GNU Linux-libre 5.10.215-gnu1
[releases.git] / drivers / i2c / busses / i2c-bcm-iproc.c
1 /*
2  * Copyright (C) 2014 Broadcom Corporation
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License as
6  * published by the Free Software Foundation version 2.
7  *
8  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
9  * kind, whether express or implied; without even the implied warranty
10  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  */
13
14 #include <linux/delay.h>
15 #include <linux/i2c.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/of_device.h>
21 #include <linux/platform_device.h>
22 #include <linux/slab.h>
23
24 #define IDM_CTRL_DIRECT_OFFSET       0x00
25 #define CFG_OFFSET                   0x00
26 #define CFG_RESET_SHIFT              31
27 #define CFG_EN_SHIFT                 30
28 #define CFG_SLAVE_ADDR_0_SHIFT       28
29 #define CFG_M_RETRY_CNT_SHIFT        16
30 #define CFG_M_RETRY_CNT_MASK         0x0f
31
32 #define TIM_CFG_OFFSET               0x04
33 #define TIM_CFG_MODE_400_SHIFT       31
34 #define TIM_RAND_SLAVE_STRETCH_SHIFT      24
35 #define TIM_RAND_SLAVE_STRETCH_MASK       0x7f
36 #define TIM_PERIODIC_SLAVE_STRETCH_SHIFT  16
37 #define TIM_PERIODIC_SLAVE_STRETCH_MASK   0x7f
38
39 #define S_CFG_SMBUS_ADDR_OFFSET           0x08
40 #define S_CFG_EN_NIC_SMB_ADDR3_SHIFT      31
41 #define S_CFG_NIC_SMB_ADDR3_SHIFT         24
42 #define S_CFG_NIC_SMB_ADDR3_MASK          0x7f
43 #define S_CFG_EN_NIC_SMB_ADDR2_SHIFT      23
44 #define S_CFG_NIC_SMB_ADDR2_SHIFT         16
45 #define S_CFG_NIC_SMB_ADDR2_MASK          0x7f
46 #define S_CFG_EN_NIC_SMB_ADDR1_SHIFT      15
47 #define S_CFG_NIC_SMB_ADDR1_SHIFT         8
48 #define S_CFG_NIC_SMB_ADDR1_MASK          0x7f
49 #define S_CFG_EN_NIC_SMB_ADDR0_SHIFT      7
50 #define S_CFG_NIC_SMB_ADDR0_SHIFT         0
51 #define S_CFG_NIC_SMB_ADDR0_MASK          0x7f
52
53 #define M_FIFO_CTRL_OFFSET           0x0c
54 #define M_FIFO_RX_FLUSH_SHIFT        31
55 #define M_FIFO_TX_FLUSH_SHIFT        30
56 #define M_FIFO_RX_CNT_SHIFT          16
57 #define M_FIFO_RX_CNT_MASK           0x7f
58 #define M_FIFO_RX_THLD_SHIFT         8
59 #define M_FIFO_RX_THLD_MASK          0x3f
60
61 #define S_FIFO_CTRL_OFFSET           0x10
62 #define S_FIFO_RX_FLUSH_SHIFT        31
63 #define S_FIFO_TX_FLUSH_SHIFT        30
64 #define S_FIFO_RX_CNT_SHIFT          16
65 #define S_FIFO_RX_CNT_MASK           0x7f
66 #define S_FIFO_RX_THLD_SHIFT         8
67 #define S_FIFO_RX_THLD_MASK          0x3f
68
69 #define M_CMD_OFFSET                 0x30
70 #define M_CMD_START_BUSY_SHIFT       31
71 #define M_CMD_STATUS_SHIFT           25
72 #define M_CMD_STATUS_MASK            0x07
73 #define M_CMD_STATUS_SUCCESS         0x0
74 #define M_CMD_STATUS_LOST_ARB        0x1
75 #define M_CMD_STATUS_NACK_ADDR       0x2
76 #define M_CMD_STATUS_NACK_DATA       0x3
77 #define M_CMD_STATUS_TIMEOUT         0x4
78 #define M_CMD_STATUS_FIFO_UNDERRUN   0x5
79 #define M_CMD_STATUS_RX_FIFO_FULL    0x6
80 #define M_CMD_PROTOCOL_SHIFT         9
81 #define M_CMD_PROTOCOL_MASK          0xf
82 #define M_CMD_PROTOCOL_QUICK         0x0
83 #define M_CMD_PROTOCOL_BLK_WR        0x7
84 #define M_CMD_PROTOCOL_BLK_RD        0x8
85 #define M_CMD_PROTOCOL_PROCESS       0xa
86 #define M_CMD_PEC_SHIFT              8
87 #define M_CMD_RD_CNT_SHIFT           0
88 #define M_CMD_RD_CNT_MASK            0xff
89
90 #define S_CMD_OFFSET                 0x34
91 #define S_CMD_START_BUSY_SHIFT       31
92 #define S_CMD_STATUS_SHIFT           23
93 #define S_CMD_STATUS_MASK            0x07
94 #define S_CMD_STATUS_SUCCESS         0x0
95 #define S_CMD_STATUS_TIMEOUT         0x5
96
97 #define IE_OFFSET                    0x38
98 #define IE_M_RX_FIFO_FULL_SHIFT      31
99 #define IE_M_RX_THLD_SHIFT           30
100 #define IE_M_START_BUSY_SHIFT        28
101 #define IE_M_TX_UNDERRUN_SHIFT       27
102 #define IE_S_RX_FIFO_FULL_SHIFT      26
103 #define IE_S_RX_THLD_SHIFT           25
104 #define IE_S_RX_EVENT_SHIFT          24
105 #define IE_S_START_BUSY_SHIFT        23
106 #define IE_S_TX_UNDERRUN_SHIFT       22
107 #define IE_S_RD_EVENT_SHIFT          21
108
109 #define IS_OFFSET                    0x3c
110 #define IS_M_RX_FIFO_FULL_SHIFT      31
111 #define IS_M_RX_THLD_SHIFT           30
112 #define IS_M_START_BUSY_SHIFT        28
113 #define IS_M_TX_UNDERRUN_SHIFT       27
114 #define IS_S_RX_FIFO_FULL_SHIFT      26
115 #define IS_S_RX_THLD_SHIFT           25
116 #define IS_S_RX_EVENT_SHIFT          24
117 #define IS_S_START_BUSY_SHIFT        23
118 #define IS_S_TX_UNDERRUN_SHIFT       22
119 #define IS_S_RD_EVENT_SHIFT          21
120
121 #define M_TX_OFFSET                  0x40
122 #define M_TX_WR_STATUS_SHIFT         31
123 #define M_TX_DATA_SHIFT              0
124 #define M_TX_DATA_MASK               0xff
125
126 #define M_RX_OFFSET                  0x44
127 #define M_RX_STATUS_SHIFT            30
128 #define M_RX_STATUS_MASK             0x03
129 #define M_RX_PEC_ERR_SHIFT           29
130 #define M_RX_DATA_SHIFT              0
131 #define M_RX_DATA_MASK               0xff
132
133 #define S_TX_OFFSET                  0x48
134 #define S_TX_WR_STATUS_SHIFT         31
135 #define S_TX_DATA_SHIFT              0
136 #define S_TX_DATA_MASK               0xff
137
138 #define S_RX_OFFSET                  0x4c
139 #define S_RX_STATUS_SHIFT            30
140 #define S_RX_STATUS_MASK             0x03
