GNU Linux-libre 6.9.1-gnu
[releases.git] / drivers / i2c / busses / i2c-bcm-iproc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 // Copyright (C) 2014 Broadcom Corporation
3
4 #include <linux/delay.h>
5 #include <linux/i2c.h>
6 #include <linux/interrupt.h>
7 #include <linux/io.h>
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/of.h>
11 #include <linux/platform_device.h>
12 #include <linux/slab.h>
13
14 #define IDM_CTRL_DIRECT_OFFSET       0x00
15 #define CFG_OFFSET                   0x00
16 #define CFG_RESET_SHIFT              31
17 #define CFG_EN_SHIFT                 30
18 #define CFG_SLAVE_ADDR_0_SHIFT       28
19 #define CFG_M_RETRY_CNT_SHIFT        16
20 #define CFG_M_RETRY_CNT_MASK         0x0f
21
22 #define TIM_CFG_OFFSET               0x04
23 #define TIM_CFG_MODE_400_SHIFT       31
24 #define TIM_RAND_SLAVE_STRETCH_SHIFT      24
25 #define TIM_RAND_SLAVE_STRETCH_MASK       0x7f
26 #define TIM_PERIODIC_SLAVE_STRETCH_SHIFT  16
27 #define TIM_PERIODIC_SLAVE_STRETCH_MASK   0x7f
28
29 #define S_CFG_SMBUS_ADDR_OFFSET           0x08
30 #define S_CFG_EN_NIC_SMB_ADDR3_SHIFT      31
31 #define S_CFG_NIC_SMB_ADDR3_SHIFT         24
32 #define S_CFG_NIC_SMB_ADDR3_MASK          0x7f
33 #define S_CFG_EN_NIC_SMB_ADDR2_SHIFT      23
34 #define S_CFG_NIC_SMB_ADDR2_SHIFT         16
35 #define S_CFG_NIC_SMB_ADDR2_MASK          0x7f
36 #define S_CFG_EN_NIC_SMB_ADDR1_SHIFT      15
37 #define S_CFG_NIC_SMB_ADDR1_SHIFT         8
38 #define S_CFG_NIC_SMB_ADDR1_MASK          0x7f
39 #define S_CFG_EN_NIC_SMB_ADDR0_SHIFT      7
40 #define S_CFG_NIC_SMB_ADDR0_SHIFT         0
41 #define S_CFG_NIC_SMB_ADDR0_MASK          0x7f
42
43 #define M_FIFO_CTRL_OFFSET           0x0c
44 #define M_FIFO_RX_FLUSH_SHIFT        31
45 #define M_FIFO_TX_FLUSH_SHIFT        30
46 #define M_FIFO_RX_CNT_SHIFT          16
47 #define M_FIFO_RX_CNT_MASK           0x7f
48 #define M_FIFO_RX_THLD_SHIFT         8
49 #define M_FIFO_RX_THLD_MASK          0x3f
50
51 #define S_FIFO_CTRL_OFFSET           0x10
52 #define S_FIFO_RX_FLUSH_SHIFT        31
53 #define S_FIFO_TX_FLUSH_SHIFT        30
54 #define S_FIFO_RX_CNT_SHIFT          16
55 #define S_FIFO_RX_CNT_MASK           0x7f
56 #define S_FIFO_RX_THLD_SHIFT         8
57 #define S_FIFO_RX_THLD_MASK          0x3f
58
59 #define M_CMD_OFFSET                 0x30
60 #define M_CMD_START_BUSY_SHIFT       31
61 #define M_CMD_STATUS_SHIFT           25
62 #define M_CMD_STATUS_MASK            0x07
63 #define M_CMD_STATUS_SUCCESS         0x0
64 #define M_CMD_STATUS_LOST_ARB        0x1
65 #define M_CMD_STATUS_NACK_ADDR       0x2
66 #define M_CMD_STATUS_NACK_DATA       0x3
67 #define M_CMD_STATUS_TIMEOUT         0x4
68 #define M_CMD_STATUS_FIFO_UNDERRUN   0x5
69 #define M_CMD_STATUS_RX_FIFO_FULL    0x6
70 #define M_CMD_PROTOCOL_SHIFT         9
71 #define M_CMD_PROTOCOL_MASK          0xf
72 #define M_CMD_PROTOCOL_QUICK         0x0
73 #define M_CMD_PROTOCOL_BLK_WR        0x7
74 #define M_CMD_PROTOCOL_BLK_RD        0x8
75 #define M_CMD_PROTOCOL_PROCESS       0xa
76 #define M_CMD_PEC_SHIFT              8
77 #define M_CMD_RD_CNT_SHIFT           0
78 #define M_CMD_RD_CNT_MASK            0xff
79
80 #define S_CMD_OFFSET                 0x34
81 #define S_CMD_START_BUSY_SHIFT       31
82 #define S_CMD_STATUS_SHIFT           23
83 #define S_CMD_STATUS_MASK            0x07
84 #define S_CMD_STATUS_SUCCESS         0x0
85 #define S_CMD_STATUS_TIMEOUT         0x5
86 #define S_CMD_STATUS_MASTER_ABORT    0x7
87
88 #define IE_OFFSET                    0x38
89 #define IE_M_RX_FIFO_FULL_SHIFT      31
90 #define IE_M_RX_THLD_SHIFT           30
91 #define IE_M_START_BUSY_SHIFT        28
92 #define IE_M_TX_UNDERRUN_SHIFT       27
93 #define IE_S_RX_FIFO_FULL_SHIFT      26
94 #define IE_S_RX_THLD_SHIFT           25
95 #define IE_S_RX_EVENT_SHIFT          24
96 #define IE_S_START_BUSY_SHIFT        23
97 #define IE_S_TX_UNDERRUN_SHIFT       22
98 #define IE_S_RD_EVENT_SHIFT          21
99
100 #define IS_OFFSET                    0x3c
101 #define IS_M_RX_FIFO_FULL_SHIFT      31
102 #define IS_M_RX_THLD_SHIFT           30
103 #define IS_M_START_BUSY_SHIFT        28
104 #define IS_M_TX_UNDERRUN_SHIFT       27
105 #define IS_S_RX_FIFO_FULL_SHIFT      26
106 #define IS_S_RX_THLD_SHIFT           25
107 #define IS_S_RX_EVENT_SHIFT          24
108 #define IS_S_START_BUSY_SHIFT        23
109 #define IS_S_TX_UNDERRUN_SHIFT       22
110 #define IS_S_RD_EVENT_SHIFT          21
111
112 #define M_TX_OFFSET                  0x40
113 #define M_TX_WR_STATUS_SHIFT         31
114 #define M_TX_DATA_SHIFT              0
115 #define M_TX_DATA_MASK               0xff
116
117 #define M_RX_OFFSET                  0x44
118 #define M_RX_STATUS_SHIFT            30
119 #define M_RX_STATUS_MASK             0x03
120 #define M_RX_PEC_ERR_SHIFT           29
121 #define M_RX_DATA_SHIFT              0
122 #define M_RX_DATA_MASK               0xff
123
124 #define S_TX_OFFSET                  0x48
125 #define S_TX_WR_STATUS_SHIFT         31
126 #define S_TX_DATA_SHIFT              0
127 #define S_TX_DATA_MASK               0xff
128
129 #define S_RX_OFFSET                  0x4c
130 #define S_RX_STATUS_SHIFT            30
131 #define S_RX_STATUS_MASK             0x03
132 #define S_RX_PEC_ERR_SHIFT           29
133 #define S_RX_DATA_SHIFT              0
134 #define S_RX_DATA_MASK               0xff
135
136 #define I2C_TIMEOUT_MSEC             50000
137 #define M_TX_RX_FIFO_SIZE            64
138 #define M_RX_FIFO_MAX_THLD_VALUE     (M_TX_RX_FIFO_SIZE - 1)
139
140 #define M_RX_MAX_READ_LEN            255
141 #define M_RX_FIFO_THLD_VALUE         50
142
143 #define IE_M_ALL_INTERRUPT_SHIFT     27
144 #define IE_M_ALL_INTERRUPT_MASK      0x1e
145
146 #define SLAVE_READ_WRITE_BIT_MASK    0x1
147 #define SLAVE_READ_WRITE_BIT_SHIFT   0x1
148 #define SLAVE_MAX_SIZE_TRANSACTION   64
149 #define SLAVE_CLOCK_STRETCH_TIME     25
150
151 #define IE_S_ALL_INTERRUPT_SHIFT     21
152 #define IE_S_ALL_INTERRUPT_MASK      0x3f
153 /*
154  * It takes ~18us to reading 10bytes of data, hence to keep tasklet
155  * running for less time, max slave read per tasklet is set to 10 bytes.
