GNU Linux-libre 5.10.153-gnu1
[releases.git] / drivers / iio / accel / bmc150-accel-core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * 3-axis accelerometer driver supporting following Bosch-Sensortec chips:
4  *  - BMC150
5  *  - BMI055
6  *  - BMA255
7  *  - BMA250E
8  *  - BMA222E
9  *  - BMA280
10  *
11  * Copyright (c) 2014, Intel Corporation.
12  */
13
14 #include <linux/module.h>
15 #include <linux/i2c.h>
16 #include <linux/interrupt.h>
17 #include <linux/delay.h>
18 #include <linux/slab.h>
19 #include <linux/acpi.h>
20 #include <linux/pm.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/iio/iio.h>
23 #include <linux/iio/sysfs.h>
24 #include <linux/iio/buffer.h>
25 #include <linux/iio/events.h>
26 #include <linux/iio/trigger.h>
27 #include <linux/iio/trigger_consumer.h>
28 #include <linux/iio/triggered_buffer.h>
29 #include <linux/regmap.h>
30
31 #include "bmc150-accel.h"
32
33 #define BMC150_ACCEL_DRV_NAME                   "bmc150_accel"
34 #define BMC150_ACCEL_IRQ_NAME                   "bmc150_accel_event"
35
36 #define BMC150_ACCEL_REG_CHIP_ID                0x00
37
38 #define BMC150_ACCEL_REG_INT_STATUS_2           0x0B
39 #define BMC150_ACCEL_ANY_MOTION_MASK            0x07
40 #define BMC150_ACCEL_ANY_MOTION_BIT_X           BIT(0)
41 #define BMC150_ACCEL_ANY_MOTION_BIT_Y           BIT(1)
42 #define BMC150_ACCEL_ANY_MOTION_BIT_Z           BIT(2)
43 #define BMC150_ACCEL_ANY_MOTION_BIT_SIGN        BIT(3)
44
45 #define BMC150_ACCEL_REG_PMU_LPW                0x11
46 #define BMC150_ACCEL_PMU_MODE_MASK              0xE0
47 #define BMC150_ACCEL_PMU_MODE_SHIFT             5
48 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK     0x17
49 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT    1
50
51 #define BMC150_ACCEL_REG_PMU_RANGE              0x0F
52
53 #define BMC150_ACCEL_DEF_RANGE_2G               0x03
54 #define BMC150_ACCEL_DEF_RANGE_4G               0x05
55 #define BMC150_ACCEL_DEF_RANGE_8G               0x08
56 #define BMC150_ACCEL_DEF_RANGE_16G              0x0C
57
58 /* Default BW: 125Hz */
59 #define BMC150_ACCEL_REG_PMU_BW         0x10
60 #define BMC150_ACCEL_DEF_BW                     125
61
62 #define BMC150_ACCEL_REG_RESET                  0x14
63 #define BMC150_ACCEL_RESET_VAL                  0xB6
64
65 #define BMC150_ACCEL_REG_INT_MAP_0              0x19
66 #define BMC150_ACCEL_INT_MAP_0_BIT_SLOPE        BIT(2)
67
68 #define BMC150_ACCEL_REG_INT_MAP_1              0x1A
69 #define BMC150_ACCEL_INT_MAP_1_BIT_DATA         BIT(0)
70 #define BMC150_ACCEL_INT_MAP_1_BIT_FWM          BIT(1)
71 #define BMC150_ACCEL_INT_MAP_1_BIT_FFULL        BIT(2)
72
73 #define BMC150_ACCEL_REG_INT_RST_LATCH          0x21
74 #define BMC150_ACCEL_INT_MODE_LATCH_RESET       0x80
75 #define BMC150_ACCEL_INT_MODE_LATCH_INT 0x0F
76 #define BMC150_ACCEL_INT_MODE_NON_LATCH_INT     0x00
77
78 #define BMC150_ACCEL_REG_INT_EN_0               0x16
79 #define BMC150_ACCEL_INT_EN_BIT_SLP_X           BIT(0)
80 #define BMC150_ACCEL_INT_EN_BIT_SLP_Y           BIT(1)
81 #define BMC150_ACCEL_INT_EN_BIT_SLP_Z           BIT(2)
82
83 #define BMC150_ACCEL_REG_INT_EN_1               0x17
84 #define BMC150_ACCEL_INT_EN_BIT_DATA_EN         BIT(4)
85 #define BMC150_ACCEL_INT_EN_BIT_FFULL_EN        BIT(5)
86 #define BMC150_ACCEL_INT_EN_BIT_FWM_EN          BIT(6)
87
88 #define BMC150_ACCEL_REG_INT_OUT_CTRL           0x20
89 #define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL      BIT(0)
90
91 #define BMC150_ACCEL_REG_INT_5                  0x27
92 #define BMC150_ACCEL_SLOPE_DUR_MASK             0x03
93
94 #define BMC150_ACCEL_REG_INT_6                  0x28
95 #define BMC150_ACCEL_SLOPE_THRES_MASK           0xFF
96
97 /* Slope duration in terms of number of samples */
98 #define BMC150_ACCEL_DEF_SLOPE_DURATION         1
99 /* in terms of multiples of g's/LSB, based on range */
100 #define BMC150_ACCEL_DEF_SLOPE_THRESHOLD        1
101
102 #define BMC150_ACCEL_REG_XOUT_L         0x02
103
104 #define BMC150_ACCEL_MAX_STARTUP_TIME_MS        100
105
106 /* Sleep Duration values */
107 #define BMC150_ACCEL_SLEEP_500_MICRO            0x05
108 #define BMC150_ACCEL_SLEEP_1_MS         0x06
109 #define BMC150_ACCEL_SLEEP_2_MS         0x07
110 #define BMC150_ACCEL_SLEEP_4_MS         0x08
111 #define BMC150_ACCEL_SLEEP_6_MS         0x09
112 #define BMC150_ACCEL_SLEEP_10_MS                0x0A
113 #define BMC150_ACCEL_SLEEP_25_MS                0x0B
114 #define BMC150_ACCEL_SLEEP_50_MS                0x0C
115 #define BMC150_ACCEL_SLEEP_100_MS               0x0D
116 #define BMC150_ACCEL_SLEEP_500_MS               0x0E
117 #define BMC150_ACCEL_SLEEP_1_SEC                0x0F
118
119 #define BMC150_ACCEL_REG_TEMP                   0x08
120 #define BMC150_ACCEL_TEMP_CENTER_VAL            23
121
122 #define BMC150_ACCEL_AXIS_TO_REG(axis)  (BMC150_ACCEL_REG_XOUT_L + (axis * 2))
123 #define BMC150_AUTO_SUSPEND_DELAY_MS            2000
124
125 #define BMC150_ACCEL_REG_FIFO_STATUS            0x0E
126 #define BMC150_ACCEL_REG_FIFO_CONFIG0           0x30
127 #define BMC150_ACCEL_REG_FIFO_CONFIG1           0x3E
128 #define BMC150_ACCEL_REG_FIFO_DATA              0x3F
129 #define BMC150_ACCEL_FIFO_LENGTH                32
130
131 enum bmc150_accel_axis {
132         AXIS_X,
133         AXIS_Y,
134         AXIS_Z,
135         AXIS_MAX,
136 };
137
138 enum bmc150_power_modes {
139         BMC150_ACCEL_SLEEP_MODE_NORMAL,
140         BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND,
141         BMC150_ACCEL_SLEEP_MODE_LPM,
142         BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04,
143 };
144
145 struct bmc150_scale_info {
146         int scale;
147         u8 reg_range;
148 };
149
150 struct bmc150_accel_chip_info {
151         const char *name;
152         u8 chip_id;
153         const struct iio_chan_spec *channels;
154         int num_channels;
155         const struct bmc150_scale_info scale_table[4];
156 };
157
158 struct bmc150_accel_interrupt {
159         const struct bmc150_accel_interrupt_info *info;
160         atomic_t users;
161 };
162
163 struct bmc150_accel_trigger {
164         struct bmc150_accel_data *data;
165         struct iio_trigger *indio_trig;
166         int (*setup)(struct bmc150_accel_trigger *t, bool state);
167         int intr;
168         bool enabled;
169 };
170
171 enum bmc150_accel_interrupt_id {
172         BMC150_ACCEL_INT_DATA_READY,
173         BMC150_ACCEL_INT_ANY_MOTION,
174         BMC150_ACCEL_INT_WATERMARK,
175         BMC150_ACCEL_INTERRUPTS,
176 };
177
178 enum bmc150_accel_trigger_id {
179         BMC150_ACCEL_TRIGGER_DATA_READY,
180         BMC150_ACCEL_TRIGGER_ANY_MOTION,
181         BMC150_ACCEL_TRIGGERS,
182 };
183
184 struct bmc150_accel_data {
185         struct regmap *regmap;
186         int irq;
187         struct bmc150_accel_interrupt interrupts[BMC150_ACCEL_INTERRUPTS];
188         struct bmc150_accel_trigger triggers[BMC150_ACCEL_TRIGGERS];
189         struct mutex mutex;
190         u8 fifo_mode, watermark;
191         s16 buffer[8];
192         /*
193          * Ensure there is sufficient space and correct alignment for
194          * the timestamp if enabled
195          */
196         struct {
197                 __le16 channels[3];
198                 s64 ts __aligned(8);
199         } scan;
200         u8 bw_bits;
201         u32 slope_dur;
202         u32 slope_thres;
203         u32 range;
204         int ev_enable_state;
205         int64_t timestamp, old_timestamp; /* Only used in hw fifo mode. */
206         const struct bmc150_accel_chip_info *chip_info;
207         struct iio_mount_matrix orientation;
208 };
209
210 static const struct {
211         int val;
212         int val2;
213         u8 bw_bits;
214 } bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08},
215                                      {31, 260000, 0x09},
216                                      {62, 500000, 0x0A},
217                                      {125, 0, 0x0B},
218                                      {250, 0, 0x0C},
219                                      {500, 0, 0x0D},
220                                      {1000, 0, 0x0E},
221                                      {2000, 0, 0x0F} };
222
223 static const struct {
224         int bw_bits;
225         int msec;
226 } bmc150_accel_sample_upd_time[] = { {0x08, 64},
227                                      {0x09, 32},
228                                      {0x0A, 16},
229                                      {0x0B, 8},
230                                      {0x0C, 4},
231                                      {0x0D, 2},
232                                      {0x0E, 1},
233                                      {0x0F, 1} };
234
235 static const struct {
236         int sleep_dur;
237         u8 reg_value;
238 } bmc150_accel_sleep_value_table[] = { {0, 0},
239                                        {500, BMC150_ACCEL_SLEEP_500_MICRO},
