GNU Linux-libre 6.7.9-gnu
[releases.git] / drivers / iio / adc / exynos_adc.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  exynos_adc.c - Support for ADC in EXYNOS SoCs
4  *
5  *  8 ~ 10 channel, 10/12-bit ADC
6  *
7  *  Copyright (C) 2013 Naveen Krishna Chatradhi <ch.naveen@samsung.com>
8  */
9
10 #include <linux/compiler.h>
11 #include <linux/module.h>
12 #include <linux/platform_device.h>
13 #include <linux/interrupt.h>
14 #include <linux/delay.h>
15 #include <linux/errno.h>
16 #include <linux/kernel.h>
17 #include <linux/slab.h>
18 #include <linux/io.h>
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/of.h>
22 #include <linux/of_irq.h>
23 #include <linux/regulator/consumer.h>
24 #include <linux/of_platform.h>
25 #include <linux/err.h>
26 #include <linux/input.h>
27
28 #include <linux/iio/iio.h>
29 #include <linux/iio/machine.h>
30 #include <linux/iio/driver.h>
31 #include <linux/mfd/syscon.h>
32 #include <linux/regmap.h>
33
34 #include <linux/platform_data/touchscreen-s3c2410.h>
35
36 /* S3C/EXYNOS4412/5250 ADC_V1 registers definitions */
37 #define ADC_V1_CON(x)           ((x) + 0x00)
38 #define ADC_V1_TSC(x)           ((x) + 0x04)
39 #define ADC_V1_DLY(x)           ((x) + 0x08)
40 #define ADC_V1_DATX(x)          ((x) + 0x0C)
41 #define ADC_V1_DATY(x)          ((x) + 0x10)
42 #define ADC_V1_UPDN(x)          ((x) + 0x14)
43 #define ADC_V1_INTCLR(x)        ((x) + 0x18)
44 #define ADC_V1_MUX(x)           ((x) + 0x1c)
45 #define ADC_V1_CLRINTPNDNUP(x)  ((x) + 0x20)
46
47 /* S3C2410 ADC registers definitions */
48 #define ADC_S3C2410_MUX(x)      ((x) + 0x18)
49
50 /* Future ADC_V2 registers definitions */
51 #define ADC_V2_CON1(x)          ((x) + 0x00)
52 #define ADC_V2_CON2(x)          ((x) + 0x04)
53 #define ADC_V2_STAT(x)          ((x) + 0x08)
54 #define ADC_V2_INT_EN(x)        ((x) + 0x10)
55 #define ADC_V2_INT_ST(x)        ((x) + 0x14)
56 #define ADC_V2_VER(x)           ((x) + 0x20)
57
58 /* Bit definitions for ADC_V1 */
59 #define ADC_V1_CON_RES          (1u << 16)
60 #define ADC_V1_CON_PRSCEN       (1u << 14)
61 #define ADC_V1_CON_PRSCLV(x)    (((x) & 0xFF) << 6)
62 #define ADC_V1_CON_STANDBY      (1u << 2)
63
64 /* Bit definitions for S3C2410 ADC */
65 #define ADC_S3C2410_CON_SELMUX(x) (((x) & 7) << 3)
66 #define ADC_S3C2410_DATX_MASK   0x3FF
67 #define ADC_S3C2416_CON_RES_SEL (1u << 3)
68
69 /* touch screen always uses channel 0 */
70 #define ADC_S3C2410_MUX_TS      0
71
72 /* ADCTSC Register Bits */
73 #define ADC_S3C2443_TSC_UD_SEN          (1u << 8)
74 #define ADC_S3C2410_TSC_YM_SEN          (1u << 7)
75 #define ADC_S3C2410_TSC_YP_SEN          (1u << 6)
76 #define ADC_S3C2410_TSC_XM_SEN          (1u << 5)
77 #define ADC_S3C2410_TSC_XP_SEN          (1u << 4)
78 #define ADC_S3C2410_TSC_PULL_UP_DISABLE (1u << 3)
79 #define ADC_S3C2410_TSC_AUTO_PST        (1u << 2)
80 #define ADC_S3C2410_TSC_XY_PST(x)       (((x) & 0x3) << 0)
81
82 #define ADC_TSC_WAIT4INT (ADC_S3C2410_TSC_YM_SEN | \
83                          ADC_S3C2410_TSC_YP_SEN | \
84                          ADC_S3C2410_TSC_XP_SEN | \
85                          ADC_S3C2410_TSC_XY_PST(3))
86
87 #define ADC_TSC_AUTOPST (ADC_S3C2410_TSC_YM_SEN | \
88                          ADC_S3C2410_TSC_YP_SEN | \
89                          ADC_S3C2410_TSC_XP_SEN | \
90                          ADC_S3C2410_TSC_AUTO_PST | \
91                          ADC_S3C2410_TSC_XY_PST(0))
92
93 /* Bit definitions for ADC_V2 */
94 #define ADC_V2_CON1_SOFT_RESET  (1u << 2)
95
96 #define ADC_V2_CON2_OSEL        (1u << 10)
97 #define ADC_V2_CON2_ESEL        (1u << 9)
98 #define ADC_V2_CON2_HIGHF       (1u << 8)
99 #define ADC_V2_CON2_C_TIME(x)   (((x) & 7) << 4)
100 #define ADC_V2_CON2_ACH_SEL(x)  (((x) & 0xF) << 0)
101 #define ADC_V2_CON2_ACH_MASK    0xF
102
103 #define MAX_ADC_V2_CHANNELS             10
104 #define MAX_ADC_V1_CHANNELS             8
105 #define MAX_EXYNOS3250_ADC_CHANNELS     2
106 #define MAX_EXYNOS4212_ADC_CHANNELS     4
107 #define MAX_S5PV210_ADC_CHANNELS        10
108
109 /* Bit definitions common for ADC_V1 and ADC_V2 */
110 #define ADC_CON_EN_START        (1u << 0)
111 #define ADC_CON_EN_START_MASK   (0x3 << 0)
112 #define ADC_DATX_PRESSED        (1u << 15)
113 #define ADC_DATX_MASK           0xFFF
114 #define ADC_DATY_MASK           0xFFF
115
116 #define EXYNOS_ADC_TIMEOUT      (msecs_to_jiffies(100))
117
118 #define EXYNOS_ADCV1_PHY_OFFSET 0x0718
119 #define EXYNOS_ADCV2_PHY_OFFSET 0x0720
120
121 struct exynos_adc {
122         struct exynos_adc_data  *data;
123         struct device           *dev;
