
162         { TIM6_TRGO, 7 },
163         { TIM7_TRGO, 8 },
164         { LPTIM1_OUT, 26 },
165         { LPTIM2_OUT, 27 },
166         { LPTIM3_OUT, 28 },
167         {},
168 };
169
170 static int stm32_dfsdm_get_jextsel(struct iio_dev *indio_dev,
171                                    struct iio_trigger *trig)
172 {
173         int i;
174
175         /* lookup triggers registered by stm32 timer trigger driver */
176         for (i = 0; stm32_dfsdm_trigs[i].name; i++) {
177                 /**
178                  * Checking both stm32 timer trigger type and trig name
179                  * should be safe against arbitrary trigger names.
180                  */
181                 if ((is_stm32_timer_trigger(trig) ||
182                      is_stm32_lptim_trigger(trig)) &&
183                     !strcmp(stm32_dfsdm_trigs[i].name, trig->name)) {
184                         return stm32_dfsdm_trigs[i].jextsel;
185                 }
186         }
187
188         return -EINVAL;
189 }
190
191 static int stm32_dfsdm_compute_osrs(struct stm32_dfsdm_filter *fl,
192                                     unsigned int fast, unsigned int oversamp)
193 {
194         unsigned int i, d, fosr, iosr;
195         u64 res, max;
196         int bits, shift;
197         unsigned int m = 1;     /* multiplication factor */
198         unsigned int p = fl->ford;      /* filter order (ford) */
199         struct stm32_dfsdm_filter_osr *flo = &fl->flo[fast];
200
201         pr_debug("%s: Requested oversampling: %d\n",  __func__, oversamp);
202         /*
203          * This function tries to compute filter oversampling and integrator
204          * oversampling, base on oversampling ratio requested by user.
205          *
206          * Decimation d depends on the filter order and the oversampling ratios.
207          * ford: filter order
208          * fosr: filter over sampling ratio
209          * iosr: integrator over sampling ratio
210          */
211         if (fl->ford == DFSDM_FASTSINC_ORDER) {
212                 m = 2;
213                 p = 2;
214         }
215
216         /*
217          * Look for filter and integrator oversampling ratios which allows
218          * to maximize data output resolution.
219          */
220         for (fosr = 1; fosr <= DFSDM_MAX_FL_OVERSAMPLING; fosr++) {
221                 for (iosr = 1; iosr <= DFSDM_MAX_INT_OVERSAMPLING; iosr++) {
222                         if (fast)
223                                 d = fosr * iosr;
224                         else if (fl->ford == DFSDM_FASTSINC_ORDER)
225                                 d = fosr * (iosr + 3) + 2;
226                         else
227                                 d = fosr * (iosr - 1 + p) + p;
228
229                         if (d > oversamp)
230                                 break;
231                         else if (d != oversamp)
232                                 continue;
233                         /*
234                          * Check resolution (limited to signed 32 bits)
235                          *   res <= 2^31
236                          * Sincx filters:
237                          *   res = m * fosr^p x iosr (with m=1, p=ford)
238                          * FastSinc filter
239                          *   res = m * fosr^p x iosr (with m=2, p=2)
240                          */
241                         res = fosr;
242                         for (i = p - 1; i > 0; i--) {
243                                 res = res * (u64)fosr;
244                                 if (res > DFSDM_DATA_MAX)
245                                         break;
246                         }
247                         if (res > DFSDM_DATA_MAX)
248                                 continue;
249
250                         res = res * (u64)m * (u64)iosr;
251                         if (res > DFSDM_DATA_MAX)
252                                 continue;
253
254                         if (res >= flo->res) {
255                                 flo->res = res;
256                                 flo->fosr = fosr;
257                                 flo->iosr = iosr;
258
259                                 bits = fls(flo->res);
260                                 /* 8 LBSs in data register contain chan info */
261                                 max = flo->res << 8;
262
263                                 /* if resolution is not a power of two */
264                                 if (flo->res > BIT(bits - 1))
265                                         bits++;
266                                 else
267                                         max--;
268
269                                 shift = DFSDM_DATA_RES - bits;
270                                 /*
271                                  * Compute right/left shift
272                                  * Right shift is performed by hardware
273                                  * when transferring samples to data register.
274                                  * Left shift is done by software on buffer
275                                  */
276                                 if (shift > 0) {
277                                         /* Resolution is lower than 24 bits */
278                                         flo->rshift = 0;
279                                         flo->lshift = shift;
280                                 } else {
281                                         /*
282                                          * If resolution is 24 bits or more,
283                                          * max positive value may be ambiguous
284                                          * (equal to max negative value as sign
285                                          * bit is dropped).
286                                          * Reduce resolution to 23 bits (rshift)
287                                          * to keep the sign on bit 23 and treat
288                                          * saturation before rescaling on 24
289                                          * bits (lshift).
290                                          */
291                                         flo->rshift = 1 - shift;
292                                         flo->lshift = 1;
293                                         max >>= flo->rshift;
294                                 }
295                                 flo->max = (s32)max;
296                                 flo->bits = bits;
297
298                                 pr_debug("%s: fast %d, fosr %d, iosr %d, res 0x%llx/%d bits, rshift %d, lshift %d\n",
299                                          __func__, fast, flo->fosr, flo->iosr,
300                                          flo->res, bits, flo->rshift,
301                                          flo->lshift);
302                         }
303                 }
304         }
305
306         if (!flo->res)
307                 return -EINVAL;
308
309         return 0;
310 }
311
312 static int stm32_dfsdm_compute_all_osrs(struct iio_dev *indio_dev,
313                                         unsigned int oversamp)
314 {
315         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
316         struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
317         int ret0, ret1;
318
319         memset(&fl->flo[0], 0, sizeof(fl->flo[0]));
320         memset(&fl->flo[1], 0, sizeof(fl->flo[1]));
321
322         ret0 = stm32_dfsdm_compute_osrs(fl, 0, oversamp);
323         ret1 = stm32_dfsdm_compute_osrs(fl, 1, oversamp);
324         if (ret0 < 0 && ret1 < 0) {
325                 dev_err(&indio_dev->dev,
326                         "Filter parameters not found: errors %d/%d\n",
327                         ret0, ret1);
328                 return -EINVAL;
329         }
330
331         return 0;
332 }
333
334 static int stm32_dfsdm_start_channel(struct iio_dev *indio_dev)
335 {
336         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
337         struct regmap *regmap = adc->dfsdm->regmap;
338         const struct iio_chan_spec *chan;
339         unsigned int bit;
340         int ret;
341
342         for_each_set_bit(bit, &adc->smask, sizeof(adc->smask) * BITS_PER_BYTE) {
343                 chan = indio_dev->channels + bit;
344                 ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(chan->channel),
345                                          DFSDM_CHCFGR1_CHEN_MASK,
346                                          DFSDM_CHCFGR1_CHEN(1));
347                 if (ret < 0)
348                         return ret;
349         }
350
351         return 0;
352 }
353
354 static void stm32_dfsdm_stop_channel(struct iio_dev *indio_dev)
355 {
356         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
357         struct regmap *regmap = adc->dfsdm->regmap;
358         const struct iio_chan_spec *chan;
359         unsigned int bit;
360
361         for_each_set_bit(bit, &adc->smask, sizeof(adc->smask) * BITS_PER_BYTE) {
