GNU Linux-libre 6.9.1-gnu
[releases.git] / drivers / i2c / busses / i2c-npcm7xx.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Nuvoton NPCM7xx I2C Controller driver
4  *
5  * Copyright (C) 2020 Nuvoton Technologies tali.perry@nuvoton.com
6  */
7 #include <linux/bitfield.h>
8 #include <linux/clk.h>
9 #include <linux/debugfs.h>
10 #include <linux/errno.h>
11 #include <linux/i2c.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/irq.h>
15 #include <linux/jiffies.h>
16 #include <linux/kernel.h>
17 #include <linux/mfd/syscon.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/platform_device.h>
21 #include <linux/regmap.h>
22
23 enum i2c_mode {
24         I2C_MASTER,
25         I2C_SLAVE,
26 };
27
28 /*
29  * External I2C Interface driver xfer indication values, which indicate status
30  * of the bus.
31  */
32 enum i2c_state_ind {
33         I2C_NO_STATUS_IND = 0,
34         I2C_SLAVE_RCV_IND,
35         I2C_SLAVE_XMIT_IND,
36         I2C_SLAVE_XMIT_MISSING_DATA_IND,
37         I2C_SLAVE_RESTART_IND,
38         I2C_SLAVE_DONE_IND,
39         I2C_MASTER_DONE_IND,
40         I2C_NACK_IND,
41         I2C_BUS_ERR_IND,
42         I2C_WAKE_UP_IND,
43         I2C_BLOCK_BYTES_ERR_IND,
44         I2C_SLAVE_RCV_MISSING_DATA_IND,
45 };
46
47 /*
48  * Operation type values (used to define the operation currently running)
49  * module is interrupt driven, on each interrupt the current operation is
50  * checked to see if the module is currently reading or writing.
51  */
52 enum i2c_oper {
53         I2C_NO_OPER = 0,
54         I2C_WRITE_OPER,
55         I2C_READ_OPER,
56 };
57
58 /* I2C Bank (module had 2 banks of registers) */
59 enum i2c_bank {
60         I2C_BANK_0 = 0,
61         I2C_BANK_1,
62 };
63
64 /* Internal I2C states values (for the I2C module state machine). */
65 enum i2c_state {
66         I2C_DISABLE = 0,
67         I2C_IDLE,
68         I2C_MASTER_START,
69         I2C_SLAVE_MATCH,
70         I2C_OPER_STARTED,
71         I2C_STOP_PENDING,
72 };
73
74 #if IS_ENABLED(CONFIG_I2C_SLAVE)
75 /* Module supports setting multiple own slave addresses */
76 enum i2c_addr {
77         I2C_SLAVE_ADDR1 = 0,
78         I2C_SLAVE_ADDR2,
79         I2C_SLAVE_ADDR3,
80         I2C_SLAVE_ADDR4,
81         I2C_SLAVE_ADDR5,
82         I2C_SLAVE_ADDR6,
83         I2C_SLAVE_ADDR7,
84         I2C_SLAVE_ADDR8,
85         I2C_SLAVE_ADDR9,
86         I2C_SLAVE_ADDR10,
87         I2C_GC_ADDR,
88         I2C_ARP_ADDR,
89 };
90 #endif
91
92 /* init register and default value required to enable module */
93 #define NPCM_I2CSEGCTL                  0xE4
94
95 /* Common regs */
96 #define NPCM_I2CSDA                     0x00
97 #define NPCM_I2CST                      0x02
98 #define NPCM_I2CCST                     0x04
99 #define NPCM_I2CCTL1                    0x06
100 #define NPCM_I2CADDR1                   0x08
101 #define NPCM_I2CCTL2                    0x0A
102 #define NPCM_I2CADDR2                   0x0C
103 #define NPCM_I2CCTL3                    0x0E
104 #define NPCM_I2CCST2                    0x18
105 #define NPCM_I2CCST3                    0x19
106 #define I2C_VER                         0x1F
107
108 /* BANK 0 regs */
109 #define NPCM_I2CADDR3                   0x10
110 #define NPCM_I2CADDR7                   0x11
111 #define NPCM_I2CADDR4                   0x12
112 #define NPCM_I2CADDR8                   0x13
113 #define NPCM_I2CADDR5                   0x14
114 #define NPCM_I2CADDR9                   0x15
115 #define NPCM_I2CADDR6                   0x16
116 #define NPCM_I2CADDR10                  0x17
117 #define NPCM_I2CCTL4                    0x1A
118 #define NPCM_I2CCTL5                    0x1B
119 #define NPCM_I2CSCLLT                   0x1C /* SCL Low Time */
120 #define NPCM_I2CFIF_CTL                 0x1D /* FIFO Control */
121 #define NPCM_I2CSCLHT                   0x1E /* SCL High Time */
122
123 /* BANK 1 regs */
124 #define NPCM_I2CFIF_CTS                 0x10 /* Both FIFOs Control and Status */
125 #define NPCM_I2CTXF_CTL                 0x12 /* Tx-FIFO Control */
126 #define NPCM_I2CT_OUT                   0x14 /* Bus T.O. */
127 #define NPCM_I2CPEC                     0x16 /* PEC Data */
128 #define NPCM_I2CTXF_STS                 0x1A /* Tx-FIFO Status */
129 #define NPCM_I2CRXF_STS                 0x1C /* Rx-FIFO Status */
130 #define NPCM_I2CRXF_CTL                 0x1E /* Rx-FIFO Control */
131
132 #if IS_ENABLED(CONFIG_I2C_SLAVE)
133 /*
134  * npcm_i2caddr array:
135  * The module supports having multiple own slave addresses.
136  * Since the addr regs are sprinkled all over the address space,
137  * use this array to get the address or each register.
138  */
139 #define I2C_NUM_OWN_ADDR 2
140 #define I2C_NUM_OWN_ADDR_SUPPORTED 2
141
142 static const int npcm_i2caddr[I2C_NUM_OWN_ADDR] = {
143         NPCM_I2CADDR1, NPCM_I2CADDR2,
144 };
145 #endif
146
147 /* NPCM_I2CST reg fields */
148 #define NPCM_I2CST_XMIT                 BIT(0)  /* Transmit mode */
149 #define NPCM_I2CST_MASTER               BIT(1)  /* Master mode */
150 #define NPCM_I2CST_NMATCH               BIT(2)  /* New match */
151 #define NPCM_I2CST_STASTR               BIT(3)  /* Stall after start */
152 #define NPCM_I2CST_NEGACK               BIT(4)  /* Negative ACK */
153 #define NPCM_I2CST_BER                  BIT(5)  /* Bus error */
154 #define NPCM_I2CST_SDAST                BIT(6)  /* SDA status */
155 #define NPCM_I2CST_SLVSTP               BIT(7)  /* Slave stop */
156
157 /* NPCM_I2CCST reg fields */
158 #define NPCM_I2CCST_BUSY                BIT(0)  /* Busy */
159 #define NPCM_I2CCST_BB                  BIT(1)  /* Bus busy */
160 #define NPCM_I2CCST_MATCH               BIT(2)  /* Address match */
161 #define NPCM_I2CCST_GCMATCH             BIT(3)  /* Global call match */
162 #define NPCM_I2CCST_TSDA                BIT(4)  /* Test SDA line */
163 #define NPCM_I2CCST_TGSCL               BIT(5)  /* Toggle SCL line */
164 #define NPCM_I2CCST_MATCHAF             BIT(6)  /* Match address field */
165 #define NPCM_I2CCST_ARPMATCH            BIT(7)  /* ARP address match */
166
167 /* NPCM_I2CCTL1 reg fields */
168 #define NPCM_I2CCTL1_START              BIT(0)  /* Generate start condition */
169 #define NPCM_I2CCTL1_STOP               BIT(1)  /* Generate stop condition */
170 #define NPCM_I2CCTL1_INTEN              BIT(2)  /* Interrupt enable */
171 #define NPCM_I2CCTL1_EOBINTE            BIT(3)
172 #define NPCM_I2CCTL1_ACK                BIT(4)
173 #define NPCM_I2CCTL1_GCMEN              BIT(5)  /* Global call match enable */
174 #define NPCM_I2CCTL1_NMINTE             BIT(6)  /* New match interrupt enable */
175 #define NPCM_I2CCTL1_STASTRE            BIT(7)  /* Stall after start enable */
176
177 /* RW1S fields (inside a RW reg): */
178 #define NPCM_I2CCTL1_RWS   \
179         (NPCM_I2CCTL1_START | NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_ACK)
180
181 /* npcm_i2caddr reg fields */
182 #define NPCM_I2CADDR_A                  GENMASK(6, 0)   /* Address */
183 #define NPCM_I2CADDR_SAEN               BIT(7)          /* Slave address enable */
184
185 /* NPCM_I2CCTL2 reg fields */
186 #define I2CCTL2_ENABLE                  BIT(0)          /* Module enable */
187 #define I2CCTL2_SCLFRQ6_0               GENMASK(7, 1)   /* Bits 0:6 of frequency divisor */
188
189 /* NPCM_I2CCTL3 reg fields */
190 #define I2CCTL3_SCLFRQ8_7               GENMASK(1, 0)   /* Bits 7:8 of frequency divisor */
191 #define I2CCTL3_ARPMEN                  BIT(2)  /* ARP match enable */
192 #define I2CCTL3_IDL_START               BIT(3)
193 #define I2CCTL3_400K_MODE               BIT(4)
194 #define I2CCTL3_BNK_SEL                 BIT(5)
195 #define I2CCTL3_SDA_LVL                 BIT(6)
196 #define I2CCTL3_SCL_LVL                 BIT(7)
197
198 /* NPCM_I2CCST2 reg fields */
199 #define NPCM_I2CCST2_MATCHA1F           BIT(0)
200 #define NPCM_I2CCST2_MATCHA2F           BIT(1)
201 #define NPCM_I2CCST2_MATCHA3F           BIT(2)
202 #define NPCM_I2CCST2_MATCHA4F           BIT(3)
203 #define NPCM_I2CCST2_MATCHA5F           BIT(4)
204 #define NPCM_I2CCST2_MATCHA6F           BIT(5)
205 #define NPCM_I2CCST2_MATCHA7F           BIT(5)
206 #define NPCM_I2CCST2_INTSTS             BIT(7)
207
208 /* NPCM_I2CCST3 reg fields */
209 #define NPCM_I2CCST3_MATCHA8F           BIT(0)
210 #define NPCM_I2CCST3_MATCHA9F           BIT(1)
211 #define NPCM_I2CCST3_MATCHA10F          BIT(2)
212 #define NPCM_I2CCST3_EO_BUSY            BIT(7)
213
214 /* NPCM_I2CCTL4 reg fields */
215 #define I2CCTL4_HLDT                    GENMASK(5, 0)
216 #define I2CCTL4_LVL_WE                  BIT(7)
217
218 /* NPCM_I2CCTL5 reg fields */
219 #define I2CCTL5_DBNCT                   GENMASK(3, 0)
220
221 /* NPCM_I2CFIF_CTS reg fields */
222 #define NPCM_I2CFIF_CTS_RXF_TXE         BIT(1)
223 #define NPCM_I2CFIF_CTS_RFTE_IE         BIT(3)
224 #define NPCM_I2CFIF_CTS_CLR_FIFO        BIT(6)
225 #define NPCM_I2CFIF_CTS_SLVRSTR         BIT(7)
226
227 /* NPCM_I2CTXF_CTL reg field */
228 #define NPCM_I2CTXF_CTL_THR_TXIE        BIT(6)
229
230 /* NPCM_I2CT_OUT reg fields */
231 #define NPCM_I2CT_OUT_TO_CKDIV          GENMASK(5, 0)
232 #define NPCM_I2CT_OUT_T_OUTIE           BIT(6)
233 #define NPCM_I2CT_OUT_T_OUTST           BIT(7)
234
235 /* NPCM_I2CTXF_STS reg fields */
236 #define NPCM_I2CTXF_STS_TX_THST         BIT(6)
237
238 /* NPCM_I2CRXF_STS reg fields */
239 #define NPCM_I2CRXF_STS_RX_THST         BIT(6)
240