124         struct input_dev        *input;
125         void __iomem            *regs;
126         struct regmap           *pmu_map;
127         struct clk              *clk;
128         struct clk              *sclk;
129         unsigned int            irq;
130         unsigned int            tsirq;
131         unsigned int            delay;
132         struct regulator        *vdd;
133
134         struct completion       completion;
135
136         u32                     value;
137         unsigned int            version;
138
139         bool                    ts_enabled;
140
141         bool                    read_ts;
142         u32                     ts_x;
143         u32                     ts_y;
144
145         /*
146          * Lock to protect from potential concurrent access to the
147          * completion callback during a manual conversion. For this driver
148          * a wait-callback is used to wait for the conversion result,
149          * so in the meantime no other read request (or conversion start)
150          * must be performed, otherwise it would interfere with the
151          * current conversion result.
152          */
153         struct mutex            lock;
154 };
155
156 struct exynos_adc_data {
157         int num_channels;
158         bool needs_sclk;
159         bool needs_adc_phy;
160         int phy_offset;
161         u32 mask;
162
163         void (*init_hw)(struct exynos_adc *info);
164         void (*exit_hw)(struct exynos_adc *info);
165         void (*clear_irq)(struct exynos_adc *info);
166         void (*start_conv)(struct exynos_adc *info, unsigned long addr);
167 };
168
169 static void exynos_adc_unprepare_clk(struct exynos_adc *info)
170 {
171         if (info->data->needs_sclk)
172                 clk_unprepare(info->sclk);
173         clk_unprepare(info->clk);
174 }
175
176 static int exynos_adc_prepare_clk(struct exynos_adc *info)
177 {
178         int ret;
179
180         ret = clk_prepare(info->clk);
181         if (ret) {
182                 dev_err(info->dev, "failed preparing adc clock: %d\n", ret);
183                 return ret;
184         }
185
186         if (info->data->needs_sclk) {
187                 ret = clk_prepare(info->sclk);
188                 if (ret) {
189                         clk_unprepare(info->clk);
190                         dev_err(info->dev,
191                                 "failed preparing sclk_adc clock: %d\n", ret);
192                         return ret;
193                 }
194         }
195
196         return 0;
197 }
198
199 static void exynos_adc_disable_clk(struct exynos_adc *info)
200 {
201         if (info->data->needs_sclk)
202                 clk_disable(info->sclk);
203         clk_disable(info->clk);
204 }
205
206 static int exynos_adc_enable_clk(struct exynos_adc *info)
207 {
208         int ret;
209
210         ret = clk_enable(info->clk);
211         if (ret) {
212                 dev_err(info->dev, "failed enabling adc clock: %d\n", ret);
213                 return ret;
214         }
215
216         if (info->data->needs_sclk) {
217                 ret = clk_enable(info->sclk);
218                 if (ret) {
219                         clk_disable(info->clk);
220                         dev_err(info->dev,
221                                 "failed enabling sclk_adc clock: %d\n", ret);
222                         return ret;
223                 }
224         }
225
226         return 0;
227 }
228
229 static void exynos_adc_v1_init_hw(struct exynos_adc *info)
230 {
231         u32 con1;
232
233         if (info->data->needs_adc_phy)
234                 regmap_write(info->pmu_map, info->data->phy_offset, 1);
235
236         /* set default prescaler values and Enable prescaler */
237         con1 =  ADC_V1_CON_PRSCLV(49) | ADC_V1_CON_PRSCEN;
238
239         /* Enable 12-bit ADC resolution */
240         con1 |= ADC_V1_CON_RES;
241         writel(con1, ADC_V1_CON(info->regs));
242
243         /* set touchscreen delay */
244         writel(info->delay, ADC_V1_DLY(info->regs));
245 }
246
247 static void exynos_adc_v1_exit_hw(struct exynos_adc *info)
248 {
249         u32 con;
250
251         if (info->data->needs_adc_phy)
252                 regmap_write(info->pmu_map, info->data->phy_offset, 0);
253
254         con = readl(ADC_V1_CON(info->regs));
255         con |= ADC_V1_CON_STANDBY;
256         writel(con, ADC_V1_CON(info->regs));
257 }
258
259 static void exynos_adc_v1_clear_irq(struct exynos_adc *info)
260 {
261         writel(1, ADC_V1_INTCLR(info->regs));
262 }
263
