GNU Linux-libre 6.8.9-gnu
[releases.git] / drivers / hwmon / occ / common.c
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright IBM Corp 2019
3
4 #include <linux/device.h>
5 #include <linux/export.h>
6 #include <linux/hwmon.h>
7 #include <linux/hwmon-sysfs.h>
8 #include <linux/jiffies.h>
9 #include <linux/kernel.h>
10 #include <linux/math64.h>
11 #include <linux/module.h>
12 #include <linux/mutex.h>
13 #include <linux/property.h>
14 #include <linux/sysfs.h>
15 #include <asm/unaligned.h>
16
17 #include "common.h"
18
19 #define EXTN_FLAG_SENSOR_ID             BIT(7)
20
21 #define OCC_ERROR_COUNT_THRESHOLD       2       /* required by OCC spec */
22
23 #define OCC_STATE_SAFE                  4
24 #define OCC_SAFE_TIMEOUT                msecs_to_jiffies(60000) /* 1 min */
25
26 #define OCC_UPDATE_FREQUENCY            msecs_to_jiffies(1000)
27
28 #define OCC_TEMP_SENSOR_FAULT           0xFF
29
30 #define OCC_FRU_TYPE_VRM                3
31
32 /* OCC sensor type and version definitions */
33
34 struct temp_sensor_1 {
35         u16 sensor_id;
36         u16 value;
37 } __packed;
38
39 struct temp_sensor_2 {
40         u32 sensor_id;
41         u8 fru_type;
42         u8 value;
43 } __packed;
44
45 struct temp_sensor_10 {
46         u32 sensor_id;
47         u8 fru_type;
48         u8 value;
49         u8 throttle;
50         u8 reserved;
51 } __packed;
52
53 struct freq_sensor_1 {
54         u16 sensor_id;
55         u16 value;
56 } __packed;
57
58 struct freq_sensor_2 {
59         u32 sensor_id;
60         u16 value;
61 } __packed;
62
63 struct power_sensor_1 {
64         u16 sensor_id;
65         u32 update_tag;
66         u32 accumulator;
67         u16 value;
68 } __packed;
69
70 struct power_sensor_2 {
71         u32 sensor_id;
72         u8 function_id;
73         u8 apss_channel;
74         u16 reserved;
75         u32 update_tag;
76         u64 accumulator;
77         u16 value;
78 } __packed;
79
80 struct power_sensor_data {
81         u16 value;
82         u32 update_tag;
83         u64 accumulator;
84 } __packed;
85
86 struct power_sensor_data_and_time {
87         u16 update_time;
88         u16 value;
89         u32 update_tag;
90         u64 accumulator;
91 } __packed;
92
93 struct power_sensor_a0 {
94         u32 sensor_id;
95         struct power_sensor_data_and_time system;
96         u32 reserved;
97         struct power_sensor_data_and_time proc;
98         struct power_sensor_data vdd;
99         struct power_sensor_data vdn;
100 } __packed;
101
102 struct caps_sensor_2 {
103         u16 cap;
104         u16 system_power;
105         u16 n_cap;
106         u16 max;
107         u16 min;
108         u16 user;
109         u8 user_source;
110 } __packed;
111
112 struct caps_sensor_3 {
113         u16 cap;
114         u16 system_power;
115         u16 n_cap;
116         u16 max;
117         u16 hard_min;
118         u16 soft_min;
119         u16 user;
120         u8 user_source;
121 } __packed;
122
123 struct extended_sensor {
124         union {
125                 u8 name[4];
126                 u32 sensor_id;
127         };
128         u8 flags;
129         u8 reserved;
130         u8 data[6];
131 } __packed;
132
133 static int occ_poll(struct occ *occ)
134 {
135         int rc;
136         u8 cmd[7];
137         struct occ_poll_response_header *header;
138
139         /* big endian */
140         cmd[0] = 0;                     /* sequence number */
141         cmd[1] = 0;                     /* cmd type */
142         cmd[2] = 0;                     /* data length msb */
143         cmd[3] = 1;                     /* data length lsb */
144         cmd[4] = occ->poll_cmd_data;    /* data */