141 #define S_RX_PEC_ERR_SHIFT           29
142 #define S_RX_DATA_SHIFT              0
143 #define S_RX_DATA_MASK               0xff
144
145 #define I2C_TIMEOUT_MSEC             50000
146 #define M_TX_RX_FIFO_SIZE            64
147 #define M_RX_FIFO_MAX_THLD_VALUE     (M_TX_RX_FIFO_SIZE - 1)
148
149 #define M_RX_MAX_READ_LEN            255
150 #define M_RX_FIFO_THLD_VALUE         50
151
152 #define IE_M_ALL_INTERRUPT_SHIFT     27
153 #define IE_M_ALL_INTERRUPT_MASK      0x1e
154
155 #define SLAVE_READ_WRITE_BIT_MASK    0x1
156 #define SLAVE_READ_WRITE_BIT_SHIFT   0x1
157 #define SLAVE_MAX_SIZE_TRANSACTION   64
158 #define SLAVE_CLOCK_STRETCH_TIME     25
159
160 #define IE_S_ALL_INTERRUPT_SHIFT     21
161 #define IE_S_ALL_INTERRUPT_MASK      0x3f
162 /*
163  * It takes ~18us to reading 10bytes of data, hence to keep tasklet
164  * running for less time, max slave read per tasklet is set to 10 bytes.
165  */
166 #define MAX_SLAVE_RX_PER_INT         10
167
168 enum i2c_slave_read_status {
169         I2C_SLAVE_RX_FIFO_EMPTY = 0,
170         I2C_SLAVE_RX_START,
171         I2C_SLAVE_RX_DATA,
172         I2C_SLAVE_RX_END,
173 };
174
175 enum bus_speed_index {
176         I2C_SPD_100K = 0,
177         I2C_SPD_400K,
178 };
179
180 enum bcm_iproc_i2c_type {
181         IPROC_I2C,
182         IPROC_I2C_NIC
183 };
184
185 struct bcm_iproc_i2c_dev {
186         struct device *device;
187         enum bcm_iproc_i2c_type type;
188         int irq;
189
190         void __iomem *base;
191         void __iomem *idm_base;
192
193         u32 ape_addr_mask;
194
195         /* lock for indirect access through IDM */
196         spinlock_t idm_lock;
197
198         struct i2c_adapter adapter;
199         unsigned int bus_speed;
200
201         struct completion done;
202         int xfer_is_done;
203
204         struct i2c_msg *msg;
205
206         struct i2c_client *slave;
207
208         /* bytes that have been transferred */
209         unsigned int tx_bytes;
210         /* bytes that have been read */
211         unsigned int rx_bytes;
212         unsigned int thld_bytes;
213
214         bool slave_rx_only;
215         bool rx_start_rcvd;
216         bool slave_read_complete;
217         u32 tx_underrun;
218         u32 slave_int_mask;
219         struct tasklet_struct slave_rx_tasklet;
220 };
221
222 /* tasklet to process slave rx data */
223 static void slave_rx_tasklet_fn(unsigned long);
224
225 /*
226  * Can be expanded in the future if more interrupt status bits are utilized
227  */
228 #define ISR_MASK (BIT(IS_M_START_BUSY_SHIFT) | BIT(IS_M_TX_UNDERRUN_SHIFT)\
229                 | BIT(IS_M_RX_THLD_SHIFT))
230
231 #define ISR_MASK_SLAVE (BIT(IS_S_START_BUSY_SHIFT)\
232                 | BIT(IS_S_RX_EVENT_SHIFT) | BIT(IS_S_RD_EVENT_SHIFT)\
233                 | BIT(IS_S_TX_UNDERRUN_SHIFT) | BIT(IS_S_RX_FIFO_FULL_SHIFT)\
234                 | BIT(IS_S_RX_THLD_SHIFT))
235
236 static int bcm_iproc_i2c_reg_slave(struct i2c_client *slave);
237 static int bcm_iproc_i2c_unreg_slave(struct i2c_client *slave);
238 static void bcm_iproc_i2c_enable_disable(struct bcm_iproc_i2c_dev *iproc_i2c,
239                                          bool enable);
240
241 static inline u32 iproc_i2c_rd_reg(struct bcm_iproc_i2c_dev *iproc_i2c,
242                                    u32 offset)
243 {
244         u32 val;
245         unsigned long flags;
246
247         if (iproc_i2c->idm_base) {
248                 spin_lock_irqsave(&iproc_i2c->idm_lock, flags);
249                 writel(iproc_i2c->ape_addr_mask,
250                        iproc_i2c->idm_base + IDM_CTRL_DIRECT_OFFSET);
251                 val = readl(iproc_i2c->base + offset);
252                 spin_unlock_irqrestore(&iproc_i2c->idm_lock, flags);
253         } else {
254                 val = readl(iproc_i2c->base + offset);
255         }
256
257         return val;
258 }
259
260 static inline void iproc_i2c_wr_reg(struct bcm_iproc_i2c_dev *iproc_i2c,
261                                     u32 offset, u32 val)
262 {
263         unsigned long flags;
264
265         if (iproc_i2c->idm_base) {
266                 spin_lock_irqsave(&iproc_i2c->idm_lock, flags);
267                 writel(iproc_i2c->ape_addr_mask,
268                        iproc_i2c->idm_base + IDM_CTRL_DIRECT_OFFSET);
269                 writel(val, iproc_i2c->base + offset);
270                 spin_unlock_irqrestore(&iproc_i2c->idm_lock, flags);
271         } else {
272                 writel(val, iproc_i2c->base + offset);
273         }
274 }
275
276 static void bcm_iproc_i2c_slave_init(
277         struct bcm_iproc_i2c_dev *iproc_i2c, bool need_reset)
278 {
279         u32 val;
280
281         iproc_i2c->tx_underrun = 0;
282         if (need_reset) {
283                 /* put controller in reset */
284                 val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
285                 val |= BIT(CFG_RESET_SHIFT);
286                 iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
287
288                 /* wait 100 usec per spec */
289                 udelay(100);
290
291                 /* bring controller out of reset */
292                 val &= ~(BIT(CFG_RESET_SHIFT));
293                 iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
294         }
295
296         /* flush TX/RX FIFOs */
297         val = (BIT(S_FIFO_RX_FLUSH_SHIFT) | BIT(S_FIFO_TX_FLUSH_SHIFT));