240                                        {1000, BMC150_ACCEL_SLEEP_1_MS},
241                                        {2000, BMC150_ACCEL_SLEEP_2_MS},
242                                        {4000, BMC150_ACCEL_SLEEP_4_MS},
243                                        {6000, BMC150_ACCEL_SLEEP_6_MS},
244                                        {10000, BMC150_ACCEL_SLEEP_10_MS},
245                                        {25000, BMC150_ACCEL_SLEEP_25_MS},
246                                        {50000, BMC150_ACCEL_SLEEP_50_MS},
247                                        {100000, BMC150_ACCEL_SLEEP_100_MS},
248                                        {500000, BMC150_ACCEL_SLEEP_500_MS},
249                                        {1000000, BMC150_ACCEL_SLEEP_1_SEC} };
250
251 const struct regmap_config bmc150_regmap_conf = {
252         .reg_bits = 8,
253         .val_bits = 8,
254         .max_register = 0x3f,
255 };
256 EXPORT_SYMBOL_GPL(bmc150_regmap_conf);
257
258 static int bmc150_accel_set_mode(struct bmc150_accel_data *data,
259                                  enum bmc150_power_modes mode,
260                                  int dur_us)
261 {
262         struct device *dev = regmap_get_device(data->regmap);
263         int i;
264         int ret;
265         u8 lpw_bits;
266         int dur_val = -1;
267
268         if (dur_us > 0) {
269                 for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table);
270                                                                          ++i) {
271                         if (bmc150_accel_sleep_value_table[i].sleep_dur ==
272                                                                         dur_us)
273                                 dur_val =
274                                 bmc150_accel_sleep_value_table[i].reg_value;
275                 }
276         } else {
277                 dur_val = 0;
278         }
279
280         if (dur_val < 0)
281                 return -EINVAL;
282
283         lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT;
284         lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT);
285
286         dev_dbg(dev, "Set Mode bits %x\n", lpw_bits);
287
288         ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_LPW, lpw_bits);
289         if (ret < 0) {
290                 dev_err(dev, "Error writing reg_pmu_lpw\n");
291                 return ret;
292         }
293
294         return 0;
295 }
296
297 static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val,
298                                int val2)
299 {
300         int i;
301         int ret;
302
303         for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
304                 if (bmc150_accel_samp_freq_table[i].val == val &&
305                     bmc150_accel_samp_freq_table[i].val2 == val2) {
306                         ret = regmap_write(data->regmap,
307                                 BMC150_ACCEL_REG_PMU_BW,
308                                 bmc150_accel_samp_freq_table[i].bw_bits);
309                         if (ret < 0)
310                                 return ret;
311
312                         data->bw_bits =
313                                 bmc150_accel_samp_freq_table[i].bw_bits;
314                         return 0;
315                 }
316         }
317
318         return -EINVAL;
319 }
320
321 static int bmc150_accel_update_slope(struct bmc150_accel_data *data)
322 {
323         struct device *dev = regmap_get_device(data->regmap);
324         int ret;
325
326         ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_6,
327                                         data->slope_thres);
328         if (ret < 0) {
329                 dev_err(dev, "Error writing reg_int_6\n");
330                 return ret;
331         }
332
333         ret = regmap_update_bits(data->regmap, BMC150_ACCEL_REG_INT_5,
334                                  BMC150_ACCEL_SLOPE_DUR_MASK, data->slope_dur);
335         if (ret < 0) {
336                 dev_err(dev, "Error updating reg_int_5\n");
337                 return ret;
338         }
339
340         dev_dbg(dev, "%x %x\n", data->slope_thres, data->slope_dur);
341
342         return ret;
343 }
344
345 static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t,
346                                          bool state)
347 {
348         if (state)
349                 return bmc150_accel_update_slope(t->data);
350
351         return 0;
352 }
353
354 static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val,
355                                int *val2)
356 {
357         int i;
358
359         for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
360                 if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) {
361                         *val = bmc150_accel_samp_freq_table[i].val;
362                         *val2 = bmc150_accel_samp_freq_table[i].val2;
363                         return IIO_VAL_INT_PLUS_MICRO;
364                 }
365         }
366
367         return -EINVAL;
368 }
369
370 #ifdef CONFIG_PM
371 static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data)
372 {
373         int i;
374
375         for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) {
376                 if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits)
377                         return bmc150_accel_sample_upd_time[i].msec;
378         }
379
380         return BMC150_ACCEL_MAX_STARTUP_TIME_MS;
381 }
382
383 static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
384 {
385         struct device *dev = regmap_get_device(data->regmap);
386         int ret;
387
388         if (on) {
389                 ret = pm_runtime_get_sync(dev);
390         } else {
391                 pm_runtime_mark_last_busy(dev);
392                 ret = pm_runtime_put_autosuspend(dev);
393         }
394
395         if (ret < 0) {
396                 dev_err(dev,
397                         "Failed: %s for %d\n", __func__, on);
398                 if (on)
399                         pm_runtime_put_noidle(dev);
400
401                 return ret;
402         }
403
404         return 0;
405 }
406 #else
407 static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
408 {
409         return 0;
410 }
411 #endif
412
413 static const struct bmc150_accel_interrupt_info {
414         u8 map_reg;
415         u8 map_bitmask;
416         u8 en_reg;
417         u8 en_bitmask;
418 } bmc150_accel_interrupts[BMC150_ACCEL_INTERRUPTS] = {
419         { /* data ready interrupt */
420                 .map_reg = BMC150_ACCEL_REG_INT_MAP_1,
421                 .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_DATA,
422                 .en_reg = BMC150_ACCEL_REG_INT_EN_1,
423                 .en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
424         },
425         {  /* motion interrupt */
426                 .map_reg = BMC150_ACCEL_REG_INT_MAP_0,
427                 .map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_SLOPE,
428                 .en_reg = BMC150_ACCEL_REG_INT_EN_0,
429                 .en_bitmask =  BMC150_ACCEL_INT_EN_BIT_SLP_X |
430                         BMC150_ACCEL_INT_EN_BIT_SLP_Y |
431                         BMC150_ACCEL_INT_EN_BIT_SLP_Z
432         },
433         { /* fifo watermark interrupt */
434                 .map_reg = BMC150_ACCEL_REG_INT_MAP_1,
435                 .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_FWM,
436                 .en_reg = BMC150_ACCEL_REG_INT_EN_1,
437                 .en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
438         },
439 };
440
441 static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev,
442                                           struct bmc150_accel_data *data)
443 {
444         int i;
445
446         for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++)
447                 data->interrupts[i].info = &bmc150_accel_interrupts[i];
448 }
449
450 static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i,
451                                       bool state)
452 {
453         struct device *dev = regmap_get_device(data->regmap);
454         struct bmc150_accel_interrupt *intr = &data->interrupts[i];
455         const struct bmc150_accel_interrupt_info *info = intr->info;
456         int ret;
457
458         if (state) {
459                 if (atomic_inc_return(&intr->users) > 1)
460                         return 0;
461         } else {
462                 if (atomic_dec_return(&intr->users) > 0)
463                         return 0;
464         }
465
466         /*
467          * We will expect the enable and disable to do operation in reverse
468          * order. This will happen here anyway, as our resume operation uses
469          * sync mode runtime pm calls. The suspend operation will be delayed
470          * by autosuspend delay.