145         cmd[5] = 0;                     /* checksum msb */
146         cmd[6] = 0;                     /* checksum lsb */
147
148         /* mutex should already be locked if necessary */
149         rc = occ->send_cmd(occ, cmd, sizeof(cmd), &occ->resp, sizeof(occ->resp));
150         if (rc) {
151                 occ->last_error = rc;
152                 if (occ->error_count++ > OCC_ERROR_COUNT_THRESHOLD)
153                         occ->error = rc;
154
155                 goto done;
156         }
157
158         /* clear error since communication was successful */
159         occ->error_count = 0;
160         occ->last_error = 0;
161         occ->error = 0;
162
163         /* check for safe state */
164         header = (struct occ_poll_response_header *)occ->resp.data;
165         if (header->occ_state == OCC_STATE_SAFE) {
166                 if (occ->last_safe) {
167                         if (time_after(jiffies,
168                                        occ->last_safe + OCC_SAFE_TIMEOUT))
169                                 occ->error = -EHOSTDOWN;
170                 } else {
171                         occ->last_safe = jiffies;
172                 }
173         } else {
174                 occ->last_safe = 0;
175         }
176
177 done:
178         occ_sysfs_poll_done(occ);
179         return rc;
180 }
181
182 static int occ_set_user_power_cap(struct occ *occ, u16 user_power_cap)
183 {
184         int rc;
185         u8 cmd[8];
186         u8 resp[8];
187         __be16 user_power_cap_be = cpu_to_be16(user_power_cap);
188
189         cmd[0] = 0;     /* sequence number */
190         cmd[1] = 0x22;  /* cmd type */
191         cmd[2] = 0;     /* data length msb */
192         cmd[3] = 2;     /* data length lsb */
193
194         memcpy(&cmd[4], &user_power_cap_be, 2);
195
196         cmd[6] = 0;     /* checksum msb */
197         cmd[7] = 0;     /* checksum lsb */
198
199         rc = mutex_lock_interruptible(&occ->lock);
200         if (rc)
201                 return rc;
202
203         rc = occ->send_cmd(occ, cmd, sizeof(cmd), resp, sizeof(resp));
204
205         mutex_unlock(&occ->lock);
206
207         return rc;
208 }
209
210 int occ_update_response(struct occ *occ)
211 {
212         int rc = mutex_lock_interruptible(&occ->lock);
213
214         if (rc)
215                 return rc;
216
217         /* limit the maximum rate of polling the OCC */
218         if (time_after(jiffies, occ->next_update)) {
219                 rc = occ_poll(occ);
220                 occ->next_update = jiffies + OCC_UPDATE_FREQUENCY;
221         } else {
222                 rc = occ->last_error;
223         }
224
225         mutex_unlock(&occ->lock);
226         return rc;
227 }
228
229 static ssize_t occ_show_temp_1(struct device *dev,
230                                struct device_attribute *attr, char *buf)
231 {
232         int rc;
233         u32 val = 0;
234         struct temp_sensor_1 *temp;
235         struct occ *occ = dev_get_drvdata(dev);
236         struct occ_sensors *sensors = &occ->sensors;
237         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
238
239         rc = occ_update_response(occ);
240         if (rc)
241                 return rc;
242
243         temp = ((struct temp_sensor_1 *)sensors->temp.data) + sattr->index;
244
245         switch (sattr->nr) {
246         case 0:
247                 val = get_unaligned_be16(&temp->sensor_id);
248                 break;
249         case 1:
250                 /*
251                  * If a sensor reading has expired and couldn't be refreshed,
252                  * OCC returns 0xFFFF for that sensor.