298         iproc_i2c_wr_reg(iproc_i2c, S_FIFO_CTRL_OFFSET, val);
299
300         /* Maximum slave stretch time */
301         val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
302         val &= ~(TIM_RAND_SLAVE_STRETCH_MASK << TIM_RAND_SLAVE_STRETCH_SHIFT);
303         val |= (SLAVE_CLOCK_STRETCH_TIME << TIM_RAND_SLAVE_STRETCH_SHIFT);
304         iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
305
306         /* Configure the slave address */
307         val = iproc_i2c_rd_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET);
308         val |= BIT(S_CFG_EN_NIC_SMB_ADDR3_SHIFT);
309         val &= ~(S_CFG_NIC_SMB_ADDR3_MASK << S_CFG_NIC_SMB_ADDR3_SHIFT);
310         val |= (iproc_i2c->slave->addr << S_CFG_NIC_SMB_ADDR3_SHIFT);
311         iproc_i2c_wr_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET, val);
312
313         /* clear all pending slave interrupts */
314         iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, ISR_MASK_SLAVE);
315
316         /* Enable interrupt register to indicate a valid byte in receive fifo */
317         val = BIT(IE_S_RX_EVENT_SHIFT);
318         /* Enable interrupt register to indicate a Master read transaction */
319         val |= BIT(IE_S_RD_EVENT_SHIFT);
320         /* Enable interrupt register for the Slave BUSY command */
321         val |= BIT(IE_S_START_BUSY_SHIFT);
322         iproc_i2c->slave_int_mask = val;
323         iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
324 }
325
326 static void bcm_iproc_i2c_check_slave_status(
327         struct bcm_iproc_i2c_dev *iproc_i2c)
328 {
329         u32 val;
330
331         val = iproc_i2c_rd_reg(iproc_i2c, S_CMD_OFFSET);
332         /* status is valid only when START_BUSY is cleared after it was set */
333         if (val & BIT(S_CMD_START_BUSY_SHIFT))
334                 return;
335
336         val = (val >> S_CMD_STATUS_SHIFT) & S_CMD_STATUS_MASK;
337         if (val == S_CMD_STATUS_TIMEOUT) {
338                 dev_err(iproc_i2c->device, "slave random stretch time timeout\n");
339
340                 /* re-initialize i2c for recovery */
341                 bcm_iproc_i2c_enable_disable(iproc_i2c, false);
342                 bcm_iproc_i2c_slave_init(iproc_i2c, true);
343                 bcm_iproc_i2c_enable_disable(iproc_i2c, true);
344         }
345 }
346
347 static void bcm_iproc_i2c_slave_read(struct bcm_iproc_i2c_dev *iproc_i2c)
348 {
349         u8 rx_data, rx_status;
350         u32 rx_bytes = 0;
351         u32 val;
352
353         while (rx_bytes < MAX_SLAVE_RX_PER_INT) {
354                 val = iproc_i2c_rd_reg(iproc_i2c, S_RX_OFFSET);
355                 rx_status = (val >> S_RX_STATUS_SHIFT) & S_RX_STATUS_MASK;
356                 rx_data = ((val >> S_RX_DATA_SHIFT) & S_RX_DATA_MASK);
357
358                 if (rx_status == I2C_SLAVE_RX_START) {
359                         /* Start of SMBUS Master write */
360                         i2c_slave_event(iproc_i2c->slave,
361                                         I2C_SLAVE_WRITE_REQUESTED, &rx_data);
362                         iproc_i2c->rx_start_rcvd = true;
363                         iproc_i2c->slave_read_complete = false;
364                 } else if (rx_status == I2C_SLAVE_RX_DATA &&
365                            iproc_i2c->rx_start_rcvd) {
366                         /* Middle of SMBUS Master write */
367                         i2c_slave_event(iproc_i2c->slave,
368                                         I2C_SLAVE_WRITE_RECEIVED, &rx_data);
369                 } else if (rx_status == I2C_SLAVE_RX_END &&
370                            iproc_i2c->rx_start_rcvd) {
371                         /* End of SMBUS Master write */
372                         if (iproc_i2c->slave_rx_only)
373                                 i2c_slave_event(iproc_i2c->slave,
374                                                 I2C_SLAVE_WRITE_RECEIVED,
375                                                 &rx_data);
376
377                         i2c_slave_event(iproc_i2c->slave, I2C_SLAVE_STOP,
378                                         &rx_data);
379                 } else if (rx_status == I2C_SLAVE_RX_FIFO_EMPTY) {
380                         iproc_i2c->rx_start_rcvd = false;
381                         iproc_i2c->slave_read_complete = true;
382                         break;
383                 }
384
385                 rx_bytes++;
386         }
387 }
388
389 static void slave_rx_tasklet_fn(unsigned long data)
390 {
391         struct bcm_iproc_i2c_dev *iproc_i2c = (struct bcm_iproc_i2c_dev *)data;
392         u32 int_clr;
393
394         bcm_iproc_i2c_slave_read(iproc_i2c);
395
396         /* clear pending IS_S_RX_EVENT_SHIFT interrupt */
397         int_clr = BIT(IS_S_RX_EVENT_SHIFT);
398
399         if (!iproc_i2c->slave_rx_only && iproc_i2c->slave_read_complete) {
400                 /*
401                  * In case of single byte master-read request,
402                  * IS_S_TX_UNDERRUN_SHIFT event is generated before
403                  * IS_S_START_BUSY_SHIFT event. Hence start slave data send
404                  * from first IS_S_TX_UNDERRUN_SHIFT event.
405                  *
406                  * This means don't send any data from slave when
407                  * IS_S_RD_EVENT_SHIFT event is generated else it will increment
408                  * eeprom or other backend slave driver read pointer twice.