471          * So the disable operation will still happen in reverse order of
472          * enable operation. When runtime pm is disabled the mode is always on,
473          * so sequence doesn't matter.
474          */
475         ret = bmc150_accel_set_power_state(data, state);
476         if (ret < 0)
477                 return ret;
478
479         /* map the interrupt to the appropriate pins */
480         ret = regmap_update_bits(data->regmap, info->map_reg, info->map_bitmask,
481                                  (state ? info->map_bitmask : 0));
482         if (ret < 0) {
483                 dev_err(dev, "Error updating reg_int_map\n");
484                 goto out_fix_power_state;
485         }
486
487         /* enable/disable the interrupt */
488         ret = regmap_update_bits(data->regmap, info->en_reg, info->en_bitmask,
489                                  (state ? info->en_bitmask : 0));
490         if (ret < 0) {
491                 dev_err(dev, "Error updating reg_int_en\n");
492                 goto out_fix_power_state;
493         }
494
495         return 0;
496
497 out_fix_power_state:
498         bmc150_accel_set_power_state(data, false);
499         return ret;
500 }
501
502 static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val)
503 {
504         struct device *dev = regmap_get_device(data->regmap);
505         int ret, i;
506
507         for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) {
508                 if (data->chip_info->scale_table[i].scale == val) {
509                         ret = regmap_write(data->regmap,
510                                      BMC150_ACCEL_REG_PMU_RANGE,
511                                      data->chip_info->scale_table[i].reg_range);
512                         if (ret < 0) {
513                                 dev_err(dev, "Error writing pmu_range\n");
514                                 return ret;
515                         }
516
517                         data->range = data->chip_info->scale_table[i].reg_range;
518                         return 0;
519                 }
520         }
521
522         return -EINVAL;
523 }
524
525 static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val)
526 {
527         struct device *dev = regmap_get_device(data->regmap);
528         int ret;
529         unsigned int value;
530
531         mutex_lock(&data->mutex);
532
533         ret = regmap_read(data->regmap, BMC150_ACCEL_REG_TEMP, &value);
534         if (ret < 0) {
535                 dev_err(dev, "Error reading reg_temp\n");
536                 mutex_unlock(&data->mutex);
537                 return ret;
538         }
539         *val = sign_extend32(value, 7);
540
541         mutex_unlock(&data->mutex);
542
543         return IIO_VAL_INT;
544 }
545
546 static int bmc150_accel_get_axis(struct bmc150_accel_data *data,
547                                  struct iio_chan_spec const *chan,
548                                  int *val)
549 {
550         struct device *dev = regmap_get_device(data->regmap);
551         int ret;
552         int axis = chan->scan_index;
553         __le16 raw_val;
554
555         mutex_lock(&data->mutex);
556         ret = bmc150_accel_set_power_state(data, true);
557         if (ret < 0) {
558                 mutex_unlock(&data->mutex);
559                 return ret;
560         }
561
562         ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_AXIS_TO_REG(axis),
563                                &raw_val, sizeof(raw_val));
564         if (ret < 0) {
565                 dev_err(dev, "Error reading axis %d\n", axis);
566                 bmc150_accel_set_power_state(data, false);
567                 mutex_unlock(&data->mutex);
568                 return ret;
569         }
570         *val = sign_extend32(le16_to_cpu(raw_val) >> chan->scan_type.shift,
571                              chan->scan_type.realbits - 1);
572         ret = bmc150_accel_set_power_state(data, false);
573         mutex_unlock(&data->mutex);
574         if (ret < 0)
575                 return ret;
576
577         return IIO_VAL_INT;
578 }
579
580 static int bmc150_accel_read_raw(struct iio_dev *indio_dev,
581                                  struct iio_chan_spec const *chan,
582                                  int *val, int *val2, long mask)
583 {
584         struct bmc150_accel_data *data = iio_priv(indio_dev);
585         int ret;
586
587         switch (mask) {
588         case IIO_CHAN_INFO_RAW:
589                 switch (chan->type) {
590                 case IIO_TEMP:
591                         return bmc150_accel_get_temp(data, val);
592                 case IIO_ACCEL:
593                         if (iio_buffer_enabled(indio_dev))
594                                 return -EBUSY;
595                         else
596                                 return bmc150_accel_get_axis(data, chan, val);
597                 default:
598                         return -EINVAL;
599                 }
600         case IIO_CHAN_INFO_OFFSET:
601                 if (chan->type == IIO_TEMP) {
602                         *val = BMC150_ACCEL_TEMP_CENTER_VAL;
603                         return IIO_VAL_INT;
604                 } else {
605                         return -EINVAL;
606                 }
607         case IIO_CHAN_INFO_SCALE:
608                 *val = 0;
609                 switch (chan->type) {
610                 case IIO_TEMP:
611                         *val2 = 500000;
612                         return IIO_VAL_INT_PLUS_MICRO;
613                 case IIO_ACCEL:
614                 {
615                         int i;
616                         const struct bmc150_scale_info *si;
617                         int st_size = ARRAY_SIZE(data->chip_info->scale_table);
618
619                         for (i = 0; i < st_size; ++i) {
620                                 si = &data->chip_info->scale_table[i];
621                                 if (si->reg_range == data->range) {
622                                         *val2 = si->scale;
623                                         return IIO_VAL_INT_PLUS_MICRO;
624                                 }
625                         }
626                         return -EINVAL;
627                 }
628                 default:
629                         return -EINVAL;
630                 }
631         case IIO_CHAN_INFO_SAMP_FREQ:
632                 mutex_lock(&data->mutex);
633                 ret = bmc150_accel_get_bw(data, val, val2);
634                 mutex_unlock(&data->mutex);
635                 return ret;
636         default:
637                 return -EINVAL;
638         }
639 }
640
641 static int bmc150_accel_write_raw(struct iio_dev *indio_dev,
642                                   struct iio_chan_spec const *chan,
643                                   int val, int val2, long mask)
644 {
645         struct bmc150_accel_data *data = iio_priv(indio_dev);
646         int ret;
647
648         switch (mask) {
649         case IIO_CHAN_INFO_SAMP_FREQ:
650                 mutex_lock(&data->mutex);
651                 ret = bmc150_accel_set_bw(data, val, val2);
652                 mutex_unlock(&data->mutex);
653                 break;
654         case IIO_CHAN_INFO_SCALE:
655                 if (val)
656                         return -EINVAL;
657
658                 mutex_lock(&data->mutex);
659                 ret = bmc150_accel_set_scale(data, val2);
660                 mutex_unlock(&data->mutex);
661                 return ret;
662         default:
663                 ret = -EINVAL;
664         }
665
666         return ret;
667 }
668
669 static int bmc150_accel_read_event(struct iio_dev *indio_dev,
670                                    const struct iio_chan_spec *chan,
671                                    enum iio_event_type type,
672                                    enum iio_event_direction dir,
673                                    enum iio_event_info info,
674                                    int *val, int *val2)
675 {