264 static void exynos_adc_v1_start_conv(struct exynos_adc *info,
265                                      unsigned long addr)
266 {
267         u32 con1;
268
269         writel(addr, ADC_V1_MUX(info->regs));
270
271         con1 = readl(ADC_V1_CON(info->regs));
272         writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs));
273 }
274
275 /* Exynos4212 and 4412 is like ADCv1 but with four channels only */
276 static const struct exynos_adc_data exynos4212_adc_data = {
277         .num_channels   = MAX_EXYNOS4212_ADC_CHANNELS,
278         .mask           = ADC_DATX_MASK,        /* 12 bit ADC resolution */
279         .needs_adc_phy  = true,
280         .phy_offset     = EXYNOS_ADCV1_PHY_OFFSET,
281
282         .init_hw        = exynos_adc_v1_init_hw,
283         .exit_hw        = exynos_adc_v1_exit_hw,
284         .clear_irq      = exynos_adc_v1_clear_irq,
285         .start_conv     = exynos_adc_v1_start_conv,
286 };
287
288 static const struct exynos_adc_data exynos_adc_v1_data = {
289         .num_channels   = MAX_ADC_V1_CHANNELS,
290         .mask           = ADC_DATX_MASK,        /* 12 bit ADC resolution */
291         .needs_adc_phy  = true,
292         .phy_offset     = EXYNOS_ADCV1_PHY_OFFSET,
293
294         .init_hw        = exynos_adc_v1_init_hw,
295         .exit_hw        = exynos_adc_v1_exit_hw,
296         .clear_irq      = exynos_adc_v1_clear_irq,
297         .start_conv     = exynos_adc_v1_start_conv,
298 };
299
300 static const struct exynos_adc_data exynos_adc_s5pv210_data = {
301         .num_channels   = MAX_S5PV210_ADC_CHANNELS,
302         .mask           = ADC_DATX_MASK,        /* 12 bit ADC resolution */
303
304         .init_hw        = exynos_adc_v1_init_hw,
305         .exit_hw        = exynos_adc_v1_exit_hw,
306         .clear_irq      = exynos_adc_v1_clear_irq,
307         .start_conv     = exynos_adc_v1_start_conv,
308 };
309
310 static void exynos_adc_s3c2416_start_conv(struct exynos_adc *info,
311                                           unsigned long addr)
312 {
313         u32 con1;
314
315         /* Enable 12 bit ADC resolution */
316         con1 = readl(ADC_V1_CON(info->regs));
317         con1 |= ADC_S3C2416_CON_RES_SEL;
318         writel(con1, ADC_V1_CON(info->regs));
319
320         /* Select channel for S3C2416 */
321         writel(addr, ADC_S3C2410_MUX(info->regs));
322
323         con1 = readl(ADC_V1_CON(info->regs));
324         writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs));
325 }
326
327 static struct exynos_adc_data const exynos_adc_s3c2416_data = {
328         .num_channels   = MAX_ADC_V1_CHANNELS,
329         .mask           = ADC_DATX_MASK,        /* 12 bit ADC resolution */
330
331         .init_hw        = exynos_adc_v1_init_hw,
332         .exit_hw        = exynos_adc_v1_exit_hw,
333         .start_conv     = exynos_adc_s3c2416_start_conv,
334 };
335
336 static void exynos_adc_s3c2443_start_conv(struct exynos_adc *info,
337                                           unsigned long addr)
338 {
339         u32 con1;
340
341         /* Select channel for S3C2433 */
342         writel(addr, ADC_S3C2410_MUX(info->regs));
343
344         con1 = readl(ADC_V1_CON(info->regs));
345         writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs));
346 }
347
348 static struct exynos_adc_data const exynos_adc_s3c2443_data = {
349         .num_channels   = MAX_ADC_V1_CHANNELS,
350         .mask           = ADC_S3C2410_DATX_MASK, /* 10 bit ADC resolution */
351
352         .init_hw        = exynos_adc_v1_init_hw,
353         .exit_hw        = exynos_adc_v1_exit_hw,
354         .start_conv     = exynos_adc_s3c2443_start_conv,
355 };
356
357 static void exynos_adc_s3c64xx_start_conv(struct exynos_adc *info,
358                                           unsigned long addr)
359 {
360         u32 con1;
361
362         con1 = readl(ADC_V1_CON(info->regs));
363         con1 &= ~ADC_S3C2410_CON_SELMUX(0x7);
364         con1 |= ADC_S3C2410_CON_SELMUX(addr);
365         writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs));
366 }
367
368 static struct exynos_adc_data const exynos_adc_s3c24xx_data = {
369         .num_channels   = MAX_ADC_V1_CHANNELS,
370         .mask           = ADC_S3C2410_DATX_MASK, /* 10 bit ADC resolution */
371
372         .init_hw        = exynos_adc_v1_init_hw,
373         .exit_hw        = exynos_adc_v1_exit_hw,
374         .start_conv     = exynos_adc_s3c64xx_start_conv,
375 };
376
377 static struct exynos_adc_data const exynos_adc_s3c64xx_data = {
378         .num_channels   = MAX_ADC_V1_CHANNELS,