409                  */
410                 iproc_i2c->tx_underrun = 0;
411                 iproc_i2c->slave_int_mask |= BIT(IE_S_TX_UNDERRUN_SHIFT);
412
413                 /* clear IS_S_RD_EVENT_SHIFT interrupt */
414                 int_clr |= BIT(IS_S_RD_EVENT_SHIFT);
415         }
416
417         /* clear slave interrupt */
418         iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, int_clr);
419         /* enable slave interrupts */
420         iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, iproc_i2c->slave_int_mask);
421 }
422
423 static bool bcm_iproc_i2c_slave_isr(struct bcm_iproc_i2c_dev *iproc_i2c,
424                                     u32 status)
425 {
426         u32 val;
427         u8 value;
428
429         /*
430          * Slave events in case of master-write, master-write-read and,
431          * master-read
432          *
433          * Master-write     : only IS_S_RX_EVENT_SHIFT event
434          * Master-write-read: both IS_S_RX_EVENT_SHIFT and IS_S_RD_EVENT_SHIFT
435          *                    events
436          * Master-read      : both IS_S_RX_EVENT_SHIFT and IS_S_RD_EVENT_SHIFT
437          *                    events or only IS_S_RD_EVENT_SHIFT
438          */
439         if (status & BIT(IS_S_RX_EVENT_SHIFT) ||
440             status & BIT(IS_S_RD_EVENT_SHIFT)) {
441                 /* disable slave interrupts */
442                 val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
443                 val &= ~iproc_i2c->slave_int_mask;
444                 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
445
446                 if (status & BIT(IS_S_RD_EVENT_SHIFT))
447                         /* Master-write-read request */
448                         iproc_i2c->slave_rx_only = false;
449                 else
450                         /* Master-write request only */
451                         iproc_i2c->slave_rx_only = true;
452
453                 /* schedule tasklet to read data later */
454                 tasklet_schedule(&iproc_i2c->slave_rx_tasklet);
455
456                 /* clear only IS_S_RX_EVENT_SHIFT interrupt */
457                 iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET,
458                                  BIT(IS_S_RX_EVENT_SHIFT));
459         }
460
461         if (status & BIT(IS_S_TX_UNDERRUN_SHIFT)) {
462                 iproc_i2c->tx_underrun++;
463                 if (iproc_i2c->tx_underrun == 1)
464                         /* Start of SMBUS for Master Read */
465                         i2c_slave_event(iproc_i2c->slave,
466                                         I2C_SLAVE_READ_REQUESTED,
467                                         &value);
468                 else
469                         /* Master read other than start */
470                         i2c_slave_event(iproc_i2c->slave,
471                                         I2C_SLAVE_READ_PROCESSED,
472                                         &value);
473
474                 iproc_i2c_wr_reg(iproc_i2c, S_TX_OFFSET, value);
475                 /* start transfer */
476                 val = BIT(S_CMD_START_BUSY_SHIFT);
477                 iproc_i2c_wr_reg(iproc_i2c, S_CMD_OFFSET, val);
478
479                 /* clear interrupt */
480                 iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET,
481                                  BIT(IS_S_TX_UNDERRUN_SHIFT));
482         }
483
484         /* Stop received from master in case of master read transaction */
485         if (status & BIT(IS_S_START_BUSY_SHIFT)) {
486                 /*
487                  * Enable interrupt for TX FIFO becomes empty and
488                  * less than PKT_LENGTH bytes were output on the SMBUS
489                  */
490                 iproc_i2c->slave_int_mask &= ~BIT(IE_S_TX_UNDERRUN_SHIFT);
491                 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET,
492                                  iproc_i2c->slave_int_mask);
493
494                 /* End of SMBUS for Master Read */
495                 val = BIT(S_TX_WR_STATUS_SHIFT);
496                 iproc_i2c_wr_reg(iproc_i2c, S_TX_OFFSET, val);
497
498                 val = BIT(S_CMD_START_BUSY_SHIFT);
499                 iproc_i2c_wr_reg(iproc_i2c, S_CMD_OFFSET, val);
500
501                 /* flush TX FIFOs */
502                 val = iproc_i2c_rd_reg(iproc_i2c, S_FIFO_CTRL_OFFSET);
503                 val |= (BIT(S_FIFO_TX_FLUSH_SHIFT));
504                 iproc_i2c_wr_reg(iproc_i2c, S_FIFO_CTRL_OFFSET, val);
505
506                 i2c_slave_event(iproc_i2c->slave, I2C_SLAVE_STOP, &value);
507
508                 /* clear interrupt */
509                 iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET,
510                                  BIT(IS_S_START_BUSY_SHIFT));
511         }
512
513         /* check slave transmit status only if slave is transmitting */
514         if (!iproc_i2c->slave_rx_only)
515                 bcm_iproc_i2c_check_slave_status(iproc_i2c);
516
517         return true;
518 }
519
520 static void bcm_iproc_i2c_read_valid_bytes(struct bcm_iproc_i2c_dev *iproc_i2c)
521 {
522         struct i2c_msg *msg = iproc_i2c->msg;
523         uint32_t val;
524
525         /* Read valid data from RX FIFO */
526         while (iproc_i2c->rx_bytes < msg->len) {
527                 val = iproc_i2c_rd_reg(iproc_i2c, M_RX_OFFSET);
528
529                 /* rx fifo empty */
530                 if (!((val >> M_RX_STATUS_SHIFT) & M_RX_STATUS_MASK))
531                         break;
532
533                 msg->buf[iproc_i2c->rx_bytes] =
534                         (val >> M_RX_DATA_SHIFT) & M_RX_DATA_MASK;
535                 iproc_i2c->rx_bytes++;
536         }
537 }
538
539 static void bcm_iproc_i2c_send(struct bcm_iproc_i2c_dev *iproc_i2c)
540 {
541         struct i2c_msg *msg = iproc_i2c->msg;
542         unsigned int tx_bytes = msg->len - iproc_i2c->tx_bytes;
543         unsigned int i;
544         u32 val;
545
546         /* can only fill up to the FIFO size */
547         tx_bytes = min_t(unsigned int, tx_bytes, M_TX_RX_FIFO_SIZE);
548         for (i = 0; i < tx_bytes; i++) {
549                 /* start from where we left over */
550                 unsigned int idx = iproc_i2c->tx_bytes + i;
551
552                 val = msg->buf[idx];
553
554                 /* mark the last byte */
555                 if (idx == msg->len - 1) {
556                         val |= BIT(M_TX_WR_STATUS_SHIFT);
557
558                         if (iproc_i2c->irq) {
559                                 u32 tmp;
560
561                                 /*
562                                  * Since this is the last byte, we should now
563                                  * disable TX FIFO underrun interrupt
564                                  */
565                                 tmp = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
566                                 tmp &= ~BIT(IE_M_TX_UNDERRUN_SHIFT);
567                                 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET,
568                                                  tmp);
569                         }
570                 }
571
572                 /* load data into TX FIFO */
573                 iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
574         }
575
576         /* update number of transferred bytes */
577         iproc_i2c->tx_bytes += tx_bytes;
578 }
579
580 static void bcm_iproc_i2c_read(struct bcm_iproc_i2c_dev *iproc_i2c)
581 {
582         struct i2c_msg *msg = iproc_i2c->msg;
583         u32 bytes_left, val;
584
585         bcm_iproc_i2c_read_valid_bytes(iproc_i2c);
586         bytes_left = msg->len - iproc_i2c->rx_bytes;
587         if (bytes_left == 0) {
588                 if (iproc_i2c->irq) {
589                         /* finished reading all data, disable rx thld event */
590                         val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
591                         val &= ~BIT(IS_M_RX_THLD_SHIFT);
592                         iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
593                 }
594         } else if (bytes_left < iproc_i2c->thld_bytes) {
595                 /* set bytes left as threshold */
596                 val = iproc_i2c_rd_reg(iproc_i2c, M_FIFO_CTRL_OFFSET);
597                 val &= ~(M_FIFO_RX_THLD_MASK << M_FIFO_RX_THLD_SHIFT);
598                 val |= (bytes_left << M_FIFO_RX_THLD_SHIFT);
599                 iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
600                 iproc_i2c->thld_bytes = bytes_left;
601         }
602         /*
603          * bytes_left >= iproc_i2c->thld_bytes,
604          * hence no need to change the THRESHOLD SET.