676         struct bmc150_accel_data *data = iio_priv(indio_dev);
677
678         *val2 = 0;
679         switch (info) {
680         case IIO_EV_INFO_VALUE:
681                 *val = data->slope_thres;
682                 break;
683         case IIO_EV_INFO_PERIOD:
684                 *val = data->slope_dur;
685                 break;
686         default:
687                 return -EINVAL;
688         }
689
690         return IIO_VAL_INT;
691 }
692
693 static int bmc150_accel_write_event(struct iio_dev *indio_dev,
694                                     const struct iio_chan_spec *chan,
695                                     enum iio_event_type type,
696                                     enum iio_event_direction dir,
697                                     enum iio_event_info info,
698                                     int val, int val2)
699 {
700         struct bmc150_accel_data *data = iio_priv(indio_dev);
701
702         if (data->ev_enable_state)
703                 return -EBUSY;
704
705         switch (info) {
706         case IIO_EV_INFO_VALUE:
707                 data->slope_thres = val & BMC150_ACCEL_SLOPE_THRES_MASK;
708                 break;
709         case IIO_EV_INFO_PERIOD:
710                 data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK;
711                 break;
712         default:
713                 return -EINVAL;
714         }
715
716         return 0;
717 }
718
719 static int bmc150_accel_read_event_config(struct iio_dev *indio_dev,
720                                           const struct iio_chan_spec *chan,
721                                           enum iio_event_type type,
722                                           enum iio_event_direction dir)
723 {
724         struct bmc150_accel_data *data = iio_priv(indio_dev);
725
726         return data->ev_enable_state;
727 }
728
729 static int bmc150_accel_write_event_config(struct iio_dev *indio_dev,
730                                            const struct iio_chan_spec *chan,
731                                            enum iio_event_type type,
732                                            enum iio_event_direction dir,
733                                            int state)
734 {
735         struct bmc150_accel_data *data = iio_priv(indio_dev);
736         int ret;
737
738         if (state == data->ev_enable_state)
739                 return 0;
740
741         mutex_lock(&data->mutex);
742
743         ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION,
744                                          state);
745         if (ret < 0) {
746                 mutex_unlock(&data->mutex);
747                 return ret;
748         }
749
750         data->ev_enable_state = state;
751         mutex_unlock(&data->mutex);
752
753         return 0;
754 }
755
756 static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev,
757                                          struct iio_trigger *trig)
758 {
759         struct bmc150_accel_data *data = iio_priv(indio_dev);
760         int i;
761
762         for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
763                 if (data->triggers[i].indio_trig == trig)
764                         return 0;
765         }
766
767         return -EINVAL;
768 }
769
770 static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev,
771                                                struct device_attribute *attr,
772                                                char *buf)
773 {
774         struct iio_dev *indio_dev = dev_to_iio_dev(dev);
775         struct bmc150_accel_data *data = iio_priv(indio_dev);
776         int wm;
777
778         mutex_lock(&data->mutex);
779         wm = data->watermark;
780         mutex_unlock(&data->mutex);
781
782         return sprintf(buf, "%d\n", wm);
783 }
784
785 static ssize_t bmc150_accel_get_fifo_state(struct device *dev,
786                                            struct device_attribute *attr,
787                                            char *buf)
788 {
789         struct iio_dev *indio_dev = dev_to_iio_dev(dev);
790         struct bmc150_accel_data *data = iio_priv(indio_dev);
791         bool state;
792
793         mutex_lock(&data->mutex);
794         state = data->fifo_mode;
795         mutex_unlock(&data->mutex);
796
797         return sprintf(buf, "%d\n", state);
798 }
799
800 static const struct iio_mount_matrix *
801 bmc150_accel_get_mount_matrix(const struct iio_dev *indio_dev,
802                                 const struct iio_chan_spec *chan)
803 {
804         struct bmc150_accel_data *data = iio_priv(indio_dev);
805
806         return &data->orientation;
807 }
808
809 static const struct iio_chan_spec_ext_info bmc150_accel_ext_info[] = {
810         IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bmc150_accel_get_mount_matrix),
811         { }
812 };
813
814 static IIO_CONST_ATTR(hwfifo_watermark_min, "1");
815 static IIO_CONST_ATTR(hwfifo_watermark_max,
816                       __stringify(BMC150_ACCEL_FIFO_LENGTH));
817 static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO,
818                        bmc150_accel_get_fifo_state, NULL, 0);
819 static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO,
820                        bmc150_accel_get_fifo_watermark, NULL, 0);
821
822 static const struct attribute *bmc150_accel_fifo_attributes[] = {
823         &iio_const_attr_hwfifo_watermark_min.dev_attr.attr,
824         &iio_const_attr_hwfifo_watermark_max.dev_attr.attr,
825         &iio_dev_attr_hwfifo_watermark.dev_attr.attr,
826         &iio_dev_attr_hwfifo_enabled.dev_attr.attr,
827         NULL,
828 };
829
830 static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val)
831 {
832         struct bmc150_accel_data *data = iio_priv(indio_dev);
833
834         if (val > BMC150_ACCEL_FIFO_LENGTH)
835                 val = BMC150_ACCEL_FIFO_LENGTH;
836
837         mutex_lock(&data->mutex);
838         data->watermark = val;
839         mutex_unlock(&data->mutex);
840
841         return 0;
842 }
843
844 /*
845  * We must read at least one full frame in one burst, otherwise the rest of the
846  * frame data is discarded.
847  */
848 static int bmc150_accel_fifo_transfer(struct bmc150_accel_data *data,
849                                       char *buffer, int samples)
850 {
851         struct device *dev = regmap_get_device(data->regmap);
852         int sample_length = 3 * 2;
853         int ret;
854         int total_length = samples * sample_length;
855
856         ret = regmap_raw_read(data->regmap, BMC150_ACCEL_REG_FIFO_DATA,
857                               buffer, total_length);
858         if (ret)
859                 dev_err(dev,
860                         "Error transferring data from fifo: %d\n", ret);
861
862         return ret;
863 }
864
865 static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev,
866                                      unsigned samples, bool irq)
867 {
868         struct bmc150_accel_data *data = iio_priv(indio_dev);
869         struct device *dev = regmap_get_device(data->regmap);
870         int ret, i;
871         u8 count;
872         u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3];
873         int64_t tstamp;
874         uint64_t sample_period;
875         unsigned int val;
876
877         ret = regmap_read(data->regmap, BMC150_ACCEL_REG_FIFO_STATUS, &val);
878         if (ret < 0) {
879                 dev_err(dev, "Error reading reg_fifo_status\n");
880                 return ret;
881         }
882
883         count = val & 0x7F;
884
885         if (!count)
886                 return 0;
887
888         /*
889          * If we getting called from IRQ handler we know the stored timestamp is
890          * fairly accurate for the last stored sample. Otherwise, if we are
891          * called as a result of a read operation from userspace and hence
892          * before the watermark interrupt was triggered, take a timestamp
893          * now. We can fall anywhere in between two samples so the error in this
894          * case is at most one sample period.