156  */
157 #define MAX_SLAVE_RX_PER_INT         10
158
159 enum i2c_slave_read_status {
160         I2C_SLAVE_RX_FIFO_EMPTY = 0,
161         I2C_SLAVE_RX_START,
162         I2C_SLAVE_RX_DATA,
163         I2C_SLAVE_RX_END,
164 };
165
166 enum bus_speed_index {
167         I2C_SPD_100K = 0,
168         I2C_SPD_400K,
169 };
170
171 enum bcm_iproc_i2c_type {
172         IPROC_I2C,
173         IPROC_I2C_NIC
174 };
175
176 struct bcm_iproc_i2c_dev {
177         struct device *device;
178         enum bcm_iproc_i2c_type type;
179         int irq;
180
181         void __iomem *base;
182         void __iomem *idm_base;
183
184         u32 ape_addr_mask;
185
186         /* lock for indirect access through IDM */
187         spinlock_t idm_lock;
188
189         struct i2c_adapter adapter;
190         unsigned int bus_speed;
191
192         struct completion done;
193         int xfer_is_done;
194
195         struct i2c_msg *msg;
196
197         struct i2c_client *slave;
198
199         /* bytes that have been transferred */
200         unsigned int tx_bytes;
201         /* bytes that have been read */
202         unsigned int rx_bytes;
203         unsigned int thld_bytes;
204
205         bool slave_rx_only;
206         bool rx_start_rcvd;
207         bool slave_read_complete;
208         u32 tx_underrun;
209         u32 slave_int_mask;
210         struct tasklet_struct slave_rx_tasklet;
211 };
212
213 /* tasklet to process slave rx data */
214 static void slave_rx_tasklet_fn(unsigned long);
215
216 /*
217  * Can be expanded in the future if more interrupt status bits are utilized
218  */
219 #define ISR_MASK (BIT(IS_M_START_BUSY_SHIFT) | BIT(IS_M_TX_UNDERRUN_SHIFT)\
220                 | BIT(IS_M_RX_THLD_SHIFT))
221
222 #define ISR_MASK_SLAVE (BIT(IS_S_START_BUSY_SHIFT)\
223                 | BIT(IS_S_RX_EVENT_SHIFT) | BIT(IS_S_RD_EVENT_SHIFT)\
224                 | BIT(IS_S_TX_UNDERRUN_SHIFT) | BIT(IS_S_RX_FIFO_FULL_SHIFT)\
225                 | BIT(IS_S_RX_THLD_SHIFT))
226
227 static int bcm_iproc_i2c_reg_slave(struct i2c_client *slave);
228 static int bcm_iproc_i2c_unreg_slave(struct i2c_client *slave);
229 static void bcm_iproc_i2c_enable_disable(struct bcm_iproc_i2c_dev *iproc_i2c,
230                                          bool enable);
231
232 static inline u32 iproc_i2c_rd_reg(struct bcm_iproc_i2c_dev *iproc_i2c,
233                                    u32 offset)
234 {
235         u32 val;
236         unsigned long flags;
237
238         if (iproc_i2c->idm_base) {
239                 spin_lock_irqsave(&iproc_i2c->idm_lock, flags);
240                 writel(iproc_i2c->ape_addr_mask,
241                        iproc_i2c->idm_base + IDM_CTRL_DIRECT_OFFSET);
242                 val = readl(iproc_i2c->base + offset);
243                 spin_unlock_irqrestore(&iproc_i2c->idm_lock, flags);
244         } else {
245                 val = readl(iproc_i2c->base + offset);
246         }
247
248         return val;
249 }
250
251 static inline void iproc_i2c_wr_reg(struct bcm_iproc_i2c_dev *iproc_i2c,
252                                     u32 offset, u32 val)
253 {
254         unsigned long flags;
255
256         if (iproc_i2c->idm_base) {
257                 spin_lock_irqsave(&iproc_i2c->idm_lock, flags);
258                 writel(iproc_i2c->ape_addr_mask,
259                        iproc_i2c->idm_base + IDM_CTRL_DIRECT_OFFSET);
260                 writel(val, iproc_i2c->base + offset);
261                 spin_unlock_irqrestore(&iproc_i2c->idm_lock, flags);
262         } else {
263                 writel(val, iproc_i2c->base + offset);
264         }
265 }
266
267 static void bcm_iproc_i2c_slave_init(
268         struct bcm_iproc_i2c_dev *iproc_i2c, bool need_reset)
269 {
270         u32 val;
271
272         iproc_i2c->tx_underrun = 0;
273         if (need_reset) {
274                 /* put controller in reset */
275                 val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
276                 val |= BIT(CFG_RESET_SHIFT);
277                 iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
278
279                 /* wait 100 usec per spec */
280                 udelay(100);
281
282                 /* bring controller out of reset */
283                 val &= ~(BIT(CFG_RESET_SHIFT));
284                 iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
285         }
286
287         /* flush TX/RX FIFOs */
288         val = (BIT(S_FIFO_RX_FLUSH_SHIFT) | BIT(S_FIFO_TX_FLUSH_SHIFT));
289         iproc_i2c_wr_reg(iproc_i2c, S_FIFO_CTRL_OFFSET, val);
290
291         /* Maximum slave stretch time */
292         val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
293         val &= ~(TIM_RAND_SLAVE_STRETCH_MASK << TIM_RAND_SLAVE_STRETCH_SHIFT);
294         val |= (SLAVE_CLOCK_STRETCH_TIME << TIM_RAND_SLAVE_STRETCH_SHIFT);
295         iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
296
297         /* Configure the slave address */
298         val = iproc_i2c_rd_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET);
299         val |= BIT(S_CFG_EN_NIC_SMB_ADDR3_SHIFT);
300         val &= ~(S_CFG_NIC_SMB_ADDR3_MASK << S_CFG_NIC_SMB_ADDR3_SHIFT);
301         val |= (iproc_i2c->slave->addr << S_CFG_NIC_SMB_ADDR3_SHIFT);
302         iproc_i2c_wr_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET, val);
303
304         /* clear all pending slave interrupts */
305         iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, ISR_MASK_SLAVE);
306