605          * It will remain as iproc_i2c->thld_bytes itself
606          */
607 }
608
609 static void bcm_iproc_i2c_process_m_event(struct bcm_iproc_i2c_dev *iproc_i2c,
610                                           u32 status)
611 {
612         /* TX FIFO is empty and we have more data to send */
613         if (status & BIT(IS_M_TX_UNDERRUN_SHIFT))
614                 bcm_iproc_i2c_send(iproc_i2c);
615
616         /* RX FIFO threshold is reached and data needs to be read out */
617         if (status & BIT(IS_M_RX_THLD_SHIFT))
618                 bcm_iproc_i2c_read(iproc_i2c);
619
620         /* transfer is done */
621         if (status & BIT(IS_M_START_BUSY_SHIFT)) {
622                 iproc_i2c->xfer_is_done = 1;
623                 if (iproc_i2c->irq)
624                         complete(&iproc_i2c->done);
625         }
626 }
627
628 static irqreturn_t bcm_iproc_i2c_isr(int irq, void *data)
629 {
630         struct bcm_iproc_i2c_dev *iproc_i2c = data;
631         u32 slave_status;
632         u32 status;
633         bool ret;
634
635         status = iproc_i2c_rd_reg(iproc_i2c, IS_OFFSET);
636         /* process only slave interrupt which are enabled */
637         slave_status = status & iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET) &
638                        ISR_MASK_SLAVE;
639
640         if (slave_status) {
641                 ret = bcm_iproc_i2c_slave_isr(iproc_i2c, slave_status);
642                 if (ret)
643                         return IRQ_HANDLED;
644                 else
645                         return IRQ_NONE;
646         }
647
648         status &= ISR_MASK;
649         if (!status)
650                 return IRQ_NONE;
651
652         /* process all master based events */
653         bcm_iproc_i2c_process_m_event(iproc_i2c, status);
654         iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, status);
655
656         return IRQ_HANDLED;
657 }
658
659 static int bcm_iproc_i2c_init(struct bcm_iproc_i2c_dev *iproc_i2c)
660 {
661         u32 val;
662
663         /* put controller in reset */
664         val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
665         val |= BIT(CFG_RESET_SHIFT);
666         val &= ~(BIT(CFG_EN_SHIFT));
667         iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
668
669         /* wait 100 usec per spec */
670         udelay(100);
671
672         /* bring controller out of reset */
673         val &= ~(BIT(CFG_RESET_SHIFT));
674         iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
675
676         /* flush TX/RX FIFOs and set RX FIFO threshold to zero */
677         val = (BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT));
678         iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
679         /* disable all interrupts */
680         val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
681         val &= ~(IE_M_ALL_INTERRUPT_MASK <<
682                         IE_M_ALL_INTERRUPT_SHIFT);
683         iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
684
685         /* clear all pending interrupts */
686         iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, 0xffffffff);
687
688         return 0;
689 }
690
691 static void bcm_iproc_i2c_enable_disable(struct bcm_iproc_i2c_dev *iproc_i2c,
692                                          bool enable)
693 {
694         u32 val;
695
696         val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
697         if (enable)
698                 val |= BIT(CFG_EN_SHIFT);
699         else
700                 val &= ~BIT(CFG_EN_SHIFT);
701         iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
702 }
703
704 static int bcm_iproc_i2c_check_status(struct bcm_iproc_i2c_dev *iproc_i2c,
705                                       struct i2c_msg *msg)
706 {
707         u32 val;
708
709         val = iproc_i2c_rd_reg(iproc_i2c, M_CMD_OFFSET);
710         val = (val >> M_CMD_STATUS_SHIFT) & M_CMD_STATUS_MASK;
711
712         switch (val) {
713         case M_CMD_STATUS_SUCCESS:
714                 return 0;
715
716         case M_CMD_STATUS_LOST_ARB:
717                 dev_dbg(iproc_i2c->device, "lost bus arbitration\n");
718                 return -EAGAIN;
719
720         case M_CMD_STATUS_NACK_ADDR:
721                 dev_dbg(iproc_i2c->device, "NAK addr:0x%02x\n", msg->addr);
722                 return -ENXIO;
723
724         case M_CMD_STATUS_NACK_DATA:
725                 dev_dbg(iproc_i2c->device, "NAK data\n");
726                 return -ENXIO;
727
728         case M_CMD_STATUS_TIMEOUT:
729                 dev_dbg(iproc_i2c->device, "bus timeout\n");
730                 return -ETIMEDOUT;
731
732         case M_CMD_STATUS_FIFO_UNDERRUN:
733                 dev_dbg(iproc_i2c->device, "FIFO under-run\n");
734                 return -ENXIO;
735
736         case M_CMD_STATUS_RX_FIFO_FULL:
737                 dev_dbg(iproc_i2c->device, "RX FIFO full\n");
738                 return -ETIMEDOUT;
739
740         default:
741                 dev_dbg(iproc_i2c->device, "unknown error code=%d\n", val);
742
743                 /* re-initialize i2c for recovery */
744                 bcm_iproc_i2c_enable_disable(iproc_i2c, false);
745                 bcm_iproc_i2c_init(iproc_i2c);
746                 bcm_iproc_i2c_enable_disable(iproc_i2c, true);
747
748                 return -EIO;
749         }
750 }
751
752 static int bcm_iproc_i2c_xfer_wait(struct bcm_iproc_i2c_dev *iproc_i2c,
753                                    struct i2c_msg *msg,
754                                    u32 cmd)
755 {
756         unsigned long time_left = msecs_to_jiffies(I2C_TIMEOUT_MSEC);
757         u32 val, status;
758         int ret;
759
760         iproc_i2c_wr_reg(iproc_i2c, M_CMD_OFFSET, cmd);
761
762         if (iproc_i2c->irq) {
763                 time_left = wait_for_completion_timeout(&iproc_i2c->done,
764                                                         time_left);
765                 /* disable all interrupts */
766                 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
767                 /* read it back to flush the write */
768                 iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
769                 /* make sure the interrupt handler isn't running */
770                 synchronize_irq(iproc_i2c->irq);
771
772         } else { /* polling mode */
773                 unsigned long timeout = jiffies + time_left;
774
775                 do {
776                         status = iproc_i2c_rd_reg(iproc_i2c,
777                                                   IS_OFFSET) & ISR_MASK;
778                         bcm_iproc_i2c_process_m_event(iproc_i2c, status);
779                         iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, status);
780
781                         if (time_after(jiffies, timeout)) {
782                                 time_left = 0;
783                                 break;
784                         }
785
786                         cpu_relax();
787                         cond_resched();
788                 } while (!iproc_i2c->xfer_is_done);
789         }
790
791         if (!time_left && !iproc_i2c->xfer_is_done) {
792                 dev_err(iproc_i2c->device, "transaction timed out\n");
793
794                 /* flush both TX/RX FIFOs */
795                 val = BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT);
796                 iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
797                 return -ETIMEDOUT;
798         }
799
800         ret = bcm_iproc_i2c_check_status(iproc_i2c, msg);
801         if (ret) {
802                 /* flush both TX/RX FIFOs */
803                 val = BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT);
804                 iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
805                 return ret;
806         }
807
808         return 0;
809 }
810
811 /*
812  * If 'process_call' is true, then this is a multi-msg transfer that requires
813  * a repeated start between the messages.