241 /* NPCM_I2CFIF_CTL reg fields */
242 #define NPCM_I2CFIF_CTL_FIFO_EN         BIT(4)
243
244 /* NPCM_I2CRXF_CTL reg fields */
245 #define NPCM_I2CRXF_CTL_THR_RXIE        BIT(6)
246
247 #define MAX_I2C_HW_FIFO_SIZE            32
248
249 /* I2C_VER reg fields */
250 #define I2C_VER_VERSION                 GENMASK(6, 0)
251 #define I2C_VER_FIFO_EN                 BIT(7)
252
253 /* stall/stuck timeout in us */
254 #define DEFAULT_STALL_COUNT             25
255
256 /* SCLFRQ field position */
257 #define SCLFRQ_0_TO_6                   GENMASK(6, 0)
258 #define SCLFRQ_7_TO_8                   GENMASK(8, 7)
259
260 /* supported clk settings. values in Hz. */
261 #define I2C_FREQ_MIN_HZ                 10000
262 #define I2C_FREQ_MAX_HZ                 I2C_MAX_FAST_MODE_PLUS_FREQ
263
264 struct npcm_i2c_data {
265         u8 fifo_size;
266         u32 segctl_init_val;
267         u8 txf_sts_tx_bytes;
268         u8 rxf_sts_rx_bytes;
269         u8 rxf_ctl_last_pec;
270 };
271
272 static const struct npcm_i2c_data npxm7xx_i2c_data = {
273         .fifo_size = 16,
274         .segctl_init_val = 0x0333F000,
275         .txf_sts_tx_bytes = GENMASK(4, 0),
276         .rxf_sts_rx_bytes = GENMASK(4, 0),
277         .rxf_ctl_last_pec = BIT(5),
278 };
279
280 static const struct npcm_i2c_data npxm8xx_i2c_data = {
281         .fifo_size = 32,
282         .segctl_init_val = 0x9333F000,
283         .txf_sts_tx_bytes = GENMASK(5, 0),
284         .rxf_sts_rx_bytes = GENMASK(5, 0),
285         .rxf_ctl_last_pec = BIT(7),
286 };
287
288 /* Status of one I2C module */
289 struct npcm_i2c {
290         struct i2c_adapter adap;
291         struct device *dev;
292         unsigned char __iomem *reg;
293         const struct npcm_i2c_data *data;
294         spinlock_t lock;   /* IRQ synchronization */
295         struct completion cmd_complete;
296         int cmd_err;
297         struct i2c_msg *msgs;
298         int msgs_num;
299         int num;
300         u32 apb_clk;
301         struct i2c_bus_recovery_info rinfo;
302         enum i2c_state state;
303         enum i2c_oper operation;
304         enum i2c_mode master_or_slave;
305         enum i2c_state_ind stop_ind;
306         u8 dest_addr;
307         u8 *rd_buf;
308         u16 rd_size;
309         u16 rd_ind;
310         u8 *wr_buf;
311         u16 wr_size;
312         u16 wr_ind;
313         bool fifo_use;
314         u16 PEC_mask; /* PEC bit mask per slave address */
315         bool PEC_use;
316         bool read_block_use;
317         unsigned long int_time_stamp;
318         unsigned long bus_freq; /* in Hz */
319 #if IS_ENABLED(CONFIG_I2C_SLAVE)
320         u8 own_slave_addr;
321         struct i2c_client *slave;
322         int slv_rd_size;
323         int slv_rd_ind;
324         int slv_wr_size;
325         int slv_wr_ind;
326         u8 slv_rd_buf[MAX_I2C_HW_FIFO_SIZE];
327         u8 slv_wr_buf[MAX_I2C_HW_FIFO_SIZE];
328 #endif
329         u64 ber_cnt;
330         u64 rec_succ_cnt;
331         u64 rec_fail_cnt;
332         u64 nack_cnt;
333         u64 timeout_cnt;
334         u64 tx_complete_cnt;
335 };
336
337 static inline void npcm_i2c_select_bank(struct npcm_i2c *bus,
338                                         enum i2c_bank bank)
339 {
340         u8 i2cctl3 = ioread8(bus->reg + NPCM_I2CCTL3);
341
342         if (bank == I2C_BANK_0)
343                 i2cctl3 = i2cctl3 & ~I2CCTL3_BNK_SEL;
344         else
345                 i2cctl3 = i2cctl3 | I2CCTL3_BNK_SEL;
346         iowrite8(i2cctl3, bus->reg + NPCM_I2CCTL3);
347 }
348
349 static void npcm_i2c_init_params(struct npcm_i2c *bus)
350 {
351         bus->stop_ind = I2C_NO_STATUS_IND;
352         bus->rd_size = 0;
353         bus->wr_size = 0;
354         bus->rd_ind = 0;
355         bus->wr_ind = 0;
356         bus->read_block_use = false;
357         bus->int_time_stamp = 0;
358         bus->PEC_use = false;
359         bus->PEC_mask = 0;
360 #if IS_ENABLED(CONFIG_I2C_SLAVE)
361         if (bus->slave)
362                 bus->master_or_slave = I2C_SLAVE;
363 #endif
364 }
365
366 static inline void npcm_i2c_wr_byte(struct npcm_i2c *bus, u8 data)
367 {
368         iowrite8(data, bus->reg + NPCM_I2CSDA);
369 }
370
371 static inline u8 npcm_i2c_rd_byte(struct npcm_i2c *bus)
372 {
373         return ioread8(bus->reg + NPCM_I2CSDA);
374 }
375
376 static int npcm_i2c_get_SCL(struct i2c_adapter *_adap)
377 {
378         struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
379
380         return !!(I2CCTL3_SCL_LVL & ioread8(bus->reg + NPCM_I2CCTL3));
381 }
382
383 static int npcm_i2c_get_SDA(struct i2c_adapter *_adap)
384 {
385         struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
386
387         return !!(I2CCTL3_SDA_LVL & ioread8(bus->reg + NPCM_I2CCTL3));
388 }
389
390 static inline u16 npcm_i2c_get_index(struct npcm_i2c *bus)
391 {
392         if (bus->operation == I2C_READ_OPER)
393                 return bus->rd_ind;
394         if (bus->operation == I2C_WRITE_OPER)
395                 return bus->wr_ind;
396         return 0;
397 }
398
399 /* quick protocol (just address) */
400 static inline bool npcm_i2c_is_quick(struct npcm_i2c *bus)
401 {
402         return bus->wr_size == 0 && bus->rd_size == 0;
403 }
404
405 static void npcm_i2c_disable(struct npcm_i2c *bus)
406 {
407         u8 i2cctl2;
408
409 #if IS_ENABLED(CONFIG_I2C_SLAVE)
410         int i;
411
412         /* Slave addresses removal */
413         for (i = I2C_SLAVE_ADDR1; i < I2C_NUM_OWN_ADDR_SUPPORTED; i++)
414                 iowrite8(0, bus->reg + npcm_i2caddr[i]);
415
416 #endif
417         /* Disable module */
418         i2cctl2 = ioread8(bus->reg + NPCM_I2CCTL2);
419         i2cctl2 = i2cctl2 & ~I2CCTL2_ENABLE;
420         iowrite8(i2cctl2, bus->reg + NPCM_I2CCTL2);
421
422         bus->state = I2C_DISABLE;
423 }
424
425 static void npcm_i2c_enable(struct npcm_i2c *bus)
426 {
427         u8 i2cctl2 = ioread8(bus->reg + NPCM_I2CCTL2);
428
429         i2cctl2 = i2cctl2 | I2CCTL2_ENABLE;
430         iowrite8(i2cctl2, bus->reg + NPCM_I2CCTL2);
431         bus->state = I2C_IDLE;
432 }
433
434 /* enable\disable end of busy (EOB) interrupts */
435 static inline void npcm_i2c_eob_int(struct npcm_i2c *bus, bool enable)
436 {
437         u8 val;
438
439         /* Clear EO_BUSY pending bit: */
440         val = ioread8(bus->reg + NPCM_I2CCST3);
441         val = val | NPCM_I2CCST3_EO_BUSY;
442         iowrite8(val, bus->reg + NPCM_I2CCST3);
443
444         val = ioread8(bus->reg + NPCM_I2CCTL1);
445         val &= ~NPCM_I2CCTL1_RWS;
446         if (enable)
447                 val |= NPCM_I2CCTL1_EOBINTE;
448         else
449                 val &= ~NPCM_I2CCTL1_EOBINTE;
450         iowrite8(val, bus->reg + NPCM_I2CCTL1);
451 }
452
453 static inline bool npcm_i2c_tx_fifo_empty(struct npcm_i2c *bus)
454 {
455         u8 tx_fifo_sts;
456
457         tx_fifo_sts = ioread8(bus->reg + NPCM_I2CTXF_STS);
458         /* check if TX FIFO is not empty */
459         if ((tx_fifo_sts & bus->data->txf_sts_tx_bytes) == 0)
460                 return false;
461
462         /* check if TX FIFO status bit is set: */
463         return !!FIELD_GET(NPCM_I2CTXF_STS_TX_THST, tx_fifo_sts);
464 }
465
466 static inline bool npcm_i2c_rx_fifo_full(struct npcm_i2c *bus)
467 {
468         u8 rx_fifo_sts;
469
470         rx_fifo_sts = ioread8(bus->reg + NPCM_I2CRXF_STS);
471         /* check if RX FIFO is not empty: */
472         if ((rx_fifo_sts & bus->data->rxf_sts_rx_bytes) == 0)
473                 return false;
474
475         /* check if rx fifo full status is set: */
476         return !!FIELD_GET(NPCM_I2CRXF_STS_RX_THST, rx_fifo_sts);
477 }
478
479 static inline void npcm_i2c_clear_fifo_int(struct npcm_i2c *bus)
480 {
481         u8 val;
482
483         val = ioread8(bus->reg + NPCM_I2CFIF_CTS);
484         val = (val & NPCM_I2CFIF_CTS_SLVRSTR) | NPCM_I2CFIF_CTS_RXF_TXE;
485         iowrite8(val, bus->reg + NPCM_I2CFIF_CTS);
486 }
487
488 static inline void npcm_i2c_clear_tx_fifo(struct npcm_i2c *bus)
489 {
490         u8 val;
491
492         val = ioread8(bus->reg + NPCM_I2CTXF_STS);
493         val = val | NPCM_I2CTXF_STS_TX_THST;
494         iowrite8(val, bus->reg + NPCM_I2CTXF_STS);
495 }
496
497 static inline void npcm_i2c_clear_rx_fifo(struct npcm_i2c *bus)
498 {
499         u8 val;
500
501         val = ioread8(bus->reg + NPCM_I2CRXF_STS);
502         val = val | NPCM_I2CRXF_STS_RX_THST;
503         iowrite8(val, bus->reg + NPCM_I2CRXF_STS);
504 }
505
506 static void npcm_i2c_int_enable(struct npcm_i2c *bus, bool enable)
507 {
508         u8 val;
509
510         val = ioread8(bus->reg + NPCM_I2CCTL1);
511         val &= ~NPCM_I2CCTL1_RWS;
512         if (enable)
513                 val |= NPCM_I2CCTL1_INTEN;
514         else
515                 val &= ~NPCM_I2CCTL1_INTEN;
516         iowrite8(val, bus->reg + NPCM_I2CCTL1);
517 }
518
519 static inline void npcm_i2c_master_start(struct npcm_i2c *bus)
520 {
521         u8 val;
522
523         val = ioread8(bus->reg + NPCM_I2CCTL1);
524         val &= ~(NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_ACK);
525         val |= NPCM_I2CCTL1_START;
526         iowrite8(val, bus->reg + NPCM_I2CCTL1);
527 }
528
529 static inline void npcm_i2c_master_stop(struct npcm_i2c *bus)
530 {
531         u8 val;
532
533         /*
534          * override HW issue: I2C may fail to supply stop condition in Master
535          * Write operation.