307         /* Enable interrupt register to indicate a valid byte in receive fifo */
308         val = BIT(IE_S_RX_EVENT_SHIFT);
309         /* Enable interrupt register to indicate Slave Rx FIFO Full */
310         val |= BIT(IE_S_RX_FIFO_FULL_SHIFT);
311         /* Enable interrupt register to indicate a Master read transaction */
312         val |= BIT(IE_S_RD_EVENT_SHIFT);
313         /* Enable interrupt register for the Slave BUSY command */
314         val |= BIT(IE_S_START_BUSY_SHIFT);
315         iproc_i2c->slave_int_mask = val;
316         iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
317 }
318
319 static bool bcm_iproc_i2c_check_slave_status
320         (struct bcm_iproc_i2c_dev *iproc_i2c, u32 status)
321 {
322         u32 val;
323         bool recover = false;
324
325         /* check slave transmit status only if slave is transmitting */
326         if (!iproc_i2c->slave_rx_only) {
327                 val = iproc_i2c_rd_reg(iproc_i2c, S_CMD_OFFSET);
328                 /* status is valid only when START_BUSY is cleared */
329                 if (!(val & BIT(S_CMD_START_BUSY_SHIFT))) {
330                         val = (val >> S_CMD_STATUS_SHIFT) & S_CMD_STATUS_MASK;
331                         if (val == S_CMD_STATUS_TIMEOUT ||
332                             val == S_CMD_STATUS_MASTER_ABORT) {
333                                 dev_warn(iproc_i2c->device,
334                                          (val == S_CMD_STATUS_TIMEOUT) ?
335                                          "slave random stretch time timeout\n" :
336                                          "Master aborted read transaction\n");
337                                 recover = true;
338                         }
339                 }
340         }
341
342         /* RX_EVENT is not valid when START_BUSY is set */
343         if ((status & BIT(IS_S_RX_EVENT_SHIFT)) &&
344             (status & BIT(IS_S_START_BUSY_SHIFT))) {
345                 dev_warn(iproc_i2c->device, "Slave aborted read transaction\n");
346                 recover = true;
347         }
348
349         if (recover) {
350                 /* re-initialize i2c for recovery */
351                 bcm_iproc_i2c_enable_disable(iproc_i2c, false);
352                 bcm_iproc_i2c_slave_init(iproc_i2c, true);
353                 bcm_iproc_i2c_enable_disable(iproc_i2c, true);
354         }
355
356         return recover;
357 }
358
359 static void bcm_iproc_i2c_slave_read(struct bcm_iproc_i2c_dev *iproc_i2c)
360 {
361         u8 rx_data, rx_status;
362         u32 rx_bytes = 0;
363         u32 val;
364
365         while (rx_bytes < MAX_SLAVE_RX_PER_INT) {
366                 val = iproc_i2c_rd_reg(iproc_i2c, S_RX_OFFSET);
367                 rx_status = (val >> S_RX_STATUS_SHIFT) & S_RX_STATUS_MASK;
368                 rx_data = ((val >> S_RX_DATA_SHIFT) & S_RX_DATA_MASK);
369
370                 if (rx_status == I2C_SLAVE_RX_START) {
371                         /* Start of SMBUS Master write */
372                         i2c_slave_event(iproc_i2c->slave,
373                                         I2C_SLAVE_WRITE_REQUESTED, &rx_data);
374                         iproc_i2c->rx_start_rcvd = true;
375                         iproc_i2c->slave_read_complete = false;
376                 } else if (rx_status == I2C_SLAVE_RX_DATA &&
377                            iproc_i2c->rx_start_rcvd) {
378                         /* Middle of SMBUS Master write */
379                         i2c_slave_event(iproc_i2c->slave,
380                                         I2C_SLAVE_WRITE_RECEIVED, &rx_data);
381                 } else if (rx_status == I2C_SLAVE_RX_END &&
382                            iproc_i2c->rx_start_rcvd) {
383                         /* End of SMBUS Master write */
384                         if (iproc_i2c->slave_rx_only)
385                                 i2c_slave_event(iproc_i2c->slave,
386                                                 I2C_SLAVE_WRITE_RECEIVED,
387                                                 &rx_data);
388
389                         i2c_slave_event(iproc_i2c->slave, I2C_SLAVE_STOP,
390                                         &rx_data);
391                 } else if (rx_status == I2C_SLAVE_RX_FIFO_EMPTY) {
392                         iproc_i2c->rx_start_rcvd = false;
393                         iproc_i2c->slave_read_complete = true;
394                         break;
395                 }
396
397                 rx_bytes++;
398         }
399 }
400
401 static void slave_rx_tasklet_fn(unsigned long data)
402 {
403         struct bcm_iproc_i2c_dev *iproc_i2c = (struct bcm_iproc_i2c_dev *)data;
404         u32 int_clr;
405
406         bcm_iproc_i2c_slave_read(iproc_i2c);
407
408         /* clear pending IS_S_RX_EVENT_SHIFT interrupt */
409         int_clr = BIT(IS_S_RX_EVENT_SHIFT);
410
411         if (!iproc_i2c->slave_rx_only && iproc_i2c->slave_read_complete) {
412                 /*
413                  * In case of single byte master-read request,
414                  * IS_S_TX_UNDERRUN_SHIFT event is generated before
415                  * IS_S_START_BUSY_SHIFT event. Hence start slave data send
416                  * from first IS_S_TX_UNDERRUN_SHIFT event.
417                  *
418                  * This means don't send any data from slave when
419                  * IS_S_RD_EVENT_SHIFT event is generated else it will increment
420                  * eeprom or other backend slave driver read pointer twice.