814  * More specifically, it must be a write (reg) followed by a read (data).
815  * The i2c quirks are set to enforce this rule.
816  */
817 static int bcm_iproc_i2c_xfer_internal(struct bcm_iproc_i2c_dev *iproc_i2c,
818                                         struct i2c_msg *msgs, bool process_call)
819 {
820         int i;
821         u8 addr;
822         u32 val, tmp, val_intr_en;
823         unsigned int tx_bytes;
824         struct i2c_msg *msg = &msgs[0];
825
826         /* check if bus is busy */
827         if (!!(iproc_i2c_rd_reg(iproc_i2c,
828                                 M_CMD_OFFSET) & BIT(M_CMD_START_BUSY_SHIFT))) {
829                 dev_warn(iproc_i2c->device, "bus is busy\n");
830                 return -EBUSY;
831         }
832
833         iproc_i2c->msg = msg;
834
835         /* format and load slave address into the TX FIFO */
836         addr = i2c_8bit_addr_from_msg(msg);
837         iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, addr);
838
839         /*
840          * For a write transaction, load data into the TX FIFO. Only allow
841          * loading up to TX FIFO size - 1 bytes of data since the first byte
842          * has been used up by the slave address
843          */
844         tx_bytes = min_t(unsigned int, msg->len, M_TX_RX_FIFO_SIZE - 1);
845         if (!(msg->flags & I2C_M_RD)) {
846                 for (i = 0; i < tx_bytes; i++) {
847                         val = msg->buf[i];
848
849                         /* mark the last byte */
850                         if (!process_call && (i == msg->len - 1))
851                                 val |= BIT(M_TX_WR_STATUS_SHIFT);
852
853                         iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
854                 }
855                 iproc_i2c->tx_bytes = tx_bytes;
856         }
857
858         /* Process the read message if this is process call */
859         if (process_call) {
860                 msg++;
861                 iproc_i2c->msg = msg;  /* point to second msg */
862
863                 /*
864                  * The last byte to be sent out should be a slave
865                  * address with read operation
866                  */
867                 addr = i2c_8bit_addr_from_msg(msg);
868                 /* mark it the last byte out */
869                 val = addr | BIT(M_TX_WR_STATUS_SHIFT);
870                 iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
871         }
872
873         /* mark as incomplete before starting the transaction */
874         if (iproc_i2c->irq)
875                 reinit_completion(&iproc_i2c->done);
876
877         iproc_i2c->xfer_is_done = 0;
878
879         /*
880          * Enable the "start busy" interrupt, which will be triggered after the
881          * transaction is done, i.e., the internal start_busy bit, transitions
882          * from 1 to 0.
883          */
884         val_intr_en = BIT(IE_M_START_BUSY_SHIFT);
885
886         /*
887          * If TX data size is larger than the TX FIFO, need to enable TX
888          * underrun interrupt, which will be triggerred when the TX FIFO is
889          * empty. When that happens we can then pump more data into the FIFO
890          */
891         if (!process_call && !(msg->flags & I2C_M_RD) &&
892             msg->len > iproc_i2c->tx_bytes)
893                 val_intr_en |= BIT(IE_M_TX_UNDERRUN_SHIFT);
894
895         /*
896          * Now we can activate the transfer. For a read operation, specify the
897          * number of bytes to read
898          */
899         val = BIT(M_CMD_START_BUSY_SHIFT);
900
901         if (msg->len == 0) {
902                 /* SMBUS QUICK Command (Read/Write) */
903                 val |= (M_CMD_PROTOCOL_QUICK << M_CMD_PROTOCOL_SHIFT);
904         } else if (msg->flags & I2C_M_RD) {
905                 u32 protocol;
906
907                 iproc_i2c->rx_bytes = 0;
908                 if (msg->len > M_RX_FIFO_MAX_THLD_VALUE)
909                         iproc_i2c->thld_bytes = M_RX_FIFO_THLD_VALUE;
910                 else
911                         iproc_i2c->thld_bytes = msg->len;
912
913                 /* set threshold value */
914                 tmp = iproc_i2c_rd_reg(iproc_i2c, M_FIFO_CTRL_OFFSET);
915                 tmp &= ~(M_FIFO_RX_THLD_MASK << M_FIFO_RX_THLD_SHIFT);
916                 tmp |= iproc_i2c->thld_bytes << M_FIFO_RX_THLD_SHIFT;
917                 iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, tmp);
918
919                 /* enable the RX threshold interrupt */
920                 val_intr_en |= BIT(IE_M_RX_THLD_SHIFT);
921
922                 protocol = process_call ?