253                  */
254                 if (temp->value == 0xFFFF)
255                         return -EREMOTEIO;
256                 val = get_unaligned_be16(&temp->value) * 1000;
257                 break;
258         default:
259                 return -EINVAL;
260         }
261
262         return sysfs_emit(buf, "%u\n", val);
263 }
264
265 static ssize_t occ_show_temp_2(struct device *dev,
266                                struct device_attribute *attr, char *buf)
267 {
268         int rc;
269         u32 val = 0;
270         struct temp_sensor_2 *temp;
271         struct occ *occ = dev_get_drvdata(dev);
272         struct occ_sensors *sensors = &occ->sensors;
273         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
274
275         rc = occ_update_response(occ);
276         if (rc)
277                 return rc;
278
279         temp = ((struct temp_sensor_2 *)sensors->temp.data) + sattr->index;
280
281         switch (sattr->nr) {
282         case 0:
283                 val = get_unaligned_be32(&temp->sensor_id);
284                 break;
285         case 1:
286                 val = temp->value;
287                 if (val == OCC_TEMP_SENSOR_FAULT)
288                         return -EREMOTEIO;
289
290                 /*
291                  * VRM doesn't return temperature, only alarm bit. This
292                  * attribute maps to tempX_alarm instead of tempX_input for
293                  * VRM
294                  */
295                 if (temp->fru_type != OCC_FRU_TYPE_VRM) {
296                         /* sensor not ready */
297                         if (val == 0)
298                                 return -EAGAIN;
299
300                         val *= 1000;
301                 }
302                 break;
303         case 2:
304                 val = temp->fru_type;
305                 break;
306         case 3:
307                 val = temp->value == OCC_TEMP_SENSOR_FAULT;
308                 break;
309         default:
310                 return -EINVAL;
311         }
312
313         return sysfs_emit(buf, "%u\n", val);
314 }
315
316 static ssize_t occ_show_temp_10(struct device *dev,
317                                 struct device_attribute *attr, char *buf)
318 {
319         int rc;
320         u32 val = 0;
321         struct temp_sensor_10 *temp;
322         struct occ *occ = dev_get_drvdata(dev);
323         struct occ_sensors *sensors = &occ->sensors;
324         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
325
326         rc = occ_update_response(occ);
327         if (rc)
328                 return rc;
329
330         temp = ((struct temp_sensor_10 *)sensors->temp.data) + sattr->index;
331
332         switch (sattr->nr) {
333         case 0:
334                 val = get_unaligned_be32(&temp->sensor_id);
335                 break;
336         case 1:
337                 val = temp->value;
338                 if (val == OCC_TEMP_SENSOR_FAULT)
339                         return -EREMOTEIO;
340
341                 /* sensor not ready */
342                 if (val == 0)
343                         return -EAGAIN;
344
345                 val *= 1000;
346                 break;
347         case 2:
348                 val = temp->fru_type;
349                 break;
350         case 3:
351                 val = temp->value == OCC_TEMP_SENSOR_FAULT;
352                 break;
353         case 4:
354                 val = temp->throttle * 1000;
355                 break;
356         default:
357                 return -EINVAL;
358         }
359
360         return sysfs_emit(buf, "%u\n", val);
361 }
362
363 static ssize_t occ_show_freq_1(struct device *dev,
364                                struct device_attribute *attr, char *buf)
365 {
366         int rc;
367         u16 val = 0;
368         struct freq_sensor_1 *freq;
369         struct occ *occ = dev_get_drvdata(dev);
370         struct occ_sensors *sensors = &occ->sensors;
371         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
372
373         rc = occ_update_response(occ);
374         if (rc)
375                 return rc;
376
377         freq = ((struct freq_sensor_1 *)sensors->freq.data) + sattr->index;
378
379         switch (sattr->nr) {
380         case 0:
381                 val = get_unaligned_be16(&freq->sensor_id);
382                 break;
383         case 1:
384                 val = get_unaligned_be16(&freq->value);
385                 break;
386         default:
387                 return -EINVAL;
388         }
389
390         return sysfs_emit(buf, "%u\n", val);
391 }
392
393 static ssize_t occ_show_freq_2(struct device *dev,
394                                struct device_attribute *attr, char *buf)
395 {
396         int rc;
397         u32 val = 0;
398         struct freq_sensor_2 *freq;
399         struct occ *occ = dev_get_drvdata(dev);
400         struct occ_sensors *sensors = &occ->sensors;
401         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
402
403         rc = occ_update_response(occ);
404         if (rc)
405                 return rc;
406
407         freq = ((struct freq_sensor_2 *)sensors->freq.data) + sattr->index;