536          * Need to delay at least 5 us from the last int, before issueing a stop
537          */
538         udelay(10); /* function called from interrupt, can't sleep */
539         val = ioread8(bus->reg + NPCM_I2CCTL1);
540         val &= ~(NPCM_I2CCTL1_START | NPCM_I2CCTL1_ACK);
541         val |= NPCM_I2CCTL1_STOP;
542         iowrite8(val, bus->reg + NPCM_I2CCTL1);
543
544         if (!bus->fifo_use)
545                 return;
546
547         npcm_i2c_select_bank(bus, I2C_BANK_1);
548
549         if (bus->operation == I2C_READ_OPER)
550                 npcm_i2c_clear_rx_fifo(bus);
551         else
552                 npcm_i2c_clear_tx_fifo(bus);
553         npcm_i2c_clear_fifo_int(bus);
554         iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
555 }
556
557 static inline void npcm_i2c_stall_after_start(struct npcm_i2c *bus, bool stall)
558 {
559         u8 val;
560
561         val = ioread8(bus->reg + NPCM_I2CCTL1);
562         val &= ~NPCM_I2CCTL1_RWS;
563         if (stall)
564                 val |= NPCM_I2CCTL1_STASTRE;
565         else
566                 val &= ~NPCM_I2CCTL1_STASTRE;
567         iowrite8(val, bus->reg + NPCM_I2CCTL1);
568 }
569
570 static inline void npcm_i2c_nack(struct npcm_i2c *bus)
571 {
572         u8 val;
573
574         val = ioread8(bus->reg + NPCM_I2CCTL1);
575         val &= ~(NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_START);
576         val |= NPCM_I2CCTL1_ACK;
577         iowrite8(val, bus->reg + NPCM_I2CCTL1);
578 }
579
580 static inline void npcm_i2c_clear_master_status(struct npcm_i2c *bus)
581 {
582         u8 val;
583
584         /* Clear NEGACK, STASTR and BER bits */
585         val = NPCM_I2CST_BER | NPCM_I2CST_NEGACK | NPCM_I2CST_STASTR;
586         iowrite8(val, bus->reg + NPCM_I2CST);
587 }
588
589 #if IS_ENABLED(CONFIG_I2C_SLAVE)
590 static void npcm_i2c_slave_int_enable(struct npcm_i2c *bus, bool enable)
591 {
592         u8 i2cctl1;
593
594         /* enable interrupt on slave match: */
595         i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
596         i2cctl1 &= ~NPCM_I2CCTL1_RWS;
597         if (enable)
598                 i2cctl1 |= NPCM_I2CCTL1_NMINTE;
599         else
600                 i2cctl1 &= ~NPCM_I2CCTL1_NMINTE;
601         iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
602 }
603
604 static int npcm_i2c_slave_enable(struct npcm_i2c *bus, enum i2c_addr addr_type,
605                                  u8 addr, bool enable)
606 {
607         u8 i2cctl1;
608         u8 i2cctl3;
609         u8 sa_reg;
610
611         sa_reg = (addr & 0x7F) | FIELD_PREP(NPCM_I2CADDR_SAEN, enable);
612         if (addr_type == I2C_GC_ADDR) {
613                 i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
614                 if (enable)
615                         i2cctl1 |= NPCM_I2CCTL1_GCMEN;
616                 else
617                         i2cctl1 &= ~NPCM_I2CCTL1_GCMEN;
618                 iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
619                 return 0;
620         } else if (addr_type == I2C_ARP_ADDR) {
621                 i2cctl3 = ioread8(bus->reg + NPCM_I2CCTL3);
622                 if (enable)
623                         i2cctl3 |= I2CCTL3_ARPMEN;
624                 else
625                         i2cctl3 &= ~I2CCTL3_ARPMEN;
626                 iowrite8(i2cctl3, bus->reg + NPCM_I2CCTL3);
627                 return 0;
628         }
629         if (addr_type > I2C_SLAVE_ADDR2 && addr_type <= I2C_SLAVE_ADDR10)
630                 dev_err(bus->dev, "try to enable more than 2 SA not supported\n");
631
632         if (addr_type >= I2C_ARP_ADDR)
633                 return -EFAULT;
634
635         /* Set and enable the address */
636         iowrite8(sa_reg, bus->reg + npcm_i2caddr[addr_type]);
637         npcm_i2c_slave_int_enable(bus, enable);
638
639         return 0;
640 }
641 #endif
642
643 static void npcm_i2c_reset(struct npcm_i2c *bus)
644 {
645         /*
646          * Save I2CCTL1 relevant bits. It is being cleared when the module
647          *  is disabled.
648          */
649         u8 i2cctl1;
650 #if IS_ENABLED(CONFIG_I2C_SLAVE)
651         u8 addr;
652 #endif
653
654         i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
655
656         npcm_i2c_disable(bus);
657         npcm_i2c_enable(bus);
658
659         /* Restore NPCM_I2CCTL1 Status */
660         i2cctl1 &= ~NPCM_I2CCTL1_RWS;
661         iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
662
663         /* Clear BB (BUS BUSY) bit */
664         iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
665         iowrite8(0xFF, bus->reg + NPCM_I2CST);
666
667         /* Clear and disable EOB */
668         npcm_i2c_eob_int(bus, false);
669
670         /* Clear all fifo bits: */
671         iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
672
673 #if IS_ENABLED(CONFIG_I2C_SLAVE)
674         if (bus->slave) {
675                 addr = bus->slave->addr;
676                 npcm_i2c_slave_enable(bus, I2C_SLAVE_ADDR1, addr, true);
677         }
678 #endif
679
680         /* Clear status bits for spurious interrupts */
681         npcm_i2c_clear_master_status(bus);
682
683         bus->state = I2C_IDLE;
684 }
685
686 static inline bool npcm_i2c_is_master(struct npcm_i2c *bus)
687 {
688         return !!FIELD_GET(NPCM_I2CST_MASTER, ioread8(bus->reg + NPCM_I2CST));
689 }
690
691 static void npcm_i2c_callback(struct npcm_i2c *bus,
692                               enum i2c_state_ind op_status, u16 info)
693 {
694         struct i2c_msg *msgs;
695         int msgs_num;
696         bool do_complete = false;
697
698         msgs = bus->msgs;
699         msgs_num = bus->msgs_num;
700         /*
701          * check that transaction was not timed-out, and msgs still
702          * holds a valid value.
703          */
704         if (!msgs)
705                 return;
706
707         if (completion_done(&bus->cmd_complete))
708                 return;
709
710         switch (op_status) {
711         case I2C_MASTER_DONE_IND:
712                 bus->cmd_err = bus->msgs_num;
713                 if (bus->tx_complete_cnt < ULLONG_MAX)
714                         bus->tx_complete_cnt++;
715                 fallthrough;
716         case I2C_BLOCK_BYTES_ERR_IND:
717                 /* Master tx finished and all transmit bytes were sent */
718                 if (bus->msgs) {
719                         if (msgs[0].flags & I2C_M_RD)
720                                 msgs[0].len = info;
721                         else if (msgs_num == 2 &&
722                                  msgs[1].flags & I2C_M_RD)
723                                 msgs[1].len = info;
724                 }
725                 do_complete = true;
726                 break;
727         case I2C_NACK_IND:
728                 /* MASTER transmit got a NACK before tx all bytes */
729                 bus->cmd_err = -ENXIO;
730                 do_complete = true;
731                 break;
732         case I2C_BUS_ERR_IND:
733                 /* Bus error */
734                 bus->cmd_err = -EAGAIN;
735                 do_complete = true;
736                 break;
737         case I2C_WAKE_UP_IND:
738                 /* I2C wake up */
739                 break;
740         default:
741                 break;
742         }
743
744         bus->operation = I2C_NO_OPER;
745 #if IS_ENABLED(CONFIG_I2C_SLAVE)
746         if (bus->slave)
747                 bus->master_or_slave = I2C_SLAVE;
748 #endif
749         if (do_complete)
750                 complete(&bus->cmd_complete);
751 }
752
753 static u8 npcm_i2c_fifo_usage(struct npcm_i2c *bus)
754 {
755         if (bus->operation == I2C_WRITE_OPER)
756                 return (bus->data->txf_sts_tx_bytes &
757                         ioread8(bus->reg + NPCM_I2CTXF_STS));
758         if (bus->operation == I2C_READ_OPER)
759                 return (bus->data->rxf_sts_rx_bytes &
760                         ioread8(bus->reg + NPCM_I2CRXF_STS));
761         return 0;
762 }
763
764 static void npcm_i2c_write_to_fifo_master(struct npcm_i2c *bus, u16 max_bytes)
765 {
766         u8 size_free_fifo;
767
768         /*
769          * Fill the FIFO, while the FIFO is not full and there are more bytes
770          * to write
771          */
772         size_free_fifo = bus->data->fifo_size - npcm_i2c_fifo_usage(bus);
773         while (max_bytes-- && size_free_fifo) {
774                 if (bus->wr_ind < bus->wr_size)
775                         npcm_i2c_wr_byte(bus, bus->wr_buf[bus->wr_ind++]);
776                 else
777                         npcm_i2c_wr_byte(bus, 0xFF);
778                 size_free_fifo = bus->data->fifo_size - npcm_i2c_fifo_usage(bus);
779         }
780 }
781
782 /*
783  * npcm_i2c_set_fifo:
784  * configure the FIFO before using it. If nread is -1 RX FIFO will not be
785  * configured. same for nwrite
786  */
787 static void npcm_i2c_set_fifo(struct npcm_i2c *bus, int nread, int nwrite)
788 {
789         u8 rxf_ctl = 0;
790
791         if (!bus->fifo_use)
792                 return;
793         npcm_i2c_select_bank(bus, I2C_BANK_1);
794         npcm_i2c_clear_tx_fifo(bus);
795         npcm_i2c_clear_rx_fifo(bus);
796
797         /* configure RX FIFO */
798         if (nread > 0) {
799                 rxf_ctl = min_t(int, nread, bus->data->fifo_size);
800
801                 /* set LAST bit. if LAST is set next FIFO packet is nacked */
802                 if (nread <= bus->data->fifo_size)
803                         rxf_ctl |= bus->data->rxf_ctl_last_pec;
804
805                 /*
806                  * if we are about to read the first byte in blk rd mode,
807                  * don't NACK it. If slave returns zero size HW can't NACK
808                  * it immediately, it will read extra byte and then NACK.
809                  */
810                 if (bus->rd_ind == 0 && bus->read_block_use) {
811                         /* set fifo to read one byte, no last: */
812                         rxf_ctl = 1;
813                 }
814
815                 /* set fifo size: */
816                 iowrite8(rxf_ctl, bus->reg + NPCM_I2CRXF_CTL);
817         }
818
819         /* configure TX FIFO */
820         if (nwrite > 0) {
821                 if (nwrite > bus->data->fifo_size)
822                         /* data to send is more then FIFO size. */
823                         iowrite8(bus->data->fifo_size, bus->reg + NPCM_I2CTXF_CTL);
824                 else
825                         iowrite8(nwrite, bus->reg + NPCM_I2CTXF_CTL);
826
827                 npcm_i2c_clear_tx_fifo(bus);
828         }
829 }
830
831 static void npcm_i2c_read_fifo(struct npcm_i2c *bus, u8 bytes_in_fifo)
832 {
833         u8 data;
834
835         while (bytes_in_fifo--) {
836                 data = npcm_i2c_rd_byte(bus);
837                 if (bus->rd_ind < bus->rd_size)
838                         bus->rd_buf[bus->rd_ind++] = data;
839         }
840 }
841
842 static void npcm_i2c_master_abort(struct npcm_i2c *bus)
843 {
844         /* Only current master is allowed to issue a stop condition */
845         if (!npcm_i2c_is_master(bus))
846                 return;
847
848         npcm_i2c_eob_int(bus, true);
849         npcm_i2c_master_stop(bus);
850         npcm_i2c_clear_master_status(bus);
851 }
852
853 #if IS_ENABLED(CONFIG_I2C_SLAVE)
854 static u8 npcm_i2c_get_slave_addr(struct npcm_i2c *bus, enum i2c_addr addr_type)
855 {
856         u8 slave_add;
857
858         if (addr_type > I2C_SLAVE_ADDR2 && addr_type <= I2C_SLAVE_ADDR10)
859                 dev_err(bus->dev, "get slave: try to use more than 2 SA not supported\n");
860
861         slave_add = ioread8(bus->reg + npcm_i2caddr[(int)addr_type]);
862
863         return slave_add;
864 }
865
866 static int npcm_i2c_remove_slave_addr(struct npcm_i2c *bus, u8 slave_add)
867 {
868         int i;
869
870         /* Set the enable bit */
871         slave_add |= 0x80;
872
873         for (i = I2C_SLAVE_ADDR1; i < I2C_NUM_OWN_ADDR_SUPPORTED; i++) {
874                 if (ioread8(bus->reg + npcm_i2caddr[i]) == slave_add)
875                         iowrite8(0, bus->reg + npcm_i2caddr[i]);
876         }
877
878         return 0;
879 }
880
881 static void npcm_i2c_write_fifo_slave(struct npcm_i2c *bus, u16 max_bytes)
882 {
883         /*
884          * Fill the FIFO, while the FIFO is not full and there are more bytes
885          * to write
886          */
887         npcm_i2c_clear_fifo_int(bus);
888         npcm_i2c_clear_tx_fifo(bus);
889         iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
890         while (max_bytes-- && bus->data->fifo_size != npcm_i2c_fifo_usage(bus)) {
891                 if (bus->slv_wr_size <= 0)
892                         break;
893                 bus->slv_wr_ind = bus->slv_wr_ind & (bus->data->fifo_size - 1);
894                 npcm_i2c_wr_byte(bus, bus->slv_wr_buf[bus->slv_wr_ind]);
895                 bus->slv_wr_ind++;
896                 bus->slv_wr_ind = bus->slv_wr_ind & (bus->data->fifo_size - 1);
897                 bus->slv_wr_size--;
898         }
899 }
900
901 static void npcm_i2c_read_fifo_slave(struct npcm_i2c *bus, u8 bytes_in_fifo)
902 {
903         u8 data;
904
905         if (!bus->slave)
906                 return;
907
908         while (bytes_in_fifo--) {
909                 data = npcm_i2c_rd_byte(bus);
910
911                 bus->slv_rd_ind = bus->slv_rd_ind & (bus->data->fifo_size - 1);
912                 bus->slv_rd_buf[bus->slv_rd_ind] = data;
913                 bus->slv_rd_ind++;
914
915                 /* 1st byte is length in block protocol: */
916                 if (bus->slv_rd_ind == 1 && bus->read_block_use)
917                         bus->slv_rd_size = data + bus->PEC_use + 1;
918         }
919 }
920
921 static int npcm_i2c_slave_get_wr_buf(struct npcm_i2c *bus)
922 {
923         int i;
924         u8 value;
925         int ind;
926         int ret = bus->slv_wr_ind;
927
928         /* fill a cyclic buffer */
929         for (i = 0; i < bus->data->fifo_size; i++) {
930                 if (bus->slv_wr_size >= bus->data->fifo_size)
931                         break;
932                 if (bus->state == I2C_SLAVE_MATCH) {
933                         i2c_slave_event(bus->slave, I2C_SLAVE_READ_REQUESTED, &value);
934                         bus->state = I2C_OPER_STARTED;
935                 } else {
936                         i2c_slave_event(bus->slave, I2C_SLAVE_READ_PROCESSED, &value);
937                 }
938                 ind = (bus->slv_wr_ind + bus->slv_wr_size) & (bus->data->fifo_size - 1);
939                 bus->slv_wr_buf[ind] = value;
940                 bus->slv_wr_size++;
941         }
942         return bus->data->fifo_size - ret;
943 }
944
945 static void npcm_i2c_slave_send_rd_buf(struct npcm_i2c *bus)
946 {
947         int i;
948
949         for (i = 0; i < bus->slv_rd_ind; i++)
950                 i2c_slave_event(bus->slave, I2C_SLAVE_WRITE_RECEIVED,
951                                 &bus->slv_rd_buf[i]);
952         /*
953          * once we send bytes up, need to reset the counter of the wr buf
954          * got data from master (new offset in device), ignore wr fifo:
955          */
956         if (bus->slv_rd_ind) {
957                 bus->slv_wr_size = 0;
958                 bus->slv_wr_ind = 0;
959         }
960
961         bus->slv_rd_ind = 0;
962         bus->slv_rd_size = bus->adap.quirks->max_read_len;
963
964         npcm_i2c_clear_fifo_int(bus);
965         npcm_i2c_clear_rx_fifo(bus);
966 }
967
968 static void npcm_i2c_slave_receive(struct npcm_i2c *bus, u16 nread,
969                                    u8 *read_data)
970 {
971         bus->state = I2C_OPER_STARTED;
972         bus->operation = I2C_READ_OPER;
973         bus->slv_rd_size = nread;
974         bus->slv_rd_ind = 0;
975
976         iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
977         iowrite8(bus->data->fifo_size, bus->reg + NPCM_I2CRXF_CTL);
978         npcm_i2c_clear_tx_fifo(bus);
979         npcm_i2c_clear_rx_fifo(bus);
980 }
981
982 static void npcm_i2c_slave_xmit(struct npcm_i2c *bus, u16 nwrite,
983                                 u8 *write_data)
984 {
985         if (nwrite == 0)
986                 return;
987
988         bus->operation = I2C_WRITE_OPER;
989
990         /* get the next buffer */
991         npcm_i2c_slave_get_wr_buf(bus);
992         npcm_i2c_write_fifo_slave(bus, nwrite);
993 }
994
995 /*
996  * npcm_i2c_slave_wr_buf_sync:
997  * currently slave IF only supports single byte operations.
