GNU Linux-libre 4.19.263-gnu1
[releases.git] / drivers / iio / adc / stm32-dfsdm-adc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file is the ADC part of the STM32 DFSDM driver
4  *
5  * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6  * Author: Arnaud Pouliquen <arnaud.pouliquen@st.com>.
7  */
8
9 #include <linux/dmaengine.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/iio/adc/stm32-dfsdm-adc.h>
12 #include <linux/iio/buffer.h>
13 #include <linux/iio/hw-consumer.h>
14 #include <linux/iio/sysfs.h>
15 #include <linux/interrupt.h>
16 #include <linux/module.h>
17 #include <linux/of_device.h>
18 #include <linux/platform_device.h>
19 #include <linux/regmap.h>
20 #include <linux/slab.h>
21
22 #include "stm32-dfsdm.h"
23
24 #define DFSDM_DMA_BUFFER_SIZE (4 * PAGE_SIZE)
25
26 /* Conversion timeout */
27 #define DFSDM_TIMEOUT_US 100000
28 #define DFSDM_TIMEOUT (msecs_to_jiffies(DFSDM_TIMEOUT_US / 1000))
29
30 /* Oversampling attribute default */
31 #define DFSDM_DEFAULT_OVERSAMPLING  100
32
33 /* Oversampling max values */
34 #define DFSDM_MAX_INT_OVERSAMPLING 256
35 #define DFSDM_MAX_FL_OVERSAMPLING 1024
36
37 /* Max sample resolutions */
38 #define DFSDM_MAX_RES BIT(31)
39 #define DFSDM_DATA_RES BIT(23)
40
41 enum sd_converter_type {
42         DFSDM_AUDIO,
43         DFSDM_IIO,
44 };
45
46 struct stm32_dfsdm_dev_data {
47         int type;
48         int (*init)(struct device *dev, struct iio_dev *indio_dev);
49         unsigned int num_channels;
50         const struct regmap_config *regmap_cfg;
51 };
52
53 struct stm32_dfsdm_adc {
54         struct stm32_dfsdm *dfsdm;
55         const struct stm32_dfsdm_dev_data *dev_data;
56         unsigned int fl_id;
57
58         /* ADC specific */
59         unsigned int oversamp;
60         struct iio_hw_consumer *hwc;
61         struct completion completion;
62         u32 *buffer;
63
64         /* Audio specific */
65         unsigned int spi_freq;  /* SPI bus clock frequency */
66         unsigned int sample_freq; /* Sample frequency after filter decimation */
67         int (*cb)(const void *data, size_t size, void *cb_priv);
68         void *cb_priv;
69
70         /* DMA */
71         u8 *rx_buf;
72         unsigned int bufi; /* Buffer current position */
73         unsigned int buf_sz; /* Buffer size */
74         struct dma_chan *dma_chan;
75         dma_addr_t dma_buf;
76 };
77
78 struct stm32_dfsdm_str2field {
79         const char      *name;
80         unsigned int    val;
81 };
82
83 /* DFSDM channel serial interface type */
84 static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_type[] = {
85         { "SPI_R", 0 }, /* SPI with data on rising edge */
86         { "SPI_F", 1 }, /* SPI with data on falling edge */
87         { "MANCH_R", 2 }, /* Manchester codec, rising edge = logic 0 */
88         { "MANCH_F", 3 }, /* Manchester codec, falling edge = logic 1 */
89         {},
90 };
91
92 /* DFSDM channel clock source */
93 static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_src[] = {
94         /* External SPI clock (CLKIN x) */
95         { "CLKIN", DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL },
96         /* Internal SPI clock (CLKOUT) */
97         { "CLKOUT", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL },
98         /* Internal SPI clock divided by 2 (falling edge) */
99         { "CLKOUT_F", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING },
100         /* Internal SPI clock divided by 2 (falling edge) */
101         { "CLKOUT_R", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING },
102         {},
103 };
104
105 static int stm32_dfsdm_str2val(const char *str,
106                                const struct stm32_dfsdm_str2field *list)
107 {
108         const struct stm32_dfsdm_str2field *p = list;
109
110         for (p = list; p && p->name; p++)
111                 if (!strcmp(p->name, str))
112                         return p->val;
113
114         return -EINVAL;
115 }
116
117 static int stm32_dfsdm_set_osrs(struct stm32_dfsdm_filter *fl,
118                                 unsigned int fast, unsigned int oversamp)
119 {
120         unsigned int i, d, fosr, iosr;
121         u64 res;
122         s64 delta;
123         unsigned int m = 1;     /* multiplication factor */
124         unsigned int p = fl->ford;      /* filter order (ford) */
125
126         pr_debug("%s: Requested oversampling: %d\n",  __func__, oversamp);
127         /*
128          * This function tries to compute filter oversampling and integrator
129          * oversampling, base on oversampling ratio requested by user.
130          *
131          * Decimation d depends on the filter order and the oversampling ratios.
132          * ford: filter order
133          * fosr: filter over sampling ratio
134          * iosr: integrator over sampling ratio
135          */
136         if (fl->ford == DFSDM_FASTSINC_ORDER) {
137                 m = 2;
138                 p = 2;
139         }
140
141         /*
142          * Look for filter and integrator oversampling ratios which allows
143          * to reach 24 bits data output resolution.
144          * Leave as soon as if exact resolution if reached.
145          * Otherwise the higher resolution below 32 bits is kept.