379         .mask           = ADC_DATX_MASK,        /* 12 bit ADC resolution */
380
381         .init_hw        = exynos_adc_v1_init_hw,
382         .exit_hw        = exynos_adc_v1_exit_hw,
383         .clear_irq      = exynos_adc_v1_clear_irq,
384         .start_conv     = exynos_adc_s3c64xx_start_conv,
385 };
386
387 static void exynos_adc_v2_init_hw(struct exynos_adc *info)
388 {
389         u32 con1, con2;
390
391         if (info->data->needs_adc_phy)
392                 regmap_write(info->pmu_map, info->data->phy_offset, 1);
393
394         con1 = ADC_V2_CON1_SOFT_RESET;
395         writel(con1, ADC_V2_CON1(info->regs));
396
397         con2 = ADC_V2_CON2_OSEL | ADC_V2_CON2_ESEL |
398                 ADC_V2_CON2_HIGHF | ADC_V2_CON2_C_TIME(0);
399         writel(con2, ADC_V2_CON2(info->regs));
400
401         /* Enable interrupts */
402         writel(1, ADC_V2_INT_EN(info->regs));
403 }
404
405 static void exynos_adc_v2_exit_hw(struct exynos_adc *info)
406 {
407         u32 con;
408
409         if (info->data->needs_adc_phy)
410                 regmap_write(info->pmu_map, info->data->phy_offset, 0);
411
412         con = readl(ADC_V2_CON1(info->regs));
413         con &= ~ADC_CON_EN_START;
414         writel(con, ADC_V2_CON1(info->regs));
415 }
416
417 static void exynos_adc_v2_clear_irq(struct exynos_adc *info)
418 {
419         writel(1, ADC_V2_INT_ST(info->regs));
420 }
421
422 static void exynos_adc_v2_start_conv(struct exynos_adc *info,
423                                      unsigned long addr)
424 {
425         u32 con1, con2;
426
427         con2 = readl(ADC_V2_CON2(info->regs));
428         con2 &= ~ADC_V2_CON2_ACH_MASK;
429         con2 |= ADC_V2_CON2_ACH_SEL(addr);
430         writel(con2, ADC_V2_CON2(info->regs));
431
432         con1 = readl(ADC_V2_CON1(info->regs));
433         writel(con1 | ADC_CON_EN_START, ADC_V2_CON1(info->regs));
434 }
435
436 static const struct exynos_adc_data exynos_adc_v2_data = {
437         .num_channels   = MAX_ADC_V2_CHANNELS,
438         .mask           = ADC_DATX_MASK, /* 12 bit ADC resolution */
439         .needs_adc_phy  = true,
440         .phy_offset     = EXYNOS_ADCV2_PHY_OFFSET,
441
442         .init_hw        = exynos_adc_v2_init_hw,
443         .exit_hw        = exynos_adc_v2_exit_hw,
444         .clear_irq      = exynos_adc_v2_clear_irq,
445         .start_conv     = exynos_adc_v2_start_conv,
446 };
447
448 static const struct exynos_adc_data exynos3250_adc_data = {
449         .num_channels   = MAX_EXYNOS3250_ADC_CHANNELS,
450         .mask           = ADC_DATX_MASK, /* 12 bit ADC resolution */
451         .needs_sclk     = true,
452         .needs_adc_phy  = true,
453         .phy_offset     = EXYNOS_ADCV1_PHY_OFFSET,
454
455         .init_hw        = exynos_adc_v2_init_hw,
456         .exit_hw        = exynos_adc_v2_exit_hw,
457         .clear_irq      = exynos_adc_v2_clear_irq,
458         .start_conv     = exynos_adc_v2_start_conv,
459 };
460
461 static void exynos_adc_exynos7_init_hw(struct exynos_adc *info)
462 {
463         u32 con1, con2;
464
465         con1 = ADC_V2_CON1_SOFT_RESET;
466         writel(con1, ADC_V2_CON1(info->regs));
467
468         con2 = readl(ADC_V2_CON2(info->regs));
469         con2 &= ~ADC_V2_CON2_C_TIME(7);
470         con2 |= ADC_V2_CON2_C_TIME(0);
471         writel(con2, ADC_V2_CON2(info->regs));
472
473         /* Enable interrupts */
474         writel(1, ADC_V2_INT_EN(info->regs));
475 }
476
477 static const struct exynos_adc_data exynos7_adc_data = {
478         .num_channels   = MAX_ADC_V1_CHANNELS,
479         .mask           = ADC_DATX_MASK, /* 12 bit ADC resolution */
480
481         .init_hw        = exynos_adc_exynos7_init_hw,
482         .exit_hw        = exynos_adc_v2_exit_hw,
483         .clear_irq      = exynos_adc_v2_clear_irq,
484         .start_conv     = exynos_adc_v2_start_conv,
485 };
486
487 static const struct of_device_id exynos_adc_match[] = {
488         {
489                 .compatible = "samsung,s3c2410-adc",
490                 .data = &exynos_adc_s3c24xx_data,
491         }, {
492                 .compatible = "samsung,s3c2416-adc",
493                 .data = &exynos_adc_s3c2416_data,
494         }, {
495                 .compatible = "samsung,s3c2440-adc",
496                 .data = &exynos_adc_s3c24xx_data,
497         }, {
498                 .compatible = "samsung,s3c2443-adc",
499                 .data = &exynos_adc_s3c2443_data,
500         }, {
501                 .compatible = "samsung,s3c6410-adc",
502                 .data = &exynos_adc_s3c64xx_data,
503         }, {