998  * in order to utilize the npcm HW FIFO, the driver will ask for 16 bytes
999  * at a time, pack them in buffer, and then transmit them all together
1000  * to the FIFO and onward to the bus.
1001  * NACK on read will be once reached to bus->adap->quirks->max_read_len.
1002  * sending a NACK wherever the backend requests for it is not supported.
1003  * the next two functions allow reading to local buffer before writing it all
1004  * to the HW FIFO.
1005  */
1006 static void npcm_i2c_slave_wr_buf_sync(struct npcm_i2c *bus)
1007 {
1008         int left_in_fifo;
1009
1010         left_in_fifo = bus->data->txf_sts_tx_bytes &
1011                         ioread8(bus->reg + NPCM_I2CTXF_STS);
1012
1013         /* fifo already full: */
1014         if (left_in_fifo >= bus->data->fifo_size ||
1015             bus->slv_wr_size >= bus->data->fifo_size)
1016                 return;
1017
1018         /* update the wr fifo index back to the untransmitted bytes: */
1019         bus->slv_wr_ind = bus->slv_wr_ind - left_in_fifo;
1020         bus->slv_wr_size = bus->slv_wr_size + left_in_fifo;
1021
1022         if (bus->slv_wr_ind < 0)
1023                 bus->slv_wr_ind += bus->data->fifo_size;
1024 }
1025
1026 static void npcm_i2c_slave_rd_wr(struct npcm_i2c *bus)
1027 {
1028         if (NPCM_I2CST_XMIT & ioread8(bus->reg + NPCM_I2CST)) {
1029                 /*
1030                  * Slave got an address match with direction bit 1 so it should
1031                  * transmit data. Write till the master will NACK
1032                  */
1033                 bus->operation = I2C_WRITE_OPER;
1034                 npcm_i2c_slave_xmit(bus, bus->adap.quirks->max_write_len,
1035                                     bus->slv_wr_buf);
1036         } else {
1037                 /*
1038                  * Slave got an address match with direction bit 0 so it should
1039                  * receive data.
1040                  * this module does not support saying no to bytes.
1041                  * it will always ACK.
1042                  */
1043                 bus->operation = I2C_READ_OPER;
1044                 npcm_i2c_read_fifo_slave(bus, npcm_i2c_fifo_usage(bus));
1045                 bus->stop_ind = I2C_SLAVE_RCV_IND;
1046                 npcm_i2c_slave_send_rd_buf(bus);
1047                 npcm_i2c_slave_receive(bus, bus->adap.quirks->max_read_len,
1048                                        bus->slv_rd_buf);
1049         }
1050 }
1051
1052 static irqreturn_t npcm_i2c_int_slave_handler(struct npcm_i2c *bus)
1053 {
1054         u8 val;
1055         irqreturn_t ret = IRQ_NONE;
1056         u8 i2cst = ioread8(bus->reg + NPCM_I2CST);
1057
1058         /* Slave: A NACK has occurred */
1059         if (NPCM_I2CST_NEGACK & i2cst) {
1060                 bus->stop_ind = I2C_NACK_IND;
1061                 npcm_i2c_slave_wr_buf_sync(bus);
1062                 if (bus->fifo_use)
1063                         /* clear the FIFO */
1064                         iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO,
1065                                  bus->reg + NPCM_I2CFIF_CTS);
1066
1067                 /* In slave write, NACK is OK, otherwise it is a problem */
1068                 bus->stop_ind = I2C_NO_STATUS_IND;
1069                 bus->operation = I2C_NO_OPER;
1070                 bus->own_slave_addr = 0xFF;
1071
1072                 /*
1073                  * Slave has to wait for STOP to decide this is the end
1074                  * of the transaction. tx is not yet considered as done
1075                  */
1076                 iowrite8(NPCM_I2CST_NEGACK, bus->reg + NPCM_I2CST);
1077
1078                 ret = IRQ_HANDLED;
1079         }
1080
1081         /* Slave mode: a Bus Error (BER) has been identified */
1082         if (NPCM_I2CST_BER & i2cst) {
1083                 /*
1084                  * Check whether bus arbitration or Start or Stop during data
1085                  * xfer bus arbitration problem should not result in recovery
1086                  */
1087                 bus->stop_ind = I2C_BUS_ERR_IND;
1088
1089                 /* wait for bus busy before clear fifo */
1090                 iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
1091
1092                 bus->state = I2C_IDLE;
1093
1094                 /*
1095                  * in BER case we might get 2 interrupts: one for slave one for
1096                  * master ( for a channel which is master\slave switching)
1097                  */
1098                 if (completion_done(&bus->cmd_complete) == false) {
1099                         bus->cmd_err = -EIO;
1100                         complete(&bus->cmd_complete);
1101                 }
1102                 bus->own_slave_addr = 0xFF;
1103                 iowrite8(NPCM_I2CST_BER, bus->reg + NPCM_I2CST);
1104                 ret = IRQ_HANDLED;
1105         }
1106
1107         /* A Slave Stop Condition has been identified */
1108         if (NPCM_I2CST_SLVSTP & i2cst) {
1109                 u8 bytes_in_fifo = npcm_i2c_fifo_usage(bus);
1110
1111                 bus->stop_ind = I2C_SLAVE_DONE_IND;
1112
1113                 if (bus->operation == I2C_READ_OPER)
1114                         npcm_i2c_read_fifo_slave(bus, bytes_in_fifo);
1115
1116                 /* if the buffer is empty nothing will be sent */
1117                 npcm_i2c_slave_send_rd_buf(bus);
1118
1119                 /* Slave done transmitting or receiving */
1120                 bus->stop_ind = I2C_NO_STATUS_IND;
1121
1122                 /*
1123                  * Note, just because we got here, it doesn't mean we through
1124                  * away the wr buffer.
1125                  * we keep it until the next received offset.
1126                  */
1127                 bus->operation = I2C_NO_OPER;
1128                 bus->own_slave_addr = 0xFF;
1129                 i2c_slave_event(bus->slave, I2C_SLAVE_STOP, 0);
1130                 iowrite8(NPCM_I2CST_SLVSTP, bus->reg + NPCM_I2CST);
1131                 if (bus->fifo_use) {
1132                         npcm_i2c_clear_fifo_int(bus);
1133                         npcm_i2c_clear_rx_fifo(bus);
1134                         npcm_i2c_clear_tx_fifo(bus);
1135
1136                         iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO,
1137                                  bus->reg + NPCM_I2CFIF_CTS);
1138                 }
1139                 bus->state = I2C_IDLE;
1140                 ret = IRQ_HANDLED;
1141         }
1142
1143         /* restart condition occurred and Rx-FIFO was not empty */
1144         if (bus->fifo_use && FIELD_GET(NPCM_I2CFIF_CTS_SLVRSTR,
1145                                        ioread8(bus->reg + NPCM_I2CFIF_CTS))) {
1146                 bus->stop_ind = I2C_SLAVE_RESTART_IND;
1147                 bus->master_or_slave = I2C_SLAVE;
1148                 if (bus->operation == I2C_READ_OPER)
1149                         npcm_i2c_read_fifo_slave(bus, npcm_i2c_fifo_usage(bus));
1150                 bus->operation = I2C_WRITE_OPER;
1151                 iowrite8(0, bus->reg + NPCM_I2CRXF_CTL);
1152                 val = NPCM_I2CFIF_CTS_CLR_FIFO | NPCM_I2CFIF_CTS_SLVRSTR |
1153                       NPCM_I2CFIF_CTS_RXF_TXE;
1154                 iowrite8(val, bus->reg + NPCM_I2CFIF_CTS);
1155                 npcm_i2c_slave_rd_wr(bus);
1156                 ret = IRQ_HANDLED;
1157         }
1158
1159         /* A Slave Address Match has been identified */
1160         if (NPCM_I2CST_NMATCH & i2cst) {
1161                 u8 info = 0;
1162
1163                 /* Address match automatically implies slave mode */
1164                 bus->master_or_slave = I2C_SLAVE;
1165                 npcm_i2c_clear_fifo_int(bus);
1166                 npcm_i2c_clear_rx_fifo(bus);
1167                 npcm_i2c_clear_tx_fifo(bus);
1168                 iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
1169                 iowrite8(bus->data->fifo_size, bus->reg + NPCM_I2CRXF_CTL);
1170                 if (NPCM_I2CST_XMIT & i2cst) {
1171                         bus->operation = I2C_WRITE_OPER;
1172                 } else {
1173                         i2c_slave_event(bus->slave, I2C_SLAVE_WRITE_REQUESTED,
1174                                         &info);
1175                         bus->operation = I2C_READ_OPER;
1176                 }
1177                 if (bus->own_slave_addr == 0xFF) {
1178                         /* Check which type of address match */
1179                         val = ioread8(bus->reg + NPCM_I2CCST);
1180                         if (NPCM_I2CCST_MATCH & val) {
1181                                 u16 addr;
1182                                 enum i2c_addr eaddr;
1183                                 u8 i2ccst2;
1184                                 u8 i2ccst3;
1185
1186                                 i2ccst3 = ioread8(bus->reg + NPCM_I2CCST3);
1187                                 i2ccst2 = ioread8(bus->reg + NPCM_I2CCST2);
1188
1189                                 /*
1190                                  * the i2c module can response to 10 own SA.
1191                                  * check which one was addressed by the master.
1192                                  * respond to the first one.
