GNU Linux-libre 4.9.322-gnu1
[releases.git] / drivers / iio / adc / nau7802.c
1 /*
2  * Driver for the Nuvoton NAU7802 ADC
3  *
4  * Copyright 2013 Free Electrons
5  *
6  * Licensed under the GPLv2 or later.
7  */
8
9 #include <linux/delay.h>
10 #include <linux/i2c.h>
11 #include <linux/interrupt.h>
12 #include <linux/module.h>
13 #include <linux/wait.h>
14 #include <linux/log2.h>
15 #include <linux/of.h>
16
17 #include <linux/iio/iio.h>
18 #include <linux/iio/sysfs.h>
19
20 #define NAU7802_REG_PUCTRL      0x00
21 #define NAU7802_PUCTRL_RR(x)            (x << 0)
22 #define NAU7802_PUCTRL_RR_BIT           NAU7802_PUCTRL_RR(1)
23 #define NAU7802_PUCTRL_PUD(x)           (x << 1)
24 #define NAU7802_PUCTRL_PUD_BIT          NAU7802_PUCTRL_PUD(1)
25 #define NAU7802_PUCTRL_PUA(x)           (x << 2)
26 #define NAU7802_PUCTRL_PUA_BIT          NAU7802_PUCTRL_PUA(1)
27 #define NAU7802_PUCTRL_PUR(x)           (x << 3)
28 #define NAU7802_PUCTRL_PUR_BIT          NAU7802_PUCTRL_PUR(1)
29 #define NAU7802_PUCTRL_CS(x)            (x << 4)
30 #define NAU7802_PUCTRL_CS_BIT           NAU7802_PUCTRL_CS(1)
31 #define NAU7802_PUCTRL_CR(x)            (x << 5)
32 #define NAU7802_PUCTRL_CR_BIT           NAU7802_PUCTRL_CR(1)
33 #define NAU7802_PUCTRL_AVDDS(x)         (x << 7)
34 #define NAU7802_PUCTRL_AVDDS_BIT        NAU7802_PUCTRL_AVDDS(1)
35 #define NAU7802_REG_CTRL1       0x01
36 #define NAU7802_CTRL1_VLDO(x)           (x << 3)
37 #define NAU7802_CTRL1_GAINS(x)          (x)
38 #define NAU7802_CTRL1_GAINS_BITS        0x07
39 #define NAU7802_REG_CTRL2       0x02
40 #define NAU7802_CTRL2_CHS(x)            (x << 7)
41 #define NAU7802_CTRL2_CRS(x)            (x << 4)
42 #define NAU7802_SAMP_FREQ_320   0x07
43 #define NAU7802_CTRL2_CHS_BIT           NAU7802_CTRL2_CHS(1)
44 #define NAU7802_REG_ADC_B2      0x12
45 #define NAU7802_REG_ADC_B1      0x13
46 #define NAU7802_REG_ADC_B0      0x14
47 #define NAU7802_REG_ADC_CTRL    0x15
48
49 #define NAU7802_MIN_CONVERSIONS 6
50
51 struct nau7802_state {
52         struct i2c_client       *client;
53         s32                     last_value;
54         struct mutex            lock;
55         struct mutex            data_lock;
56         u32                     vref_mv;
57         u32                     conversion_count;
58         u32                     min_conversions;
59         u8                      sample_rate;
60         u32                     scale_avail[8];
61         struct completion       value_ok;
62 };
63
64 #define NAU7802_CHANNEL(chan) {                                 \
65         .type = IIO_VOLTAGE,                                    \
66         .indexed = 1,                                           \
67         .channel = (chan),                                      \
68         .scan_index = (chan),                                   \
69         .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),           \
70         .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |  \
71                                 BIT(IIO_CHAN_INFO_SAMP_FREQ)    \
72 }
73
74 static const struct iio_chan_spec nau7802_chan_array[] = {
75         NAU7802_CHANNEL(0),
76         NAU7802_CHANNEL(1),
77 };
78
79 static const u16 nau7802_sample_freq_avail[] = {10, 20, 40, 80,
80                                                 10, 10, 10, 320};
81
82 static ssize_t nau7802_show_scales(struct device *dev,
83                                    struct device_attribute *attr, char *buf)
84 {
85         struct nau7802_state *st = iio_priv(dev_to_iio_dev(dev));
86         int i, len = 0;
87
88         for (i = 0; i < ARRAY_SIZE(st->scale_avail); i++)