895          */
896         if (!irq) {
897                 data->old_timestamp = data->timestamp;
898                 data->timestamp = iio_get_time_ns(indio_dev);
899         }
900
901         /*
902          * Approximate timestamps for each of the sample based on the sampling
903          * frequency, timestamp for last sample and number of samples.
904          *
905          * Note that we can't use the current bandwidth settings to compute the
906          * sample period because the sample rate varies with the device
907          * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That
908          * small variation adds when we store a large number of samples and
909          * creates significant jitter between the last and first samples in
910          * different batches (e.g. 32ms vs 21ms).
911          *
912          * To avoid this issue we compute the actual sample period ourselves
913          * based on the timestamp delta between the last two flush operations.
914          */
915         sample_period = (data->timestamp - data->old_timestamp);
916         do_div(sample_period, count);
917         tstamp = data->timestamp - (count - 1) * sample_period;
918
919         if (samples && count > samples)
920                 count = samples;
921
922         ret = bmc150_accel_fifo_transfer(data, (u8 *)buffer, count);
923         if (ret)
924                 return ret;
925
926         /*
927          * Ideally we want the IIO core to handle the demux when running in fifo
928          * mode but not when running in triggered buffer mode. Unfortunately
929          * this does not seem to be possible, so stick with driver demux for
930          * now.
931          */
932         for (i = 0; i < count; i++) {
933                 int j, bit;
934
935                 j = 0;
936                 for_each_set_bit(bit, indio_dev->active_scan_mask,
937                                  indio_dev->masklength)
938                         memcpy(&data->scan.channels[j++], &buffer[i * 3 + bit],
939                                sizeof(data->scan.channels[0]));
940
941                 iio_push_to_buffers_with_timestamp(indio_dev, &data->scan,
942                                                    tstamp);
943
944                 tstamp += sample_period;
945         }
946
947         return count;
948 }
949
950 static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples)
951 {
952         struct bmc150_accel_data *data = iio_priv(indio_dev);
953         int ret;
954
955         mutex_lock(&data->mutex);
956         ret = __bmc150_accel_fifo_flush(indio_dev, samples, false);
957         mutex_unlock(&data->mutex);
958
959         return ret;
960 }
961
962 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
963                 "15.620000 31.260000 62.50000 125 250 500 1000 2000");
964
965 static struct attribute *bmc150_accel_attributes[] = {
966         &iio_const_attr_sampling_frequency_available.dev_attr.attr,
967         NULL,
968 };
969
970 static const struct attribute_group bmc150_accel_attrs_group = {
971         .attrs = bmc150_accel_attributes,
972 };
973
974 static const struct iio_event_spec bmc150_accel_event = {
975                 .type = IIO_EV_TYPE_ROC,
976                 .dir = IIO_EV_DIR_EITHER,
977                 .mask_separate = BIT(IIO_EV_INFO_VALUE) |
978                                  BIT(IIO_EV_INFO_ENABLE) |
979                                  BIT(IIO_EV_INFO_PERIOD)
980 };
981
982 #define BMC150_ACCEL_CHANNEL(_axis, bits) {                             \
983         .type = IIO_ACCEL,                                              \
984         .modified = 1,                                                  \
985         .channel2 = IIO_MOD_##_axis,                                    \
986         .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),                   \
987         .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |          \
988                                 BIT(IIO_CHAN_INFO_SAMP_FREQ),           \
989         .scan_index = AXIS_##_axis,                                     \
990         .scan_type = {                                                  \
991                 .sign = 's',                                            \
992                 .realbits = (bits),                                     \
993                 .storagebits = 16,                                      \
994                 .shift = 16 - (bits),                                   \
995                 .endianness = IIO_LE,                                   \
996         },                                                              \
997         .ext_info = bmc150_accel_ext_info,                              \
998         .event_spec = &bmc150_accel_event,                              \
999         .num_event_specs = 1                                            \
1000 }
1001
1002 #define BMC150_ACCEL_CHANNELS(bits) {                                   \
1003         {                                                               \
1004                 .type = IIO_TEMP,                                       \
1005                 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |          \
1006                                       BIT(IIO_CHAN_INFO_SCALE) |        \
1007                                       BIT(IIO_CHAN_INFO_OFFSET),        \
1008                 .scan_index = -1,                                       \
1009         },                                                              \
1010         BMC150_ACCEL_CHANNEL(X, bits),                                  \
1011         BMC150_ACCEL_CHANNEL(Y, bits),                                  \
1012         BMC150_ACCEL_CHANNEL(Z, bits),                                  \
1013         IIO_CHAN_SOFT_TIMESTAMP(3),                                     \
1014 }
1015
1016 static const struct iio_chan_spec bma222e_accel_channels[] =
1017         BMC150_ACCEL_CHANNELS(8);
1018 static const struct iio_chan_spec bma250e_accel_channels[] =
1019         BMC150_ACCEL_CHANNELS(10);
1020 static const struct iio_chan_spec bmc150_accel_channels[] =
1021         BMC150_ACCEL_CHANNELS(12);
1022 static const struct iio_chan_spec bma280_accel_channels[] =
1023         BMC150_ACCEL_CHANNELS(14);
1024
1025 static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = {
1026         [bmc150] = {
1027                 .name = "BMC150A",
1028                 .chip_id = 0xFA,
1029                 .channels = bmc150_accel_channels,
1030                 .num_channels = ARRAY_SIZE(bmc150_accel_channels),
1031                 .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1032                                  {19122, BMC150_ACCEL_DEF_RANGE_4G},
1033                                  {38344, BMC150_ACCEL_DEF_RANGE_8G},
1034                                  {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1035         },
1036         [bmi055] = {
1037                 .name = "BMI055A",
1038                 .chip_id = 0xFA,
1039                 .channels = bmc150_accel_channels,
1040                 .num_channels = ARRAY_SIZE(bmc150_accel_channels),
1041                 .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1042                                  {19122, BMC150_ACCEL_DEF_RANGE_4G},
1043                                  {38344, BMC150_ACCEL_DEF_RANGE_8G},
1044                                  {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1045         },
1046         [bma255] = {
1047                 .name = "BMA0255",
1048                 .chip_id = 0xFA,
1049                 .channels = bmc150_accel_channels,
1050                 .num_channels = ARRAY_SIZE(bmc150_accel_channels),
1051                 .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1052                                  {19122, BMC150_ACCEL_DEF_RANGE_4G},
1053                                  {38344, BMC150_ACCEL_DEF_RANGE_8G},
1054                                  {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1055         },
1056         [bma250e] = {
1057                 .name = "BMA250E",
1058                 .chip_id = 0xF9,
1059                 .channels = bma250e_accel_channels,
1060                 .num_channels = ARRAY_SIZE(bma250e_accel_channels),
1061                 .scale_table = { {38344, BMC150_ACCEL_DEF_RANGE_2G},