504                 .compatible = "samsung,s5pv210-adc",
505                 .data = &exynos_adc_s5pv210_data,
506         }, {
507                 .compatible = "samsung,exynos4212-adc",
508                 .data = &exynos4212_adc_data,
509         }, {
510                 .compatible = "samsung,exynos-adc-v1",
511                 .data = &exynos_adc_v1_data,
512         }, {
513                 .compatible = "samsung,exynos-adc-v2",
514                 .data = &exynos_adc_v2_data,
515         }, {
516                 .compatible = "samsung,exynos3250-adc",
517                 .data = &exynos3250_adc_data,
518         }, {
519                 .compatible = "samsung,exynos7-adc",
520                 .data = &exynos7_adc_data,
521         },
522         {},
523 };
524 MODULE_DEVICE_TABLE(of, exynos_adc_match);
525
526 static struct exynos_adc_data *exynos_adc_get_data(struct platform_device *pdev)
527 {
528         const struct of_device_id *match;
529
530         match = of_match_node(exynos_adc_match, pdev->dev.of_node);
531         return (struct exynos_adc_data *)match->data;
532 }
533
534 static int exynos_read_raw(struct iio_dev *indio_dev,
535                                 struct iio_chan_spec const *chan,
536                                 int *val,
537                                 int *val2,
538                                 long mask)
539 {
540         struct exynos_adc *info = iio_priv(indio_dev);
541         unsigned long timeout;
542         int ret;
543
544         if (mask == IIO_CHAN_INFO_SCALE) {
545                 ret = regulator_get_voltage(info->vdd);
546                 if (ret < 0)
547                         return ret;
548
549                 /* Regulator voltage is in uV, but need mV */
550                 *val = ret / 1000;
551                 *val2 = info->data->mask;
552
553                 return IIO_VAL_FRACTIONAL;
554         } else if (mask != IIO_CHAN_INFO_RAW) {
555                 return -EINVAL;
556         }
557
558         mutex_lock(&info->lock);
559         reinit_completion(&info->completion);
560
561         /* Select the channel to be used and Trigger conversion */
562         if (info->data->start_conv)
563                 info->data->start_conv(info, chan->address);
564
565         timeout = wait_for_completion_timeout(&info->completion,
566                                               EXYNOS_ADC_TIMEOUT);
567         if (timeout == 0) {
568                 dev_warn(&indio_dev->dev, "Conversion timed out! Resetting\n");
569                 if (info->data->init_hw)
570                         info->data->init_hw(info);
571                 ret = -ETIMEDOUT;
572         } else {
573                 *val = info->value;
574                 *val2 = 0;
575                 ret = IIO_VAL_INT;
576         }
577
578         mutex_unlock(&info->lock);
579
580         return ret;
581 }
582
583 static int exynos_read_s3c64xx_ts(struct iio_dev *indio_dev, int *x, int *y)
584 {
585         struct exynos_adc *info = iio_priv(indio_dev);
586         unsigned long timeout;
587         int ret;
588
589         mutex_lock(&info->lock);
590         info->read_ts = true;
591
592         reinit_completion(&info->completion);
593
594         writel(ADC_S3C2410_TSC_PULL_UP_DISABLE | ADC_TSC_AUTOPST,
595                ADC_V1_TSC(info->regs));
596
597         /* Select the ts channel to be used and Trigger conversion */
598         info->data->start_conv(info, ADC_S3C2410_MUX_TS);
599
600         timeout = wait_for_completion_timeout(&info->completion,
601                                               EXYNOS_ADC_TIMEOUT);
602         if (timeout == 0) {
603                 dev_warn(&indio_dev->dev, "Conversion timed out! Resetting\n");
604                 if (info->data->init_hw)
605                         info->data->init_hw(info);
606                 ret = -ETIMEDOUT;
607         } else {
608                 *x = info->ts_x;
609                 *y = info->ts_y;
610                 ret = 0;
611         }
612
613         info->read_ts = false;
614         mutex_unlock(&info->lock);
615
616         return ret;
617 }
618
619 static irqreturn_t exynos_adc_isr(int irq, void *dev_id)
620 {
621         struct exynos_adc *info = dev_id;
622         u32 mask = info->data->mask;
623
624         /* Read value */
625         if (info->read_ts) {
626                 info->ts_x = readl(ADC_V1_DATX(info->regs));
627                 info->ts_y = readl(ADC_V1_DATY(info->regs));
628                 writel(ADC_TSC_WAIT4INT | ADC_S3C2443_TSC_UD_SEN, ADC_V1_TSC(info->regs));