89                 len += scnprintf(buf + len, PAGE_SIZE - len, "0.%09d ",
90                                  st->scale_avail[i]);
91
92         buf[len-1] = '\n';
93
94         return len;
95 }
96
97 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("10 40 80 320");
98
99 static IIO_DEVICE_ATTR(in_voltage_scale_available, S_IRUGO, nau7802_show_scales,
100                        NULL, 0);
101
102 static struct attribute *nau7802_attributes[] = {
103         &iio_const_attr_sampling_frequency_available.dev_attr.attr,
104         &iio_dev_attr_in_voltage_scale_available.dev_attr.attr,
105         NULL
106 };
107
108 static const struct attribute_group nau7802_attribute_group = {
109         .attrs = nau7802_attributes,
110 };
111
112 static int nau7802_set_gain(struct nau7802_state *st, int gain)
113 {
114         int ret;
115
116         mutex_lock(&st->lock);
117         st->conversion_count = 0;
118
119         ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_CTRL1);
120         if (ret < 0)
121                 goto nau7802_sysfs_set_gain_out;
122         ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_CTRL1,
123                                         (ret & (~NAU7802_CTRL1_GAINS_BITS)) |
124                                         gain);
125
126 nau7802_sysfs_set_gain_out:
127         mutex_unlock(&st->lock);
128
129         return ret;
130 }
131
132 static int nau7802_read_conversion(struct nau7802_state *st)
133 {
134         int data;
135
136         mutex_lock(&st->data_lock);
137         data = i2c_smbus_read_byte_data(st->client, NAU7802_REG_ADC_B2);
138         if (data < 0)
139                 goto nau7802_read_conversion_out;
140         st->last_value = data << 16;
141
142         data = i2c_smbus_read_byte_data(st->client, NAU7802_REG_ADC_B1);
143         if (data < 0)
144                 goto nau7802_read_conversion_out;
145         st->last_value |= data << 8;
146
147         data = i2c_smbus_read_byte_data(st->client, NAU7802_REG_ADC_B0);
148         if (data < 0)
149                 goto nau7802_read_conversion_out;
150         st->last_value |= data;
151
152         st->last_value = sign_extend32(st->last_value, 23);
153
154 nau7802_read_conversion_out:
155         mutex_unlock(&st->data_lock);
156
157         return data;
158 }
159
160 /*
161  * Conversions are synchronised on the rising edge of NAU7802_PUCTRL_CS_BIT
162  */
163 static int nau7802_sync(struct nau7802_state *st)
164 {
165         int ret;
166
167         ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_PUCTRL);
168         if (ret < 0)
169                 return ret;
170         ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_PUCTRL,
171                                 ret | NAU7802_PUCTRL_CS_BIT);
172
173         return ret;
174 }
175
176 static irqreturn_t nau7802_eoc_trigger(int irq, void *private)
177 {
178         struct iio_dev *indio_dev = private;
179         struct nau7802_state *st = iio_priv(indio_dev);
180         int status;
181
182         status = i2c_smbus_read_byte_data(st->client, NAU7802_REG_PUCTRL);
183         if (status < 0)
184                 return IRQ_HANDLED;
185
186         if (!(status & NAU7802_PUCTRL_CR_BIT))
187                 return IRQ_NONE;
188
189         if (nau7802_read_conversion(st) < 0)
190                 return IRQ_HANDLED;
191
192         /*
193          * Because there is actually only one ADC for both channels, we have to
194          * wait for enough conversions to happen before getting a significant
195          * value when changing channels and the values are far apart.