421                  */
422                 iproc_i2c->tx_underrun = 0;
423                 iproc_i2c->slave_int_mask |= BIT(IE_S_TX_UNDERRUN_SHIFT);
424
425                 /* clear IS_S_RD_EVENT_SHIFT interrupt */
426                 int_clr |= BIT(IS_S_RD_EVENT_SHIFT);
427         }
428
429         /* clear slave interrupt */
430         iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, int_clr);
431         /* enable slave interrupts */
432         iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, iproc_i2c->slave_int_mask);
433 }
434
435 static bool bcm_iproc_i2c_slave_isr(struct bcm_iproc_i2c_dev *iproc_i2c,
436                                     u32 status)
437 {
438         u32 val;
439         u8 value;
440
441
442         if (status & BIT(IS_S_TX_UNDERRUN_SHIFT)) {
443                 iproc_i2c->tx_underrun++;
444                 if (iproc_i2c->tx_underrun == 1)
445                         /* Start of SMBUS for Master Read */
446                         i2c_slave_event(iproc_i2c->slave,
447                                         I2C_SLAVE_READ_REQUESTED,
448                                         &value);
449                 else
450                         /* Master read other than start */
451                         i2c_slave_event(iproc_i2c->slave,
452                                         I2C_SLAVE_READ_PROCESSED,
453                                         &value);
454
455                 iproc_i2c_wr_reg(iproc_i2c, S_TX_OFFSET, value);
456                 /* start transfer */
457                 val = BIT(S_CMD_START_BUSY_SHIFT);
458                 iproc_i2c_wr_reg(iproc_i2c, S_CMD_OFFSET, val);
459
460                 /* clear interrupt */
461                 iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET,
462                                  BIT(IS_S_TX_UNDERRUN_SHIFT));
463         }
464
465         /* Stop received from master in case of master read transaction */
466         if (status & BIT(IS_S_START_BUSY_SHIFT)) {
467                 /*
468                  * Disable interrupt for TX FIFO becomes empty and
469                  * less than PKT_LENGTH bytes were output on the SMBUS
470                  */
471                 iproc_i2c->slave_int_mask &= ~BIT(IE_S_TX_UNDERRUN_SHIFT);
472                 val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
473                 val &= ~BIT(IE_S_TX_UNDERRUN_SHIFT);
474                 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
475
476                 /* End of SMBUS for Master Read */
477                 val = BIT(S_TX_WR_STATUS_SHIFT);
478                 iproc_i2c_wr_reg(iproc_i2c, S_TX_OFFSET, val);
479
480                 val = BIT(S_CMD_START_BUSY_SHIFT);
481                 iproc_i2c_wr_reg(iproc_i2c, S_CMD_OFFSET, val);
482
483                 /* flush TX FIFOs */
484                 val = iproc_i2c_rd_reg(iproc_i2c, S_FIFO_CTRL_OFFSET);
485                 val |= (BIT(S_FIFO_TX_FLUSH_SHIFT));
486                 iproc_i2c_wr_reg(iproc_i2c, S_FIFO_CTRL_OFFSET, val);
487
488                 i2c_slave_event(iproc_i2c->slave, I2C_SLAVE_STOP, &value);
489
490                 /* clear interrupt */
491                 iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET,
492                                  BIT(IS_S_START_BUSY_SHIFT));
493         }
494
495         /* if the controller has been reset, immediately return from the ISR */
496         if (bcm_iproc_i2c_check_slave_status(iproc_i2c, status))
497                 return true;
498
499         /*
500          * Slave events in case of master-write, master-write-read and,
501          * master-read
502          *
503          * Master-write     : only IS_S_RX_EVENT_SHIFT event
504          * Master-write-read: both IS_S_RX_EVENT_SHIFT and IS_S_RD_EVENT_SHIFT
505          *                    events
506          * Master-read      : both IS_S_RX_EVENT_SHIFT and IS_S_RD_EVENT_SHIFT
507          *                    events or only IS_S_RD_EVENT_SHIFT
508          *
509          * iproc has a slave rx fifo size of 64 bytes. Rx fifo full interrupt
510          * (IS_S_RX_FIFO_FULL_SHIFT) will be generated when RX fifo becomes
511          * full. This can happen if Master issues write requests of more than
512          * 64 bytes.
513          */
514         if (status & BIT(IS_S_RX_EVENT_SHIFT) ||
515             status & BIT(IS_S_RD_EVENT_SHIFT) ||
516             status & BIT(IS_S_RX_FIFO_FULL_SHIFT)) {
517                 /* disable slave interrupts */
518                 val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
519                 val &= ~iproc_i2c->slave_int_mask;
520                 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
521
522                 if (status & BIT(IS_S_RD_EVENT_SHIFT))
523                         /* Master-write-read request */
524                         iproc_i2c->slave_rx_only = false;
525                 else
526                         /* Master-write request only */
527                         iproc_i2c->slave_rx_only = true;
528
529                 /* schedule tasklet to read data later */
530                 tasklet_schedule(&iproc_i2c->slave_rx_tasklet);
531
532                 /* clear IS_S_RX_FIFO_FULL_SHIFT interrupt */
533                 if (status & BIT(IS_S_RX_FIFO_FULL_SHIFT)) {
534                         val = BIT(IS_S_RX_FIFO_FULL_SHIFT);
535                         iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, val);
536                 }
537         }
538
539         return true;
540 }
541
542 static void bcm_iproc_i2c_read_valid_bytes(struct bcm_iproc_i2c_dev *iproc_i2c)
543 {
544         struct i2c_msg *msg = iproc_i2c->msg;
545         uint32_t val;
546
547         /* Read valid data from RX FIFO */
548         while (iproc_i2c->rx_bytes < msg->len) {
549                 val = iproc_i2c_rd_reg(iproc_i2c, M_RX_OFFSET);
550
551                 /* rx fifo empty */
552                 if (!((val >> M_RX_STATUS_SHIFT) & M_RX_STATUS_MASK))
553                         break;
554
555                 msg->buf[iproc_i2c->rx_bytes] =
556                         (val >> M_RX_DATA_SHIFT) & M_RX_DATA_MASK;
557                 iproc_i2c->rx_bytes++;
558         }
559 }
560
561 static void bcm_iproc_i2c_send(struct bcm_iproc_i2c_dev *iproc_i2c)
562 {
563         struct i2c_msg *msg = iproc_i2c->msg;
564         unsigned int tx_bytes = msg->len - iproc_i2c->tx_bytes;
565         unsigned int i;
566         u32 val;
567
568         /* can only fill up to the FIFO size */
569         tx_bytes = min_t(unsigned int, tx_bytes, M_TX_RX_FIFO_SIZE);
570         for (i = 0; i < tx_bytes; i++) {
571                 /* start from where we left over */
572                 unsigned int idx = iproc_i2c->tx_bytes + i;
573
574                 val = msg->buf[idx];
575
576                 /* mark the last byte */
577                 if (idx == msg->len - 1) {
578                         val |= BIT(M_TX_WR_STATUS_SHIFT);
579
580                         if (iproc_i2c->irq) {
581                                 u32 tmp;
582
583                                 /*
584                                  * Since this is the last byte, we should now
585                                  * disable TX FIFO underrun interrupt
586                                  */
587                                 tmp = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
588                                 tmp &= ~BIT(IE_M_TX_UNDERRUN_SHIFT);
589                                 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET,
590                                                  tmp);
591                         }
592                 }
593
594                 /* load data into TX FIFO */
595                 iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
596         }
597
598         /* update number of transferred bytes */
599         iproc_i2c->tx_bytes += tx_bytes;
600 }
601
602 static void bcm_iproc_i2c_read(struct bcm_iproc_i2c_dev *iproc_i2c)
603 {
604         struct i2c_msg *msg = iproc_i2c->msg;
605         u32 bytes_left, val;
606
607         bcm_iproc_i2c_read_valid_bytes(iproc_i2c);
608         bytes_left = msg->len - iproc_i2c->rx_bytes;
609         if (bytes_left == 0) {
610                 if (iproc_i2c->irq) {
611                         /* finished reading all data, disable rx thld event */
612                         val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
613                         val &= ~BIT(IS_M_RX_THLD_SHIFT);
614                         iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
615                 }
616         } else if (bytes_left < iproc_i2c->thld_bytes) {
617                 /* set bytes left as threshold */
618                 val = iproc_i2c_rd_reg(iproc_i2c, M_FIFO_CTRL_OFFSET);
619                 val &= ~(M_FIFO_RX_THLD_MASK << M_FIFO_RX_THLD_SHIFT);
620                 val |= (bytes_left << M_FIFO_RX_THLD_SHIFT);
621                 iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
622                 iproc_i2c->thld_bytes = bytes_left;
623         }
624         /*
625          * bytes_left >= iproc_i2c->thld_bytes,
626          * hence no need to change the THRESHOLD SET.