629         } else {
630                 info->value = readl(ADC_V1_DATX(info->regs)) & mask;
631         }
632
633         /* clear irq */
634         if (info->data->clear_irq)
635                 info->data->clear_irq(info);
636
637         complete(&info->completion);
638
639         return IRQ_HANDLED;
640 }
641
642 /*
643  * Here we (ab)use a threaded interrupt handler to stay running
644  * for as long as the touchscreen remains pressed, we report
645  * a new event with the latest data and then sleep until the
646  * next timer tick. This mirrors the behavior of the old
647  * driver, with much less code.
648  */
649 static irqreturn_t exynos_ts_isr(int irq, void *dev_id)
650 {
651         struct exynos_adc *info = dev_id;
652         struct iio_dev *dev = dev_get_drvdata(info->dev);
653         u32 x, y;
654         bool pressed;
655         int ret;
656
657         while (READ_ONCE(info->ts_enabled)) {
658                 ret = exynos_read_s3c64xx_ts(dev, &x, &y);
659                 if (ret == -ETIMEDOUT)
660                         break;
661
662                 pressed = x & y & ADC_DATX_PRESSED;
663                 if (!pressed) {
664                         input_report_key(info->input, BTN_TOUCH, 0);
665                         input_sync(info->input);
666                         break;
667                 }
668
669                 input_report_abs(info->input, ABS_X, x & ADC_DATX_MASK);
670                 input_report_abs(info->input, ABS_Y, y & ADC_DATY_MASK);
671                 input_report_key(info->input, BTN_TOUCH, 1);
672                 input_sync(info->input);
673
674                 usleep_range(1000, 1100);
675         }
676
677         writel(0, ADC_V1_CLRINTPNDNUP(info->regs));
678
679         return IRQ_HANDLED;
680 }
681
682 static int exynos_adc_reg_access(struct iio_dev *indio_dev,
683                               unsigned reg, unsigned writeval,
684                               unsigned *readval)
685 {
686         struct exynos_adc *info = iio_priv(indio_dev);
687
688         if (readval == NULL)
689                 return -EINVAL;
690
691         *readval = readl(info->regs + reg);
692
693         return 0;
694 }
695
696 static const struct iio_info exynos_adc_iio_info = {
697         .read_raw = &exynos_read_raw,
698         .debugfs_reg_access = &exynos_adc_reg_access,
699 };
700
701 #define ADC_CHANNEL(_index, _id) {                      \
702         .type = IIO_VOLTAGE,                            \
703         .indexed = 1,                                   \
704         .channel = _index,                              \
705         .address = _index,                              \
706         .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),   \
707         .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SCALE),    \
708         .datasheet_name = _id,                          \
709 }
710
711 static const struct iio_chan_spec exynos_adc_iio_channels[] = {
712         ADC_CHANNEL(0, "adc0"),
713         ADC_CHANNEL(1, "adc1"),
714         ADC_CHANNEL(2, "adc2"),
715         ADC_CHANNEL(3, "adc3"),
716         ADC_CHANNEL(4, "adc4"),
717         ADC_CHANNEL(5, "adc5"),
718         ADC_CHANNEL(6, "adc6"),
719         ADC_CHANNEL(7, "adc7"),
720         ADC_CHANNEL(8, "adc8"),
721         ADC_CHANNEL(9, "adc9"),
722 };
723
724 static int exynos_adc_remove_devices(struct device *dev, void *c)
725 {
726         struct platform_device *pdev = to_platform_device(dev);
727
728         platform_device_unregister(pdev);
729
730         return 0;
731 }
732
733 static int exynos_adc_ts_open(struct input_dev *dev)
734 {
735         struct exynos_adc *info = input_get_drvdata(dev);
736
737         WRITE_ONCE(info->ts_enabled, true);
738         enable_irq(info->tsirq);
739
740         return 0;
741 }
742
743 static void exynos_adc_ts_close(struct input_dev *dev)
744 {
745         struct exynos_adc *info = input_get_drvdata(dev);
746
747         WRITE_ONCE(info->ts_enabled, false);
748         disable_irq(info->tsirq);
749 }
750
751 static int exynos_adc_ts_init(struct exynos_adc *info)
752 {
753         int ret;
754
755         if (info->tsirq <= 0)
756                 return -ENODEV;
757
758         info->input = input_allocate_device();
759         if (!info->input)
760                 return -ENOMEM;
761
762         info->input->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
763         info->input->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
764
765         input_set_abs_params(info->input, ABS_X, 0, 0x3FF, 0, 0);