196          */
197         if (st->conversion_count < NAU7802_MIN_CONVERSIONS)
198                 st->conversion_count++;
199         if (st->conversion_count >= NAU7802_MIN_CONVERSIONS)
200                 complete(&st->value_ok);
201
202         return IRQ_HANDLED;
203 }
204
205 static int nau7802_read_irq(struct iio_dev *indio_dev,
206                         struct iio_chan_spec const *chan,
207                         int *val)
208 {
209         struct nau7802_state *st = iio_priv(indio_dev);
210         int ret;
211
212         reinit_completion(&st->value_ok);
213         enable_irq(st->client->irq);
214
215         nau7802_sync(st);
216
217         /* read registers to ensure we flush everything */
218         ret = nau7802_read_conversion(st);
219         if (ret < 0)
220                 goto read_chan_info_failure;
221
222         /* Wait for a conversion to finish */
223         ret = wait_for_completion_interruptible_timeout(&st->value_ok,
224                         msecs_to_jiffies(1000));
225         if (ret == 0)
226                 ret = -ETIMEDOUT;
227
228         if (ret < 0)
229                 goto read_chan_info_failure;
230
231         disable_irq(st->client->irq);
232
233         *val = st->last_value;
234
235         return IIO_VAL_INT;
236
237 read_chan_info_failure:
238         disable_irq(st->client->irq);
239
240         return ret;
241 }
242
243 static int nau7802_read_poll(struct iio_dev *indio_dev,
244                         struct iio_chan_spec const *chan,
245                         int *val)
246 {
247         struct nau7802_state *st = iio_priv(indio_dev);
248         int ret;
249
250         nau7802_sync(st);
251
252         /* read registers to ensure we flush everything */
253         ret = nau7802_read_conversion(st);
254         if (ret < 0)
255                 return ret;
256
257         /*
258          * Because there is actually only one ADC for both channels, we have to
259          * wait for enough conversions to happen before getting a significant
260          * value when changing channels and the values are far appart.
261          */
262         do {
263                 ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_PUCTRL);
264                 if (ret < 0)
265                         return ret;
266
267                 while (!(ret & NAU7802_PUCTRL_CR_BIT)) {
268                         if (st->sample_rate != NAU7802_SAMP_FREQ_320)
269                                 msleep(20);
270                         else
271                                 mdelay(4);
272                         ret = i2c_smbus_read_byte_data(st->client,
273                                                         NAU7802_REG_PUCTRL);
274                         if (ret < 0)
275                                 return ret;
276                 }
277
278                 ret = nau7802_read_conversion(st);
279                 if (ret < 0)
280                         return ret;
281                 if (st->conversion_count < NAU7802_MIN_CONVERSIONS)
282                         st->conversion_count++;
283         } while (st->conversion_count < NAU7802_MIN_CONVERSIONS);
284
285         *val = st->last_value;
286
287         return IIO_VAL_INT;
288 }
289
290 static int nau7802_read_raw(struct iio_dev *indio_dev,
291                             struct iio_chan_spec const *chan,
292                             int *val, int *val2, long mask)
293 {
294         struct nau7802_state *st = iio_priv(indio_dev);
295         int ret;
296
297         switch (mask) {
298         case IIO_CHAN_INFO_RAW:
299                 mutex_lock(&st->lock);
300                 /*
301                  * Select the channel to use
302                  *   - Channel 1 is value 0 in the CHS register
303                  *   - Channel 2 is value 1 in the CHS register
304                  */
305                 ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_CTRL2);
306                 if (ret < 0) {
307                         mutex_unlock(&st->lock);
308                         return ret;
309                 }
310
311                 if (((ret & NAU7802_CTRL2_CHS_BIT) && !chan->channel) ||
312                                 (!(ret & NAU7802_CTRL2_CHS_BIT) &&
313                                  chan->channel)) {
314                         st->conversion_count = 0;
315                         ret = i2c_smbus_write_byte_data(st->client,
316                                         NAU7802_REG_CTRL2,
317                                         NAU7802_CTRL2_CHS(chan->channel) |
318                                         NAU7802_CTRL2_CRS(st->sample_rate));
319
320                         if (ret < 0) {
321                                 mutex_unlock(&st->lock);
322                                 return ret;
323                         }