408
409         switch (sattr->nr) {
410         case 0:
411                 val = get_unaligned_be32(&freq->sensor_id);
412                 break;
413         case 1:
414                 val = get_unaligned_be16(&freq->value);
415                 break;
416         default:
417                 return -EINVAL;
418         }
419
420         return sysfs_emit(buf, "%u\n", val);
421 }
422
423 static ssize_t occ_show_power_1(struct device *dev,
424                                 struct device_attribute *attr, char *buf)
425 {
426         int rc;
427         u64 val = 0;
428         struct power_sensor_1 *power;
429         struct occ *occ = dev_get_drvdata(dev);
430         struct occ_sensors *sensors = &occ->sensors;
431         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
432
433         rc = occ_update_response(occ);
434         if (rc)
435                 return rc;
436
437         power = ((struct power_sensor_1 *)sensors->power.data) + sattr->index;
438
439         switch (sattr->nr) {
440         case 0:
441                 val = get_unaligned_be16(&power->sensor_id);
442                 break;
443         case 1:
444                 val = get_unaligned_be32(&power->accumulator) /
445                         get_unaligned_be32(&power->update_tag);
446                 val *= 1000000ULL;
447                 break;
448         case 2:
449                 val = (u64)get_unaligned_be32(&power->update_tag) *
450                            occ->powr_sample_time_us;
451                 break;
452         case 3:
453                 val = get_unaligned_be16(&power->value) * 1000000ULL;
454                 break;
455         default:
456                 return -EINVAL;
457         }
458
459         return sysfs_emit(buf, "%llu\n", val);
460 }
461
462 static u64 occ_get_powr_avg(u64 *accum, u32 *samples)
463 {
464         u64 divisor = get_unaligned_be32(samples);
465
466         return (divisor == 0) ? 0 :
467                 div64_u64(get_unaligned_be64(accum) * 1000000ULL, divisor);
468 }
469
470 static ssize_t occ_show_power_2(struct device *dev,
471                                 struct device_attribute *attr, char *buf)
472 {
473         int rc;
474         u64 val = 0;
475         struct power_sensor_2 *power;
476         struct occ *occ = dev_get_drvdata(dev);
477         struct occ_sensors *sensors = &occ->sensors;
478         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
479
480         rc = occ_update_response(occ);
481         if (rc)
482                 return rc;
483
484         power = ((struct power_sensor_2 *)sensors->power.data) + sattr->index;
485
486         switch (sattr->nr) {
487         case 0:
488                 return sysfs_emit(buf, "%u_%u_%u\n",
489                                   get_unaligned_be32(&power->sensor_id),
490                                   power->function_id, power->apss_channel);
491         case 1:
492                 val = occ_get_powr_avg(&power->accumulator,
493                                        &power->update_tag);
494                 break;
495         case 2:
496                 val = (u64)get_unaligned_be32(&power->update_tag) *
497                            occ->powr_sample_time_us;
498                 break;
499         case 3:
500                 val = get_unaligned_be16(&power->value) * 1000000ULL;
501                 break;
502         default:
503                 return -EINVAL;
504         }
505
506         return sysfs_emit(buf, "%llu\n", val);
507 }
508
509 static ssize_t occ_show_power_a0(struct device *dev,
510                                  struct device_attribute *attr, char *buf)
511 {
512         int rc;
513         u64 val = 0;
514         struct power_sensor_a0 *power;
515         struct occ *occ = dev_get_drvdata(dev);
516         struct occ_sensors *sensors = &occ->sensors;
517         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
518
519         rc = occ_update_response(occ);
520         if (rc)
521                 return rc;
522
523         power = ((struct power_sensor_a0 *)sensors->power.data) + sattr->index;
524
525         switch (sattr->nr) {
526         case 0:
527                 return sysfs_emit(buf, "%u_system\n",
528                                   get_unaligned_be32(&power->sensor_id));
529         case 1:
530                 val = occ_get_powr_avg(&power->system.accumulator,
531                                        &power->system.update_tag);
532                 break;
533         case 2:
534                 val = (u64)get_unaligned_be32(&power->system.update_tag) *
535                            occ->powr_sample_time_us;
536                 break;
537         case 3:
538                 val = get_unaligned_be16(&power->system.value) * 1000000ULL;
539                 break;
540         case 4:
541                 return sysfs_emit(buf, "%u_proc\n",
542                                   get_unaligned_be32(&power->sensor_id));
543         case 5:
544                 val = occ_get_powr_avg(&power->proc.accumulator,
545                                        &power->proc.update_tag);
546                 break;
547         case 6:
548                 val = (u64)get_unaligned_be32(&power->proc.update_tag) *
549                            occ->powr_sample_time_us;
550                 break;
551         case 7:
552                 val = get_unaligned_be16(&power->proc.value) * 1000000ULL;
553                 break;
554         case 8:
555                 return sysfs_emit(buf, "%u_vdd\n",
556                                   get_unaligned_be32(&power->sensor_id));
557         case 9:
558                 val = occ_get_powr_avg(&power->vdd.accumulator,
559                                        &power->vdd.update_tag);
560                 break;
561         case 10:
562                 val = (u64)get_unaligned_be32(&power->vdd.update_tag) *
563                            occ->powr_sample_time_us;
564                 break;
565         case 11:
566                 val = get_unaligned_be16(&power->vdd.value) * 1000000ULL;
567                 break;
568         case 12:
569                 return sysfs_emit(buf, "%u_vdn\n",
570                                   get_unaligned_be32(&power->sensor_id));
571         case 13:
572                 val = occ_get_powr_avg(&power->vdn.accumulator,
573                                        &power->vdn.update_tag);
574                 break;
575         case 14:
576                 val = (u64)get_unaligned_be32(&power->vdn.update_tag) *
577                            occ->powr_sample_time_us;
578                 break;
579         case 15:
580                 val = get_unaligned_be16(&power->vdn.value) * 1000000ULL;
581                 break;
582         default:
583                 return -EINVAL;
584         }
585
586         return sysfs_emit(buf, "%llu\n", val);
587 }
588
589 static ssize_t occ_show_caps_1_2(struct device *dev,
590                                  struct device_attribute *attr, char *buf)
591 {
592         int rc;
593         u64 val = 0;
594         struct caps_sensor_2 *caps;
595         struct occ *occ = dev_get_drvdata(dev);
596         struct occ_sensors *sensors = &occ->sensors;
597         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
598
599         rc = occ_update_response(occ);
600         if (rc)
601                 return rc;
602
603         caps = ((struct caps_sensor_2 *)sensors->caps.data) + sattr->index;
604
605         switch (sattr->nr) {
606         case 0:
607                 return sysfs_emit(buf, "system\n");
608         case 1:
609                 val = get_unaligned_be16(&caps->cap) * 1000000ULL;
610                 break;
611         case 2:
612                 val = get_unaligned_be16(&caps->system_power) * 1000000ULL;
613                 break;
614         case 3:
615                 val = get_unaligned_be16(&caps->n_cap) * 1000000ULL;
616                 break;
617         case 4:
618                 val = get_unaligned_be16(&caps->max) * 1000000ULL;
619                 break;
620         case 5:
621                 val = get_unaligned_be16(&caps->min) * 1000000ULL;
622                 break;
623         case 6:
624                 val = get_unaligned_be16(&caps->user) * 1000000ULL;
625                 break;
626         case 7:
627                 if (occ->sensors.caps.version == 1)
628                         return -EINVAL;
629
630                 val = caps->user_source;
631                 break;
632         default:
633                 return -EINVAL;
634         }
635
636         return sysfs_emit(buf, "%llu\n", val);
637 }
638
639 static ssize_t occ_show_caps_3(struct device *dev,
640                                struct device_attribute *attr, char *buf)
641 {
642         int rc;
643         u64 val = 0;
644         struct caps_sensor_3 *caps;
645         struct occ *occ = dev_get_drvdata(dev);
646         struct occ_sensors *sensors = &occ->sensors;
647         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
648
649         rc = occ_update_response(occ);
650         if (rc)
651                 return rc;
652
653         caps = ((struct caps_sensor_3 *)sensors->caps.data) + sattr->index;
654
655         switch (sattr->nr) {
656         case 0:
657                 return sysfs_emit(buf, "system\n");
658         case 1:
659                 val = get_unaligned_be16(&caps->cap) * 1000000ULL;
660                 break;
661         case 2:
662                 val = get_unaligned_be16(&caps->system_power) * 1000000ULL;
663                 break;
664         case 3:
665                 val = get_unaligned_be16(&caps->n_cap) * 1000000ULL;
666                 break;
667         case 4:
668                 val = get_unaligned_be16(&caps->max) * 1000000ULL;
669                 break;
670         case 5:
671                 val = get_unaligned_be16(&caps->hard_min) * 1000000ULL;
672                 break;
673         case 6:
674                 val = get_unaligned_be16(&caps->user) * 1000000ULL;
675                 break;
676         case 7:
677                 val = caps->user_source;
678                 break;
679         case 8:
680                 val = get_unaligned_be16(&caps->soft_min) * 1000000ULL;
681                 break;
682         default:
683                 return -EINVAL;