146          */
147         fl->res = 0;
148         for (fosr = 1; fosr <= DFSDM_MAX_FL_OVERSAMPLING; fosr++) {
149                 for (iosr = 1; iosr <= DFSDM_MAX_INT_OVERSAMPLING; iosr++) {
150                         if (fast)
151                                 d = fosr * iosr;
152                         else if (fl->ford == DFSDM_FASTSINC_ORDER)
153                                 d = fosr * (iosr + 3) + 2;
154                         else
155                                 d = fosr * (iosr - 1 + p) + p;
156
157                         if (d > oversamp)
158                                 break;
159                         else if (d != oversamp)
160                                 continue;
161                         /*
162                          * Check resolution (limited to signed 32 bits)
163                          *   res <= 2^31
164                          * Sincx filters:
165                          *   res = m * fosr^p x iosr (with m=1, p=ford)
166                          * FastSinc filter
167                          *   res = m * fosr^p x iosr (with m=2, p=2)
168                          */
169                         res = fosr;
170                         for (i = p - 1; i > 0; i--) {
171                                 res = res * (u64)fosr;
172                                 if (res > DFSDM_MAX_RES)
173                                         break;
174                         }
175                         if (res > DFSDM_MAX_RES)
176                                 continue;
177                         res = res * (u64)m * (u64)iosr;
178                         if (res > DFSDM_MAX_RES)
179                                 continue;
180
181                         delta = res - DFSDM_DATA_RES;
182
183                         if (res >= fl->res) {
184                                 fl->res = res;
185                                 fl->fosr = fosr;
186                                 fl->iosr = iosr;
187                                 fl->fast = fast;
188                                 pr_debug("%s: fosr = %d, iosr = %d\n",
189                                          __func__, fl->fosr, fl->iosr);
190                         }
191
192                         if (!delta)
193                                 return 0;
194                 }
195         }
196
197         if (!fl->res)
198                 return -EINVAL;
199
200         return 0;
201 }
202
203 static int stm32_dfsdm_start_channel(struct stm32_dfsdm *dfsdm,
204                                      unsigned int ch_id)
205 {
206         return regmap_update_bits(dfsdm->regmap, DFSDM_CHCFGR1(ch_id),
207                                   DFSDM_CHCFGR1_CHEN_MASK,
208                                   DFSDM_CHCFGR1_CHEN(1));
209 }
210
211 static void stm32_dfsdm_stop_channel(struct stm32_dfsdm *dfsdm,
212                                      unsigned int ch_id)
213 {
214         regmap_update_bits(dfsdm->regmap, DFSDM_CHCFGR1(ch_id),
215                            DFSDM_CHCFGR1_CHEN_MASK, DFSDM_CHCFGR1_CHEN(0));
216 }
217
218 static int stm32_dfsdm_chan_configure(struct stm32_dfsdm *dfsdm,
219                                       struct stm32_dfsdm_channel *ch)
220 {
221         unsigned int id = ch->id;
222         struct regmap *regmap = dfsdm->regmap;
223         int ret;
224
225         ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
226                                  DFSDM_CHCFGR1_SITP_MASK,
227                                  DFSDM_CHCFGR1_SITP(ch->type));
228         if (ret < 0)
229                 return ret;
230         ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
231                                  DFSDM_CHCFGR1_SPICKSEL_MASK,
232                                  DFSDM_CHCFGR1_SPICKSEL(ch->src));
233         if (ret < 0)
234                 return ret;
235         return regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
236                                   DFSDM_CHCFGR1_CHINSEL_MASK,
237                                   DFSDM_CHCFGR1_CHINSEL(ch->alt_si));
238 }
239
240 static int stm32_dfsdm_start_filter(struct stm32_dfsdm *dfsdm,
241                                     unsigned int fl_id)
242 {
243         int ret;
244
245         /* Enable filter */
246         ret = regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
247                                  DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(1));
248         if (ret < 0)
249                 return ret;
250
251         /* Start conversion */
252         return regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
253                                   DFSDM_CR1_RSWSTART_MASK,
254                                   DFSDM_CR1_RSWSTART(1));
255 }
256
257 static void stm32_dfsdm_stop_filter(struct stm32_dfsdm *dfsdm,
258                                     unsigned int fl_id)
259 {
260         /* Disable conversion */
261         regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
262                            DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(0));
263 }
264
265 static int stm32_dfsdm_filter_configure(struct stm32_dfsdm *dfsdm,
266                                         unsigned int fl_id, unsigned int ch_id)
267 {
268         struct regmap *regmap = dfsdm->regmap;
269         struct stm32_dfsdm_filter *fl = &dfsdm->fl_list[fl_id];
270         int ret;
271
272         /* Average integrator oversampling */
273         ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_IOSR_MASK,
274                                  DFSDM_FCR_IOSR(fl->iosr - 1));
275         if (ret)
276                 return ret;
277
278         /* Filter order and Oversampling */
279         ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FOSR_MASK,
280                                  DFSDM_FCR_FOSR(fl->fosr - 1));
281         if (ret)
282                 return ret;
283
284         ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FORD_MASK,
285                                  DFSDM_FCR_FORD(fl->ford));
286         if (ret)
287                 return ret;
288
289         /* No scan mode supported for the moment */
290         ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id), DFSDM_CR1_RCH_MASK,
291                                  DFSDM_CR1_RCH(ch_id));
292         if (ret)
293                 return ret;
294
295         return regmap_update_bits(regmap, DFSDM_CR1(fl_id),
296                                   DFSDM_CR1_RSYNC_MASK,
297                                   DFSDM_CR1_RSYNC(fl->sync_mode));
298 }
299
300 static int stm32_dfsdm_channel_parse_of(struct stm32_dfsdm *dfsdm,
301                                         struct iio_dev *indio_dev,
302                                         struct iio_chan_spec *ch)
303 {
304         struct stm32_dfsdm_channel *df_ch;
305         const char *of_str;
306         int chan_idx = ch->scan_index;
307         int ret, val;
308
309         ret = of_property_read_u32_index(indio_dev->dev.of_node,
310                                          "st,adc-channels", chan_idx,
311                                          &ch->channel);
312         if (ret < 0) {
313                 dev_err(&indio_dev->dev,
314                         " Error parsing 'st,adc-channels' for idx %d\n",
315                         chan_idx);