766         input_set_abs_params(info->input, ABS_Y, 0, 0x3FF, 0, 0);
767
768         info->input->name = "S3C24xx TouchScreen";
769         info->input->id.bustype = BUS_HOST;
770         info->input->open = exynos_adc_ts_open;
771         info->input->close = exynos_adc_ts_close;
772
773         input_set_drvdata(info->input, info);
774
775         ret = input_register_device(info->input);
776         if (ret) {
777                 input_free_device(info->input);
778                 return ret;
779         }
780
781         ret = request_threaded_irq(info->tsirq, NULL, exynos_ts_isr,
782                                    IRQF_ONESHOT | IRQF_NO_AUTOEN,
783                                    "touchscreen", info);
784         if (ret)
785                 input_unregister_device(info->input);
786
787         return ret;
788 }
789
790 static int exynos_adc_probe(struct platform_device *pdev)
791 {
792         struct exynos_adc *info = NULL;
793         struct device_node *np = pdev->dev.of_node;
794         struct s3c2410_ts_mach_info *pdata = dev_get_platdata(&pdev->dev);
795         struct iio_dev *indio_dev = NULL;
796         bool has_ts = false;
797         int ret;
798         int irq;
799
800         indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(struct exynos_adc));
801         if (!indio_dev) {
802                 dev_err(&pdev->dev, "failed allocating iio device\n");
803                 return -ENOMEM;
804         }
805
806         info = iio_priv(indio_dev);
807
808         info->data = exynos_adc_get_data(pdev);
809         if (!info->data) {
810                 dev_err(&pdev->dev, "failed getting exynos_adc_data\n");
811                 return -EINVAL;
812         }
813
814         info->regs = devm_platform_ioremap_resource(pdev, 0);
815         if (IS_ERR(info->regs))
816                 return PTR_ERR(info->regs);
817
818
819         if (info->data->needs_adc_phy) {
820                 info->pmu_map = syscon_regmap_lookup_by_phandle(
821                                         pdev->dev.of_node,
822                                         "samsung,syscon-phandle");
823                 if (IS_ERR(info->pmu_map)) {
824                         dev_err(&pdev->dev, "syscon regmap lookup failed.\n");
825                         return PTR_ERR(info->pmu_map);
826                 }
827         }
828
829         /* leave out any TS related code if unreachable */
830         if (IS_REACHABLE(CONFIG_INPUT)) {
831                 has_ts = of_property_read_bool(pdev->dev.of_node,
832                                                "has-touchscreen") || pdata;
833         }
834
835         irq = platform_get_irq(pdev, 0);
836         if (irq < 0)
837                 return irq;
838         info->irq = irq;
839
840         if (has_ts) {
841                 irq = platform_get_irq(pdev, 1);
842                 if (irq == -EPROBE_DEFER)
843                         return irq;
844
845                 info->tsirq = irq;
846         } else {
847                 info->tsirq = -1;
848         }
849
850         info->dev = &pdev->dev;
851
852         init_completion(&info->completion);
853
854         info->clk = devm_clk_get(&pdev->dev, "adc");
855         if (IS_ERR(info->clk)) {
856                 dev_err(&pdev->dev, "failed getting clock, err = %ld\n",
857                                                         PTR_ERR(info->clk));
858                 return PTR_ERR(info->clk);
859         }
860
861         if (info->data->needs_sclk) {
862                 info->sclk = devm_clk_get(&pdev->dev, "sclk");
863                 if (IS_ERR(info->sclk)) {
864                         dev_err(&pdev->dev,
865                                 "failed getting sclk clock, err = %ld\n",
866                                 PTR_ERR(info->sclk));
867                         return PTR_ERR(info->sclk);
868                 }
869         }
870
871         info->vdd = devm_regulator_get(&pdev->dev, "vdd");
872         if (IS_ERR(info->vdd))
873                 return dev_err_probe(&pdev->dev, PTR_ERR(info->vdd),
874                                      "failed getting regulator");
875
876         ret = regulator_enable(info->vdd);
877         if (ret)
878                 return ret;
879
880         ret = exynos_adc_prepare_clk(info);
881         if (ret)
882                 goto err_disable_reg;
883
884         ret = exynos_adc_enable_clk(info);
885         if (ret)
886                 goto err_unprepare_clk;
887
888         platform_set_drvdata(pdev, indio_dev);
889
890         indio_dev->name = dev_name(&pdev->dev);