362                 chan = indio_dev->channels + bit;
363                 regmap_update_bits(regmap, DFSDM_CHCFGR1(chan->channel),
364                                    DFSDM_CHCFGR1_CHEN_MASK,
365                                    DFSDM_CHCFGR1_CHEN(0));
366         }
367 }
368
369 static int stm32_dfsdm_chan_configure(struct stm32_dfsdm *dfsdm,
370                                       struct stm32_dfsdm_channel *ch)
371 {
372         unsigned int id = ch->id;
373         struct regmap *regmap = dfsdm->regmap;
374         int ret;
375
376         ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
377                                  DFSDM_CHCFGR1_SITP_MASK,
378                                  DFSDM_CHCFGR1_SITP(ch->type));
379         if (ret < 0)
380                 return ret;
381         ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
382                                  DFSDM_CHCFGR1_SPICKSEL_MASK,
383                                  DFSDM_CHCFGR1_SPICKSEL(ch->src));
384         if (ret < 0)
385                 return ret;
386         return regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
387                                   DFSDM_CHCFGR1_CHINSEL_MASK,
388                                   DFSDM_CHCFGR1_CHINSEL(ch->alt_si));
389 }
390
391 static int stm32_dfsdm_start_filter(struct stm32_dfsdm_adc *adc,
392                                     unsigned int fl_id,
393                                     struct iio_trigger *trig)
394 {
395         struct stm32_dfsdm *dfsdm = adc->dfsdm;
396         int ret;
397
398         /* Enable filter */
399         ret = regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
400                                  DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(1));
401         if (ret < 0)
402                 return ret;
403
404         /* Nothing more to do for injected (scan mode/triggered) conversions */
405         if (adc->nconv > 1 || trig)
406                 return 0;
407
408         /* Software start (single or continuous) regular conversion */
409         return regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
410                                   DFSDM_CR1_RSWSTART_MASK,
411                                   DFSDM_CR1_RSWSTART(1));
412 }
413
414 static void stm32_dfsdm_stop_filter(struct stm32_dfsdm *dfsdm,
415                                     unsigned int fl_id)
416 {
417         /* Disable conversion */
418         regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
419                            DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(0));
420 }
421
422 static int stm32_dfsdm_filter_set_trig(struct iio_dev *indio_dev,
423                                        unsigned int fl_id,
424                                        struct iio_trigger *trig)
425 {
426         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
427         struct regmap *regmap = adc->dfsdm->regmap;
428         u32 jextsel = 0, jexten = STM32_DFSDM_JEXTEN_DISABLED;
429         int ret;
430
431         if (trig) {
432                 ret = stm32_dfsdm_get_jextsel(indio_dev, trig);
433                 if (ret < 0)
434                         return ret;
435
436                 /* set trigger source and polarity (default to rising edge) */
437                 jextsel = ret;
438                 jexten = STM32_DFSDM_JEXTEN_RISING_EDGE;
439         }
440
441         ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id),
442                                  DFSDM_CR1_JEXTSEL_MASK | DFSDM_CR1_JEXTEN_MASK,
443                                  DFSDM_CR1_JEXTSEL(jextsel) |
444                                  DFSDM_CR1_JEXTEN(jexten));
445         if (ret < 0)
446                 return ret;
447
448         return 0;
449 }
450
451 static int stm32_dfsdm_channels_configure(struct iio_dev *indio_dev,
452                                           unsigned int fl_id,
453                                           struct iio_trigger *trig)
454 {
455         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
456         struct regmap *regmap = adc->dfsdm->regmap;
457         struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[fl_id];
458         struct stm32_dfsdm_filter_osr *flo = &fl->flo[0];
459         const struct iio_chan_spec *chan;
460         unsigned int bit;
461         int ret;
462
463         fl->fast = 0;
464
465         /*
466          * In continuous mode, use fast mode configuration,
467          * if it provides a better resolution.
468          */
469         if (adc->nconv == 1 && !trig &&
470             (indio_dev->currentmode & INDIO_BUFFER_SOFTWARE)) {
471                 if (fl->flo[1].res >= fl->flo[0].res) {
472                         fl->fast = 1;
473                         flo = &fl->flo[1];
474                 }
475         }
476
477         if (!flo->res)
478                 return -EINVAL;
479
480         dev_dbg(&indio_dev->dev, "Samples actual resolution: %d bits",
481                 min(flo->bits, (u32)DFSDM_DATA_RES - 1));
482
483         for_each_set_bit(bit, &adc->smask,
484                          sizeof(adc->smask) * BITS_PER_BYTE) {
485                 chan = indio_dev->channels + bit;
486
487                 ret = regmap_update_bits(regmap,
488                                          DFSDM_CHCFGR2(chan->channel),
489                                          DFSDM_CHCFGR2_DTRBS_MASK,
490                                          DFSDM_CHCFGR2_DTRBS(flo->rshift));
491                 if (ret)
492                         return ret;
493         }
494
495         return 0;
496 }
497
498 static int stm32_dfsdm_filter_configure(struct iio_dev *indio_dev,
499                                         unsigned int fl_id,
500                                         struct iio_trigger *trig)
501 {
502         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
503         struct regmap *regmap = adc->dfsdm->regmap;
504         struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[fl_id];
505         struct stm32_dfsdm_filter_osr *flo = &fl->flo[fl->fast];
506         u32 cr1;
507         const struct iio_chan_spec *chan;
508         unsigned int bit, jchg = 0;
509         int ret;
510
511         /* Average integrator oversampling */
512         ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_IOSR_MASK,
513                                  DFSDM_FCR_IOSR(flo->iosr - 1));
514         if (ret)
515                 return ret;
516
517         /* Filter order and Oversampling */
518         ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FOSR_MASK,
519                                  DFSDM_FCR_FOSR(flo->fosr - 1));
520         if (ret)
521                 return ret;
522
523         ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FORD_MASK,
524                                  DFSDM_FCR_FORD(fl->ford));
525         if (ret)
526                 return ret;
527
528         ret = stm32_dfsdm_filter_set_trig(indio_dev, fl_id, trig);
529         if (ret)
530                 return ret;
531
532         ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id),
533                                  DFSDM_CR1_FAST_MASK,
534                                  DFSDM_CR1_FAST(fl->fast));
535         if (ret)
536                 return ret;
537
538         /*
539          * DFSDM modes configuration W.R.T audio/iio type modes
540          * ----------------------------------------------------------------
541          * Modes         | regular |  regular     | injected | injected   |
542          *               |         |  continuous  |          | + scan     |
543          * --------------|---------|--------------|----------|------------|
544          * single conv   |    x    |              |          |            |
545          * (1 chan)      |         |              |          |            |
546          * --------------|---------|--------------|----------|------------|
547          * 1 Audio chan  |         | sample freq  |          |            |
548          *               |         | or sync_mode |          |            |
549          * --------------|---------|--------------|----------|------------|
550          * 1 IIO chan    |         | sample freq  | trigger  |            |
551          *               |         | or sync_mode |          |            |
552          * --------------|---------|--------------|----------|------------|
553          * 2+ IIO chans  |         |              |          | trigger or |
554          *               |         |              |          | sync_mode  |
555          * ----------------------------------------------------------------
556          */
557         if (adc->nconv == 1 && !trig) {
558                 bit = __ffs(adc->smask);
559                 chan = indio_dev->channels + bit;
560
561                 /* Use regular conversion for single channel without trigger */
562                 cr1 = DFSDM_CR1_RCH(chan->channel);
563