316                 return ret;
317         }
318         if (ch->channel >= dfsdm->num_chs) {
319                 dev_err(&indio_dev->dev,
320                         " Error bad channel number %d (max = %d)\n",
321                         ch->channel, dfsdm->num_chs);
322                 return -EINVAL;
323         }
324
325         ret = of_property_read_string_index(indio_dev->dev.of_node,
326                                             "st,adc-channel-names", chan_idx,
327                                             &ch->datasheet_name);
328         if (ret < 0) {
329                 dev_err(&indio_dev->dev,
330                         " Error parsing 'st,adc-channel-names' for idx %d\n",
331                         chan_idx);
332                 return ret;
333         }
334
335         df_ch =  &dfsdm->ch_list[ch->channel];
336         df_ch->id = ch->channel;
337
338         ret = of_property_read_string_index(indio_dev->dev.of_node,
339                                             "st,adc-channel-types", chan_idx,
340                                             &of_str);
341         if (!ret) {
342                 val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_type);
343                 if (val < 0)
344                         return val;
345         } else {
346                 val = 0;
347         }
348         df_ch->type = val;
349
350         ret = of_property_read_string_index(indio_dev->dev.of_node,
351                                             "st,adc-channel-clk-src", chan_idx,
352                                             &of_str);
353         if (!ret) {
354                 val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_src);
355                 if (val < 0)
356                         return val;
357         } else {
358                 val = 0;
359         }
360         df_ch->src = val;
361
362         ret = of_property_read_u32_index(indio_dev->dev.of_node,
363                                          "st,adc-alt-channel", chan_idx,
364                                          &df_ch->alt_si);
365         if (ret < 0)
366                 df_ch->alt_si = 0;
367
368         return 0;
369 }
370
371 static ssize_t dfsdm_adc_audio_get_spiclk(struct iio_dev *indio_dev,
372                                           uintptr_t priv,
373                                           const struct iio_chan_spec *chan,
374                                           char *buf)
375 {
376         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
377
378         return snprintf(buf, PAGE_SIZE, "%d\n", adc->spi_freq);
379 }
380
381 static ssize_t dfsdm_adc_audio_set_spiclk(struct iio_dev *indio_dev,
382                                           uintptr_t priv,
383                                           const struct iio_chan_spec *chan,
384                                           const char *buf, size_t len)
385 {
386         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
387         struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
388         struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
389         unsigned int sample_freq = adc->sample_freq;
390         unsigned int spi_freq;
391         int ret;
392
393         dev_err(&indio_dev->dev, "enter %s\n", __func__);
394         /* If DFSDM is master on SPI, SPI freq can not be updated */
395         if (ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
396                 return -EPERM;
397
398         ret = kstrtoint(buf, 0, &spi_freq);
399         if (ret)
400                 return ret;
401
402         if (!spi_freq)
403                 return -EINVAL;
404
405         if (sample_freq) {
406                 if (spi_freq % sample_freq)
407                         dev_warn(&indio_dev->dev,
408                                  "Sampling rate not accurate (%d)\n",
409                                  spi_freq / (spi_freq / sample_freq));
410
411                 ret = stm32_dfsdm_set_osrs(fl, 0, (spi_freq / sample_freq));
412                 if (ret < 0) {
413                         dev_err(&indio_dev->dev,
414                                 "No filter parameters that match!\n");
415                         return ret;
416                 }
417         }
418         adc->spi_freq = spi_freq;
419
420         return len;
421 }
422
423 static int stm32_dfsdm_start_conv(struct stm32_dfsdm_adc *adc,
424                                   const struct iio_chan_spec *chan,
425                                   bool dma)
426 {
427         struct regmap *regmap = adc->dfsdm->regmap;
428         int ret;
429         unsigned int dma_en = 0, cont_en = 0;
430
431         ret = stm32_dfsdm_start_channel(adc->dfsdm, chan->channel);
432         if (ret < 0)
433                 return ret;
434
435         ret = stm32_dfsdm_filter_configure(adc->dfsdm, adc->fl_id,
436                                            chan->channel);
437         if (ret < 0)
438                 goto stop_channels;
439
440         if (dma) {
441                 /* Enable DMA transfer*/
442                 dma_en =  DFSDM_CR1_RDMAEN(1);
443                 /* Enable conversion triggered by SPI clock*/
444                 cont_en = DFSDM_CR1_RCONT(1);
445         }
446         /* Enable DMA transfer*/
447         ret = regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
448                                  DFSDM_CR1_RDMAEN_MASK, dma_en);
449         if (ret < 0)
450                 goto stop_channels;
451
452         /* Enable conversion triggered by SPI clock*/
453         ret = regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
454                                  DFSDM_CR1_RCONT_MASK, cont_en);
455         if (ret < 0)
456                 goto stop_channels;
457
458         ret = stm32_dfsdm_start_filter(adc->dfsdm, adc->fl_id);
459         if (ret < 0)
460                 goto stop_channels;
461
462         return 0;
463
464 stop_channels:
465         regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
466                            DFSDM_CR1_RDMAEN_MASK, 0);
467
468         regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
469                            DFSDM_CR1_RCONT_MASK, 0);
470         stm32_dfsdm_stop_channel(adc->dfsdm, chan->channel);
471
472         return ret;
473 }
474
475 static void stm32_dfsdm_stop_conv(struct stm32_dfsdm_adc *adc,
476                                   const struct iio_chan_spec *chan)
477 {
478         struct regmap *regmap = adc->dfsdm->regmap;
479
480         stm32_dfsdm_stop_filter(adc->dfsdm, adc->fl_id);
481
482         /* Clean conversion options */
483         regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
484                            DFSDM_CR1_RDMAEN_MASK, 0);
485
486         regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
487                            DFSDM_CR1_RCONT_MASK, 0);
488
489         stm32_dfsdm_stop_channel(adc->dfsdm, chan->channel);
490 }
491
492 static int stm32_dfsdm_set_watermark(struct iio_dev *indio_dev,
493                                      unsigned int val)
494 {
495         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
496         unsigned int watermark = DFSDM_DMA_BUFFER_SIZE / 2;
497
498         /*
499          * DMA cyclic transfers are used, buffer is split into two periods.