891         indio_dev->info = &exynos_adc_iio_info;
892         indio_dev->modes = INDIO_DIRECT_MODE;
893         indio_dev->channels = exynos_adc_iio_channels;
894         indio_dev->num_channels = info->data->num_channels;
895
896         mutex_init(&info->lock);
897
898         ret = request_irq(info->irq, exynos_adc_isr,
899                                         0, dev_name(&pdev->dev), info);
900         if (ret < 0) {
901                 dev_err(&pdev->dev, "failed requesting irq, irq = %d\n",
902                                                         info->irq);
903                 goto err_disable_clk;
904         }
905
906         ret = iio_device_register(indio_dev);
907         if (ret)
908                 goto err_irq;
909
910         if (info->data->init_hw)
911                 info->data->init_hw(info);
912
913         if (pdata)
914                 info->delay = pdata->delay;
915         else
916                 info->delay = 10000;
917
918         if (has_ts)
919                 ret = exynos_adc_ts_init(info);
920         if (ret)
921                 goto err_iio;
922
923         ret = of_platform_populate(np, exynos_adc_match, NULL, &indio_dev->dev);
924         if (ret < 0) {
925                 dev_err(&pdev->dev, "failed adding child nodes\n");
926                 goto err_of_populate;
927         }
928
929         return 0;
930
931 err_of_populate:
932         device_for_each_child(&indio_dev->dev, NULL,
933                                 exynos_adc_remove_devices);
934         if (has_ts) {
935                 input_unregister_device(info->input);
936                 free_irq(info->tsirq, info);
937         }
938 err_iio:
939         iio_device_unregister(indio_dev);
940 err_irq:
941         free_irq(info->irq, info);
942 err_disable_clk:
943         if (info->data->exit_hw)
944                 info->data->exit_hw(info);
945         exynos_adc_disable_clk(info);
946 err_unprepare_clk:
947         exynos_adc_unprepare_clk(info);
948 err_disable_reg:
949         regulator_disable(info->vdd);
950         return ret;
951 }
952
953 static void exynos_adc_remove(struct platform_device *pdev)
954 {
955         struct iio_dev *indio_dev = platform_get_drvdata(pdev);
956         struct exynos_adc *info = iio_priv(indio_dev);
957
958         if (IS_REACHABLE(CONFIG_INPUT) && info->input) {
959                 free_irq(info->tsirq, info);
960                 input_unregister_device(info->input);
961         }
962         device_for_each_child(&indio_dev->dev, NULL,
963                                 exynos_adc_remove_devices);
964         iio_device_unregister(indio_dev);
965         free_irq(info->irq, info);
966         if (info->data->exit_hw)
967                 info->data->exit_hw(info);
968         exynos_adc_disable_clk(info);
969         exynos_adc_unprepare_clk(info);
970         regulator_disable(info->vdd);
971 }
972
973 static int exynos_adc_suspend(struct device *dev)
974 {
975         struct iio_dev *indio_dev = dev_get_drvdata(dev);
976         struct exynos_adc *info = iio_priv(indio_dev);
977
978         if (info->data->exit_hw)
979                 info->data->exit_hw(info);
980         exynos_adc_disable_clk(info);
981         regulator_disable(info->vdd);
982
983         return 0;
984 }
985
986 static int exynos_adc_resume(struct device *dev)
987 {
988         struct iio_dev *indio_dev = dev_get_drvdata(dev);
989         struct exynos_adc *info = iio_priv(indio_dev);
990         int ret;
991
992         ret = regulator_enable(info->vdd);
993         if (ret)
994                 return ret;
995
996         ret = exynos_adc_enable_clk(info);
997         if (ret)
998                 return ret;
999
1000         if (info->data->init_hw)
1001                 info->data->init_hw(info);
1002
1003         return 0;
1004 }
1005
1006 static DEFINE_SIMPLE_DEV_PM_OPS(exynos_adc_pm_ops, exynos_adc_suspend,
1007                                 exynos_adc_resume);
1008
1009 static struct platform_driver exynos_adc_driver = {
1010         .probe          = exynos_adc_probe,
1011         .remove_new     = exynos_adc_remove,
1012         .driver         = {
1013                 .name   = "exynos-adc",
1014                 .of_match_table = exynos_adc_match,
1015                 .pm     = pm_sleep_ptr(&exynos_adc_pm_ops),
1016         },
1017 };
1018
1019 module_platform_driver(exynos_adc_driver);
1020
1021 MODULE_AUTHOR("Naveen Krishna Chatradhi <ch.naveen@samsung.com>");
1022 MODULE_DESCRIPTION("Samsung EXYNOS5 ADC driver");
1023 MODULE_LICENSE("GPL v2");