627          * It will remain as iproc_i2c->thld_bytes itself
628          */
629 }
630
631 static void bcm_iproc_i2c_process_m_event(struct bcm_iproc_i2c_dev *iproc_i2c,
632                                           u32 status)
633 {
634         /* TX FIFO is empty and we have more data to send */
635         if (status & BIT(IS_M_TX_UNDERRUN_SHIFT))
636                 bcm_iproc_i2c_send(iproc_i2c);
637
638         /* RX FIFO threshold is reached and data needs to be read out */
639         if (status & BIT(IS_M_RX_THLD_SHIFT))
640                 bcm_iproc_i2c_read(iproc_i2c);
641
642         /* transfer is done */
643         if (status & BIT(IS_M_START_BUSY_SHIFT)) {
644                 iproc_i2c->xfer_is_done = 1;
645                 if (iproc_i2c->irq)
646                         complete(&iproc_i2c->done);
647         }
648 }
649
650 static irqreturn_t bcm_iproc_i2c_isr(int irq, void *data)
651 {
652         struct bcm_iproc_i2c_dev *iproc_i2c = data;
653         u32 slave_status;
654         u32 status;
655         bool ret;
656
657         status = iproc_i2c_rd_reg(iproc_i2c, IS_OFFSET);
658         /* process only slave interrupt which are enabled */
659         slave_status = status & iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET) &
660                        ISR_MASK_SLAVE;
661
662         if (slave_status) {
663                 ret = bcm_iproc_i2c_slave_isr(iproc_i2c, slave_status);
664                 if (ret)
665                         return IRQ_HANDLED;
666                 else
667                         return IRQ_NONE;
668         }
669
670         status &= ISR_MASK;
671         if (!status)
672                 return IRQ_NONE;
673
674         /* process all master based events */
675         bcm_iproc_i2c_process_m_event(iproc_i2c, status);
676         iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, status);
677
678         return IRQ_HANDLED;
679 }
680
681 static int bcm_iproc_i2c_init(struct bcm_iproc_i2c_dev *iproc_i2c)
682 {
683         u32 val;
684
685         /* put controller in reset */
686         val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
687         val |= BIT(CFG_RESET_SHIFT);
688         val &= ~(BIT(CFG_EN_SHIFT));
689         iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
690
691         /* wait 100 usec per spec */
692         udelay(100);
693
694         /* bring controller out of reset */
695         val &= ~(BIT(CFG_RESET_SHIFT));
696         iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
697
698         /* flush TX/RX FIFOs and set RX FIFO threshold to zero */
699         val = (BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT));
700         iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
701         /* disable all interrupts */
702         val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
703         val &= ~(IE_M_ALL_INTERRUPT_MASK <<
704                         IE_M_ALL_INTERRUPT_SHIFT);
705         iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
706
707         /* clear all pending interrupts */
708         iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, 0xffffffff);
709
710         return 0;
711 }
712
713 static void bcm_iproc_i2c_enable_disable(struct bcm_iproc_i2c_dev *iproc_i2c,
714                                          bool enable)
715 {
716         u32 val;
717
718         val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
719         if (enable)
720                 val |= BIT(CFG_EN_SHIFT);
721         else
722                 val &= ~BIT(CFG_EN_SHIFT);
723         iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
724 }
725
726 static int bcm_iproc_i2c_check_status(struct bcm_iproc_i2c_dev *iproc_i2c,
727                                       struct i2c_msg *msg)
728 {
729         u32 val;
730
731         val = iproc_i2c_rd_reg(iproc_i2c, M_CMD_OFFSET);
732         val = (val >> M_CMD_STATUS_SHIFT) & M_CMD_STATUS_MASK;
733
734         switch (val) {
735         case M_CMD_STATUS_SUCCESS:
736                 return 0;
737
738         case M_CMD_STATUS_LOST_ARB:
739                 dev_dbg(iproc_i2c->device, "lost bus arbitration\n");
740                 return -EAGAIN;
741
742         case M_CMD_STATUS_NACK_ADDR:
743                 dev_dbg(iproc_i2c->device, "NAK addr:0x%02x\n", msg->addr);
744                 return -ENXIO;
745
746         case M_CMD_STATUS_NACK_DATA:
747                 dev_dbg(iproc_i2c->device, "NAK data\n");
748                 return -ENXIO;
749
750         case M_CMD_STATUS_TIMEOUT:
751                 dev_dbg(iproc_i2c->device, "bus timeout\n");
752                 return -ETIMEDOUT;
753
754         case M_CMD_STATUS_FIFO_UNDERRUN:
755                 dev_dbg(iproc_i2c->device, "FIFO under-run\n");
756                 return -ENXIO;
757
758         case M_CMD_STATUS_RX_FIFO_FULL:
759                 dev_dbg(iproc_i2c->device, "RX FIFO full\n");
760                 return -ETIMEDOUT;
761
762         default:
763                 dev_dbg(iproc_i2c->device, "unknown error code=%d\n", val);
764
765                 /* re-initialize i2c for recovery */
766                 bcm_iproc_i2c_enable_disable(iproc_i2c, false);
767                 bcm_iproc_i2c_init(iproc_i2c);
768                 bcm_iproc_i2c_enable_disable(iproc_i2c, true);
769
770                 return -EIO;
771         }
772 }
773
774 static int bcm_iproc_i2c_xfer_wait(struct bcm_iproc_i2c_dev *iproc_i2c,
775                                    struct i2c_msg *msg,
776                                    u32 cmd)
777 {
778         unsigned long time_left = msecs_to_jiffies(I2C_TIMEOUT_MSEC);
779         u32 val, status;
780         int ret;
781
782         iproc_i2c_wr_reg(iproc_i2c, M_CMD_OFFSET, cmd);
783
784         if (iproc_i2c->irq) {
785                 time_left = wait_for_completion_timeout(&iproc_i2c->done,
786                                                         time_left);
787                 /* disable all interrupts */
788                 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
789                 /* read it back to flush the write */
790                 iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
791                 /* make sure the interrupt handler isn't running */
792                 synchronize_irq(iproc_i2c->irq);
793
794         } else { /* polling mode */