500          * There should be :
501          * - always one buffer (period) DMA is working on
502          * - one buffer (period) driver pushed to ASoC side.
503          */
504         watermark = min(watermark, val * (unsigned int)(sizeof(u32)));
505         adc->buf_sz = watermark * 2;
506
507         return 0;
508 }
509
510 static unsigned int stm32_dfsdm_adc_dma_residue(struct stm32_dfsdm_adc *adc)
511 {
512         struct dma_tx_state state;
513         enum dma_status status;
514
515         status = dmaengine_tx_status(adc->dma_chan,
516                                      adc->dma_chan->cookie,
517                                      &state);
518         if (status == DMA_IN_PROGRESS) {
519                 /* Residue is size in bytes from end of buffer */
520                 unsigned int i = adc->buf_sz - state.residue;
521                 unsigned int size;
522
523                 /* Return available bytes */
524                 if (i >= adc->bufi)
525                         size = i - adc->bufi;
526                 else
527                         size = adc->buf_sz + i - adc->bufi;
528
529                 return size;
530         }
531
532         return 0;
533 }
534
535 static void stm32_dfsdm_audio_dma_buffer_done(void *data)
536 {
537         struct iio_dev *indio_dev = data;
538         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
539         int available = stm32_dfsdm_adc_dma_residue(adc);
540         size_t old_pos;
541
542         /*
543          * FIXME: In Kernel interface does not support cyclic DMA buffer,and
544          * offers only an interface to push data samples per samples.
545          * For this reason IIO buffer interface is not used and interface is
546          * bypassed using a private callback registered by ASoC.
547          * This should be a temporary solution waiting a cyclic DMA engine
548          * support in IIO.
549          */
550
551         dev_dbg(&indio_dev->dev, "%s: pos = %d, available = %d\n", __func__,
552                 adc->bufi, available);
553         old_pos = adc->bufi;
554
555         while (available >= indio_dev->scan_bytes) {
556                 u32 *buffer = (u32 *)&adc->rx_buf[adc->bufi];
557
558                 /* Mask 8 LSB that contains the channel ID */
559                 *buffer = (*buffer & 0xFFFFFF00) << 8;
560                 available -= indio_dev->scan_bytes;
561                 adc->bufi += indio_dev->scan_bytes;
562                 if (adc->bufi >= adc->buf_sz) {
563                         if (adc->cb)
564                                 adc->cb(&adc->rx_buf[old_pos],
565                                          adc->buf_sz - old_pos, adc->cb_priv);
566                         adc->bufi = 0;
567                         old_pos = 0;
568                 }
569         }
570         if (adc->cb)
571                 adc->cb(&adc->rx_buf[old_pos], adc->bufi - old_pos,
572                         adc->cb_priv);
573 }
574
575 static int stm32_dfsdm_adc_dma_start(struct iio_dev *indio_dev)
576 {
577         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
578         struct dma_async_tx_descriptor *desc;
579         dma_cookie_t cookie;
580         int ret;
581
582         if (!adc->dma_chan)
583                 return -EINVAL;
584
585         dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
586                 adc->buf_sz, adc->buf_sz / 2);
587
588         /* Prepare a DMA cyclic transaction */
589         desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
590                                          adc->dma_buf,
591                                          adc->buf_sz, adc->buf_sz / 2,
592                                          DMA_DEV_TO_MEM,
593                                          DMA_PREP_INTERRUPT);
594         if (!desc)
595                 return -EBUSY;
596
597         desc->callback = stm32_dfsdm_audio_dma_buffer_done;
598         desc->callback_param = indio_dev;
599
600         cookie = dmaengine_submit(desc);
601         ret = dma_submit_error(cookie);
602         if (ret) {
603                 dmaengine_terminate_all(adc->dma_chan);
604                 return ret;
605         }
606
607         /* Issue pending DMA requests */
608         dma_async_issue_pending(adc->dma_chan);
609
610         return 0;
611 }
612
613 static int stm32_dfsdm_postenable(struct iio_dev *indio_dev)
614 {
615         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
616         const struct iio_chan_spec *chan = &indio_dev->channels[0];
617         int ret;
618
619         /* Reset adc buffer index */
620         adc->bufi = 0;
621
622         ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
623         if (ret < 0)
624                 return ret;
625
626         ret = stm32_dfsdm_start_conv(adc, chan, true);
627         if (ret) {
628                 dev_err(&indio_dev->dev, "Can't start conversion\n");
629                 goto stop_dfsdm;
630         }
631
632         if (adc->dma_chan) {
633                 ret = stm32_dfsdm_adc_dma_start(indio_dev);
634                 if (ret) {
635                         dev_err(&indio_dev->dev, "Can't start DMA\n");
636                         goto err_stop_conv;
637                 }
638         }
639
640         return 0;
641
642 err_stop_conv:
643         stm32_dfsdm_stop_conv(adc, chan);