564                 /* Continuous conversions triggered by SPI clk in buffer mode */
565                 if (indio_dev->currentmode & INDIO_BUFFER_SOFTWARE)
566                         cr1 |= DFSDM_CR1_RCONT(1);
567
568                 cr1 |= DFSDM_CR1_RSYNC(fl->sync_mode);
569         } else {
570                 /* Use injected conversion for multiple channels */
571                 for_each_set_bit(bit, &adc->smask,
572                                  sizeof(adc->smask) * BITS_PER_BYTE) {
573                         chan = indio_dev->channels + bit;
574                         jchg |= BIT(chan->channel);
575                 }
576                 ret = regmap_write(regmap, DFSDM_JCHGR(fl_id), jchg);
577                 if (ret < 0)
578                         return ret;
579
580                 /* Use scan mode for multiple channels */
581                 cr1 = DFSDM_CR1_JSCAN((adc->nconv > 1) ? 1 : 0);
582
583                 /*
584                  * Continuous conversions not supported in injected mode,
585                  * either use:
586                  * - conversions in sync with filter 0
587                  * - triggered conversions
588                  */
589                 if (!fl->sync_mode && !trig)
590                         return -EINVAL;
591                 cr1 |= DFSDM_CR1_JSYNC(fl->sync_mode);
592         }
593
594         return regmap_update_bits(regmap, DFSDM_CR1(fl_id), DFSDM_CR1_CFG_MASK,
595                                   cr1);
596 }
597
598 static int stm32_dfsdm_channel_parse_of(struct stm32_dfsdm *dfsdm,
599                                         struct iio_dev *indio_dev,
600                                         struct iio_chan_spec *ch)
601 {
602         struct stm32_dfsdm_channel *df_ch;
603         const char *of_str;
604         int chan_idx = ch->scan_index;
605         int ret, val;
606
607         ret = of_property_read_u32_index(indio_dev->dev.of_node,
608                                          "st,adc-channels", chan_idx,
609                                          &ch->channel);
610         if (ret < 0) {
611                 dev_err(&indio_dev->dev,
612                         " Error parsing 'st,adc-channels' for idx %d\n",
613                         chan_idx);
614                 return ret;
615         }
616         if (ch->channel >= dfsdm->num_chs) {
617                 dev_err(&indio_dev->dev,
618                         " Error bad channel number %d (max = %d)\n",
619                         ch->channel, dfsdm->num_chs);
620                 return -EINVAL;
621         }
622
623         ret = of_property_read_string_index(indio_dev->dev.of_node,
624                                             "st,adc-channel-names", chan_idx,
625                                             &ch->datasheet_name);
626         if (ret < 0) {
627                 dev_err(&indio_dev->dev,
628                         " Error parsing 'st,adc-channel-names' for idx %d\n",
629                         chan_idx);
630                 return ret;
631         }
632
633         df_ch =  &dfsdm->ch_list[ch->channel];
634         df_ch->id = ch->channel;
635
636         ret = of_property_read_string_index(indio_dev->dev.of_node,
637                                             "st,adc-channel-types", chan_idx,
638                                             &of_str);
639         if (!ret) {
640                 val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_type);
641                 if (val < 0)
642                         return val;
643         } else {
644                 val = 0;
645         }
646         df_ch->type = val;
647
648         ret = of_property_read_string_index(indio_dev->dev.of_node,
649                                             "st,adc-channel-clk-src", chan_idx,
650                                             &of_str);
651         if (!ret) {
652                 val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_src);
653                 if (val < 0)
654                         return val;
655         } else {
656                 val = 0;
657         }
658         df_ch->src = val;
659
660         ret = of_property_read_u32_index(indio_dev->dev.of_node,
661                                          "st,adc-alt-channel", chan_idx,
662                                          &df_ch->alt_si);
663         if (ret < 0)
664                 df_ch->alt_si = 0;
665
666         return 0;
667 }
668
669 static ssize_t dfsdm_adc_audio_get_spiclk(struct iio_dev *indio_dev,
670                                           uintptr_t priv,
671                                           const struct iio_chan_spec *chan,
672                                           char *buf)
673 {
674         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
675
676         return snprintf(buf, PAGE_SIZE, "%d\n", adc->spi_freq);
677 }
678
679 static int dfsdm_adc_set_samp_freq(struct iio_dev *indio_dev,
680                                    unsigned int sample_freq,
681                                    unsigned int spi_freq)
682 {
683         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
684         unsigned int oversamp;
685         int ret;
686
687         oversamp = DIV_ROUND_CLOSEST(spi_freq, sample_freq);
688         if (spi_freq % sample_freq)
689                 dev_dbg(&indio_dev->dev,
690                         "Rate not accurate. requested (%u), actual (%u)\n",
691                         sample_freq, spi_freq / oversamp);
692
693         ret = stm32_dfsdm_compute_all_osrs(indio_dev, oversamp);
694         if (ret < 0)
695                 return ret;
696
697         adc->sample_freq = spi_freq / oversamp;
698         adc->oversamp = oversamp;
699
700         return 0;
701 }
702
703 static ssize_t dfsdm_adc_audio_set_spiclk(struct iio_dev *indio_dev,
704                                           uintptr_t priv,
705                                           const struct iio_chan_spec *chan,
706                                           const char *buf, size_t len)
707 {
708         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
709         struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
710         unsigned int sample_freq = adc->sample_freq;
711         unsigned int spi_freq;
712         int ret;
713
714         dev_err(&indio_dev->dev, "enter %s\n", __func__);
715         /* If DFSDM is master on SPI, SPI freq can not be updated */
716         if (ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
717                 return -EPERM;
718
719         ret = kstrtoint(buf, 0, &spi_freq);
720         if (ret)
721                 return ret;
722
723         if (!spi_freq)
724                 return -EINVAL;
725
726         if (sample_freq) {
727                 ret = dfsdm_adc_set_samp_freq(indio_dev, sample_freq, spi_freq);
728                 if (ret < 0)
729                         return ret;
730         }
731         adc->spi_freq = spi_freq;
732
733         return len;
734 }
735
736 static int stm32_dfsdm_start_conv(struct iio_dev *indio_dev,
737                                   struct iio_trigger *trig)
738 {
739         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
740         struct regmap *regmap = adc->dfsdm->regmap;
741         int ret;
742
743         ret = stm32_dfsdm_channels_configure(indio_dev, adc->fl_id, trig);
744         if (ret < 0)
745                 return ret;
746
747         ret = stm32_dfsdm_start_channel(indio_dev);
748         if (ret < 0)
749                 return ret;
750
751         ret = stm32_dfsdm_filter_configure(indio_dev, adc->fl_id, trig);
752         if (ret < 0)
753                 goto stop_channels;
754
755         ret = stm32_dfsdm_start_filter(adc, adc->fl_id, trig);
756         if (ret < 0)
757                 goto filter_unconfigure;
758
759         return 0;
760
761 filter_unconfigure:
762         regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
763                            DFSDM_CR1_CFG_MASK, 0);
764 stop_channels:
765         stm32_dfsdm_stop_channel(indio_dev);
766
767         return ret;
768 }
769
770 static void stm32_dfsdm_stop_conv(struct iio_dev *indio_dev)
771 {
772         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
773         struct regmap *regmap = adc->dfsdm->regmap;
774
775         stm32_dfsdm_stop_filter(adc->dfsdm, adc->fl_id);
776
777         regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
778                            DFSDM_CR1_CFG_MASK, 0);
779
780         stm32_dfsdm_stop_channel(indio_dev);
781 }
782
783 static int stm32_dfsdm_set_watermark(struct iio_dev *indio_dev,
784                                      unsigned int val)
785 {
786         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
787         unsigned int watermark = DFSDM_DMA_BUFFER_SIZE / 2;
788         unsigned int rx_buf_sz = DFSDM_DMA_BUFFER_SIZE;
789
790         /*
791          * DMA cyclic transfers are used, buffer is split into two periods.