684         }
685
686         return sysfs_emit(buf, "%llu\n", val);
687 }
688
689 static ssize_t occ_store_caps_user(struct device *dev,
690                                    struct device_attribute *attr,
691                                    const char *buf, size_t count)
692 {
693         int rc;
694         u16 user_power_cap;
695         unsigned long long value;
696         struct occ *occ = dev_get_drvdata(dev);
697
698         rc = kstrtoull(buf, 0, &value);
699         if (rc)
700                 return rc;
701
702         user_power_cap = div64_u64(value, 1000000ULL); /* microwatt to watt */
703
704         rc = occ_set_user_power_cap(occ, user_power_cap);
705         if (rc)
706                 return rc;
707
708         return count;
709 }
710
711 static ssize_t occ_show_extended(struct device *dev,
712                                  struct device_attribute *attr, char *buf)
713 {
714         int rc;
715         struct extended_sensor *extn;
716         struct occ *occ = dev_get_drvdata(dev);
717         struct occ_sensors *sensors = &occ->sensors;
718         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
719
720         rc = occ_update_response(occ);
721         if (rc)
722                 return rc;
723
724         extn = ((struct extended_sensor *)sensors->extended.data) +
725                 sattr->index;
726
727         switch (sattr->nr) {
728         case 0:
729                 if (extn->flags & EXTN_FLAG_SENSOR_ID) {
730                         rc = sysfs_emit(buf, "%u",
731                                         get_unaligned_be32(&extn->sensor_id));
732                 } else {
733                         rc = sysfs_emit(buf, "%4phN\n", extn->name);
734                 }
735                 break;
736         case 1:
737                 rc = sysfs_emit(buf, "%02x\n", extn->flags);
738                 break;
739         case 2:
740                 rc = sysfs_emit(buf, "%6phN\n", extn->data);
741                 break;
742         default:
743                 return -EINVAL;
744         }
745
746         return rc;
747 }
748
749 /*
750  * Some helper macros to make it easier to define an occ_attribute. Since these
751  * are dynamically allocated, we shouldn't use the existing kernel macros which
752  * stringify the name argument.
753  */
754 #define ATTR_OCC(_name, _mode, _show, _store) {                         \
755         .attr   = {                                                     \
756                 .name = _name,                                          \
757                 .mode = VERIFY_OCTAL_PERMISSIONS(_mode),                \
758         },                                                              \
759         .show   = _show,                                                \
760         .store  = _store,                                               \
761 }
762
763 #define SENSOR_ATTR_OCC(_name, _mode, _show, _store, _nr, _index) {     \
764         .dev_attr       = ATTR_OCC(_name, _mode, _show, _store),        \
765         .index          = _index,                                       \
766         .nr             = _nr,                                          \
767 }
768
769 #define OCC_INIT_ATTR(_name, _mode, _show, _store, _nr, _index)         \
770         ((struct sensor_device_attribute_2)                             \
771                 SENSOR_ATTR_OCC(_name, _mode, _show, _store, _nr, _index))
772
773 /*
774  * Allocate and instatiate sensor_device_attribute_2s. It's most efficient to
775  * use our own instead of the built-in hwmon attribute types.
776  */
777 static int occ_setup_sensor_attrs(struct occ *occ)
778 {
779         unsigned int i, s, num_attrs = 0;
780         struct device *dev = occ->bus_dev;
781         struct occ_sensors *sensors = &occ->sensors;
782         struct occ_attribute *attr;
783         struct temp_sensor_2 *temp;
784         ssize_t (*show_temp)(struct device *, struct device_attribute *,
785                              char *) = occ_show_temp_1;
786         ssize_t (*show_freq)(struct device *, struct device_attribute *,
787                              char *) = occ_show_freq_1;
788         ssize_t (*show_power)(struct device *, struct device_attribute *,
789                               char *) = occ_show_power_1;
790         ssize_t (*show_caps)(struct device *, struct device_attribute *,
791                              char *) = occ_show_caps_1_2;
792
793         switch (sensors->temp.version) {
794         case 1:
795                 num_attrs += (sensors->temp.num_sensors * 2);
796                 break;
797         case 2:
798                 num_attrs += (sensors->temp.num_sensors * 4);
799                 show_temp = occ_show_temp_2;
800                 break;
801         case 0x10:
802                 num_attrs += (sensors->temp.num_sensors * 5);
803                 show_temp = occ_show_temp_10;
804                 break;
805         default:
806                 sensors->temp.num_sensors = 0;
807         }
808
809         switch (sensors->freq.version) {
810         case 2:
811                 show_freq = occ_show_freq_2;