324                 }
325
326                 if (st->client->irq)
327                         ret = nau7802_read_irq(indio_dev, chan, val);
328                 else
329                         ret = nau7802_read_poll(indio_dev, chan, val);
330
331                 mutex_unlock(&st->lock);
332                 return ret;
333
334         case IIO_CHAN_INFO_SCALE:
335                 ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_CTRL1);
336                 if (ret < 0)
337                         return ret;
338
339                 /*
340                  * We have 24 bits of signed data, that means 23 bits of data
341                  * plus the sign bit
342                  */
343                 *val = st->vref_mv;
344                 *val2 = 23 + (ret & NAU7802_CTRL1_GAINS_BITS);
345
346                 return IIO_VAL_FRACTIONAL_LOG2;
347
348         case IIO_CHAN_INFO_SAMP_FREQ:
349                 *val =  nau7802_sample_freq_avail[st->sample_rate];
350                 *val2 = 0;
351                 return IIO_VAL_INT;
352
353         default:
354                 break;
355         }
356
357         return -EINVAL;
358 }
359
360 static int nau7802_write_raw(struct iio_dev *indio_dev,
361                              struct iio_chan_spec const *chan,
362                              int val, int val2, long mask)
363 {
364         struct nau7802_state *st = iio_priv(indio_dev);
365         int i, ret;
366
367         switch (mask) {
368         case IIO_CHAN_INFO_SCALE:
369                 for (i = 0; i < ARRAY_SIZE(st->scale_avail); i++)
370                         if (val2 == st->scale_avail[i])
371                                 return nau7802_set_gain(st, i);
372
373                 break;
374
375         case IIO_CHAN_INFO_SAMP_FREQ:
376                 for (i = 0; i < ARRAY_SIZE(nau7802_sample_freq_avail); i++)
377                         if (val == nau7802_sample_freq_avail[i]) {
378                                 mutex_lock(&st->lock);
379                                 st->sample_rate = i;
380                                 st->conversion_count = 0;
381                                 ret = i2c_smbus_write_byte_data(st->client,
382                                         NAU7802_REG_CTRL2,
383                                         NAU7802_CTRL2_CRS(st->sample_rate));
384                                 mutex_unlock(&st->lock);
385                                 return ret;
386                         }
387
388                 break;
389
390         default:
391                 break;
392         }
393
394         return -EINVAL;
395 }
396
397 static int nau7802_write_raw_get_fmt(struct iio_dev *indio_dev,
398                                      struct iio_chan_spec const *chan,
399                                      long mask)
400 {
401         return IIO_VAL_INT_PLUS_NANO;
402 }
403
404 static const struct iio_info nau7802_info = {
405         .driver_module = THIS_MODULE,
406         .read_raw = &nau7802_read_raw,
407         .write_raw = &nau7802_write_raw,
408         .write_raw_get_fmt = nau7802_write_raw_get_fmt,
409         .attrs = &nau7802_attribute_group,
410 };
411
412 static int nau7802_probe(struct i2c_client *client,
413                         const struct i2c_device_id *id)
414 {
415         struct iio_dev *indio_dev;
416         struct nau7802_state *st;
417         struct device_node *np = client->dev.of_node;
418         int i, ret;
419         u8 data;
420         u32 tmp = 0;
421
422         if (!client->dev.of_node) {
423                 dev_err(&client->dev, "No device tree node available.\n");
424                 return -EINVAL;
425         }
426
427         indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*st));
428         if (indio_dev == NULL)
429                 return -ENOMEM;
430
431         st = iio_priv(indio_dev);
432
433         i2c_set_clientdata(client, indio_dev);
434
435         indio_dev->dev.parent = &client->dev;
436         indio_dev->dev.of_node = client->dev.of_node;
437         indio_dev->name = dev_name(&client->dev);
438         indio_dev->modes = INDIO_DIRECT_MODE;
439         indio_dev->info = &nau7802_info;
440
441         st->client = client;
442
443         /* Reset the device */
444         ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_PUCTRL,
445                                   NAU7802_PUCTRL_RR_BIT);
446         if (ret < 0)
447                 return ret;
448
449         /* Enter normal operation mode */
450         ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_PUCTRL,
451                                   NAU7802_PUCTRL_PUD_BIT);
452         if (ret < 0)
453                 return ret;
454
455         /*
456          * After about 200 usecs, the device should be ready and then
457          * the Power Up bit will be set to 1. If not, wait for it.