795                 unsigned long timeout = jiffies + time_left;
796
797                 do {
798                         status = iproc_i2c_rd_reg(iproc_i2c,
799                                                   IS_OFFSET) & ISR_MASK;
800                         bcm_iproc_i2c_process_m_event(iproc_i2c, status);
801                         iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, status);
802
803                         if (time_after(jiffies, timeout)) {
804                                 time_left = 0;
805                                 break;
806                         }
807
808                         cpu_relax();
809                         cond_resched();
810                 } while (!iproc_i2c->xfer_is_done);
811         }
812
813         if (!time_left && !iproc_i2c->xfer_is_done) {
814                 dev_err(iproc_i2c->device, "transaction timed out\n");
815
816                 /* flush both TX/RX FIFOs */
817                 val = BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT);
818                 iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
819                 return -ETIMEDOUT;
820         }
821
822         ret = bcm_iproc_i2c_check_status(iproc_i2c, msg);
823         if (ret) {
824                 /* flush both TX/RX FIFOs */
825                 val = BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT);
826                 iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
827                 return ret;
828         }
829
830         return 0;
831 }
832
833 /*
834  * If 'process_call' is true, then this is a multi-msg transfer that requires
835  * a repeated start between the messages.
836  * More specifically, it must be a write (reg) followed by a read (data).
837  * The i2c quirks are set to enforce this rule.
838  */
839 static int bcm_iproc_i2c_xfer_internal(struct bcm_iproc_i2c_dev *iproc_i2c,
840                                         struct i2c_msg *msgs, bool process_call)
841 {
842         int i;
843         u8 addr;
844         u32 val, tmp, val_intr_en;
845         unsigned int tx_bytes;
846         struct i2c_msg *msg = &msgs[0];
847
848         /* check if bus is busy */
849         if (!!(iproc_i2c_rd_reg(iproc_i2c,
850                                 M_CMD_OFFSET) & BIT(M_CMD_START_BUSY_SHIFT))) {
851                 dev_warn(iproc_i2c->device, "bus is busy\n");
852                 return -EBUSY;
853         }
854
855         iproc_i2c->msg = msg;
856
857         /* format and load slave address into the TX FIFO */
858         addr = i2c_8bit_addr_from_msg(msg);
859         iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, addr);
860
861         /*
862          * For a write transaction, load data into the TX FIFO. Only allow
863          * loading up to TX FIFO size - 1 bytes of data since the first byte
864          * has been used up by the slave address
865          */
866         tx_bytes = min_t(unsigned int, msg->len, M_TX_RX_FIFO_SIZE - 1);
867         if (!(msg->flags & I2C_M_RD)) {
868                 for (i = 0; i < tx_bytes; i++) {
869                         val = msg->buf[i];
870
871                         /* mark the last byte */
872                         if (!process_call && (i == msg->len - 1))
873                                 val |= BIT(M_TX_WR_STATUS_SHIFT);
874
875                         iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
876                 }
877                 iproc_i2c->tx_bytes = tx_bytes;
878         }
879
880         /* Process the read message if this is process call */
881         if (process_call) {
882                 msg++;
883                 iproc_i2c->msg = msg;  /* point to second msg */
884
885                 /*
886                  * The last byte to be sent out should be a slave
887                  * address with read operation
888                  */
889                 addr = i2c_8bit_addr_from_msg(msg);
890                 /* mark it the last byte out */
891                 val = addr | BIT(M_TX_WR_STATUS_SHIFT);
892                 iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
893         }
894
895         /* mark as incomplete before starting the transaction */
896         if (iproc_i2c->irq)
897                 reinit_completion(&iproc_i2c->done);
898
899         iproc_i2c->xfer_is_done = 0;
900
901         /*
902          * Enable the "start busy" interrupt, which will be triggered after the
903          * transaction is done, i.e., the internal start_busy bit, transitions
904          * from 1 to 0.
905          */
906         val_intr_en = BIT(IE_M_START_BUSY_SHIFT);
907
908         /*
909          * If TX data size is larger than the TX FIFO, need to enable TX
910          * underrun interrupt, which will be triggerred when the TX FIFO is
911          * empty. When that happens we can then pump more data into the FIFO
912          */
913         if (!process_call && !(msg->flags & I2C_M_RD) &&
914             msg->len > iproc_i2c->tx_bytes)
915                 val_intr_en |= BIT(IE_M_TX_UNDERRUN_SHIFT);
916
917         /*
918          * Now we can activate the transfer. For a read operation, specify the
919          * number of bytes to read
920          */
921         val = BIT(M_CMD_START_BUSY_SHIFT);
922
923         if (msg->len == 0) {
924                 /* SMBUS QUICK Command (Read/Write) */
925                 val |= (M_CMD_PROTOCOL_QUICK << M_CMD_PROTOCOL_SHIFT);
926         } else if (msg->flags & I2C_M_RD) {
927                 u32 protocol;
928
929                 iproc_i2c->rx_bytes = 0;
930                 if (msg->len > M_RX_FIFO_MAX_THLD_VALUE)
931                         iproc_i2c->thld_bytes = M_RX_FIFO_THLD_VALUE;
932                 else
933                         iproc_i2c->thld_bytes = msg->len;
934
935                 /* set threshold value */
936                 tmp = iproc_i2c_rd_reg(iproc_i2c, M_FIFO_CTRL_OFFSET);
937                 tmp &= ~(M_FIFO_RX_THLD_MASK << M_FIFO_RX_THLD_SHIFT);
938                 tmp |= iproc_i2c->thld_bytes << M_FIFO_RX_THLD_SHIFT;
939                 iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, tmp);
940
941                 /* enable the RX threshold interrupt */
942                 val_intr_en |= BIT(IE_M_RX_THLD_SHIFT);
943
944                 protocol = process_call ?