1062                                  {76590, BMC150_ACCEL_DEF_RANGE_4G},
1063                                  {153277, BMC150_ACCEL_DEF_RANGE_8G},
1064                                  {306457, BMC150_ACCEL_DEF_RANGE_16G} },
1065         },
1066         [bma222e] = {
1067                 .name = "BMA222E",
1068                 .chip_id = 0xF8,
1069                 .channels = bma222e_accel_channels,
1070                 .num_channels = ARRAY_SIZE(bma222e_accel_channels),
1071                 .scale_table = { {153277, BMC150_ACCEL_DEF_RANGE_2G},
1072                                  {306457, BMC150_ACCEL_DEF_RANGE_4G},
1073                                  {612915, BMC150_ACCEL_DEF_RANGE_8G},
1074                                  {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
1075         },
1076         [bma280] = {
1077                 .name = "BMA0280",
1078                 .chip_id = 0xFB,
1079                 .channels = bma280_accel_channels,
1080                 .num_channels = ARRAY_SIZE(bma280_accel_channels),
1081                 .scale_table = { {2392, BMC150_ACCEL_DEF_RANGE_2G},
1082                                  {4785, BMC150_ACCEL_DEF_RANGE_4G},
1083                                  {9581, BMC150_ACCEL_DEF_RANGE_8G},
1084                                  {19152, BMC150_ACCEL_DEF_RANGE_16G} },
1085         },
1086 };
1087
1088 static const struct iio_info bmc150_accel_info = {
1089         .attrs                  = &bmc150_accel_attrs_group,
1090         .read_raw               = bmc150_accel_read_raw,
1091         .write_raw              = bmc150_accel_write_raw,
1092         .read_event_value       = bmc150_accel_read_event,
1093         .write_event_value      = bmc150_accel_write_event,
1094         .write_event_config     = bmc150_accel_write_event_config,
1095         .read_event_config      = bmc150_accel_read_event_config,
1096 };
1097
1098 static const struct iio_info bmc150_accel_info_fifo = {
1099         .attrs                  = &bmc150_accel_attrs_group,
1100         .read_raw               = bmc150_accel_read_raw,
1101         .write_raw              = bmc150_accel_write_raw,
1102         .read_event_value       = bmc150_accel_read_event,
1103         .write_event_value      = bmc150_accel_write_event,
1104         .write_event_config     = bmc150_accel_write_event_config,
1105         .read_event_config      = bmc150_accel_read_event_config,
1106         .validate_trigger       = bmc150_accel_validate_trigger,
1107         .hwfifo_set_watermark   = bmc150_accel_set_watermark,
1108         .hwfifo_flush_to_buffer = bmc150_accel_fifo_flush,
1109 };
1110
1111 static const unsigned long bmc150_accel_scan_masks[] = {
1112                                         BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
1113                                         0};
1114
1115 static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p)
1116 {
1117         struct iio_poll_func *pf = p;
1118         struct iio_dev *indio_dev = pf->indio_dev;
1119         struct bmc150_accel_data *data = iio_priv(indio_dev);
1120         int ret;
1121
1122         mutex_lock(&data->mutex);
1123         ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_REG_XOUT_L,
1124                                data->buffer, AXIS_MAX * 2);
1125         mutex_unlock(&data->mutex);
1126         if (ret < 0)
1127                 goto err_read;
1128
1129         iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
1130                                            pf->timestamp);
1131 err_read:
1132         iio_trigger_notify_done(indio_dev->trig);
1133
1134         return IRQ_HANDLED;
1135 }
1136
1137 static int bmc150_accel_trig_try_reen(struct iio_trigger *trig)
1138 {
1139         struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1140         struct bmc150_accel_data *data = t->data;
1141         struct device *dev = regmap_get_device(data->regmap);
1142         int ret;
1143
1144         /* new data interrupts don't need ack */
1145         if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY])
1146                 return 0;
1147
1148         mutex_lock(&data->mutex);
1149         /* clear any latched interrupt */
1150         ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1151                            BMC150_ACCEL_INT_MODE_LATCH_INT |
1152                            BMC150_ACCEL_INT_MODE_LATCH_RESET);
1153         mutex_unlock(&data->mutex);
1154         if (ret < 0) {
1155                 dev_err(dev, "Error writing reg_int_rst_latch\n");
1156                 return ret;
1157         }
1158
1159         return 0;
1160 }
1161
1162 static int bmc150_accel_trigger_set_state(struct iio_trigger *trig,
1163                                           bool state)
1164 {
1165         struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1166         struct bmc150_accel_data *data = t->data;
1167         int ret;
1168
1169         mutex_lock(&data->mutex);
1170
1171         if (t->enabled == state) {
1172                 mutex_unlock(&data->mutex);
1173                 return 0;
1174         }
1175
1176         if (t->setup) {
1177                 ret = t->setup(t, state);
1178                 if (ret < 0) {
1179                         mutex_unlock(&data->mutex);
1180                         return ret;
1181                 }
1182         }
1183
1184         ret = bmc150_accel_set_interrupt(data, t->intr, state);
1185         if (ret < 0) {
1186                 mutex_unlock(&data->mutex);
1187                 return ret;
1188         }
1189
1190         t->enabled = state;
1191
1192         mutex_unlock(&data->mutex);
1193
1194         return ret;
1195 }
1196
1197 static const struct iio_trigger_ops bmc150_accel_trigger_ops = {
1198         .set_trigger_state = bmc150_accel_trigger_set_state,
1199         .try_reenable = bmc150_accel_trig_try_reen,
1200 };
1201
1202 static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev)
1203 {
1204         struct bmc150_accel_data *data = iio_priv(indio_dev);
1205         struct device *dev = regmap_get_device(data->regmap);
1206         int dir;
1207         int ret;
1208         unsigned int val;
1209
1210         ret = regmap_read(data->regmap, BMC150_ACCEL_REG_INT_STATUS_2, &val);
1211         if (ret < 0) {
1212                 dev_err(dev, "Error reading reg_int_status_2\n");
1213                 return ret;
1214         }
1215
1216         if (val & BMC150_ACCEL_ANY_MOTION_BIT_SIGN)
1217                 dir = IIO_EV_DIR_FALLING;
1218         else
1219                 dir = IIO_EV_DIR_RISING;
1220
1221         if (val & BMC150_ACCEL_ANY_MOTION_BIT_X)
1222                 iio_push_event(indio_dev,
1223                                IIO_MOD_EVENT_CODE(IIO_ACCEL,
1224                                                   0,
1225                                                   IIO_MOD_X,
1226                                                   IIO_EV_TYPE_ROC,
1227                                                   dir),
1228                                data->timestamp);
1229
1230         if (val & BMC150_ACCEL_ANY_MOTION_BIT_Y)
1231                 iio_push_event(indio_dev,
1232                                IIO_MOD_EVENT_CODE(IIO_ACCEL,
1233                                                   0,
1234                                                   IIO_MOD_Y,
1235                                                   IIO_EV_TYPE_ROC,
1236                                                   dir),
1237                                data->timestamp);
1238
1239         if (val & BMC150_ACCEL_ANY_MOTION_BIT_Z)
1240                 iio_push_event(indio_dev,
1241                                IIO_MOD_EVENT_CODE(IIO_ACCEL,
1242                                                   0,
1243                                                   IIO_MOD_Z,
1244                                                   IIO_EV_TYPE_ROC,
1245                                                   dir),
1246                                data->timestamp);
1247
1248         return ret;
1249 }
1250
1251 static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private)
1252 {
1253         struct iio_dev *indio_dev = private;
1254         struct bmc150_accel_data *data = iio_priv(indio_dev);
1255         struct device *dev = regmap_get_device(data->regmap);