1193                                  */
1194                                 addr = ((i2ccst3 & 0x07) << 7) |
1195                                         (i2ccst2 & 0x7F);
1196                                 info = ffs(addr);
1197                                 eaddr = (enum i2c_addr)info;
1198                                 addr = npcm_i2c_get_slave_addr(bus, eaddr);
1199                                 addr &= 0x7F;
1200                                 bus->own_slave_addr = addr;
1201                                 if (bus->PEC_mask & BIT(info))
1202                                         bus->PEC_use = true;
1203                                 else
1204                                         bus->PEC_use = false;
1205                         } else {
1206                                 if (NPCM_I2CCST_GCMATCH & val)
1207                                         bus->own_slave_addr = 0;
1208                                 if (NPCM_I2CCST_ARPMATCH & val)
1209                                         bus->own_slave_addr = 0x61;
1210                         }
1211                 } else {
1212                         /*
1213                          *  Slave match can happen in two options:
1214                          *  1. Start, SA, read (slave read without further ado)
1215                          *  2. Start, SA, read, data, restart, SA, read,  ...
1216                          *     (slave read in fragmented mode)
1217                          *  3. Start, SA, write, data, restart, SA, read, ..
1218                          *     (regular write-read mode)
1219                          */
1220                         if ((bus->state == I2C_OPER_STARTED &&
1221                              bus->operation == I2C_READ_OPER &&
1222                              bus->stop_ind == I2C_SLAVE_XMIT_IND) ||
1223                              bus->stop_ind == I2C_SLAVE_RCV_IND) {
1224                                 /* slave tx after slave rx w/o STOP */
1225                                 bus->stop_ind = I2C_SLAVE_RESTART_IND;
1226                         }
1227                 }
1228
1229                 if (NPCM_I2CST_XMIT & i2cst)
1230                         bus->stop_ind = I2C_SLAVE_XMIT_IND;
1231                 else
1232                         bus->stop_ind = I2C_SLAVE_RCV_IND;
1233                 bus->state = I2C_SLAVE_MATCH;
1234                 npcm_i2c_slave_rd_wr(bus);
1235                 iowrite8(NPCM_I2CST_NMATCH, bus->reg + NPCM_I2CST);
1236                 ret = IRQ_HANDLED;
1237         }
1238
1239         /* Slave SDA status is set - tx or rx */
1240         if ((NPCM_I2CST_SDAST & i2cst) ||
1241             (bus->fifo_use &&
1242             (npcm_i2c_tx_fifo_empty(bus) || npcm_i2c_rx_fifo_full(bus)))) {
1243                 npcm_i2c_slave_rd_wr(bus);
1244                 iowrite8(NPCM_I2CST_SDAST, bus->reg + NPCM_I2CST);
1245                 ret = IRQ_HANDLED;
1246         } /* SDAST */
1247
1248         /*
1249          * If irq is not one of the above, make sure EOB is disabled and all
1250          * status bits are cleared.
1251          */
1252         if (ret == IRQ_NONE) {
1253                 npcm_i2c_eob_int(bus, false);
1254                 npcm_i2c_clear_master_status(bus);
1255         }
1256
1257         return IRQ_HANDLED;
1258 }
1259
1260 static int npcm_i2c_reg_slave(struct i2c_client *client)
1261 {
1262         unsigned long lock_flags;
1263         struct npcm_i2c *bus = i2c_get_adapdata(client->adapter);
1264
1265         bus->slave = client;
1266
1267         if (client->flags & I2C_CLIENT_TEN)
1268                 return -EAFNOSUPPORT;
1269
1270         spin_lock_irqsave(&bus->lock, lock_flags);
1271
1272         npcm_i2c_init_params(bus);
1273         bus->slv_rd_size = 0;
1274         bus->slv_wr_size = 0;
1275         bus->slv_rd_ind = 0;
1276         bus->slv_wr_ind = 0;
1277         if (client->flags & I2C_CLIENT_PEC)
1278                 bus->PEC_use = true;
1279
1280         dev_info(bus->dev, "i2c%d register slave SA=0x%x, PEC=%d\n", bus->num,
1281                  client->addr, bus->PEC_use);
1282
1283         npcm_i2c_slave_enable(bus, I2C_SLAVE_ADDR1, client->addr, true);
1284         npcm_i2c_clear_fifo_int(bus);
1285         npcm_i2c_clear_rx_fifo(bus);
1286         npcm_i2c_clear_tx_fifo(bus);
1287         npcm_i2c_slave_int_enable(bus, true);
1288
1289         spin_unlock_irqrestore(&bus->lock, lock_flags);
1290         return 0;
1291 }
1292
1293 static int npcm_i2c_unreg_slave(struct i2c_client *client)
1294 {
1295         struct npcm_i2c *bus = client->adapter->algo_data;
1296         unsigned long lock_flags;
1297
1298         spin_lock_irqsave(&bus->lock, lock_flags);
1299         if (!bus->slave) {
1300                 spin_unlock_irqrestore(&bus->lock, lock_flags);
1301                 return -EINVAL;
1302         }
1303         npcm_i2c_slave_int_enable(bus, false);
1304         npcm_i2c_remove_slave_addr(bus, client->addr);
1305         bus->slave = NULL;
1306         spin_unlock_irqrestore(&bus->lock, lock_flags);
1307         return 0;
1308 }
1309 #endif /* CONFIG_I2C_SLAVE */
1310
1311 static void npcm_i2c_master_fifo_read(struct npcm_i2c *bus)
1312 {
1313         int rcount;
1314         int fifo_bytes;
1315         enum i2c_state_ind ind = I2C_MASTER_DONE_IND;
1316
1317         fifo_bytes = npcm_i2c_fifo_usage(bus);
1318         rcount = bus->rd_size - bus->rd_ind;
1319
1320         /*
1321          * In order not to change the RX_TRH during transaction (we found that
1322          * this might be problematic if it takes too much time to read the FIFO)
1323          * we read the data in the following way. If the number of bytes to
1324          * read == FIFO Size + C (where C < FIFO Size)then first read C bytes
1325          * and in the next int we read rest of the data.
1326          */
1327         if (rcount < (2 * bus->data->fifo_size) && rcount > bus->data->fifo_size)
1328                 fifo_bytes = rcount - bus->data->fifo_size;
1329
1330         if (rcount <= fifo_bytes) {
1331                 /* last bytes are about to be read - end of tx */
1332                 bus->state = I2C_STOP_PENDING;
1333                 bus->stop_ind = ind;
1334                 npcm_i2c_eob_int(bus, true);
1335                 /* Stop should be set before reading last byte. */
1336                 npcm_i2c_master_stop(bus);
1337                 npcm_i2c_read_fifo(bus, fifo_bytes);
1338         } else {
1339                 npcm_i2c_read_fifo(bus, fifo_bytes);
1340                 rcount = bus->rd_size - bus->rd_ind;
1341                 npcm_i2c_set_fifo(bus, rcount, -1);
1342         }
1343 }
1344
1345 static void npcm_i2c_irq_master_handler_write(struct npcm_i2c *bus)
1346 {
1347         u16 wcount;
1348
1349         if (bus->fifo_use)
1350                 npcm_i2c_clear_tx_fifo(bus); /* clear the TX fifo status bit */
1351
1352         /* Master write operation - last byte handling */
1353         if (bus->wr_ind == bus->wr_size) {
1354                 if (bus->fifo_use && npcm_i2c_fifo_usage(bus) > 0)
1355                         /*
1356                          * No more bytes to send (to add to the FIFO),
1357                          * however the FIFO is not empty yet. It is
1358                          * still in the middle of tx. Currently there's nothing
1359                          * to do except for waiting to the end of the tx
1360                          * We will get an int when the FIFO will get empty.
1361                          */
1362                         return;
1363
1364                 if (bus->rd_size == 0) {
1365                         /* all bytes have been written, in wr only operation */
1366                         npcm_i2c_eob_int(bus, true);
1367                         bus->state = I2C_STOP_PENDING;
1368                         bus->stop_ind = I2C_MASTER_DONE_IND;
1369                         npcm_i2c_master_stop(bus);
1370                         /* Clear SDA Status bit (by writing dummy byte) */
1371                         npcm_i2c_wr_byte(bus, 0xFF);
1372
1373                 } else {
1374                         /* last write-byte written on previous int - restart */
1375                         npcm_i2c_set_fifo(bus, bus->rd_size, -1);
1376                         /* Generate repeated start upon next write to SDA */
1377                         npcm_i2c_master_start(bus);
1378
1379                         /*
1380                          * Receiving one byte only - stall after successful
1381                          * completion of send address byte. If we NACK here, and
1382                          * slave doesn't ACK the address, we might
1383                          * unintentionally NACK the next multi-byte read.
1384                          */
1385                         if (bus->rd_size == 1)
1386                                 npcm_i2c_stall_after_start(bus, true);
1387
1388                         /* Next int will occur on read */
1389                         bus->operation = I2C_READ_OPER;
1390                         /* send the slave address in read direction */
1391                         npcm_i2c_wr_byte(bus, bus->dest_addr | 0x1);
1392                 }
1393         } else {
1394                 /* write next byte not last byte and not slave address */
1395                 if (!bus->fifo_use || bus->wr_size == 1) {
1396                         npcm_i2c_wr_byte(bus, bus->wr_buf[bus->wr_ind++]);
1397                 } else {
1398                         wcount = bus->wr_size - bus->wr_ind;
1399                         npcm_i2c_set_fifo(bus, -1, wcount);
1400                         if (wcount)
1401                                 npcm_i2c_write_to_fifo_master(bus, wcount);
1402                 }
1403         }
1404 }
1405
1406 static void npcm_i2c_irq_master_handler_read(struct npcm_i2c *bus)
1407 {
1408         u16 block_extra_bytes_size;
1409         u8 data;
1410
1411         /* added bytes to the packet: */
1412         block_extra_bytes_size = bus->read_block_use + bus->PEC_use;
1413
1414         /*
1415          * Perform master read, distinguishing between last byte and the rest of
1416          * the bytes. The last byte should be read when the clock is stopped
1417          */
1418         if (bus->rd_ind == 0) { /* first byte handling: */
1419                 if (bus->read_block_use) {
1420                         /* first byte in block protocol is the size: */
1421                         data = npcm_i2c_rd_byte(bus);
1422                         data = clamp_val(data, 1, I2C_SMBUS_BLOCK_MAX);
1423                         bus->rd_size = data + block_extra_bytes_size;
1424                         bus->rd_buf[bus->rd_ind++] = data;
1425
1426                         /* clear RX FIFO interrupt status: */
1427                         if (bus->fifo_use) {
1428                                 data = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1429                                 data = data | NPCM_I2CFIF_CTS_RXF_TXE;
1430                                 iowrite8(data, bus->reg + NPCM_I2CFIF_CTS);
1431                         }
1432
1433                         npcm_i2c_set_fifo(bus, bus->rd_size - 1, -1);
1434                         npcm_i2c_stall_after_start(bus, false);
1435                 } else {
1436                         npcm_i2c_clear_tx_fifo(bus);
1437                         npcm_i2c_master_fifo_read(bus);
1438                 }
1439         } else {
1440                 if (bus->rd_size == block_extra_bytes_size &&
1441                     bus->read_block_use) {
1442                         bus->state = I2C_STOP_PENDING;
1443                         bus->stop_ind = I2C_BLOCK_BYTES_ERR_IND;
1444                         bus->cmd_err = -EIO;
1445                         npcm_i2c_eob_int(bus, true);
1446                         npcm_i2c_master_stop(bus);
1447                         npcm_i2c_read_fifo(bus, npcm_i2c_fifo_usage(bus));
1448                 } else {
1449                         npcm_i2c_master_fifo_read(bus);
1450                 }
1451         }
1452 }
1453
1454 static void npcm_i2c_irq_handle_nmatch(struct npcm_i2c *bus)
1455 {
1456         iowrite8(NPCM_I2CST_NMATCH, bus->reg + NPCM_I2CST);
1457         npcm_i2c_nack(bus);
1458         bus->stop_ind = I2C_BUS_ERR_IND;
1459         npcm_i2c_callback(bus, bus->stop_ind, npcm_i2c_get_index(bus));
1460 }
1461
1462 /* A NACK has occurred */
1463 static void npcm_i2c_irq_handle_nack(struct npcm_i2c *bus)
1464 {
1465         u8 val;
1466
1467         if (bus->nack_cnt < ULLONG_MAX)
1468                 bus->nack_cnt++;
1469
1470         if (bus->fifo_use) {
1471                 /*
1472                  * if there are still untransmitted bytes in TX FIFO
1473                  * reduce them from wr_ind
1474                  */
1475                 if (bus->operation == I2C_WRITE_OPER)
1476                         bus->wr_ind -= npcm_i2c_fifo_usage(bus);
1477
1478                 /* clear the FIFO */
1479                 iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
1480         }
1481
1482         /* In master write operation, got unexpected NACK */
1483         bus->stop_ind = I2C_NACK_IND;
1484         /* Only current master is allowed to issue Stop Condition */
1485         if (npcm_i2c_is_master(bus)) {
1486                 /* stopping in the middle */
1487                 npcm_i2c_eob_int(bus, false);
1488                 npcm_i2c_master_stop(bus);
1489
1490                 /* Clear SDA Status bit (by reading dummy byte) */
1491                 npcm_i2c_rd_byte(bus);
1492
1493                 /*
1494                  * The bus is released from stall only after the SW clears
1495                  * NEGACK bit. Then a Stop condition is sent.