792          * There should be :
793          * - always one buffer (period) DMA is working on
794          * - one buffer (period) driver pushed to ASoC side.
795          */
796         watermark = min(watermark, val * (unsigned int)(sizeof(u32)));
797         adc->buf_sz = min(rx_buf_sz, watermark * 2 * adc->nconv);
798
799         return 0;
800 }
801
802 static unsigned int stm32_dfsdm_adc_dma_residue(struct stm32_dfsdm_adc *adc)
803 {
804         struct dma_tx_state state;
805         enum dma_status status;
806
807         status = dmaengine_tx_status(adc->dma_chan,
808                                      adc->dma_chan->cookie,
809                                      &state);
810         if (status == DMA_IN_PROGRESS) {
811                 /* Residue is size in bytes from end of buffer */
812                 unsigned int i = adc->buf_sz - state.residue;
813                 unsigned int size;
814
815                 /* Return available bytes */
816                 if (i >= adc->bufi)
817                         size = i - adc->bufi;
818                 else
819                         size = adc->buf_sz + i - adc->bufi;
820
821                 return size;
822         }
823
824         return 0;
825 }
826
827 static inline void stm32_dfsdm_process_data(struct stm32_dfsdm_adc *adc,
828                                             s32 *buffer)
829 {
830         struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
831         struct stm32_dfsdm_filter_osr *flo = &fl->flo[fl->fast];
832         unsigned int i = adc->nconv;
833         s32 *ptr = buffer;
834
835         while (i--) {
836                 /* Mask 8 LSB that contains the channel ID */
837                 *ptr &= 0xFFFFFF00;
838                 /* Convert 2^(n-1) sample to 2^(n-1)-1 to avoid wrap-around */
839                 if (*ptr > flo->max)
840                         *ptr -= 1;
841                 /*
842                  * Samples from filter are retrieved with 23 bits resolution
843                  * or less. Shift left to align MSB on 24 bits.
844                  */
845                 *ptr <<= flo->lshift;
846
847                 ptr++;
848         }
849 }
850
851 static void stm32_dfsdm_dma_buffer_done(void *data)
852 {
853         struct iio_dev *indio_dev = data;
854         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
855         int available = stm32_dfsdm_adc_dma_residue(adc);
856         size_t old_pos;
857
858         /*
859          * FIXME: In Kernel interface does not support cyclic DMA buffer,and
860          * offers only an interface to push data samples per samples.
861          * For this reason IIO buffer interface is not used and interface is
862          * bypassed using a private callback registered by ASoC.
863          * This should be a temporary solution waiting a cyclic DMA engine
864          * support in IIO.
865          */
866
867         dev_dbg(&indio_dev->dev, "%s: pos = %d, available = %d\n", __func__,
868                 adc->bufi, available);
869         old_pos = adc->bufi;
870
871         while (available >= indio_dev->scan_bytes) {
872                 s32 *buffer = (s32 *)&adc->rx_buf[adc->bufi];
873
874                 stm32_dfsdm_process_data(adc, buffer);
875
876                 available -= indio_dev->scan_bytes;
877                 adc->bufi += indio_dev->scan_bytes;
878                 if (adc->bufi >= adc->buf_sz) {
879                         if (adc->cb)
880                                 adc->cb(&adc->rx_buf[old_pos],
881                                          adc->buf_sz - old_pos, adc->cb_priv);
882                         adc->bufi = 0;
883                         old_pos = 0;
884                 }
885                 /*
886                  * In DMA mode the trigger services of IIO are not used
887                  * (e.g. no call to iio_trigger_poll).
888                  * Calling irq handler associated to the hardware trigger is not
889                  * relevant as the conversions have already been done. Data
890                  * transfers are performed directly in DMA callback instead.
891                  * This implementation avoids to call trigger irq handler that
892                  * may sleep, in an atomic context (DMA irq handler context).
893                  */
894                 if (adc->dev_data->type == DFSDM_IIO)
895                         iio_push_to_buffers(indio_dev, buffer);
896         }
897         if (adc->cb)
898                 adc->cb(&adc->rx_buf[old_pos], adc->bufi - old_pos,
899                         adc->cb_priv);
900 }
901
902 static int stm32_dfsdm_adc_dma_start(struct iio_dev *indio_dev)
903 {
904         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
905         /*
906          * The DFSDM supports half-word transfers. However, for 16 bits record,
907          * 4 bytes buswidth is kept, to avoid losing samples LSBs when left
908          * shift is required.