1256         bool ack = false;
1257         int ret;
1258
1259         mutex_lock(&data->mutex);
1260
1261         if (data->fifo_mode) {
1262                 ret = __bmc150_accel_fifo_flush(indio_dev,
1263                                                 BMC150_ACCEL_FIFO_LENGTH, true);
1264                 if (ret > 0)
1265                         ack = true;
1266         }
1267
1268         if (data->ev_enable_state) {
1269                 ret = bmc150_accel_handle_roc_event(indio_dev);
1270                 if (ret > 0)
1271                         ack = true;
1272         }
1273
1274         if (ack) {
1275                 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1276                                    BMC150_ACCEL_INT_MODE_LATCH_INT |
1277                                    BMC150_ACCEL_INT_MODE_LATCH_RESET);
1278                 if (ret)
1279                         dev_err(dev, "Error writing reg_int_rst_latch\n");
1280
1281                 ret = IRQ_HANDLED;
1282         } else {
1283                 ret = IRQ_NONE;
1284         }
1285
1286         mutex_unlock(&data->mutex);
1287
1288         return ret;
1289 }
1290
1291 static irqreturn_t bmc150_accel_irq_handler(int irq, void *private)
1292 {
1293         struct iio_dev *indio_dev = private;
1294         struct bmc150_accel_data *data = iio_priv(indio_dev);
1295         bool ack = false;
1296         int i;
1297
1298         data->old_timestamp = data->timestamp;
1299         data->timestamp = iio_get_time_ns(indio_dev);
1300
1301         for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1302                 if (data->triggers[i].enabled) {
1303                         iio_trigger_poll(data->triggers[i].indio_trig);
1304                         ack = true;
1305                         break;
1306                 }
1307         }
1308
1309         if (data->ev_enable_state || data->fifo_mode)
1310                 return IRQ_WAKE_THREAD;
1311
1312         if (ack)
1313                 return IRQ_HANDLED;
1314
1315         return IRQ_NONE;
1316 }
1317
1318 static const struct {
1319         int intr;
1320         const char *name;
1321         int (*setup)(struct bmc150_accel_trigger *t, bool state);
1322 } bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = {
1323         {
1324                 .intr = 0,
1325                 .name = "%s-dev%d",
1326         },
1327         {
1328                 .intr = 1,
1329                 .name = "%s-any-motion-dev%d",
1330                 .setup = bmc150_accel_any_motion_setup,
1331         },
1332 };
1333
1334 static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data,
1335                                              int from)
1336 {
1337         int i;
1338
1339         for (i = from; i >= 0; i--) {
1340                 if (data->triggers[i].indio_trig) {
1341                         iio_trigger_unregister(data->triggers[i].indio_trig);
1342                         data->triggers[i].indio_trig = NULL;
1343                 }
1344         }
1345 }
1346
1347 static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev,
1348                                        struct bmc150_accel_data *data)
1349 {
1350         struct device *dev = regmap_get_device(data->regmap);
1351         int i, ret;
1352
1353         for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1354                 struct bmc150_accel_trigger *t = &data->triggers[i];
1355
1356                 t->indio_trig = devm_iio_trigger_alloc(dev,
1357                                         bmc150_accel_triggers[i].name,
1358                                                        indio_dev->name,
1359                                                        indio_dev->id);
1360                 if (!t->indio_trig) {
1361                         ret = -ENOMEM;
1362                         break;
1363                 }
1364
1365                 t->indio_trig->dev.parent = dev;
1366                 t->indio_trig->ops = &bmc150_accel_trigger_ops;
1367                 t->intr = bmc150_accel_triggers[i].intr;
1368                 t->data = data;
1369                 t->setup = bmc150_accel_triggers[i].setup;
1370                 iio_trigger_set_drvdata(t->indio_trig, t);
1371
1372                 ret = iio_trigger_register(t->indio_trig);
1373                 if (ret)
1374                         break;
1375         }
1376
1377         if (ret)
1378                 bmc150_accel_unregister_triggers(data, i - 1);
1379
1380         return ret;
1381 }
1382
1383 #define BMC150_ACCEL_FIFO_MODE_STREAM          0x80
1384 #define BMC150_ACCEL_FIFO_MODE_FIFO            0x40
1385 #define BMC150_ACCEL_FIFO_MODE_BYPASS          0x00
1386
1387 static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data)
1388 {
1389         struct device *dev = regmap_get_device(data->regmap);
1390         u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1;
1391         int ret;
1392
1393         ret = regmap_write(data->regmap, reg, data->fifo_mode);
1394         if (ret < 0) {
1395                 dev_err(dev, "Error writing reg_fifo_config1\n");
1396                 return ret;
1397         }
1398
1399         if (!data->fifo_mode)
1400                 return 0;
1401
1402         ret = regmap_write(data->regmap, BMC150_ACCEL_REG_FIFO_CONFIG0,
1403                            data->watermark);
1404         if (ret < 0)
1405                 dev_err(dev, "Error writing reg_fifo_config0\n");
1406
1407         return ret;
1408 }
1409
1410 static int bmc150_accel_buffer_preenable(struct iio_dev *indio_dev)
1411 {
1412         struct bmc150_accel_data *data = iio_priv(indio_dev);
1413
1414         return bmc150_accel_set_power_state(data, true);
1415 }
1416
1417 static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev)
1418 {
1419         struct bmc150_accel_data *data = iio_priv(indio_dev);
1420         int ret = 0;
1421
1422         if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1423                 return 0;
1424
1425         mutex_lock(&data->mutex);
1426
1427         if (!data->watermark)
1428                 goto out;
1429
1430         ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1431                                          true);
1432         if (ret)
1433                 goto out;
1434
1435         data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO;
1436
1437         ret = bmc150_accel_fifo_set_mode(data);
1438         if (ret) {
1439                 data->fifo_mode = 0;
1440                 bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1441                                            false);
1442         }
1443
1444 out:
1445         mutex_unlock(&data->mutex);
1446
1447         return ret;
1448 }
1449
1450 static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev)
1451 {
1452         struct bmc150_accel_data *data = iio_priv(indio_dev);
1453
1454         if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1455                 return 0;
1456
1457         mutex_lock(&data->mutex);
1458
1459         if (!data->fifo_mode)
1460                 goto out;
1461
1462         bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false);
1463         __bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false);
1464         data->fifo_mode = 0;
1465         bmc150_accel_fifo_set_mode(data);
1466
1467 out:
1468         mutex_unlock(&data->mutex);
1469
1470         return 0;
1471 }
1472
1473 static int bmc150_accel_buffer_postdisable(struct iio_dev *indio_dev)
1474 {
1475         struct bmc150_accel_data *data = iio_priv(indio_dev);
1476
1477         return bmc150_accel_set_power_state(data, false);
1478 }
1479
1480 static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = {
1481         .preenable = bmc150_accel_buffer_preenable,
1482         .postenable = bmc150_accel_buffer_postenable,
1483         .predisable = bmc150_accel_buffer_predisable,
1484         .postdisable = bmc150_accel_buffer_postdisable,
1485 };
1486
1487 static int bmc150_accel_chip_init(struct bmc150_accel_data *data)
1488 {
1489         struct device *dev = regmap_get_device(data->regmap);
1490         int ret, i;
1491         unsigned int val;
1492
1493         /*
1494          * Reset chip to get it in a known good state. A delay of 1.8ms after
1495          * reset is required according to the data sheets of supported chips.