1496                  */
1497                 npcm_i2c_clear_master_status(bus);
1498                 readx_poll_timeout_atomic(ioread8, bus->reg + NPCM_I2CCST, val,
1499                                           !(val & NPCM_I2CCST_BUSY), 10, 200);
1500                 /* Verify no status bits are still set after bus is released */
1501                 npcm_i2c_clear_master_status(bus);
1502         }
1503         bus->state = I2C_IDLE;
1504
1505         /*
1506          * In Master mode, NACK should be cleared only after STOP.
1507          * In such case, the bus is released from stall only after the
1508          * software clears NACK bit. Then a Stop condition is sent.
1509          */
1510         npcm_i2c_callback(bus, bus->stop_ind, bus->wr_ind);
1511 }
1512
1513         /* Master mode: a Bus Error has been identified */
1514 static void npcm_i2c_irq_handle_ber(struct npcm_i2c *bus)
1515 {
1516         if (bus->ber_cnt < ULLONG_MAX)
1517                 bus->ber_cnt++;
1518         bus->stop_ind = I2C_BUS_ERR_IND;
1519         if (npcm_i2c_is_master(bus)) {
1520                 npcm_i2c_master_abort(bus);
1521         } else {
1522                 npcm_i2c_clear_master_status(bus);
1523
1524                 /* Clear BB (BUS BUSY) bit */
1525                 iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
1526
1527                 bus->cmd_err = -EAGAIN;
1528                 npcm_i2c_callback(bus, bus->stop_ind, npcm_i2c_get_index(bus));
1529         }
1530         bus->state = I2C_IDLE;
1531 }
1532
1533         /* EOB: a master End Of Busy (meaning STOP completed) */
1534 static void npcm_i2c_irq_handle_eob(struct npcm_i2c *bus)
1535 {
1536         npcm_i2c_eob_int(bus, false);
1537         bus->state = I2C_IDLE;
1538         npcm_i2c_callback(bus, bus->stop_ind, bus->rd_ind);
1539 }
1540
1541 /* Address sent and requested stall occurred (Master mode) */
1542 static void npcm_i2c_irq_handle_stall_after_start(struct npcm_i2c *bus)
1543 {
1544         if (npcm_i2c_is_quick(bus)) {
1545                 bus->state = I2C_STOP_PENDING;
1546                 bus->stop_ind = I2C_MASTER_DONE_IND;
1547                 npcm_i2c_eob_int(bus, true);
1548                 npcm_i2c_master_stop(bus);
1549         } else if ((bus->rd_size == 1) && !bus->read_block_use) {
1550                 /*
1551                  * Receiving one byte only - set NACK after ensuring
1552                  * slave ACKed the address byte.
1553                  */
1554                 npcm_i2c_nack(bus);
1555         }
1556
1557         /* Reset stall-after-address-byte */
1558         npcm_i2c_stall_after_start(bus, false);
1559
1560         /* Clear stall only after setting STOP */
1561         iowrite8(NPCM_I2CST_STASTR, bus->reg + NPCM_I2CST);
1562 }
1563
1564 /* SDA status is set - TX or RX, master */
1565 static void npcm_i2c_irq_handle_sda(struct npcm_i2c *bus, u8 i2cst)
1566 {
1567         u8 fif_cts;
1568
1569         if (!npcm_i2c_is_master(bus))
1570                 return;
1571
1572         if (bus->state == I2C_IDLE) {
1573                 bus->stop_ind = I2C_WAKE_UP_IND;
1574
1575                 if (npcm_i2c_is_quick(bus) || bus->read_block_use)
1576                         /*
1577                          * Need to stall after successful
1578                          * completion of sending address byte
1579                          */
1580                         npcm_i2c_stall_after_start(bus, true);
1581                 else
1582                         npcm_i2c_stall_after_start(bus, false);
1583
1584                 /*
1585                  * Receiving one byte only - stall after successful completion
1586                  * of sending address byte If we NACK here, and slave doesn't
1587                  * ACK the address, we might unintentionally NACK the next
1588                  * multi-byte read
1589                  */
1590                 if (bus->wr_size == 0 && bus->rd_size == 1)
1591                         npcm_i2c_stall_after_start(bus, true);
1592
1593                 /* Initiate I2C master tx */
1594
1595                 /* select bank 1 for FIFO regs */
1596                 npcm_i2c_select_bank(bus, I2C_BANK_1);
1597
1598                 fif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1599                 fif_cts = fif_cts & ~NPCM_I2CFIF_CTS_SLVRSTR;
1600
1601                 /* clear FIFO and relevant status bits. */
1602                 fif_cts = fif_cts | NPCM_I2CFIF_CTS_CLR_FIFO;
1603                 iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1604
1605                 /* re-enable */
1606                 fif_cts = fif_cts | NPCM_I2CFIF_CTS_RXF_TXE;
1607                 iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1608
1609                 /*
1610                  * Configure the FIFO threshold:
1611                  * according to the needed # of bytes to read.
1612                  * Note: due to HW limitation can't config the rx fifo before it
1613                  * got and ACK on the restart. LAST bit will not be reset unless
1614                  * RX completed. It will stay set on the next tx.
1615                  */
1616                 if (bus->wr_size)
1617                         npcm_i2c_set_fifo(bus, -1, bus->wr_size);
1618                 else
1619                         npcm_i2c_set_fifo(bus, bus->rd_size, -1);
1620
1621                 bus->state = I2C_OPER_STARTED;
1622
1623                 if (npcm_i2c_is_quick(bus) || bus->wr_size)
1624                         npcm_i2c_wr_byte(bus, bus->dest_addr);
1625                 else
1626                         npcm_i2c_wr_byte(bus, bus->dest_addr | BIT(0));
1627         /* SDA interrupt, after start\restart */
1628         } else {
1629                 if (NPCM_I2CST_XMIT & i2cst) {
1630                         bus->operation = I2C_WRITE_OPER;
1631                         npcm_i2c_irq_master_handler_write(bus);
1632                 } else {
1633                         bus->operation = I2C_READ_OPER;
1634                         npcm_i2c_irq_master_handler_read(bus);
1635                 }
1636         }
1637 }
1638
1639 static int npcm_i2c_int_master_handler(struct npcm_i2c *bus)
1640 {
1641         u8 i2cst;
1642         int ret = -EIO;
1643
1644         i2cst = ioread8(bus->reg + NPCM_I2CST);
1645
1646         if (FIELD_GET(NPCM_I2CST_NMATCH, i2cst)) {
1647                 npcm_i2c_irq_handle_nmatch(bus);
1648                 return 0;
1649         }
1650         /* A NACK has occurred */
1651         if (FIELD_GET(NPCM_I2CST_NEGACK, i2cst)) {
1652                 npcm_i2c_irq_handle_nack(bus);
1653                 return 0;
1654         }
1655
1656         /* Master mode: a Bus Error has been identified */
1657         if (FIELD_GET(NPCM_I2CST_BER, i2cst)) {
1658                 npcm_i2c_irq_handle_ber(bus);
1659                 return 0;
1660         }
1661
1662         /* EOB: a master End Of Busy (meaning STOP completed) */
1663         if ((FIELD_GET(NPCM_I2CCTL1_EOBINTE,
1664                        ioread8(bus->reg + NPCM_I2CCTL1)) == 1) &&
1665             (FIELD_GET(NPCM_I2CCST3_EO_BUSY,
1666                        ioread8(bus->reg + NPCM_I2CCST3)))) {
1667                 npcm_i2c_irq_handle_eob(bus);
1668                 return 0;
1669         }
1670
1671         /* Address sent and requested stall occurred (Master mode) */
1672         if (FIELD_GET(NPCM_I2CST_STASTR, i2cst)) {
1673                 npcm_i2c_irq_handle_stall_after_start(bus);
1674                 ret = 0;
1675         }
1676
1677         /* SDA status is set - TX or RX, master */
1678         if (FIELD_GET(NPCM_I2CST_SDAST, i2cst) ||
1679             (bus->fifo_use &&
1680             (npcm_i2c_tx_fifo_empty(bus) || npcm_i2c_rx_fifo_full(bus)))) {
1681                 npcm_i2c_irq_handle_sda(bus, i2cst);
1682                 ret = 0;
1683         }
1684
1685         return ret;
1686 }
1687
1688 /* recovery using TGCLK functionality of the module */
1689 static int npcm_i2c_recovery_tgclk(struct i2c_adapter *_adap)
1690 {
1691         u8               val;
1692         u8               fif_cts;
1693         bool             done = false;
1694         int              status = -ENOTRECOVERABLE;
1695         struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
1696         /* Allow 3 bytes (27 toggles) to be read from the slave: */
1697         int              iter = 27;
1698
1699         if ((npcm_i2c_get_SDA(_adap) == 1) && (npcm_i2c_get_SCL(_adap) == 1)) {
1700                 dev_dbg(bus->dev, "bus%d-0x%x recovery skipped, bus not stuck",
1701                         bus->num, bus->dest_addr);
1702                 npcm_i2c_reset(bus);
1703                 return 0;
1704         }
1705
1706         npcm_i2c_int_enable(bus, false);
1707         npcm_i2c_disable(bus);
1708         npcm_i2c_enable(bus);
1709         iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
1710         npcm_i2c_clear_tx_fifo(bus);
1711         npcm_i2c_clear_rx_fifo(bus);
1712         iowrite8(0, bus->reg + NPCM_I2CRXF_CTL);
1713         iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
1714         npcm_i2c_stall_after_start(bus, false);
1715
1716         /* select bank 1 for FIFO regs */
1717         npcm_i2c_select_bank(bus, I2C_BANK_1);
1718
1719         /* clear FIFO and relevant status bits. */
1720         fif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1721         fif_cts &= ~NPCM_I2CFIF_CTS_SLVRSTR;
1722         fif_cts |= NPCM_I2CFIF_CTS_CLR_FIFO;
1723         iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1724         npcm_i2c_set_fifo(bus, -1, 0);
1725
1726         /* Repeat the following sequence until SDA is released */
1727         do {
1728                 /* Issue a single SCL toggle */
1729                 iowrite8(NPCM_I2CCST_TGSCL, bus->reg + NPCM_I2CCST);
1730                 usleep_range(20, 30);
1731                 /* If SDA line is inactive (high), stop */
1732                 if (npcm_i2c_get_SDA(_adap)) {
1733                         done = true;
1734                         status = 0;
1735                 }
1736         } while (!done && iter--);
1737
1738         /* If SDA line is released: send start-addr-stop, to re-sync. */
1739         if (npcm_i2c_get_SDA(_adap)) {
1740                 /* Send an address byte in write direction: */
1741                 npcm_i2c_wr_byte(bus, bus->dest_addr);
1742                 npcm_i2c_master_start(bus);
1743                 /* Wait until START condition is sent */
1744                 status = readx_poll_timeout(npcm_i2c_get_SCL, _adap, val, !val,
1745                                             20, 200);
1746                 /* If START condition was sent */
1747                 if (npcm_i2c_is_master(bus) > 0) {
1748                         usleep_range(20, 30);
1749                         npcm_i2c_master_stop(bus);
1750                         usleep_range(200, 500);
1751                 }
1752         }
1753         npcm_i2c_reset(bus);
1754         npcm_i2c_int_enable(bus, true);
1755
1756         if ((npcm_i2c_get_SDA(_adap) == 1) && (npcm_i2c_get_SCL(_adap) == 1))
1757                 status = 0;
1758         else
1759                 status = -ENOTRECOVERABLE;
1760         if (status) {
1761                 if (bus->rec_fail_cnt < ULLONG_MAX)
1762                         bus->rec_fail_cnt++;
1763         } else {
1764                 if (bus->rec_succ_cnt < ULLONG_MAX)
1765                         bus->rec_succ_cnt++;
1766         }
1767         return status;
1768 }
1769
1770 /* recovery using bit banging functionality of the module */
1771 static void npcm_i2c_recovery_init(struct i2c_adapter *_adap)
1772 {
1773         struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
1774         struct i2c_bus_recovery_info *rinfo = &bus->rinfo;
1775
1776         rinfo->recover_bus = npcm_i2c_recovery_tgclk;
1777
1778         /*
1779          * npcm i2c HW allows direct reading of SCL and SDA.
1780          * However, it does not support setting SCL and SDA directly.
1781          * The recovery function can toggle SCL when SDA is low (but not set)
1782          * Getter functions used internally, and can be used externally.