812                 fallthrough;
813         case 1:
814                 num_attrs += (sensors->freq.num_sensors * 2);
815                 break;
816         default:
817                 sensors->freq.num_sensors = 0;
818         }
819
820         switch (sensors->power.version) {
821         case 2:
822                 show_power = occ_show_power_2;
823                 fallthrough;
824         case 1:
825                 num_attrs += (sensors->power.num_sensors * 4);
826                 break;
827         case 0xA0:
828                 num_attrs += (sensors->power.num_sensors * 16);
829                 show_power = occ_show_power_a0;
830                 break;
831         default:
832                 sensors->power.num_sensors = 0;
833         }
834
835         switch (sensors->caps.version) {
836         case 1:
837                 num_attrs += (sensors->caps.num_sensors * 7);
838                 break;
839         case 2:
840                 num_attrs += (sensors->caps.num_sensors * 8);
841                 break;
842         case 3:
843                 show_caps = occ_show_caps_3;
844                 num_attrs += (sensors->caps.num_sensors * 9);
845                 break;
846         default:
847                 sensors->caps.num_sensors = 0;
848         }
849
850         switch (sensors->extended.version) {
851         case 1:
852                 num_attrs += (sensors->extended.num_sensors * 3);
853                 break;
854         default:
855                 sensors->extended.num_sensors = 0;
856         }
857
858         occ->attrs = devm_kzalloc(dev, sizeof(*occ->attrs) * num_attrs,
859                                   GFP_KERNEL);
860         if (!occ->attrs)
861                 return -ENOMEM;
862
863         /* null-terminated list */
864         occ->group.attrs = devm_kzalloc(dev, sizeof(*occ->group.attrs) *
865                                         num_attrs + 1, GFP_KERNEL);
866         if (!occ->group.attrs)
867                 return -ENOMEM;
868
869         attr = occ->attrs;
870
871         for (i = 0; i < sensors->temp.num_sensors; ++i) {
872                 s = i + 1;
873                 temp = ((struct temp_sensor_2 *)sensors->temp.data) + i;
874
875                 snprintf(attr->name, sizeof(attr->name), "temp%d_label", s);
876                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL,
877                                              0, i);
878                 attr++;
879
880                 if (sensors->temp.version == 2 &&
881                     temp->fru_type == OCC_FRU_TYPE_VRM) {
882                         snprintf(attr->name, sizeof(attr->name),
883                                  "temp%d_alarm", s);
884                 } else {
885                         snprintf(attr->name, sizeof(attr->name),
886                                  "temp%d_input", s);
887                 }
888
889                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL,
890                                              1, i);
891                 attr++;
892
893                 if (sensors->temp.version > 1) {
894                         snprintf(attr->name, sizeof(attr->name),
895                                  "temp%d_fru_type", s);
896                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
897                                                      show_temp, NULL, 2, i);
898                         attr++;
899
900                         snprintf(attr->name, sizeof(attr->name),
901                                  "temp%d_fault", s);
902                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
903                                                      show_temp, NULL, 3, i);
904                         attr++;
905
906                         if (sensors->temp.version == 0x10) {
907                                 snprintf(attr->name, sizeof(attr->name),
908                                          "temp%d_max", s);
909                                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
910                                                              show_temp, NULL,
911                                                              4, i);
912                                 attr++;
913                         }
914                 }
915         }
916
917         for (i = 0; i < sensors->freq.num_sensors; ++i) {
918                 s = i + 1;
919
920                 snprintf(attr->name, sizeof(attr->name), "freq%d_label", s);
921                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_freq, NULL,
922                                              0, i);
923                 attr++;
924
925                 snprintf(attr->name, sizeof(attr->name), "freq%d_input", s);
926                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_freq, NULL,
927                                              1, i);
928                 attr++;
929         }
930
931         if (sensors->power.version == 0xA0) {
932                 /*
933                  * Special case for many-attribute power sensor. Split it into
934                  * a sensor number per power type, emulating several sensors.