1496          */
1497         regmap_write(data->regmap, BMC150_ACCEL_REG_RESET,
1498                      BMC150_ACCEL_RESET_VAL);
1499         usleep_range(1800, 2500);
1500
1501         ret = regmap_read(data->regmap, BMC150_ACCEL_REG_CHIP_ID, &val);
1502         if (ret < 0) {
1503                 dev_err(dev, "Error: Reading chip id\n");
1504                 return ret;
1505         }
1506
1507         dev_dbg(dev, "Chip Id %x\n", val);
1508         for (i = 0; i < ARRAY_SIZE(bmc150_accel_chip_info_tbl); i++) {
1509                 if (bmc150_accel_chip_info_tbl[i].chip_id == val) {
1510                         data->chip_info = &bmc150_accel_chip_info_tbl[i];
1511                         break;
1512                 }
1513         }
1514
1515         if (!data->chip_info) {
1516                 dev_err(dev, "Invalid chip %x\n", val);
1517                 return -ENODEV;
1518         }
1519
1520         ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1521         if (ret < 0)
1522                 return ret;
1523
1524         /* Set Bandwidth */
1525         ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0);
1526         if (ret < 0)
1527                 return ret;
1528
1529         /* Set Default Range */
1530         ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_RANGE,
1531                            BMC150_ACCEL_DEF_RANGE_4G);
1532         if (ret < 0) {
1533                 dev_err(dev, "Error writing reg_pmu_range\n");
1534                 return ret;
1535         }
1536
1537         data->range = BMC150_ACCEL_DEF_RANGE_4G;
1538
1539         /* Set default slope duration and thresholds */
1540         data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD;
1541         data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION;
1542         ret = bmc150_accel_update_slope(data);
1543         if (ret < 0)
1544                 return ret;
1545
1546         /* Set default as latched interrupts */
1547         ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1548                            BMC150_ACCEL_INT_MODE_LATCH_INT |
1549                            BMC150_ACCEL_INT_MODE_LATCH_RESET);
1550         if (ret < 0) {
1551                 dev_err(dev, "Error writing reg_int_rst_latch\n");
1552                 return ret;
1553         }
1554
1555         return 0;
1556 }
1557
1558 int bmc150_accel_core_probe(struct device *dev, struct regmap *regmap, int irq,
1559                             const char *name, bool block_supported)
1560 {
1561         struct bmc150_accel_data *data;
1562         struct iio_dev *indio_dev;
1563         int ret;
1564
1565         indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
1566         if (!indio_dev)
1567                 return -ENOMEM;
1568
1569         data = iio_priv(indio_dev);
1570         dev_set_drvdata(dev, indio_dev);
1571         data->irq = irq;
1572
1573         data->regmap = regmap;
1574
1575         ret = iio_read_mount_matrix(dev, "mount-matrix",
1576                                      &data->orientation);
1577         if (ret)
1578                 return ret;
1579
1580         ret = bmc150_accel_chip_init(data);
1581         if (ret < 0)
1582                 return ret;
1583
1584         mutex_init(&data->mutex);
1585
1586         indio_dev->channels = data->chip_info->channels;
1587         indio_dev->num_channels = data->chip_info->num_channels;
1588         indio_dev->name = name ? name : data->chip_info->name;
1589         indio_dev->available_scan_masks = bmc150_accel_scan_masks;
1590         indio_dev->modes = INDIO_DIRECT_MODE;
1591         indio_dev->info = &bmc150_accel_info;
1592
1593         ret = iio_triggered_buffer_setup(indio_dev,
1594                                          &iio_pollfunc_store_time,
1595                                          bmc150_accel_trigger_handler,
1596                                          &bmc150_accel_buffer_ops);
1597         if (ret < 0) {
1598                 dev_err(dev, "Failed: iio triggered buffer setup\n");
1599                 return ret;
1600         }
1601
1602         if (data->irq > 0) {
1603                 ret = devm_request_threaded_irq(
1604                                                 dev, data->irq,
1605                                                 bmc150_accel_irq_handler,
1606                                                 bmc150_accel_irq_thread_handler,
1607                                                 IRQF_TRIGGER_RISING,
1608                                                 BMC150_ACCEL_IRQ_NAME,
1609                                                 indio_dev);
1610                 if (ret)
1611                         goto err_buffer_cleanup;
1612
1613                 /*
1614                  * Set latched mode interrupt. While certain interrupts are
1615                  * non-latched regardless of this settings (e.g. new data) we
1616                  * want to use latch mode when we can to prevent interrupt
1617                  * flooding.
1618                  */
1619                 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1620                                    BMC150_ACCEL_INT_MODE_LATCH_RESET);
1621                 if (ret < 0) {
1622                         dev_err(dev, "Error writing reg_int_rst_latch\n");
1623                         goto err_buffer_cleanup;
1624                 }
1625
1626                 bmc150_accel_interrupts_setup(indio_dev, data);
1627
1628                 ret = bmc150_accel_triggers_setup(indio_dev, data);
1629                 if (ret)
1630                         goto err_buffer_cleanup;
1631
1632                 if (block_supported) {
1633                         indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1634                         indio_dev->info = &bmc150_accel_info_fifo;
1635                         iio_buffer_set_attrs(indio_dev->buffer,
1636                                              bmc150_accel_fifo_attributes);
1637                 }
1638         }
1639
1640         ret = pm_runtime_set_active(dev);
1641         if (ret)
1642                 goto err_trigger_unregister;
1643
1644         pm_runtime_enable(dev);
1645         pm_runtime_set_autosuspend_delay(dev, BMC150_AUTO_SUSPEND_DELAY_MS);
1646         pm_runtime_use_autosuspend(dev);
1647
1648         ret = iio_device_register(indio_dev);
1649         if (ret < 0) {
1650                 dev_err(dev, "Unable to register iio device\n");
1651                 goto err_pm_cleanup;
1652         }
1653
1654         return 0;
1655
1656 err_pm_cleanup:
1657         pm_runtime_dont_use_autosuspend(dev);
1658         pm_runtime_disable(dev);
1659 err_trigger_unregister:
1660         bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1661 err_buffer_cleanup:
1662         iio_triggered_buffer_cleanup(indio_dev);
1663
1664         return ret;
1665 }
1666 EXPORT_SYMBOL_GPL(bmc150_accel_core_probe);
1667
1668 int bmc150_accel_core_remove(struct device *dev)
1669 {
1670         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1671         struct bmc150_accel_data *data = iio_priv(indio_dev);
1672
1673         iio_device_unregister(indio_dev);
1674
1675         pm_runtime_disable(dev);
1676         pm_runtime_set_suspended(dev);
1677         pm_runtime_put_noidle(dev);
1678
1679         bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1680
1681         iio_triggered_buffer_cleanup(indio_dev);
1682
1683         mutex_lock(&data->mutex);
1684         bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0);
1685         mutex_unlock(&data->mutex);
1686
1687         return 0;
1688 }
1689 EXPORT_SYMBOL_GPL(bmc150_accel_core_remove);
1690
1691 #ifdef CONFIG_PM_SLEEP
1692 static int bmc150_accel_suspend(struct device *dev)
1693 {
1694         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1695         struct bmc150_accel_data *data = iio_priv(indio_dev);
1696
1697         mutex_lock(&data->mutex);
1698         bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1699         mutex_unlock(&data->mutex);
1700
1701         return 0;
1702 }
1703
1704 static int bmc150_accel_resume(struct device *dev)
1705 {
1706         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1707         struct bmc150_accel_data *data = iio_priv(indio_dev);
1708
1709         mutex_lock(&data->mutex);
1710         bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1711         bmc150_accel_fifo_set_mode(data);
1712         mutex_unlock(&data->mutex);
1713
1714         return 0;
1715 }
1716 #endif
1717
1718 #ifdef CONFIG_PM
1719 static int bmc150_accel_runtime_suspend(struct device *dev)
1720 {
1721         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1722         struct bmc150_accel_data *data = iio_priv(indio_dev);
1723         int ret;
1724
1725         ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1726         if (ret < 0)
1727                 return -EAGAIN;
1728
1729         return 0;
1730 }
1731
1732 static int bmc150_accel_runtime_resume(struct device *dev)
1733 {
1734         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1735         struct bmc150_accel_data *data = iio_priv(indio_dev);
1736         int ret;
1737         int sleep_val;
1738
1739         ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1740         if (ret < 0)
1741                 return ret;
1742         ret = bmc150_accel_fifo_set_mode(data);
1743         if (ret < 0)
1744                 return ret;
1745
1746         sleep_val = bmc150_accel_get_startup_times(data);
1747         if (sleep_val < 20)
1748                 usleep_range(sleep_val * 1000, 20000);
1749         else
1750                 msleep_interruptible(sleep_val);
1751
1752         return 0;
1753 }
1754 #endif
1755
1756 const struct dev_pm_ops bmc150_accel_pm_ops = {
1757         SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume)
1758         SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend,
1759                            bmc150_accel_runtime_resume, NULL)
1760 };
1761 EXPORT_SYMBOL_GPL(bmc150_accel_pm_ops);
1762
1763 MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
1764 MODULE_LICENSE("GPL v2");
1765 MODULE_DESCRIPTION("BMC150 accelerometer driver");