1783          */
1784         rinfo->get_scl = npcm_i2c_get_SCL;
1785         rinfo->get_sda = npcm_i2c_get_SDA;
1786         _adap->bus_recovery_info = rinfo;
1787 }
1788
1789 /* SCLFRQ min/max field values */
1790 #define SCLFRQ_MIN  10
1791 #define SCLFRQ_MAX  511
1792 #define clk_coef(freq, mul)     DIV_ROUND_UP((freq) * (mul), 1000000)
1793
1794 /*
1795  * npcm_i2c_init_clk: init HW timing parameters.
1796  * NPCM7XX i2c module timing parameters are dependent on module core clk (APB)
1797  * and bus frequency.
1798  * 100kHz bus requires tSCL = 4 * SCLFRQ * tCLK. LT and HT are symmetric.
1799  * 400kHz bus requires asymmetric HT and LT. A different equation is recommended
1800  * by the HW designer, given core clock range (equations in comments below).
1801  *
1802  */
1803 static int npcm_i2c_init_clk(struct npcm_i2c *bus, u32 bus_freq_hz)
1804 {
1805         u32  k1 = 0;
1806         u32  k2 = 0;
1807         u8   dbnct = 0;
1808         u32  sclfrq = 0;
1809         u8   hldt = 7;
1810         u8   fast_mode = 0;
1811         u32  src_clk_khz;
1812         u32  bus_freq_khz;
1813
1814         src_clk_khz = bus->apb_clk / 1000;
1815         bus_freq_khz = bus_freq_hz / 1000;
1816         bus->bus_freq = bus_freq_hz;
1817
1818         /* 100KHz and below: */
1819         if (bus_freq_hz <= I2C_MAX_STANDARD_MODE_FREQ) {
1820                 sclfrq = src_clk_khz / (bus_freq_khz * 4);
1821
1822                 if (sclfrq < SCLFRQ_MIN || sclfrq > SCLFRQ_MAX)
1823                         return -EDOM;
1824
1825                 if (src_clk_khz >= 40000)
1826                         hldt = 17;
1827                 else if (src_clk_khz >= 12500)
1828                         hldt = 15;
1829                 else
1830                         hldt = 7;
1831         }
1832
1833         /* 400KHz: */
1834         else if (bus_freq_hz <= I2C_MAX_FAST_MODE_FREQ) {
1835                 sclfrq = 0;
1836                 fast_mode = I2CCTL3_400K_MODE;
1837
1838                 if (src_clk_khz < 7500)
1839                         /* 400KHZ cannot be supported for core clock < 7.5MHz */
1840                         return -EDOM;
1841
1842                 else if (src_clk_khz >= 50000) {
1843                         k1 = 80;
1844                         k2 = 48;
1845                         hldt = 12;
1846                         dbnct = 7;
1847                 }
1848
1849                 /* Master or Slave with frequency > 25MHz */
1850                 else if (src_clk_khz > 25000) {
1851                         hldt = clk_coef(src_clk_khz, 300) + 7;
1852                         k1 = clk_coef(src_clk_khz, 1600);
1853                         k2 = clk_coef(src_clk_khz, 900);
1854                 }
1855         }
1856
1857         /* 1MHz: */
1858         else if (bus_freq_hz <= I2C_MAX_FAST_MODE_PLUS_FREQ) {
1859                 sclfrq = 0;
1860                 fast_mode = I2CCTL3_400K_MODE;
1861
1862                 /* 1MHZ cannot be supported for core clock < 24 MHz */
1863                 if (src_clk_khz < 24000)
1864                         return -EDOM;
1865
1866                 k1 = clk_coef(src_clk_khz, 620);
1867                 k2 = clk_coef(src_clk_khz, 380);
1868
1869                 /* Core clk > 40 MHz */
1870                 if (src_clk_khz > 40000) {
1871                         /*
1872                          * Set HLDT:
1873                          * SDA hold time:  (HLDT-7) * T(CLK) >= 120
1874                          * HLDT = 120/T(CLK) + 7 = 120 * FREQ(CLK) + 7
1875                          */
1876                         hldt = clk_coef(src_clk_khz, 120) + 7;
1877                 } else {
1878                         hldt = 7;
1879                         dbnct = 2;
1880                 }
1881         }
1882
1883         /* Frequency larger than 1 MHz is not supported */
1884         else
1885                 return -EINVAL;
1886
1887         if (bus_freq_hz >= I2C_MAX_FAST_MODE_FREQ) {
1888                 k1 = round_up(k1, 2);
1889                 k2 = round_up(k2 + 1, 2);
1890                 if (k1 < SCLFRQ_MIN || k1 > SCLFRQ_MAX ||
1891                     k2 < SCLFRQ_MIN || k2 > SCLFRQ_MAX)
1892                         return -EDOM;
1893         }
1894
1895         /* write sclfrq value. bits [6:0] are in I2CCTL2 reg */
1896         iowrite8(FIELD_PREP(I2CCTL2_SCLFRQ6_0, sclfrq & 0x7F),
1897                  bus->reg + NPCM_I2CCTL2);
1898
1899         /* bits [8:7] are in I2CCTL3 reg */
1900         iowrite8(fast_mode | FIELD_PREP(I2CCTL3_SCLFRQ8_7, (sclfrq >> 7) & 0x3),
1901                  bus->reg + NPCM_I2CCTL3);
1902
1903         /* Select Bank 0 to access NPCM_I2CCTL4/NPCM_I2CCTL5 */
1904         npcm_i2c_select_bank(bus, I2C_BANK_0);
1905
1906         if (bus_freq_hz >= I2C_MAX_FAST_MODE_FREQ) {
1907                 /*
1908                  * Set SCL Low/High Time:
1909                  * k1 = 2 * SCLLT7-0 -> Low Time  = k1 / 2
1910                  * k2 = 2 * SCLLT7-0 -> High Time = k2 / 2
1911                  */
1912                 iowrite8(k1 / 2, bus->reg + NPCM_I2CSCLLT);
1913                 iowrite8(k2 / 2, bus->reg + NPCM_I2CSCLHT);
1914
1915                 iowrite8(dbnct, bus->reg + NPCM_I2CCTL5);
1916         }
1917
1918         iowrite8(hldt, bus->reg + NPCM_I2CCTL4);
1919
1920         /* Return to Bank 1, and stay there by default: */
1921         npcm_i2c_select_bank(bus, I2C_BANK_1);
1922
1923         return 0;
1924 }
1925
1926 static int npcm_i2c_init_module(struct npcm_i2c *bus, enum i2c_mode mode,
1927                                 u32 bus_freq_hz)
1928 {
1929         u8 val;
1930         int ret;
1931
1932         /* Check whether module already enabled or frequency is out of bounds */
1933         if ((bus->state != I2C_DISABLE && bus->state != I2C_IDLE) ||
1934             bus_freq_hz < I2C_FREQ_MIN_HZ || bus_freq_hz > I2C_FREQ_MAX_HZ)
1935                 return -EINVAL;
1936
1937         npcm_i2c_int_enable(bus, false);
1938         npcm_i2c_disable(bus);
1939
1940         /* Configure FIFO mode : */
1941         if (FIELD_GET(I2C_VER_FIFO_EN, ioread8(bus->reg + I2C_VER))) {
1942                 bus->fifo_use = true;
1943                 npcm_i2c_select_bank(bus, I2C_BANK_0);
1944                 val = ioread8(bus->reg + NPCM_I2CFIF_CTL);
1945                 val |= NPCM_I2CFIF_CTL_FIFO_EN;
1946                 iowrite8(val, bus->reg + NPCM_I2CFIF_CTL);
1947                 npcm_i2c_select_bank(bus, I2C_BANK_1);
1948         } else {
1949                 bus->fifo_use = false;
1950         }
1951
1952         /* Configure I2C module clock frequency */
1953         ret = npcm_i2c_init_clk(bus, bus_freq_hz);
1954         if (ret) {
1955                 dev_err(bus->dev, "npcm_i2c_init_clk failed\n");
1956                 return ret;
1957         }
1958
1959         /* Enable module (before configuring CTL1) */
1960         npcm_i2c_enable(bus);
1961         bus->state = I2C_IDLE;
1962         val = ioread8(bus->reg + NPCM_I2CCTL1);
1963         val = (val | NPCM_I2CCTL1_NMINTE) & ~NPCM_I2CCTL1_RWS;
1964         iowrite8(val, bus->reg + NPCM_I2CCTL1);
1965
1966         npcm_i2c_reset(bus);
1967
1968         /* Check HW is OK: SDA and SCL should be high at this point. */
1969         if ((npcm_i2c_get_SDA(&bus->adap) == 0) || (npcm_i2c_get_SCL(&bus->adap) == 0)) {
1970                 dev_err(bus->dev, "I2C%d init fail: lines are low\n", bus->num);
1971                 dev_err(bus->dev, "SDA=%d SCL=%d\n", npcm_i2c_get_SDA(&bus->adap),
1972                         npcm_i2c_get_SCL(&bus->adap));
1973                 return -ENXIO;
1974         }
1975
1976         npcm_i2c_int_enable(bus, true);
1977         return 0;
1978 }
1979
1980 static int __npcm_i2c_init(struct npcm_i2c *bus, struct platform_device *pdev)
1981 {
1982         u32 clk_freq_hz;
1983         int ret;
1984
1985         /* Initialize the internal data structures */
1986         bus->state = I2C_DISABLE;
1987         bus->master_or_slave = I2C_SLAVE;
1988         bus->int_time_stamp = 0;
1989 #if IS_ENABLED(CONFIG_I2C_SLAVE)
1990         bus->slave = NULL;
1991 #endif
1992
1993         ret = device_property_read_u32(&pdev->dev, "clock-frequency",
1994                                        &clk_freq_hz);
1995         if (ret) {
1996                 dev_info(&pdev->dev, "Could not read clock-frequency property");
1997                 clk_freq_hz = I2C_MAX_STANDARD_MODE_FREQ;
1998         }
1999
2000         ret = npcm_i2c_init_module(bus, I2C_MASTER, clk_freq_hz);
2001         if (ret) {
2002                 dev_err(&pdev->dev, "npcm_i2c_init_module failed\n");
2003                 return ret;
2004         }
2005
2006         return 0;
2007 }
2008
2009 static irqreturn_t npcm_i2c_bus_irq(int irq, void *dev_id)
2010 {
2011         struct npcm_i2c *bus = dev_id;
2012
2013         if (npcm_i2c_is_master(bus))
2014                 bus->master_or_slave = I2C_MASTER;
2015
2016         if (bus->master_or_slave == I2C_MASTER) {
2017                 bus->int_time_stamp = jiffies;
2018                 if (!npcm_i2c_int_master_handler(bus))
2019                         return IRQ_HANDLED;
2020         }
2021 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2022         if (bus->slave) {
2023                 bus->master_or_slave = I2C_SLAVE;
2024                 if (npcm_i2c_int_slave_handler(bus))
2025                         return IRQ_HANDLED;
2026         }
2027 #endif
2028         /* Clear status bits for spurious interrupts */
2029         npcm_i2c_clear_master_status(bus);
2030
2031         return IRQ_HANDLED;
2032 }
2033
2034 static bool npcm_i2c_master_start_xmit(struct npcm_i2c *bus,
2035                                        u8 slave_addr, u16 nwrite, u16 nread,
2036                                        u8 *write_data, u8 *read_data,
2037                                        bool use_PEC, bool use_read_block)
2038 {
2039         if (bus->state != I2C_IDLE) {
2040                 bus->cmd_err = -EBUSY;
2041                 return false;
2042         }
2043         bus->dest_addr = slave_addr << 1;
2044         bus->wr_buf = write_data;
2045         bus->wr_size = nwrite;
2046         bus->wr_ind = 0;
2047         bus->rd_buf = read_data;
2048         bus->rd_size = nread;
2049         bus->rd_ind = 0;
2050         bus->PEC_use = 0;
2051
2052         /* for tx PEC is appended to buffer from i2c IF. PEC flag is ignored */
2053         if (nread)
2054                 bus->PEC_use = use_PEC;
2055
2056         bus->read_block_use = use_read_block;
2057         if (nread && !nwrite)
2058                 bus->operation = I2C_READ_OPER;
2059         else
2060                 bus->operation = I2C_WRITE_OPER;
2061         if (bus->fifo_use) {
2062                 u8 i2cfif_cts;
2063
2064                 npcm_i2c_select_bank(bus, I2C_BANK_1);
2065                 /* clear FIFO and relevant status bits. */
2066                 i2cfif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
2067                 i2cfif_cts &= ~NPCM_I2CFIF_CTS_SLVRSTR;
2068                 i2cfif_cts |= NPCM_I2CFIF_CTS_CLR_FIFO;
2069                 iowrite8(i2cfif_cts, bus->reg + NPCM_I2CFIF_CTS);
2070         }
2071
2072         bus->state = I2C_IDLE;
2073         npcm_i2c_stall_after_start(bus, true);
2074         npcm_i2c_master_start(bus);
2075         return true;
2076 }
2077
2078 static int npcm_i2c_master_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs,
2079                                 int num)
2080 {
2081         struct npcm_i2c *bus = container_of(adap, struct npcm_i2c, adap);
2082         struct i2c_msg *msg0, *msg1;
2083         unsigned long time_left, flags;
2084         u16 nwrite, nread;
2085         u8 *write_data, *read_data;
2086         u8 slave_addr;
2087         unsigned long timeout;
2088         bool read_block = false;
2089         bool read_PEC = false;
2090         u8 bus_busy;
2091         unsigned long timeout_usec;
2092
2093         if (bus->state == I2C_DISABLE) {
2094                 dev_err(bus->dev, "I2C%d module is disabled", bus->num);
2095                 return -EINVAL;
2096         }
2097
2098         msg0 = &msgs[0];
2099         slave_addr = msg0->addr;
2100         if (msg0->flags & I2C_M_RD) { /* read */
2101                 nwrite = 0;
2102                 write_data = NULL;
2103                 read_data = msg0->buf;
2104                 if (msg0->flags & I2C_M_RECV_LEN) {
2105                         nread = 1;
2106                         read_block = true;
2107                         if (msg0->flags & I2C_CLIENT_PEC)
2108                                 read_PEC = true;
2109                 } else {
2110                         nread = msg0->len;
2111                 }
2112         } else { /* write */
2113                 nwrite = msg0->len;
2114                 write_data = msg0->buf;
2115                 nread = 0;
2116                 read_data = NULL;
2117                 if (num == 2) {
2118                         msg1 = &msgs[1];
2119                         read_data = msg1->buf;
2120                         if (msg1->flags & I2C_M_RECV_LEN) {
2121                                 nread = 1;
2122                                 read_block = true;
2123                                 if (msg1->flags & I2C_CLIENT_PEC)
2124                                         read_PEC = true;
2125                         } else {
2126                                 nread = msg1->len;
2127                                 read_block = false;
2128                         }
2129                 }
2130         }
2131
2132         /*
2133          * Adaptive TimeOut: estimated time in usec + 100% margin:
2134          * 2: double the timeout for clock stretching case
2135          * 9: bits per transaction (including the ack/nack)
2136          */
2137         timeout_usec = (2 * 9 * USEC_PER_SEC / bus->bus_freq) * (2 + nread + nwrite);
2138         timeout = max_t(unsigned long, bus->adap.timeout, usecs_to_jiffies(timeout_usec));
2139         if (nwrite >= 32 * 1024 || nread >= 32 * 1024) {
2140                 dev_err(bus->dev, "i2c%d buffer too big\n", bus->num);
2141                 return -EINVAL;
2142         }
2143
2144         time_left = jiffies + timeout + 1;
2145         do {
2146                 /*
2147                  * we must clear slave address immediately when the bus is not
2148                  * busy, so we spinlock it, but we don't keep the lock for the
2149                  * entire while since it is too long.