923                                 M_CMD_PROTOCOL_PROCESS : M_CMD_PROTOCOL_BLK_RD;
924
925                 val |= (protocol << M_CMD_PROTOCOL_SHIFT) |
926                        (msg->len << M_CMD_RD_CNT_SHIFT);
927         } else {
928                 val |= (M_CMD_PROTOCOL_BLK_WR << M_CMD_PROTOCOL_SHIFT);
929         }
930
931         if (iproc_i2c->irq)
932                 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val_intr_en);
933
934         return bcm_iproc_i2c_xfer_wait(iproc_i2c, msg, val);
935 }
936
937 static int bcm_iproc_i2c_xfer(struct i2c_adapter *adapter,
938                               struct i2c_msg msgs[], int num)
939 {
940         struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(adapter);
941         bool process_call = false;
942         int ret;
943
944         if (num == 2) {
945                 /* Repeated start, use process call */
946                 process_call = true;
947                 if (msgs[1].flags & I2C_M_NOSTART) {
948                         dev_err(iproc_i2c->device, "Invalid repeated start\n");
949                         return -EOPNOTSUPP;
950                 }
951         }
952
953         ret = bcm_iproc_i2c_xfer_internal(iproc_i2c, msgs, process_call);
954         if (ret) {
955                 dev_dbg(iproc_i2c->device, "xfer failed\n");
956                 return ret;
957         }
958
959         return num;
960 }
961
962 static uint32_t bcm_iproc_i2c_functionality(struct i2c_adapter *adap)
963 {
964         u32 val;
965
966         val = I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
967
968         if (adap->algo->reg_slave)
969                 val |= I2C_FUNC_SLAVE;
970
971         return val;
972 }
973
974 static struct i2c_algorithm bcm_iproc_algo = {
975         .master_xfer = bcm_iproc_i2c_xfer,
976         .functionality = bcm_iproc_i2c_functionality,
977         .reg_slave = bcm_iproc_i2c_reg_slave,
978         .unreg_slave = bcm_iproc_i2c_unreg_slave,
979 };
980
981 static const struct i2c_adapter_quirks bcm_iproc_i2c_quirks = {
982         .flags = I2C_AQ_COMB_WRITE_THEN_READ,
983         .max_comb_1st_msg_len = M_TX_RX_FIFO_SIZE,
984         .max_read_len = M_RX_MAX_READ_LEN,
985 };
986
987 static int bcm_iproc_i2c_cfg_speed(struct bcm_iproc_i2c_dev *iproc_i2c)
988 {
989         unsigned int bus_speed;
990         u32 val;
991         int ret = of_property_read_u32(iproc_i2c->device->of_node,
992                                        "clock-frequency", &bus_speed);
993         if (ret < 0) {
994                 dev_info(iproc_i2c->device,
995                         "unable to interpret clock-frequency DT property\n");
996                 bus_speed = I2C_MAX_STANDARD_MODE_FREQ;
997         }
998
999         if (bus_speed < I2C_MAX_STANDARD_MODE_FREQ) {
1000                 dev_err(iproc_i2c->device, "%d Hz bus speed not supported\n",
1001                         bus_speed);
1002                 dev_err(iproc_i2c->device,
1003                         "valid speeds are 100khz and 400khz\n");
1004                 return -EINVAL;
1005         } else if (bus_speed < I2C_MAX_FAST_MODE_FREQ) {
1006                 bus_speed = I2C_MAX_STANDARD_MODE_FREQ;
1007         } else {
1008                 bus_speed = I2C_MAX_FAST_MODE_FREQ;
1009         }
1010
1011         iproc_i2c->bus_speed = bus_speed;
1012         val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
1013         val &= ~BIT(TIM_CFG_MODE_400_SHIFT);
1014         val |= (bus_speed == I2C_MAX_FAST_MODE_FREQ) << TIM_CFG_MODE_400_SHIFT;
1015         iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
1016
1017         dev_info(iproc_i2c->device, "bus set to %u Hz\n", bus_speed);
1018
1019         return 0;
1020 }
1021
1022 static int bcm_iproc_i2c_probe(struct platform_device *pdev)
1023 {
1024         int irq, ret = 0;
1025         struct bcm_iproc_i2c_dev *iproc_i2c;
1026         struct i2c_adapter *adap;
1027         struct resource *res;
1028
1029         iproc_i2c = devm_kzalloc(&pdev->dev, sizeof(*iproc_i2c),
1030                                  GFP_KERNEL);
1031         if (!iproc_i2c)
1032                 return -ENOMEM;
1033
1034         platform_set_drvdata(pdev, iproc_i2c);
1035         iproc_i2c->device = &pdev->dev;
1036         iproc_i2c->type =
1037                 (enum bcm_iproc_i2c_type)of_device_get_match_data(&pdev->dev);
1038         init_completion(&iproc_i2c->done);
1039
1040         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1041         iproc_i2c->base = devm_ioremap_resource(iproc_i2c->device, res);
1042         if (IS_ERR(iproc_i2c->base))
1043                 return PTR_ERR(iproc_i2c->base);
1044
1045         if (iproc_i2c->type == IPROC_I2C_NIC) {
1046                 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1047                 iproc_i2c->idm_base = devm_ioremap_resource(iproc_i2c->device,
1048                                                             res);
1049                 if (IS_ERR(iproc_i2c->idm_base))
1050                         return PTR_ERR(iproc_i2c->idm_base);
1051
1052                 ret = of_property_read_u32(iproc_i2c->device->of_node,
1053                                            "brcm,ape-hsls-addr-mask",
1054                                            &iproc_i2c->ape_addr_mask);
1055                 if (ret < 0) {
1056                         dev_err(iproc_i2c->device,
1057                                 "'brcm,ape-hsls-addr-mask' missing\n");
1058                         return -EINVAL;
1059                 }
1060
1061                 spin_lock_init(&iproc_i2c->idm_lock);
1062
1063                 /* no slave support */
1064                 bcm_iproc_algo.reg_slave = NULL;
1065                 bcm_iproc_algo.unreg_slave = NULL;
1066         }
1067
1068         ret = bcm_iproc_i2c_init(iproc_i2c);
1069         if (ret)
1070                 return ret;
1071
1072         ret = bcm_iproc_i2c_cfg_speed(iproc_i2c);
1073         if (ret)
1074                 return ret;
1075
1076         irq = platform_get_irq(pdev, 0);
1077         if (irq > 0) {
1078                 ret = devm_request_irq(iproc_i2c->device, irq,
1079                                        bcm_iproc_i2c_isr, 0, pdev->name,
1080                                        iproc_i2c);
1081                 if (ret < 0) {
1082                         dev_err(iproc_i2c->device,
1083                                 "unable to request irq %i\n", irq);
1084                         return ret;
1085                 }