909          */
910         struct dma_slave_config config = {
911                 .src_addr = (dma_addr_t)adc->dfsdm->phys_base,
912                 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
913         };
914         struct dma_async_tx_descriptor *desc;
915         dma_cookie_t cookie;
916         int ret;
917
918         if (!adc->dma_chan)
919                 return -EINVAL;
920
921         dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
922                 adc->buf_sz, adc->buf_sz / 2);
923
924         if (adc->nconv == 1 && !indio_dev->trig)
925                 config.src_addr += DFSDM_RDATAR(adc->fl_id);
926         else
927                 config.src_addr += DFSDM_JDATAR(adc->fl_id);
928         ret = dmaengine_slave_config(adc->dma_chan, &config);
929         if (ret)
930                 return ret;
931
932         /* Prepare a DMA cyclic transaction */
933         desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
934                                          adc->dma_buf,
935                                          adc->buf_sz, adc->buf_sz / 2,
936                                          DMA_DEV_TO_MEM,
937                                          DMA_PREP_INTERRUPT);
938         if (!desc)
939                 return -EBUSY;
940
941         desc->callback = stm32_dfsdm_dma_buffer_done;
942         desc->callback_param = indio_dev;
943
944         cookie = dmaengine_submit(desc);
945         ret = dma_submit_error(cookie);
946         if (ret)
947                 goto err_stop_dma;
948
949         /* Issue pending DMA requests */
950         dma_async_issue_pending(adc->dma_chan);
951
952         if (adc->nconv == 1 && !indio_dev->trig) {
953                 /* Enable regular DMA transfer*/
954                 ret = regmap_update_bits(adc->dfsdm->regmap,
955                                          DFSDM_CR1(adc->fl_id),
956                                          DFSDM_CR1_RDMAEN_MASK,
957                                          DFSDM_CR1_RDMAEN_MASK);
958         } else {
959                 /* Enable injected DMA transfer*/
960                 ret = regmap_update_bits(adc->dfsdm->regmap,
961                                          DFSDM_CR1(adc->fl_id),
962                                          DFSDM_CR1_JDMAEN_MASK,
963                                          DFSDM_CR1_JDMAEN_MASK);
964         }
965
966         if (ret < 0)
967                 goto err_stop_dma;
968
969         return 0;
970
971 err_stop_dma:
972         dmaengine_terminate_all(adc->dma_chan);
973
974         return ret;
975 }
976
977 static void stm32_dfsdm_adc_dma_stop(struct iio_dev *indio_dev)
978 {
979         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
980
981         if (!adc->dma_chan)
982                 return;
983
984         regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR1(adc->fl_id),
985                            DFSDM_CR1_RDMAEN_MASK | DFSDM_CR1_JDMAEN_MASK, 0);
986         dmaengine_terminate_all(adc->dma_chan);
987 }
988
989 static int stm32_dfsdm_update_scan_mode(struct iio_dev *indio_dev,
990                                         const unsigned long *scan_mask)
991 {
992         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
993
994         adc->nconv = bitmap_weight(scan_mask, indio_dev->masklength);
995         adc->smask = *scan_mask;
996
997         dev_dbg(&indio_dev->dev, "nconv=%d mask=%lx\n", adc->nconv, *scan_mask);
998
999         return 0;
1000 }
1001
1002 static int stm32_dfsdm_postenable(struct iio_dev *indio_dev)
1003 {
1004         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1005         int ret;
1006
1007         /* Reset adc buffer index */
1008         adc->bufi = 0;
1009
1010         if (adc->hwc) {
1011                 ret = iio_hw_consumer_enable(adc->hwc);
1012                 if (ret < 0)
1013                         return ret;
1014         }
1015
1016         ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
1017         if (ret < 0)
1018                 goto err_stop_hwc;
1019
1020         ret = stm32_dfsdm_adc_dma_start(indio_dev);
1021         if (ret) {
1022                 dev_err(&indio_dev->dev, "Can't start DMA\n");
1023                 goto stop_dfsdm;
1024         }
1025
1026         ret = stm32_dfsdm_start_conv(indio_dev, indio_dev->trig);
1027         if (ret) {
1028                 dev_err(&indio_dev->dev, "Can't start conversion\n");
1029                 goto err_stop_dma;
1030         }
1031
1032         return 0;
1033
1034 err_stop_dma:
1035         stm32_dfsdm_adc_dma_stop(indio_dev);
1036 stop_dfsdm:
1037         stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1038 err_stop_hwc:
1039         if (adc->hwc)
1040                 iio_hw_consumer_disable(adc->hwc);
1041
1042         return ret;
1043 }
1044
1045 static int stm32_dfsdm_predisable(struct iio_dev *indio_dev)
1046 {
1047         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1048
1049         stm32_dfsdm_stop_conv(indio_dev);
1050
1051         stm32_dfsdm_adc_dma_stop(indio_dev);
1052
1053         stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1054
1055         if (adc->hwc)
1056                 iio_hw_consumer_disable(adc->hwc);
1057
1058         return 0;
1059 }
1060
1061 static const struct iio_buffer_setup_ops stm32_dfsdm_buffer_setup_ops = {
1062         .postenable = &stm32_dfsdm_postenable,
1063         .predisable = &stm32_dfsdm_predisable,
1064 };
1065
1066 /**
1067  * stm32_dfsdm_get_buff_cb() - register a callback that will be called when
1068  *                             DMA transfer period is achieved.
1069  *
1070  * @iio_dev: Handle to IIO device.
1071  * @cb: Pointer to callback function:
1072  *      - data: pointer to data buffer
1073  *      - size: size in byte of the data buffer
1074  *      - private: pointer to consumer private structure.
1075  * @private: Pointer to consumer private structure.
1076  */
1077 int stm32_dfsdm_get_buff_cb(struct iio_dev *iio_dev,
1078                             int (*cb)(const void *data, size_t size,
1079                                       void *private),
1080                             void *private)
1081 {
1082         struct stm32_dfsdm_adc *adc;
1083
1084         if (!iio_dev)
1085                 return -EINVAL;
1086         adc = iio_priv(iio_dev);
1087
1088         adc->cb = cb;
1089         adc->cb_priv = private;
1090
1091         return 0;
1092 }
1093 EXPORT_SYMBOL_GPL(stm32_dfsdm_get_buff_cb);
1094
1095 /**
1096  * stm32_dfsdm_release_buff_cb - unregister buffer callback
1097  *
1098  * @iio_dev: Handle to IIO device.