2150                  */
2151                 spin_lock_irqsave(&bus->lock, flags);
2152                 bus_busy = ioread8(bus->reg + NPCM_I2CCST) & NPCM_I2CCST_BB;
2153 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2154                 if (!bus_busy && bus->slave)
2155                         iowrite8((bus->slave->addr & 0x7F),
2156                                  bus->reg + NPCM_I2CADDR1);
2157 #endif
2158                 spin_unlock_irqrestore(&bus->lock, flags);
2159
2160         } while (time_is_after_jiffies(time_left) && bus_busy);
2161
2162         if (bus_busy) {
2163                 iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
2164                 npcm_i2c_reset(bus);
2165                 i2c_recover_bus(adap);
2166                 return -EAGAIN;
2167         }
2168
2169         npcm_i2c_init_params(bus);
2170         bus->dest_addr = slave_addr;
2171         bus->msgs = msgs;
2172         bus->msgs_num = num;
2173         bus->cmd_err = 0;
2174         bus->read_block_use = read_block;
2175
2176         reinit_completion(&bus->cmd_complete);
2177
2178         npcm_i2c_int_enable(bus, true);
2179
2180         if (npcm_i2c_master_start_xmit(bus, slave_addr, nwrite, nread,
2181                                        write_data, read_data, read_PEC,
2182                                        read_block)) {
2183                 time_left = wait_for_completion_timeout(&bus->cmd_complete,
2184                                                         timeout);
2185
2186                 if (time_left == 0) {
2187                         if (bus->timeout_cnt < ULLONG_MAX)
2188                                 bus->timeout_cnt++;
2189                         if (bus->master_or_slave == I2C_MASTER) {
2190                                 i2c_recover_bus(adap);
2191                                 bus->cmd_err = -EIO;
2192                                 bus->state = I2C_IDLE;
2193                         }
2194                 }
2195         }
2196
2197         /* if there was BER, check if need to recover the bus: */
2198         if (bus->cmd_err == -EAGAIN)
2199                 bus->cmd_err = i2c_recover_bus(adap);
2200
2201         /*
2202          * After any type of error, check if LAST bit is still set,
2203          * due to a HW issue.
2204          * It cannot be cleared without resetting the module.
2205          */
2206         else if (bus->cmd_err &&
2207                  (bus->data->rxf_ctl_last_pec & ioread8(bus->reg + NPCM_I2CRXF_CTL)))
2208                 npcm_i2c_reset(bus);
2209
2210         /* After any xfer, successful or not, stall and EOB must be disabled */
2211         npcm_i2c_stall_after_start(bus, false);
2212         npcm_i2c_eob_int(bus, false);
2213
2214 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2215         /* reenable slave if it was enabled */
2216         if (bus->slave)
2217                 iowrite8((bus->slave->addr & 0x7F) | NPCM_I2CADDR_SAEN,
2218                          bus->reg + NPCM_I2CADDR1);
2219 #else
2220         npcm_i2c_int_enable(bus, false);
2221 #endif
2222         return bus->cmd_err;
2223 }
2224
2225 static u32 npcm_i2c_functionality(struct i2c_adapter *adap)
2226 {
2227         return I2C_FUNC_I2C |
2228                I2C_FUNC_SMBUS_EMUL |
2229                I2C_FUNC_SMBUS_BLOCK_DATA |
2230                I2C_FUNC_SMBUS_PEC |
2231                I2C_FUNC_SLAVE;
2232 }
2233
2234 static const struct i2c_adapter_quirks npcm_i2c_quirks = {
2235         .max_read_len = 32768,
2236         .max_write_len = 32768,
2237         .flags = I2C_AQ_COMB_WRITE_THEN_READ,
2238 };
2239
2240 static const struct i2c_algorithm npcm_i2c_algo = {
2241         .master_xfer = npcm_i2c_master_xfer,
2242         .functionality = npcm_i2c_functionality,
2243 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2244         .reg_slave      = npcm_i2c_reg_slave,
2245         .unreg_slave    = npcm_i2c_unreg_slave,
2246 #endif
2247 };
2248
2249 static void npcm_i2c_init_debugfs(struct platform_device *pdev,
2250                                   struct npcm_i2c *bus)
2251 {
2252         debugfs_create_u64("ber_cnt", 0444, bus->adap.debugfs, &bus->ber_cnt);
2253         debugfs_create_u64("nack_cnt", 0444, bus->adap.debugfs, &bus->nack_cnt);
2254         debugfs_create_u64("rec_succ_cnt", 0444, bus->adap.debugfs, &bus->rec_succ_cnt);
2255         debugfs_create_u64("rec_fail_cnt", 0444, bus->adap.debugfs, &bus->rec_fail_cnt);
2256         debugfs_create_u64("timeout_cnt", 0444, bus->adap.debugfs, &bus->timeout_cnt);
2257         debugfs_create_u64("tx_complete_cnt", 0444, bus->adap.debugfs, &bus->tx_complete_cnt);
2258 }
2259
2260 static int npcm_i2c_probe_bus(struct platform_device *pdev)
2261 {
2262         struct device_node *np = pdev->dev.of_node;
2263         static struct regmap *gcr_regmap;
2264         struct device *dev = &pdev->dev;
2265         struct i2c_adapter *adap;
2266         struct npcm_i2c *bus;
2267         struct clk *i2c_clk;
2268         int irq;
2269         int ret;
2270
2271         bus = devm_kzalloc(&pdev->dev, sizeof(*bus), GFP_KERNEL);
2272         if (!bus)
2273                 return -ENOMEM;
2274
2275         bus->dev = &pdev->dev;
2276
2277         bus->data = of_device_get_match_data(dev);
2278         if (!bus->data) {
2279                 dev_err(dev, "OF data missing\n");
2280                 return -EINVAL;
2281         }
2282
2283         bus->num = of_alias_get_id(pdev->dev.of_node, "i2c");
2284         /* core clk must be acquired to calculate module timing settings */
2285         i2c_clk = devm_clk_get(&pdev->dev, NULL);
2286         if (IS_ERR(i2c_clk))
2287                 return PTR_ERR(i2c_clk);
2288         bus->apb_clk = clk_get_rate(i2c_clk);
2289
2290         gcr_regmap = syscon_regmap_lookup_by_phandle(np, "nuvoton,sys-mgr");
2291         if (IS_ERR(gcr_regmap))
2292                 gcr_regmap = syscon_regmap_lookup_by_compatible("nuvoton,npcm750-gcr");
2293
2294         if (IS_ERR(gcr_regmap))
2295                 return PTR_ERR(gcr_regmap);
2296         regmap_write(gcr_regmap, NPCM_I2CSEGCTL, bus->data->segctl_init_val);
2297
2298         bus->reg = devm_platform_ioremap_resource(pdev, 0);
2299         if (IS_ERR(bus->reg))
2300                 return PTR_ERR(bus->reg);
2301
2302         spin_lock_init(&bus->lock);
2303         init_completion(&bus->cmd_complete);
2304
2305         adap = &bus->adap;
2306         adap->owner = THIS_MODULE;
2307         adap->retries = 3;
2308         adap->timeout = msecs_to_jiffies(35);
2309         adap->algo = &npcm_i2c_algo;
2310         adap->quirks = &npcm_i2c_quirks;
2311         adap->algo_data = bus;
2312         adap->dev.parent = &pdev->dev;
2313         adap->dev.of_node = pdev->dev.of_node;
2314         adap->nr = pdev->id;
2315
2316         irq = platform_get_irq(pdev, 0);
2317         if (irq < 0)
2318                 return irq;
2319
2320         ret = devm_request_irq(bus->dev, irq, npcm_i2c_bus_irq, 0,
2321                                dev_name(bus->dev), bus);
2322         if (ret)
2323                 return ret;
2324
2325         ret = __npcm_i2c_init(bus, pdev);
2326         if (ret)
2327                 return ret;
2328
2329         npcm_i2c_recovery_init(adap);
2330
2331         i2c_set_adapdata(adap, bus);
2332
2333         snprintf(bus->adap.name, sizeof(bus->adap.name), "npcm_i2c_%d",
2334                  bus->num);
2335         ret = i2c_add_numbered_adapter(&bus->adap);
2336         if (ret)
2337                 return ret;
2338
2339         platform_set_drvdata(pdev, bus);
2340         npcm_i2c_init_debugfs(pdev, bus);
2341         return 0;
2342 }
2343
2344 static void npcm_i2c_remove_bus(struct platform_device *pdev)
2345 {
2346         unsigned long lock_flags;
2347         struct npcm_i2c *bus = platform_get_drvdata(pdev);
2348
2349         spin_lock_irqsave(&bus->lock, lock_flags);
2350         npcm_i2c_disable(bus);
2351         spin_unlock_irqrestore(&bus->lock, lock_flags);
2352         i2c_del_adapter(&bus->adap);
2353 }
2354
2355 static const struct of_device_id npcm_i2c_bus_of_table[] = {
2356         { .compatible = "nuvoton,npcm750-i2c", .data = &npxm7xx_i2c_data },
2357         { .compatible = "nuvoton,npcm845-i2c", .data = &npxm8xx_i2c_data },
2358         {}
2359 };
2360 MODULE_DEVICE_TABLE(of, npcm_i2c_bus_of_table);
2361
2362 static struct platform_driver npcm_i2c_bus_driver = {
2363         .probe = npcm_i2c_probe_bus,
2364         .remove_new = npcm_i2c_remove_bus,
2365         .driver = {
2366                 .name = "nuvoton-i2c",
2367                 .of_match_table = npcm_i2c_bus_of_table,
2368         }
2369 };
2370
2371 module_platform_driver(npcm_i2c_bus_driver);
2372
2373 MODULE_AUTHOR("Avi Fishman <avi.fishman@gmail.com>");
2374 MODULE_AUTHOR("Tali Perry <tali.perry@nuvoton.com>");
2375 MODULE_AUTHOR("Tyrone Ting <kfting@nuvoton.com>");
2376 MODULE_DESCRIPTION("Nuvoton I2C Bus Driver");
2377 MODULE_LICENSE("GPL v2");