644 stop_dfsdm:
645         stm32_dfsdm_stop_dfsdm(adc->dfsdm);
646
647         return ret;
648 }
649
650 static int stm32_dfsdm_predisable(struct iio_dev *indio_dev)
651 {
652         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
653         const struct iio_chan_spec *chan = &indio_dev->channels[0];
654
655         if (adc->dma_chan)
656                 dmaengine_terminate_all(adc->dma_chan);
657
658         stm32_dfsdm_stop_conv(adc, chan);
659
660         stm32_dfsdm_stop_dfsdm(adc->dfsdm);
661
662         return 0;
663 }
664
665 static const struct iio_buffer_setup_ops stm32_dfsdm_buffer_setup_ops = {
666         .postenable = &stm32_dfsdm_postenable,
667         .predisable = &stm32_dfsdm_predisable,
668 };
669
670 /**
671  * stm32_dfsdm_get_buff_cb() - register a callback that will be called when
672  *                             DMA transfer period is achieved.
673  *
674  * @iio_dev: Handle to IIO device.
675  * @cb: Pointer to callback function:
676  *      - data: pointer to data buffer
677  *      - size: size in byte of the data buffer
678  *      - private: pointer to consumer private structure.
679  * @private: Pointer to consumer private structure.
680  */
681 int stm32_dfsdm_get_buff_cb(struct iio_dev *iio_dev,
682                             int (*cb)(const void *data, size_t size,
683                                       void *private),
684                             void *private)
685 {
686         struct stm32_dfsdm_adc *adc;
687
688         if (!iio_dev)
689                 return -EINVAL;
690         adc = iio_priv(iio_dev);
691
692         adc->cb = cb;
693         adc->cb_priv = private;
694
695         return 0;
696 }
697 EXPORT_SYMBOL_GPL(stm32_dfsdm_get_buff_cb);
698
699 /**
700  * stm32_dfsdm_release_buff_cb - unregister buffer callback
701  *
702  * @iio_dev: Handle to IIO device.
703  */
704 int stm32_dfsdm_release_buff_cb(struct iio_dev *iio_dev)
705 {
706         struct stm32_dfsdm_adc *adc;
707
708         if (!iio_dev)
709                 return -EINVAL;
710         adc = iio_priv(iio_dev);
711
712         adc->cb = NULL;
713         adc->cb_priv = NULL;
714
715         return 0;
716 }
717 EXPORT_SYMBOL_GPL(stm32_dfsdm_release_buff_cb);
718
719 static int stm32_dfsdm_single_conv(struct iio_dev *indio_dev,
720                                    const struct iio_chan_spec *chan, int *res)
721 {
722         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
723         long timeout;
724         int ret;
725
726         reinit_completion(&adc->completion);
727
728         adc->buffer = res;
729
730         ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
731         if (ret < 0)
732                 return ret;
733
734         ret = regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
735                                  DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(1));
736         if (ret < 0)
737                 goto stop_dfsdm;
738
739         ret = stm32_dfsdm_start_conv(adc, chan, false);
740         if (ret < 0) {
741                 regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
742                                    DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
743                 goto stop_dfsdm;
744         }
745
746         timeout = wait_for_completion_interruptible_timeout(&adc->completion,
747                                                             DFSDM_TIMEOUT);
748
749         /* Mask IRQ for regular conversion achievement*/
750         regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
751                            DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
752
753         if (timeout == 0)
754                 ret = -ETIMEDOUT;
755         else if (timeout < 0)
756                 ret = timeout;
757         else
758                 ret = IIO_VAL_INT;
759
760         stm32_dfsdm_stop_conv(adc, chan);
761
762 stop_dfsdm:
763         stm32_dfsdm_stop_dfsdm(adc->dfsdm);
764
765         return ret;
766 }
767
768 static int stm32_dfsdm_write_raw(struct iio_dev *indio_dev,
769                                  struct iio_chan_spec const *chan,
770                                  int val, int val2, long mask)
771 {
772         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
773         struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
774         struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
775         unsigned int spi_freq;
776         int ret = -EINVAL;
777
778         switch (mask) {
779         case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
780                 ret = stm32_dfsdm_set_osrs(fl, 0, val);
781                 if (!ret)
782                         adc->oversamp = val;
783
784                 return ret;
785
786         case IIO_CHAN_INFO_SAMP_FREQ:
787                 if (!val)
788                         return -EINVAL;
789
790                 switch (ch->src) {
791                 case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL:
792                         spi_freq = adc->dfsdm->spi_master_freq;
793                         break;
794                 case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING:
795                 case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING:
796                         spi_freq = adc->dfsdm->spi_master_freq / 2;
797                         break;