1099  */
1100 int stm32_dfsdm_release_buff_cb(struct iio_dev *iio_dev)
1101 {
1102         struct stm32_dfsdm_adc *adc;
1103
1104         if (!iio_dev)
1105                 return -EINVAL;
1106         adc = iio_priv(iio_dev);
1107
1108         adc->cb = NULL;
1109         adc->cb_priv = NULL;
1110
1111         return 0;
1112 }
1113 EXPORT_SYMBOL_GPL(stm32_dfsdm_release_buff_cb);
1114
1115 static int stm32_dfsdm_single_conv(struct iio_dev *indio_dev,
1116                                    const struct iio_chan_spec *chan, int *res)
1117 {
1118         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1119         long timeout;
1120         int ret;
1121
1122         reinit_completion(&adc->completion);
1123
1124         adc->buffer = res;
1125
1126         ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
1127         if (ret < 0)
1128                 return ret;
1129
1130         ret = regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1131                                  DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(1));
1132         if (ret < 0)
1133                 goto stop_dfsdm;
1134
1135         adc->nconv = 1;
1136         adc->smask = BIT(chan->scan_index);
1137         ret = stm32_dfsdm_start_conv(indio_dev, NULL);
1138         if (ret < 0) {
1139                 regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1140                                    DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
1141                 goto stop_dfsdm;
1142         }
1143
1144         timeout = wait_for_completion_interruptible_timeout(&adc->completion,
1145                                                             DFSDM_TIMEOUT);
1146
1147         /* Mask IRQ for regular conversion achievement*/
1148         regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1149                            DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
1150
1151         if (timeout == 0)
1152                 ret = -ETIMEDOUT;
1153         else if (timeout < 0)
1154                 ret = timeout;
1155         else
1156                 ret = IIO_VAL_INT;
1157
1158         stm32_dfsdm_stop_conv(indio_dev);
1159
1160         stm32_dfsdm_process_data(adc, res);
1161
1162 stop_dfsdm:
1163         stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1164
1165         return ret;
1166 }
1167
1168 static int stm32_dfsdm_write_raw(struct iio_dev *indio_dev,
1169                                  struct iio_chan_spec const *chan,
1170                                  int val, int val2, long mask)
1171 {
1172         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1173         struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
1174         unsigned int spi_freq;
1175         int ret = -EINVAL;
1176
1177         switch (ch->src) {
1178         case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL:
1179                 spi_freq = adc->dfsdm->spi_master_freq;
1180                 break;
1181         case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING:
1182         case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING:
1183                 spi_freq = adc->dfsdm->spi_master_freq / 2;
1184                 break;
1185         default:
1186                 spi_freq = adc->spi_freq;
1187         }
1188
1189         switch (mask) {
1190         case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1191                 ret = iio_device_claim_direct_mode(indio_dev);
1192                 if (ret)
1193                         return ret;
1194
1195                 ret = stm32_dfsdm_compute_all_osrs(indio_dev, val);
1196                 if (!ret) {
1197                         dev_dbg(&indio_dev->dev,
1198                                 "Sampling rate changed from (%u) to (%u)\n",
1199                                 adc->sample_freq, spi_freq / val);
1200                         adc->oversamp = val;
1201                         adc->sample_freq = spi_freq / val;
1202                 }
1203                 iio_device_release_direct_mode(indio_dev);
1204                 return ret;
1205
1206         case IIO_CHAN_INFO_SAMP_FREQ:
1207                 if (!val)
1208                         return -EINVAL;
1209
1210                 ret = iio_device_claim_direct_mode(indio_dev);
1211                 if (ret)
1212                         return ret;
1213
1214                 ret = dfsdm_adc_set_samp_freq(indio_dev, val, spi_freq);
1215                 iio_device_release_direct_mode(indio_dev);
1216                 return ret;
1217         }
1218
1219         return -EINVAL;
1220 }
1221
1222 static int stm32_dfsdm_read_raw(struct iio_dev *indio_dev,
1223                                 struct iio_chan_spec const *chan, int *val,
1224                                 int *val2, long mask)
1225 {
1226         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1227         int ret;
1228
1229         switch (mask) {
1230         case IIO_CHAN_INFO_RAW:
1231                 ret = iio_device_claim_direct_mode(indio_dev);
1232                 if (ret)
1233                         return ret;
1234                 ret = iio_hw_consumer_enable(adc->hwc);
1235                 if (ret < 0) {
1236                         dev_err(&indio_dev->dev,
1237                                 "%s: IIO enable failed (channel %d)\n",
1238                                 __func__, chan->channel);
1239                         iio_device_release_direct_mode(indio_dev);
1240                         return ret;
1241                 }
1242                 ret = stm32_dfsdm_single_conv(indio_dev, chan, val);
1243                 iio_hw_consumer_disable(adc->hwc);
1244                 if (ret < 0) {
1245                         dev_err(&indio_dev->dev,
1246                                 "%s: Conversion failed (channel %d)\n",
1247                                 __func__, chan->channel);
1248                         iio_device_release_direct_mode(indio_dev);
1249                         return ret;
1250                 }
1251                 iio_device_release_direct_mode(indio_dev);
1252                 return IIO_VAL_INT;
1253
1254         case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1255                 *val = adc->oversamp;
1256
1257                 return IIO_VAL_INT;
1258
1259         case IIO_CHAN_INFO_SAMP_FREQ:
1260                 *val = adc->sample_freq;
1261
1262                 return IIO_VAL_INT;
1263         }
1264
1265         return -EINVAL;
1266 }
1267
1268 static int stm32_dfsdm_validate_trigger(struct iio_dev *indio_dev,
1269                                         struct iio_trigger *trig)
1270 {
1271         return stm32_dfsdm_get_jextsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1272 }
1273
1274 static const struct iio_info stm32_dfsdm_info_audio = {
1275         .hwfifo_set_watermark = stm32_dfsdm_set_watermark,
1276         .read_raw = stm32_dfsdm_read_raw,
1277         .write_raw = stm32_dfsdm_write_raw,
1278         .update_scan_mode = stm32_dfsdm_update_scan_mode,
1279 };
1280
1281 static const struct iio_info stm32_dfsdm_info_adc = {
1282         .hwfifo_set_watermark = stm32_dfsdm_set_watermark,
1283         .read_raw = stm32_dfsdm_read_raw,
1284         .write_raw = stm32_dfsdm_write_raw,
1285         .update_scan_mode = stm32_dfsdm_update_scan_mode,
1286         .validate_trigger = stm32_dfsdm_validate_trigger,
1287 };
1288
1289 static irqreturn_t stm32_dfsdm_irq(int irq, void *arg)