945                                 M_CMD_PROTOCOL_PROCESS : M_CMD_PROTOCOL_BLK_RD;
946
947                 val |= (protocol << M_CMD_PROTOCOL_SHIFT) |
948                        (msg->len << M_CMD_RD_CNT_SHIFT);
949         } else {
950                 val |= (M_CMD_PROTOCOL_BLK_WR << M_CMD_PROTOCOL_SHIFT);
951         }
952
953         if (iproc_i2c->irq)
954                 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val_intr_en);
955
956         return bcm_iproc_i2c_xfer_wait(iproc_i2c, msg, val);
957 }
958
959 static int bcm_iproc_i2c_xfer(struct i2c_adapter *adapter,
960                               struct i2c_msg msgs[], int num)
961 {
962         struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(adapter);
963         bool process_call = false;
964         int ret;
965
966         if (num == 2) {
967                 /* Repeated start, use process call */
968                 process_call = true;
969                 if (msgs[1].flags & I2C_M_NOSTART) {
970                         dev_err(iproc_i2c->device, "Invalid repeated start\n");
971                         return -EOPNOTSUPP;
972                 }
973         }
974
975         ret = bcm_iproc_i2c_xfer_internal(iproc_i2c, msgs, process_call);
976         if (ret) {
977                 dev_dbg(iproc_i2c->device, "xfer failed\n");
978                 return ret;
979         }
980
981         return num;
982 }
983
984 static uint32_t bcm_iproc_i2c_functionality(struct i2c_adapter *adap)
985 {
986         u32 val;
987
988         val = I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
989
990         if (adap->algo->reg_slave)
991                 val |= I2C_FUNC_SLAVE;
992
993         return val;
994 }
995
996 static struct i2c_algorithm bcm_iproc_algo = {
997         .master_xfer = bcm_iproc_i2c_xfer,
998         .functionality = bcm_iproc_i2c_functionality,
999         .reg_slave = bcm_iproc_i2c_reg_slave,
1000         .unreg_slave = bcm_iproc_i2c_unreg_slave,
1001 };
1002
1003 static const struct i2c_adapter_quirks bcm_iproc_i2c_quirks = {
1004         .flags = I2C_AQ_COMB_WRITE_THEN_READ,
1005         .max_comb_1st_msg_len = M_TX_RX_FIFO_SIZE,
1006         .max_read_len = M_RX_MAX_READ_LEN,
1007 };
1008
1009 static int bcm_iproc_i2c_cfg_speed(struct bcm_iproc_i2c_dev *iproc_i2c)
1010 {
1011         unsigned int bus_speed;
1012         u32 val;
1013         int ret = of_property_read_u32(iproc_i2c->device->of_node,
1014                                        "clock-frequency", &bus_speed);
1015         if (ret < 0) {
1016                 dev_info(iproc_i2c->device,
1017                         "unable to interpret clock-frequency DT property\n");
1018                 bus_speed = I2C_MAX_STANDARD_MODE_FREQ;
1019         }
1020
1021         if (bus_speed < I2C_MAX_STANDARD_MODE_FREQ) {
1022                 dev_err(iproc_i2c->device, "%d Hz bus speed not supported\n",
1023                         bus_speed);
1024                 dev_err(iproc_i2c->device,
1025                         "valid speeds are 100khz and 400khz\n");
1026                 return -EINVAL;
1027         } else if (bus_speed < I2C_MAX_FAST_MODE_FREQ) {
1028                 bus_speed = I2C_MAX_STANDARD_MODE_FREQ;
1029         } else {
1030                 bus_speed = I2C_MAX_FAST_MODE_FREQ;
1031         }
1032
1033         iproc_i2c->bus_speed = bus_speed;
1034         val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
1035         val &= ~BIT(TIM_CFG_MODE_400_SHIFT);
1036         val |= (bus_speed == I2C_MAX_FAST_MODE_FREQ) << TIM_CFG_MODE_400_SHIFT;
1037         iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
1038
1039         dev_info(iproc_i2c->device, "bus set to %u Hz\n", bus_speed);
1040
1041         return 0;
1042 }
1043
1044 static int bcm_iproc_i2c_probe(struct platform_device *pdev)
1045 {
1046         int irq, ret = 0;
1047         struct bcm_iproc_i2c_dev *iproc_i2c;
1048         struct i2c_adapter *adap;
1049
1050         iproc_i2c = devm_kzalloc(&pdev->dev, sizeof(*iproc_i2c),
1051                                  GFP_KERNEL);
1052         if (!iproc_i2c)
1053                 return -ENOMEM;
1054
1055         platform_set_drvdata(pdev, iproc_i2c);
1056         iproc_i2c->device = &pdev->dev;
1057         iproc_i2c->type =
1058                 (enum bcm_iproc_i2c_type)of_device_get_match_data(&pdev->dev);
1059         init_completion(&iproc_i2c->done);
1060
1061         iproc_i2c->base = devm_platform_ioremap_resource(pdev, 0);
1062         if (IS_ERR(iproc_i2c->base))
1063                 return PTR_ERR(iproc_i2c->base);
1064
1065         if (iproc_i2c->type == IPROC_I2C_NIC) {
1066                 iproc_i2c->idm_base = devm_platform_ioremap_resource(pdev, 1);
1067                 if (IS_ERR(iproc_i2c->idm_base))
1068                         return PTR_ERR(iproc_i2c->idm_base);
1069
1070                 ret = of_property_read_u32(iproc_i2c->device->of_node,
1071                                            "brcm,ape-hsls-addr-mask",
1072                                            &iproc_i2c->ape_addr_mask);
1073                 if (ret < 0) {
1074                         dev_err(iproc_i2c->device,
1075                                 "'brcm,ape-hsls-addr-mask' missing\n");
1076                         return -EINVAL;
1077                 }
1078
1079                 spin_lock_init(&iproc_i2c->idm_lock);
1080
1081                 /* no slave support */
1082                 bcm_iproc_algo.reg_slave = NULL;
1083                 bcm_iproc_algo.unreg_slave = NULL;
1084         }
1085
1086         ret = bcm_iproc_i2c_init(iproc_i2c);
1087         if (ret)
1088                 return ret;
1089
1090         ret = bcm_iproc_i2c_cfg_speed(iproc_i2c);
1091         if (ret)
1092                 return ret;
1093
1094         irq = platform_get_irq(pdev, 0);
1095         if (irq > 0) {
1096                 ret = devm_request_irq(iproc_i2c->device, irq,
1097                                        bcm_iproc_i2c_isr, 0, pdev->name,
1098                                        iproc_i2c);
1099                 if (ret < 0) {
1100                         dev_err(iproc_i2c->device,
1101                                 "unable to request irq %i\n", irq);
1102                         return ret;
1103                 }
1104