798                 default:
799                         spi_freq = adc->spi_freq;
800                 }
801
802                 if (spi_freq % val)
803                         dev_warn(&indio_dev->dev,
804                                  "Sampling rate not accurate (%d)\n",
805                                  spi_freq / (spi_freq / val));
806
807                 ret = stm32_dfsdm_set_osrs(fl, 0, (spi_freq / val));
808                 if (ret < 0) {
809                         dev_err(&indio_dev->dev,
810                                 "Not able to find parameter that match!\n");
811                         return ret;
812                 }
813                 adc->sample_freq = val;
814
815                 return 0;
816         }
817
818         return -EINVAL;
819 }
820
821 static int stm32_dfsdm_read_raw(struct iio_dev *indio_dev,
822                                 struct iio_chan_spec const *chan, int *val,
823                                 int *val2, long mask)
824 {
825         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
826         int ret;
827
828         switch (mask) {
829         case IIO_CHAN_INFO_RAW:
830                 ret = iio_hw_consumer_enable(adc->hwc);
831                 if (ret < 0) {
832                         dev_err(&indio_dev->dev,
833                                 "%s: IIO enable failed (channel %d)\n",
834                                 __func__, chan->channel);
835                         return ret;
836                 }
837                 ret = stm32_dfsdm_single_conv(indio_dev, chan, val);
838                 iio_hw_consumer_disable(adc->hwc);
839                 if (ret < 0) {
840                         dev_err(&indio_dev->dev,
841                                 "%s: Conversion failed (channel %d)\n",
842                                 __func__, chan->channel);
843                         return ret;
844                 }
845                 return IIO_VAL_INT;
846
847         case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
848                 *val = adc->oversamp;
849
850                 return IIO_VAL_INT;
851
852         case IIO_CHAN_INFO_SAMP_FREQ:
853                 *val = adc->sample_freq;
854
855                 return IIO_VAL_INT;
856         }
857
858         return -EINVAL;
859 }
860
861 static const struct iio_info stm32_dfsdm_info_audio = {
862         .hwfifo_set_watermark = stm32_dfsdm_set_watermark,
863         .read_raw = stm32_dfsdm_read_raw,
864         .write_raw = stm32_dfsdm_write_raw,
865 };
866
867 static const struct iio_info stm32_dfsdm_info_adc = {
868         .read_raw = stm32_dfsdm_read_raw,
869         .write_raw = stm32_dfsdm_write_raw,
870 };
871
872 static irqreturn_t stm32_dfsdm_irq(int irq, void *arg)
873 {
874         struct stm32_dfsdm_adc *adc = arg;
875         struct iio_dev *indio_dev = iio_priv_to_dev(adc);
876         struct regmap *regmap = adc->dfsdm->regmap;
877         unsigned int status, int_en;
878
879         regmap_read(regmap, DFSDM_ISR(adc->fl_id), &status);
880         regmap_read(regmap, DFSDM_CR2(adc->fl_id), &int_en);
881
882         if (status & DFSDM_ISR_REOCF_MASK) {
883                 /* Read the data register clean the IRQ status */
884                 regmap_read(regmap, DFSDM_RDATAR(adc->fl_id), adc->buffer);
885                 complete(&adc->completion);
886         }
887
888         if (status & DFSDM_ISR_ROVRF_MASK) {
889                 if (int_en & DFSDM_CR2_ROVRIE_MASK)
890                         dev_warn(&indio_dev->dev, "Overrun detected\n");
891                 regmap_update_bits(regmap, DFSDM_ICR(adc->fl_id),
892                                    DFSDM_ICR_CLRROVRF_MASK,
893                                    DFSDM_ICR_CLRROVRF_MASK);
894         }
895
896         return IRQ_HANDLED;
897 }
898
899 /*
900  * Define external info for SPI Frequency and audio sampling rate that can be
901  * configured by ASoC driver through consumer.h API
902  */
903 static const struct iio_chan_spec_ext_info dfsdm_adc_audio_ext_info[] = {
904         /* spi_clk_freq : clock freq on SPI/manchester bus used by channel */
905         {
906                 .name = "spi_clk_freq",
907                 .shared = IIO_SHARED_BY_TYPE,
908                 .read = dfsdm_adc_audio_get_spiclk,
909                 .write = dfsdm_adc_audio_set_spiclk,
910         },
911         {},
912 };
913
914 static void stm32_dfsdm_dma_release(struct iio_dev *indio_dev)
915 {
916         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
917
918         if (adc->dma_chan) {
919                 dma_free_coherent(adc->dma_chan->device->dev,
920                                   DFSDM_DMA_BUFFER_SIZE,
921                                   adc->rx_buf, adc->dma_buf);
922                 dma_release_channel(adc->dma_chan);
923         }
924 }
925
926 static int stm32_dfsdm_dma_request(struct device *dev,
927                                    struct iio_dev *indio_dev)
928 {
929         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
930         struct dma_slave_config config = {
931                 .src_addr = (dma_addr_t)adc->dfsdm->phys_base +
932                         DFSDM_RDATAR(adc->fl_id),
933                 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
934         };
935         int ret;
936