1290 {
1291         struct iio_dev *indio_dev = arg;
1292         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1293         struct regmap *regmap = adc->dfsdm->regmap;
1294         unsigned int status, int_en;
1295
1296         regmap_read(regmap, DFSDM_ISR(adc->fl_id), &status);
1297         regmap_read(regmap, DFSDM_CR2(adc->fl_id), &int_en);
1298
1299         if (status & DFSDM_ISR_REOCF_MASK) {
1300                 /* Read the data register clean the IRQ status */
1301                 regmap_read(regmap, DFSDM_RDATAR(adc->fl_id), adc->buffer);
1302                 complete(&adc->completion);
1303         }
1304
1305         if (status & DFSDM_ISR_ROVRF_MASK) {
1306                 if (int_en & DFSDM_CR2_ROVRIE_MASK)
1307                         dev_warn(&indio_dev->dev, "Overrun detected\n");
1308                 regmap_update_bits(regmap, DFSDM_ICR(adc->fl_id),
1309                                    DFSDM_ICR_CLRROVRF_MASK,
1310                                    DFSDM_ICR_CLRROVRF_MASK);
1311         }
1312
1313         return IRQ_HANDLED;
1314 }
1315
1316 /*
1317  * Define external info for SPI Frequency and audio sampling rate that can be
1318  * configured by ASoC driver through consumer.h API
1319  */
1320 static const struct iio_chan_spec_ext_info dfsdm_adc_audio_ext_info[] = {
1321         /* spi_clk_freq : clock freq on SPI/manchester bus used by channel */
1322         {
1323                 .name = "spi_clk_freq",
1324                 .shared = IIO_SHARED_BY_TYPE,
1325                 .read = dfsdm_adc_audio_get_spiclk,
1326                 .write = dfsdm_adc_audio_set_spiclk,
1327         },
1328         {},
1329 };
1330
1331 static void stm32_dfsdm_dma_release(struct iio_dev *indio_dev)
1332 {
1333         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1334
1335         if (adc->dma_chan) {
1336                 dma_free_coherent(adc->dma_chan->device->dev,
1337                                   DFSDM_DMA_BUFFER_SIZE,
1338                                   adc->rx_buf, adc->dma_buf);
1339                 dma_release_channel(adc->dma_chan);
1340         }
1341 }
1342
1343 static int stm32_dfsdm_dma_request(struct device *dev,
1344                                    struct iio_dev *indio_dev)
1345 {
1346         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1347
1348         adc->dma_chan = dma_request_chan(dev, "rx");
1349         if (IS_ERR(adc->dma_chan)) {
1350                 int ret = PTR_ERR(adc->dma_chan);
1351
1352                 adc->dma_chan = NULL;
1353                 return ret;
1354         }
1355
1356         adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
1357                                          DFSDM_DMA_BUFFER_SIZE,
1358                                          &adc->dma_buf, GFP_KERNEL);
1359         if (!adc->rx_buf) {
1360                 dma_release_channel(adc->dma_chan);
1361                 return -ENOMEM;
1362         }
1363
1364         indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1365         indio_dev->setup_ops = &stm32_dfsdm_buffer_setup_ops;
1366
1367         return 0;
1368 }
1369
1370 static int stm32_dfsdm_adc_chan_init_one(struct iio_dev *indio_dev,
1371                                          struct iio_chan_spec *ch)
1372 {
1373         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1374         int ret;
1375
1376         ret = stm32_dfsdm_channel_parse_of(adc->dfsdm, indio_dev, ch);
1377         if (ret < 0)
1378                 return ret;
1379
1380         ch->type = IIO_VOLTAGE;
1381         ch->indexed = 1;
1382
1383         /*
1384          * IIO_CHAN_INFO_RAW: used to compute regular conversion
1385          * IIO_CHAN_INFO_OVERSAMPLING_RATIO: used to set oversampling
1386          */
1387         ch->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1388         ch->info_mask_shared_by_all = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO) |
1389                                         BIT(IIO_CHAN_INFO_SAMP_FREQ);
1390
1391         if (adc->dev_data->type == DFSDM_AUDIO) {
1392                 ch->ext_info = dfsdm_adc_audio_ext_info;
1393         } else {
1394                 ch->scan_type.shift = 8;
1395         }
1396         ch->scan_type.sign = 's';
1397         ch->scan_type.realbits = 24;
1398         ch->scan_type.storagebits = 32;
1399
1400         return stm32_dfsdm_chan_configure(adc->dfsdm,
1401                                           &adc->dfsdm->ch_list[ch->channel]);
1402 }
1403
1404 static int stm32_dfsdm_audio_init(struct device *dev, struct iio_dev *indio_dev)
1405 {
1406         struct iio_chan_spec *ch;
1407         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1408         struct stm32_dfsdm_channel *d_ch;
1409         int ret;
1410
1411         ch = devm_kzalloc(&indio_dev->dev, sizeof(*ch), GFP_KERNEL);
1412         if (!ch)
1413                 return -ENOMEM;
1414
1415         ch->scan_index = 0;
1416
1417         ret = stm32_dfsdm_adc_chan_init_one(indio_dev, ch);
1418         if (ret < 0) {
1419                 dev_err(&indio_dev->dev, "Channels init failed\n");
1420                 return ret;
1421         }
1422         ch->info_mask_separate = BIT(IIO_CHAN_INFO_SAMP_FREQ);
1423
1424         d_ch = &adc->dfsdm->ch_list[ch->channel];
1425         if (d_ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
1426                 adc->spi_freq = adc->dfsdm->spi_master_freq;
1427
1428         indio_dev->num_channels = 1;
1429         indio_dev->channels = ch;
1430
1431         return stm32_dfsdm_dma_request(dev, indio_dev);
1432 }
1433
1434 static int stm32_dfsdm_adc_init(struct device *dev, struct iio_dev *indio_dev)
1435 {
1436         struct iio_chan_spec *ch;
1437         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1438         int num_ch;
1439         int ret, chan_idx;
1440
1441         adc->oversamp = DFSDM_DEFAULT_OVERSAMPLING;
1442         ret = stm32_dfsdm_compute_all_osrs(indio_dev, adc->oversamp);
1443         if (ret < 0)
1444                 return ret;
1445
1446         num_ch = of_property_count_u32_elems(indio_dev->dev.of_node,
1447                                              "st,adc-channels");
1448         if (num_ch < 0 || num_ch > adc->dfsdm->num_chs) {
1449                 dev_err(&indio_dev->dev, "Bad st,adc-channels\n");
1450                 return num_ch < 0 ? num_ch : -EINVAL;
1451         }
1452
1453         /* Bind to SD modulator IIO device */
1454         adc->hwc = devm_iio_hw_consumer_alloc(&indio_dev->dev);
1455         if (IS_ERR(adc->hwc))
1456                 return -EPROBE_DEFER;
1457
1458         ch = devm_kcalloc(&indio_dev->dev, num_ch, sizeof(*ch),
1459                           GFP_KERNEL);
1460         if (!ch)
1461                 return -ENOMEM;
1462
1463         for (chan_idx = 0; chan_idx < num_ch; chan_idx++) {
1464                 ch[chan_idx].scan_index = chan_idx;
1465                 ret = stm32_dfsdm_adc_chan_init_one(indio_dev, &ch[chan_idx]);
1466                 if (ret < 0) {
1467                         dev_err(&indio_dev->dev, "Channels init failed\n");
1468                         return ret;
1469                 }
1470         }
1471
1472         indio_dev->num_channels = num_ch;
1473         indio_dev->channels = ch;
1474
1475         init_completion(&adc->completion);
1476
1477         /* Optionally request DMA */
1478         ret = stm32_dfsdm_dma_request(dev, indio_dev);