1105                 iproc_i2c->irq = irq;
1106         } else {
1107                 dev_warn(iproc_i2c->device,
1108                          "no irq resource, falling back to poll mode\n");
1109         }
1110
1111         bcm_iproc_i2c_enable_disable(iproc_i2c, true);
1112
1113         adap = &iproc_i2c->adapter;
1114         i2c_set_adapdata(adap, iproc_i2c);
1115         snprintf(adap->name, sizeof(adap->name),
1116                 "Broadcom iProc (%s)",
1117                 of_node_full_name(iproc_i2c->device->of_node));
1118         adap->algo = &bcm_iproc_algo;
1119         adap->quirks = &bcm_iproc_i2c_quirks;
1120         adap->dev.parent = &pdev->dev;
1121         adap->dev.of_node = pdev->dev.of_node;
1122
1123         return i2c_add_adapter(adap);
1124 }
1125
1126 static void bcm_iproc_i2c_remove(struct platform_device *pdev)
1127 {
1128         struct bcm_iproc_i2c_dev *iproc_i2c = platform_get_drvdata(pdev);
1129
1130         if (iproc_i2c->irq) {
1131                 /*
1132                  * Make sure there's no pending interrupt when we remove the
1133                  * adapter
1134                  */
1135                 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
1136                 iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
1137                 synchronize_irq(iproc_i2c->irq);
1138         }
1139
1140         i2c_del_adapter(&iproc_i2c->adapter);
1141         bcm_iproc_i2c_enable_disable(iproc_i2c, false);
1142 }
1143
1144 static int bcm_iproc_i2c_suspend(struct device *dev)
1145 {
1146         struct bcm_iproc_i2c_dev *iproc_i2c = dev_get_drvdata(dev);
1147
1148         if (iproc_i2c->irq) {
1149                 /*
1150                  * Make sure there's no pending interrupt when we go into
1151                  * suspend
1152                  */
1153                 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
1154                 iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
1155                 synchronize_irq(iproc_i2c->irq);
1156         }
1157
1158         /* now disable the controller */
1159         bcm_iproc_i2c_enable_disable(iproc_i2c, false);
1160
1161         return 0;
1162 }
1163
1164 static int bcm_iproc_i2c_resume(struct device *dev)
1165 {
1166         struct bcm_iproc_i2c_dev *iproc_i2c = dev_get_drvdata(dev);
1167         int ret;
1168         u32 val;
1169
1170         /*
1171          * Power domain could have been shut off completely in system deep
1172          * sleep, so re-initialize the block here
1173          */
1174         ret = bcm_iproc_i2c_init(iproc_i2c);
1175         if (ret)
1176                 return ret;
1177
1178         /* configure to the desired bus speed */
1179         val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
1180         val &= ~BIT(TIM_CFG_MODE_400_SHIFT);
1181         val |= (iproc_i2c->bus_speed == I2C_MAX_FAST_MODE_FREQ) << TIM_CFG_MODE_400_SHIFT;
1182         iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
1183
1184         bcm_iproc_i2c_enable_disable(iproc_i2c, true);
1185
1186         return 0;
1187 }
1188
1189 static const struct dev_pm_ops bcm_iproc_i2c_pm_ops = {
1190         .suspend_late = &bcm_iproc_i2c_suspend,
1191         .resume_early = &bcm_iproc_i2c_resume
1192 };
1193
1194 static int bcm_iproc_i2c_reg_slave(struct i2c_client *slave)
1195 {
1196         struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(slave->adapter);
1197
1198         if (iproc_i2c->slave)
1199                 return -EBUSY;
1200
1201         if (slave->flags & I2C_CLIENT_TEN)
1202                 return -EAFNOSUPPORT;
1203
1204         iproc_i2c->slave = slave;
1205
1206         tasklet_init(&iproc_i2c->slave_rx_tasklet, slave_rx_tasklet_fn,
1207                      (unsigned long)iproc_i2c);
1208
1209         bcm_iproc_i2c_slave_init(iproc_i2c, false);
1210         return 0;
1211 }
1212
1213 static int bcm_iproc_i2c_unreg_slave(struct i2c_client *slave)
1214 {
1215         u32 tmp;
1216         struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(slave->adapter);
1217
1218         if (!iproc_i2c->slave)
1219                 return -EINVAL;
1220
1221         disable_irq(iproc_i2c->irq);
1222
1223         tasklet_kill(&iproc_i2c->slave_rx_tasklet);
1224
1225         /* disable all slave interrupts */
1226         tmp = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
1227         tmp &= ~(IE_S_ALL_INTERRUPT_MASK <<
1228                         IE_S_ALL_INTERRUPT_SHIFT);
1229         iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, tmp);
1230
1231         /* Erase the slave address programmed */
1232         tmp = iproc_i2c_rd_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET);
1233         tmp &= ~BIT(S_CFG_EN_NIC_SMB_ADDR3_SHIFT);
1234         iproc_i2c_wr_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET, tmp);
1235
1236         /* flush TX/RX FIFOs */
1237         tmp = (BIT(S_FIFO_RX_FLUSH_SHIFT) | BIT(S_FIFO_TX_FLUSH_SHIFT));
1238         iproc_i2c_wr_reg(iproc_i2c, S_FIFO_CTRL_OFFSET, tmp);
1239
1240         /* clear all pending slave interrupts */
1241         iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, ISR_MASK_SLAVE);
1242
1243         iproc_i2c->slave = NULL;
1244
1245         enable_irq(iproc_i2c->irq);
1246
1247         return 0;
1248 }
1249
1250 static const struct of_device_id bcm_iproc_i2c_of_match[] = {
1251         {
1252                 .compatible = "brcm,iproc-i2c",
1253                 .data = (int *)IPROC_I2C,
1254         }, {
1255                 .compatible = "brcm,iproc-nic-i2c",
1256                 .data = (int *)IPROC_I2C_NIC,
1257         },
1258         { /* sentinel */ }
1259 };
1260 MODULE_DEVICE_TABLE(of, bcm_iproc_i2c_of_match);
1261
1262 static struct platform_driver bcm_iproc_i2c_driver = {
1263         .driver = {
1264                 .name = "bcm-iproc-i2c",
1265                 .of_match_table = bcm_iproc_i2c_of_match,
1266                 .pm = pm_sleep_ptr(&bcm_iproc_i2c_pm_ops),
1267         },
1268         .probe = bcm_iproc_i2c_probe,
1269         .remove_new = bcm_iproc_i2c_remove,
1270 };
1271 module_platform_driver(bcm_iproc_i2c_driver);
1272
1273 MODULE_AUTHOR("Ray Jui <rjui@broadcom.com>");
1274 MODULE_DESCRIPTION("Broadcom iProc I2C Driver");
1275 MODULE_LICENSE("GPL v2");