937         adc->dma_chan = dma_request_chan(dev, "rx");
938         if (IS_ERR(adc->dma_chan)) {
939                 int ret = PTR_ERR(adc->dma_chan);
940
941                 adc->dma_chan = NULL;
942                 return ret;
943         }
944
945         adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
946                                          DFSDM_DMA_BUFFER_SIZE,
947                                          &adc->dma_buf, GFP_KERNEL);
948         if (!adc->rx_buf) {
949                 ret = -ENOMEM;
950                 goto err_release;
951         }
952
953         ret = dmaengine_slave_config(adc->dma_chan, &config);
954         if (ret)
955                 goto err_free;
956
957         return 0;
958
959 err_free:
960         dma_free_coherent(adc->dma_chan->device->dev, DFSDM_DMA_BUFFER_SIZE,
961                           adc->rx_buf, adc->dma_buf);
962 err_release:
963         dma_release_channel(adc->dma_chan);
964
965         return ret;
966 }
967
968 static int stm32_dfsdm_adc_chan_init_one(struct iio_dev *indio_dev,
969                                          struct iio_chan_spec *ch)
970 {
971         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
972         int ret;
973
974         ret = stm32_dfsdm_channel_parse_of(adc->dfsdm, indio_dev, ch);
975         if (ret < 0)
976                 return ret;
977
978         ch->type = IIO_VOLTAGE;
979         ch->indexed = 1;
980
981         /*
982          * IIO_CHAN_INFO_RAW: used to compute regular conversion
983          * IIO_CHAN_INFO_OVERSAMPLING_RATIO: used to set oversampling
984          */
985         ch->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
986         ch->info_mask_shared_by_all = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO);
987
988         if (adc->dev_data->type == DFSDM_AUDIO) {
989                 ch->ext_info = dfsdm_adc_audio_ext_info;
990         } else {
991                 ch->scan_type.shift = 8;
992         }
993         ch->scan_type.sign = 's';
994         ch->scan_type.realbits = 24;
995         ch->scan_type.storagebits = 32;
996
997         return stm32_dfsdm_chan_configure(adc->dfsdm,
998                                           &adc->dfsdm->ch_list[ch->channel]);
999 }
1000
1001 static int stm32_dfsdm_audio_init(struct device *dev, struct iio_dev *indio_dev)
1002 {
1003         struct iio_chan_spec *ch;
1004         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1005         struct stm32_dfsdm_channel *d_ch;
1006         int ret;
1007
1008         indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1009         indio_dev->setup_ops = &stm32_dfsdm_buffer_setup_ops;
1010
1011         ch = devm_kzalloc(&indio_dev->dev, sizeof(*ch), GFP_KERNEL);
1012         if (!ch)
1013                 return -ENOMEM;
1014
1015         ch->scan_index = 0;
1016
1017         ret = stm32_dfsdm_adc_chan_init_one(indio_dev, ch);
1018         if (ret < 0) {
1019                 dev_err(&indio_dev->dev, "Channels init failed\n");
1020                 return ret;
1021         }
1022         ch->info_mask_separate = BIT(IIO_CHAN_INFO_SAMP_FREQ);
1023
1024         d_ch = &adc->dfsdm->ch_list[ch->channel];
1025         if (d_ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
1026                 adc->spi_freq = adc->dfsdm->spi_master_freq;
1027
1028         indio_dev->num_channels = 1;
1029         indio_dev->channels = ch;
1030
1031         return stm32_dfsdm_dma_request(dev, indio_dev);
1032 }
1033
1034 static int stm32_dfsdm_adc_init(struct device *dev, struct iio_dev *indio_dev)
1035 {
1036         struct iio_chan_spec *ch;
1037         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1038         int num_ch;
1039         int ret, chan_idx;
1040
1041         adc->oversamp = DFSDM_DEFAULT_OVERSAMPLING;
1042         ret = stm32_dfsdm_set_osrs(&adc->dfsdm->fl_list[adc->fl_id], 0,
1043                                    adc->oversamp);
1044         if (ret < 0)
1045                 return ret;
1046
1047         num_ch = of_property_count_u32_elems(indio_dev->dev.of_node,
1048                                              "st,adc-channels");
1049         if (num_ch < 0 || num_ch > adc->dfsdm->num_chs) {
1050                 dev_err(&indio_dev->dev, "Bad st,adc-channels\n");
1051                 return num_ch < 0 ? num_ch : -EINVAL;
1052         }
1053
1054         /* Bind to SD modulator IIO device */
1055         adc->hwc = devm_iio_hw_consumer_alloc(&indio_dev->dev);
1056         if (IS_ERR(adc->hwc))
1057                 return -EPROBE_DEFER;
1058
1059         ch = devm_kcalloc(&indio_dev->dev, num_ch, sizeof(*ch),
1060                           GFP_KERNEL);
1061         if (!ch)
1062                 return -ENOMEM;
1063
1064         for (chan_idx = 0; chan_idx < num_ch; chan_idx++) {
1065                 ch[chan_idx].scan_index = chan_idx;
1066                 ret = stm32_dfsdm_adc_chan_init_one(indio_dev, &ch[chan_idx]);
1067                 if (ret < 0) {
1068                         dev_err(&indio_dev->dev, "Channels init failed\n");
1069                         return ret;
1070                 }
1071         }
1072
1073         indio_dev->num_channels = num_ch;
1074         indio_dev->channels = ch;
1075
1076         init_completion(&adc->completion);
1077
1078         return 0;
1079 }
1080
1081 static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_adc_data = {