1479         if (ret) {
1480                 if (ret != -ENODEV)
1481                         return dev_err_probe(dev, ret,
1482                                              "DMA channel request failed with\n");
1483
1484                 dev_dbg(dev, "No DMA support\n");
1485                 return 0;
1486         }
1487
1488         ret = iio_triggered_buffer_setup(indio_dev,
1489                                          &iio_pollfunc_store_time, NULL,
1490                                          &stm32_dfsdm_buffer_setup_ops);
1491         if (ret) {
1492                 stm32_dfsdm_dma_release(indio_dev);
1493                 dev_err(&indio_dev->dev, "buffer setup failed\n");
1494                 return ret;
1495         }
1496
1497         /* lptimer/timer hardware triggers */
1498         indio_dev->modes |= INDIO_HARDWARE_TRIGGERED;
1499
1500         return 0;
1501 }
1502
1503 static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_adc_data = {
1504         .type = DFSDM_IIO,
1505         .init = stm32_dfsdm_adc_init,
1506 };
1507
1508 static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_audio_data = {
1509         .type = DFSDM_AUDIO,
1510         .init = stm32_dfsdm_audio_init,
1511 };
1512
1513 static const struct of_device_id stm32_dfsdm_adc_match[] = {
1514         {
1515                 .compatible = "st,stm32-dfsdm-adc",
1516                 .data = &stm32h7_dfsdm_adc_data,
1517         },
1518         {
1519                 .compatible = "st,stm32-dfsdm-dmic",
1520                 .data = &stm32h7_dfsdm_audio_data,
1521         },
1522         {}
1523 };
1524
1525 static int stm32_dfsdm_adc_probe(struct platform_device *pdev)
1526 {
1527         struct device *dev = &pdev->dev;
1528         struct stm32_dfsdm_adc *adc;
1529         struct device_node *np = dev->of_node;
1530         const struct stm32_dfsdm_dev_data *dev_data;
1531         struct iio_dev *iio;
1532         char *name;
1533         int ret, irq, val;
1534
1535         dev_data = of_device_get_match_data(dev);
1536         iio = devm_iio_device_alloc(dev, sizeof(*adc));
1537         if (!iio) {
1538                 dev_err(dev, "%s: Failed to allocate IIO\n", __func__);
1539                 return -ENOMEM;
1540         }
1541
1542         adc = iio_priv(iio);
1543         adc->dfsdm = dev_get_drvdata(dev->parent);
1544
1545         iio->dev.of_node = np;
1546         iio->modes = INDIO_DIRECT_MODE;
1547
1548         platform_set_drvdata(pdev, iio);
1549
1550         ret = of_property_read_u32(dev->of_node, "reg", &adc->fl_id);
1551         if (ret != 0 || adc->fl_id >= adc->dfsdm->num_fls) {
1552                 dev_err(dev, "Missing or bad reg property\n");
1553                 return -EINVAL;
1554         }
1555
1556         name = devm_kzalloc(dev, sizeof("dfsdm-adc0"), GFP_KERNEL);
1557         if (!name)
1558                 return -ENOMEM;
1559         if (dev_data->type == DFSDM_AUDIO) {
1560                 iio->info = &stm32_dfsdm_info_audio;
1561                 snprintf(name, sizeof("dfsdm-pdm0"), "dfsdm-pdm%d", adc->fl_id);
1562         } else {
1563                 iio->info = &stm32_dfsdm_info_adc;
1564                 snprintf(name, sizeof("dfsdm-adc0"), "dfsdm-adc%d", adc->fl_id);
1565         }
1566         iio->name = name;
1567
1568         /*
1569          * In a first step IRQs generated for channels are not treated.
1570          * So IRQ associated to filter instance 0 is dedicated to the Filter 0.
1571          */
1572         irq = platform_get_irq(pdev, 0);
1573         if (irq < 0)
1574                 return irq;
1575
1576         ret = devm_request_irq(dev, irq, stm32_dfsdm_irq,
1577                                0, pdev->name, iio);
1578         if (ret < 0) {
1579                 dev_err(dev, "Failed to request IRQ\n");
1580                 return ret;
1581         }
1582
1583         ret = of_property_read_u32(dev->of_node, "st,filter-order", &val);
1584         if (ret < 0) {
1585                 dev_err(dev, "Failed to set filter order\n");
1586                 return ret;
1587         }
1588
1589         adc->dfsdm->fl_list[adc->fl_id].ford = val;
1590
1591         ret = of_property_read_u32(dev->of_node, "st,filter0-sync", &val);
1592         if (!ret)
1593                 adc->dfsdm->fl_list[adc->fl_id].sync_mode = val;
1594
1595         adc->dev_data = dev_data;
1596         ret = dev_data->init(dev, iio);
1597         if (ret < 0)
1598                 return ret;
1599
1600         ret = iio_device_register(iio);
1601         if (ret < 0)
1602                 goto err_cleanup;
1603
1604         if (dev_data->type == DFSDM_AUDIO) {
1605                 ret = of_platform_populate(np, NULL, NULL, dev);
1606                 if (ret < 0) {
1607                         dev_err(dev, "Failed to find an audio DAI\n");
1608                         goto err_unregister;
1609                 }
1610         }
1611
1612         return 0;
1613
1614 err_unregister:
1615         iio_device_unregister(iio);
1616 err_cleanup:
1617         stm32_dfsdm_dma_release(iio);
1618
1619         return ret;
1620 }
1621
1622 static int stm32_dfsdm_adc_remove(struct platform_device *pdev)
1623 {
1624         struct iio_dev *indio_dev = platform_get_drvdata(pdev);
1625         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1626
1627         if (adc->dev_data->type == DFSDM_AUDIO)
1628                 of_platform_depopulate(&pdev->dev);
1629         iio_device_unregister(indio_dev);
1630         stm32_dfsdm_dma_release(indio_dev);
1631
1632         return 0;
1633 }
1634
1635 static int __maybe_unused stm32_dfsdm_adc_suspend(struct device *dev)
1636 {
1637         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1638
1639         if (iio_buffer_enabled(indio_dev))
1640                 stm32_dfsdm_predisable(indio_dev);
1641
1642         return 0;
1643 }
1644
1645 static int __maybe_unused stm32_dfsdm_adc_resume(struct device *dev)
1646 {
1647         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1648         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1649         const struct iio_chan_spec *chan;
1650         struct stm32_dfsdm_channel *ch;
1651         int i, ret;
1652
1653         /* restore channels configuration */
1654         for (i = 0; i < indio_dev->num_channels; i++) {
1655                 chan = indio_dev->channels + i;
1656                 ch = &adc->dfsdm->ch_list[chan->channel];
1657                 ret = stm32_dfsdm_chan_configure(adc->dfsdm, ch);
1658                 if (ret)
1659                         return ret;
1660         }
1661
1662         if (iio_buffer_enabled(indio_dev))
1663                 stm32_dfsdm_postenable(indio_dev);
1664
1665         return 0;
1666 }
1667
1668 static SIMPLE_DEV_PM_OPS(stm32_dfsdm_adc_pm_ops,
1669                          stm32_dfsdm_adc_suspend, stm32_dfsdm_adc_resume);
1670
1671 static struct platform_driver stm32_dfsdm_adc_driver = {
1672         .driver = {
1673                 .name = "stm32-dfsdm-adc",
1674                 .of_match_table = stm32_dfsdm_adc_match,
1675                 .pm = &stm32_dfsdm_adc_pm_ops,
1676         },
1677         .probe = stm32_dfsdm_adc_probe,
1678         .remove = stm32_dfsdm_adc_remove,
1679 };
1680 module_platform_driver(stm32_dfsdm_adc_driver);
1681
1682 MODULE_DESCRIPTION("STM32 sigma delta ADC");
1683 MODULE_AUTHOR("Arnaud Pouliquen <arnaud.pouliquen@st.com>");
1684 MODULE_LICENSE("GPL v2");