1086
1087                 iproc_i2c->irq = irq;
1088         } else {
1089                 dev_warn(iproc_i2c->device,
1090                          "no irq resource, falling back to poll mode\n");
1091         }
1092
1093         bcm_iproc_i2c_enable_disable(iproc_i2c, true);
1094
1095         adap = &iproc_i2c->adapter;
1096         i2c_set_adapdata(adap, iproc_i2c);
1097         snprintf(adap->name, sizeof(adap->name),
1098                 "Broadcom iProc (%s)",
1099                 of_node_full_name(iproc_i2c->device->of_node));
1100         adap->algo = &bcm_iproc_algo;
1101         adap->quirks = &bcm_iproc_i2c_quirks;
1102         adap->dev.parent = &pdev->dev;
1103         adap->dev.of_node = pdev->dev.of_node;
1104
1105         return i2c_add_adapter(adap);
1106 }
1107
1108 static int bcm_iproc_i2c_remove(struct platform_device *pdev)
1109 {
1110         struct bcm_iproc_i2c_dev *iproc_i2c = platform_get_drvdata(pdev);
1111
1112         if (iproc_i2c->irq) {
1113                 /*
1114                  * Make sure there's no pending interrupt when we remove the
1115                  * adapter
1116                  */
1117                 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
1118                 iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
1119                 synchronize_irq(iproc_i2c->irq);
1120         }
1121
1122         i2c_del_adapter(&iproc_i2c->adapter);
1123         bcm_iproc_i2c_enable_disable(iproc_i2c, false);
1124
1125         return 0;
1126 }
1127
1128 #ifdef CONFIG_PM_SLEEP
1129
1130 static int bcm_iproc_i2c_suspend(struct device *dev)
1131 {
1132         struct bcm_iproc_i2c_dev *iproc_i2c = dev_get_drvdata(dev);
1133
1134         if (iproc_i2c->irq) {
1135                 /*
1136                  * Make sure there's no pending interrupt when we go into
1137                  * suspend
1138                  */
1139                 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
1140                 iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
1141                 synchronize_irq(iproc_i2c->irq);
1142         }
1143
1144         /* now disable the controller */
1145         bcm_iproc_i2c_enable_disable(iproc_i2c, false);
1146
1147         return 0;
1148 }
1149
1150 static int bcm_iproc_i2c_resume(struct device *dev)
1151 {
1152         struct bcm_iproc_i2c_dev *iproc_i2c = dev_get_drvdata(dev);
1153         int ret;
1154         u32 val;
1155
1156         /*
1157          * Power domain could have been shut off completely in system deep
1158          * sleep, so re-initialize the block here
1159          */
1160         ret = bcm_iproc_i2c_init(iproc_i2c);
1161         if (ret)
1162                 return ret;
1163
1164         /* configure to the desired bus speed */
1165         val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
1166         val &= ~BIT(TIM_CFG_MODE_400_SHIFT);
1167         val |= (iproc_i2c->bus_speed == I2C_MAX_FAST_MODE_FREQ) << TIM_CFG_MODE_400_SHIFT;
1168         iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
1169
1170         bcm_iproc_i2c_enable_disable(iproc_i2c, true);
1171
1172         return 0;
1173 }
1174
1175 static const struct dev_pm_ops bcm_iproc_i2c_pm_ops = {
1176         .suspend_late = &bcm_iproc_i2c_suspend,
1177         .resume_early = &bcm_iproc_i2c_resume
1178 };
1179
1180 #define BCM_IPROC_I2C_PM_OPS (&bcm_iproc_i2c_pm_ops)
1181 #else
1182 #define BCM_IPROC_I2C_PM_OPS NULL
1183 #endif /* CONFIG_PM_SLEEP */
1184
1185
1186 static int bcm_iproc_i2c_reg_slave(struct i2c_client *slave)
1187 {
1188         struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(slave->adapter);
1189
1190         if (iproc_i2c->slave)
1191                 return -EBUSY;
1192
1193         if (slave->flags & I2C_CLIENT_TEN)
1194                 return -EAFNOSUPPORT;
1195
1196         iproc_i2c->slave = slave;
1197
1198         tasklet_init(&iproc_i2c->slave_rx_tasklet, slave_rx_tasklet_fn,
1199                      (unsigned long)iproc_i2c);
1200
1201         bcm_iproc_i2c_slave_init(iproc_i2c, false);
1202         return 0;
1203 }
1204
1205 static int bcm_iproc_i2c_unreg_slave(struct i2c_client *slave)
1206 {
1207         u32 tmp;
1208         struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(slave->adapter);
1209
1210         if (!iproc_i2c->slave)
1211                 return -EINVAL;
1212
1213         disable_irq(iproc_i2c->irq);
1214
1215         /* disable all slave interrupts */
1216         tmp = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
1217         tmp &= ~(IE_S_ALL_INTERRUPT_MASK <<
1218                         IE_S_ALL_INTERRUPT_SHIFT);
1219         iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, tmp);
1220
1221         tasklet_kill(&iproc_i2c->slave_rx_tasklet);
1222
1223         /* Erase the slave address programmed */
1224         tmp = iproc_i2c_rd_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET);
1225         tmp &= ~BIT(S_CFG_EN_NIC_SMB_ADDR3_SHIFT);
1226         iproc_i2c_wr_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET, tmp);
1227
1228         /* flush TX/RX FIFOs */
1229         tmp = (BIT(S_FIFO_RX_FLUSH_SHIFT) | BIT(S_FIFO_TX_FLUSH_SHIFT));
1230         iproc_i2c_wr_reg(iproc_i2c, S_FIFO_CTRL_OFFSET, tmp);
1231
1232         /* clear all pending slave interrupts */
1233         iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, ISR_MASK_SLAVE);
1234
1235         iproc_i2c->slave = NULL;
1236
1237         enable_irq(iproc_i2c->irq);
1238
1239         return 0;
1240 }
1241
1242 static const struct of_device_id bcm_iproc_i2c_of_match[] = {
1243         {
1244                 .compatible = "brcm,iproc-i2c",
1245                 .data = (int *)IPROC_I2C,
1246         }, {
1247                 .compatible = "brcm,iproc-nic-i2c",
1248                 .data = (int *)IPROC_I2C_NIC,
1249         },
1250         { /* sentinel */ }
1251 };
1252 MODULE_DEVICE_TABLE(of, bcm_iproc_i2c_of_match);
1253
1254 static struct platform_driver bcm_iproc_i2c_driver = {
1255         .driver = {
1256                 .name = "bcm-iproc-i2c",
1257                 .of_match_table = bcm_iproc_i2c_of_match,
1258                 .pm = BCM_IPROC_I2C_PM_OPS,
1259         },
1260         .probe = bcm_iproc_i2c_probe,
1261         .remove = bcm_iproc_i2c_remove,
1262 };
1263 module_platform_driver(bcm_iproc_i2c_driver);
1264
1265 MODULE_AUTHOR("Ray Jui <rjui@broadcom.com>");
1266 MODULE_DESCRIPTION("Broadcom iProc I2C Driver");
1267 MODULE_LICENSE("GPL v2");