458          */
459         udelay(210);
460         ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_PUCTRL);
461         if (ret < 0)
462                 return ret;
463         if (!(ret & NAU7802_PUCTRL_PUR_BIT))
464                 return ret;
465
466         of_property_read_u32(np, "nuvoton,vldo", &tmp);
467         st->vref_mv = tmp;
468
469         data = NAU7802_PUCTRL_PUD_BIT | NAU7802_PUCTRL_PUA_BIT |
470                 NAU7802_PUCTRL_CS_BIT;
471         if (tmp >= 2400)
472                 data |= NAU7802_PUCTRL_AVDDS_BIT;
473
474         ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_PUCTRL, data);
475         if (ret < 0)
476                 return ret;
477         ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_ADC_CTRL, 0x30);
478         if (ret < 0)
479                 return ret;
480
481         if (tmp >= 2400) {
482                 data = NAU7802_CTRL1_VLDO((4500 - tmp) / 300);
483                 ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_CTRL1,
484                                                 data);
485                 if (ret < 0)
486                         return ret;
487         }
488
489         /* Populate available ADC input ranges */
490         for (i = 0; i < ARRAY_SIZE(st->scale_avail); i++)
491                 st->scale_avail[i] = (((u64)st->vref_mv) * 1000000000ULL)
492                                            >> (23 + i);
493
494         init_completion(&st->value_ok);
495
496         /*
497          * The ADC fires continuously and we can't do anything about
498          * it. So we need to have the IRQ disabled by default, and we
499          * will enable them back when we will need them..
500          */
501         if (client->irq) {
502                 ret = request_threaded_irq(client->irq,
503                                 NULL,
504                                 nau7802_eoc_trigger,
505                                 IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
506                                 client->dev.driver->name,
507                                 indio_dev);
508                 if (ret) {
509                         /*
510                          * What may happen here is that our IRQ controller is
511                          * not able to get level interrupt but this is required
512                          * by this ADC as when going over 40 sample per second,
513                          * the interrupt line may stay high between conversions.
514                          * So, we continue no matter what but we switch to
515                          * polling mode.
516                          */
517                         dev_info(&client->dev,
518                                 "Failed to allocate IRQ, using polling mode\n");
519                         client->irq = 0;
520                 } else
521                         disable_irq(client->irq);
522         }
523
524         if (!client->irq) {
525                 /*
526                  * We are polling, use the fastest sample rate by
527                  * default
528                  */
529                 st->sample_rate = NAU7802_SAMP_FREQ_320;
530                 ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_CTRL2,
531                                           NAU7802_CTRL2_CRS(st->sample_rate));
532                 if (ret)
533                         goto error_free_irq;
534         }
535
536         /* Setup the ADC channels available on the board */
537         indio_dev->num_channels = ARRAY_SIZE(nau7802_chan_array);
538         indio_dev->channels = nau7802_chan_array;
539
540         mutex_init(&st->lock);
541         mutex_init(&st->data_lock);
542
543         ret = iio_device_register(indio_dev);
544         if (ret < 0) {
545                 dev_err(&client->dev, "Couldn't register the device.\n");
546                 goto error_device_register;
547         }
548
549         return 0;
550
551 error_device_register:
552         mutex_destroy(&st->lock);
553         mutex_destroy(&st->data_lock);
554 error_free_irq:
555         if (client->irq)
556                 free_irq(client->irq, indio_dev);
557
558         return ret;
559 }
560
561 static int nau7802_remove(struct i2c_client *client)
562 {
563         struct iio_dev *indio_dev = i2c_get_clientdata(client);
564         struct nau7802_state *st = iio_priv(indio_dev);
565
566         iio_device_unregister(indio_dev);
567         mutex_destroy(&st->lock);
568         mutex_destroy(&st->data_lock);
569         if (client->irq)
570                 free_irq(client->irq, indio_dev);
571
572         return 0;
573 }
574
575 static const struct i2c_device_id nau7802_i2c_id[] = {
576         { "nau7802", 0 },
577         { }
578 };
579 MODULE_DEVICE_TABLE(i2c, nau7802_i2c_id);
580
581 static const struct of_device_id nau7802_dt_ids[] = {
582         { .compatible = "nuvoton,nau7802" },
583         {},
584 };
585 MODULE_DEVICE_TABLE(of, nau7802_dt_ids);
586
587 static struct i2c_driver nau7802_driver = {
588         .probe = nau7802_probe,
589         .remove = nau7802_remove,
590         .id_table = nau7802_i2c_id,
591         .driver = {
592                    .name = "nau7802",
593                    .of_match_table = nau7802_dt_ids,
594         },
595 };
596
597 module_i2c_driver(nau7802_driver);
598
599 MODULE_LICENSE("GPL");
600 MODULE_DESCRIPTION("Nuvoton NAU7802 ADC Driver");
601 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
602 MODULE_AUTHOR("Alexandre Belloni <alexandre.belloni@free-electrons.com>");