1082         .type = DFSDM_IIO,
1083         .init = stm32_dfsdm_adc_init,
1084 };
1085
1086 static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_audio_data = {
1087         .type = DFSDM_AUDIO,
1088         .init = stm32_dfsdm_audio_init,
1089 };
1090
1091 static const struct of_device_id stm32_dfsdm_adc_match[] = {
1092         {
1093                 .compatible = "st,stm32-dfsdm-adc",
1094                 .data = &stm32h7_dfsdm_adc_data,
1095         },
1096         {
1097                 .compatible = "st,stm32-dfsdm-dmic",
1098                 .data = &stm32h7_dfsdm_audio_data,
1099         },
1100         {}
1101 };
1102
1103 static int stm32_dfsdm_adc_probe(struct platform_device *pdev)
1104 {
1105         struct device *dev = &pdev->dev;
1106         struct stm32_dfsdm_adc *adc;
1107         struct device_node *np = dev->of_node;
1108         const struct stm32_dfsdm_dev_data *dev_data;
1109         struct iio_dev *iio;
1110         char *name;
1111         int ret, irq, val;
1112
1113         dev_data = of_device_get_match_data(dev);
1114         iio = devm_iio_device_alloc(dev, sizeof(*adc));
1115         if (!iio) {
1116                 dev_err(dev, "%s: Failed to allocate IIO\n", __func__);
1117                 return -ENOMEM;
1118         }
1119
1120         adc = iio_priv(iio);
1121         adc->dfsdm = dev_get_drvdata(dev->parent);
1122
1123         iio->dev.parent = dev;
1124         iio->dev.of_node = np;
1125         iio->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE;
1126
1127         platform_set_drvdata(pdev, adc);
1128
1129         ret = of_property_read_u32(dev->of_node, "reg", &adc->fl_id);
1130         if (ret != 0 || adc->fl_id >= adc->dfsdm->num_fls) {
1131                 dev_err(dev, "Missing or bad reg property\n");
1132                 return -EINVAL;
1133         }
1134
1135         name = devm_kzalloc(dev, sizeof("dfsdm-adc0"), GFP_KERNEL);
1136         if (!name)
1137                 return -ENOMEM;
1138         if (dev_data->type == DFSDM_AUDIO) {
1139                 iio->info = &stm32_dfsdm_info_audio;
1140                 snprintf(name, sizeof("dfsdm-pdm0"), "dfsdm-pdm%d", adc->fl_id);
1141         } else {
1142                 iio->info = &stm32_dfsdm_info_adc;
1143                 snprintf(name, sizeof("dfsdm-adc0"), "dfsdm-adc%d", adc->fl_id);
1144         }
1145         iio->name = name;
1146
1147         /*
1148          * In a first step IRQs generated for channels are not treated.
1149          * So IRQ associated to filter instance 0 is dedicated to the Filter 0.
1150          */
1151         irq = platform_get_irq(pdev, 0);
1152         if (irq < 0) {
1153                 if (irq != -EPROBE_DEFER)
1154                         dev_err(dev, "Failed to get IRQ: %d\n", irq);
1155                 return irq;
1156         }
1157
1158         ret = devm_request_irq(dev, irq, stm32_dfsdm_irq,
1159                                0, pdev->name, adc);
1160         if (ret < 0) {
1161                 dev_err(dev, "Failed to request IRQ\n");
1162                 return ret;
1163         }
1164
1165         ret = of_property_read_u32(dev->of_node, "st,filter-order", &val);
1166         if (ret < 0) {
1167                 dev_err(dev, "Failed to set filter order\n");
1168                 return ret;
1169         }
1170
1171         adc->dfsdm->fl_list[adc->fl_id].ford = val;
1172
1173         ret = of_property_read_u32(dev->of_node, "st,filter0-sync", &val);
1174         if (!ret)
1175                 adc->dfsdm->fl_list[adc->fl_id].sync_mode = val;
1176
1177         adc->dev_data = dev_data;
1178         ret = dev_data->init(dev, iio);
1179         if (ret < 0)
1180                 return ret;
1181
1182         ret = iio_device_register(iio);
1183         if (ret < 0)
1184                 goto err_cleanup;
1185
1186         if (dev_data->type == DFSDM_AUDIO) {
1187                 ret = of_platform_populate(np, NULL, NULL, dev);
1188                 if (ret < 0) {
1189                         dev_err(dev, "Failed to find an audio DAI\n");
1190                         goto err_unregister;
1191                 }
1192         }
1193
1194         return 0;
1195
1196 err_unregister:
1197         iio_device_unregister(iio);
1198 err_cleanup:
1199         stm32_dfsdm_dma_release(iio);
1200
1201         return ret;
1202 }
1203
1204 static int stm32_dfsdm_adc_remove(struct platform_device *pdev)
1205 {
1206         struct stm32_dfsdm_adc *adc = platform_get_drvdata(pdev);
1207         struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1208
1209         if (adc->dev_data->type == DFSDM_AUDIO)
1210                 of_platform_depopulate(&pdev->dev);
1211         iio_device_unregister(indio_dev);
1212         stm32_dfsdm_dma_release(indio_dev);
1213
1214         return 0;
1215 }
1216
1217 static struct platform_driver stm32_dfsdm_adc_driver = {
1218         .driver = {
1219                 .name = "stm32-dfsdm-adc",
1220                 .of_match_table = stm32_dfsdm_adc_match,
1221         },
1222         .probe = stm32_dfsdm_adc_probe,
1223         .remove = stm32_dfsdm_adc_remove,
1224 };
1225 module_platform_driver(stm32_dfsdm_adc_driver);
1226
1227 MODULE_DESCRIPTION("STM32 sigma delta ADC");
1228 MODULE_AUTHOR("Arnaud Pouliquen <arnaud.pouliquen@st.com>");
1229 MODULE_LICENSE("GPL v2");