935                  */
936                 for (i = 0; i < sensors->power.num_sensors; ++i) {
937                         unsigned int j;
938                         unsigned int nr = 0;
939
940                         s = (i * 4) + 1;
941
942                         for (j = 0; j < 4; ++j) {
943                                 snprintf(attr->name, sizeof(attr->name),
944                                          "power%d_label", s);
945                                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
946                                                              show_power, NULL,
947                                                              nr++, i);
948                                 attr++;
949
950                                 snprintf(attr->name, sizeof(attr->name),
951                                          "power%d_average", s);
952                                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
953                                                              show_power, NULL,
954                                                              nr++, i);
955                                 attr++;
956
957                                 snprintf(attr->name, sizeof(attr->name),
958                                          "power%d_average_interval", s);
959                                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
960                                                              show_power, NULL,
961                                                              nr++, i);
962                                 attr++;
963
964                                 snprintf(attr->name, sizeof(attr->name),
965                                          "power%d_input", s);
966                                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
967                                                              show_power, NULL,
968                                                              nr++, i);
969                                 attr++;
970
971                                 s++;
972                         }
973                 }
974
975                 s = (sensors->power.num_sensors * 4) + 1;
976         } else {
977                 for (i = 0; i < sensors->power.num_sensors; ++i) {
978                         s = i + 1;
979
980                         snprintf(attr->name, sizeof(attr->name),
981                                  "power%d_label", s);
982                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
983                                                      show_power, NULL, 0, i);
984                         attr++;
985
986                         snprintf(attr->name, sizeof(attr->name),
987                                  "power%d_average", s);
988                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
989                                                      show_power, NULL, 1, i);
990                         attr++;
991
992                         snprintf(attr->name, sizeof(attr->name),
993                                  "power%d_average_interval", s);
994                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
995                                                      show_power, NULL, 2, i);
996                         attr++;
997
998                         snprintf(attr->name, sizeof(attr->name),
999                                  "power%d_input", s);
1000                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1001                                                      show_power, NULL, 3, i);
1002                         attr++;
1003                 }
1004
1005                 s = sensors->power.num_sensors + 1;
1006         }
1007
1008         if (sensors->caps.num_sensors >= 1) {
1009                 snprintf(attr->name, sizeof(attr->name), "power%d_label", s);
1010                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1011                                              0, 0);
1012                 attr++;
1013
1014                 snprintf(attr->name, sizeof(attr->name), "power%d_cap", s);
1015                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1016                                              1, 0);
1017                 attr++;
1018
1019                 snprintf(attr->name, sizeof(attr->name), "power%d_input", s);
1020                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1021                                              2, 0);
1022                 attr++;
1023
1024                 snprintf(attr->name, sizeof(attr->name),
1025                          "power%d_cap_not_redundant", s);
1026                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1027                                              3, 0);
1028                 attr++;
1029
1030                 snprintf(attr->name, sizeof(attr->name), "power%d_cap_max", s);
1031                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1032                                              4, 0);
1033                 attr++;
1034
1035                 snprintf(attr->name, sizeof(attr->name), "power%d_cap_min", s);
1036                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1037                                              5, 0);
1038                 attr++;
1039
1040                 snprintf(attr->name, sizeof(attr->name), "power%d_cap_user",
1041                          s);
1042                 attr->sensor = OCC_INIT_ATTR(attr->name, 0644, show_caps,
1043                                              occ_store_caps_user, 6, 0);
1044                 attr++;
1045
1046                 if (sensors->caps.version > 1) {
1047                         snprintf(attr->name, sizeof(attr->name),
1048                                  "power%d_cap_user_source", s);
1049                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1050                                                      show_caps, NULL, 7, 0);
1051                         attr++;
1052
1053                         if (sensors->caps.version > 2) {
1054                                 snprintf(attr->name, sizeof(attr->name),
1055                                          "power%d_cap_min_soft", s);
1056                                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1057                                                              show_caps, NULL,
1058                                                              8, 0);
1059                                 attr++;
1060                         }
1061                 }
1062         }
1063
1064         for (i = 0; i < sensors->extended.num_sensors; ++i) {
1065                 s = i + 1;
1066
1067                 snprintf(attr->name, sizeof(attr->name), "extn%d_label", s);
1068                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1069                                              occ_show_extended, NULL, 0, i);
1070                 attr++;
1071
1072                 snprintf(attr->name, sizeof(attr->name), "extn%d_flags", s);
1073                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1074                                              occ_show_extended, NULL, 1, i);
1075                 attr++;
1076
1077                 snprintf(attr->name, sizeof(attr->name), "extn%d_input", s);
1078                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1079                                              occ_show_extended, NULL, 2, i);
1080                 attr++;
1081         }
1082
1083         /* put the sensors in the group */
1084         for (i = 0; i < num_attrs; ++i) {
1085                 sysfs_attr_init(&occ->attrs[i].sensor.dev_attr.attr);
1086                 occ->group.attrs[i] = &occ->attrs[i].sensor.dev_attr.attr;
1087         }
1088
1089         return 0;
1090 }
1091
1092 /* only need to do this once at startup, as OCC won't change sensors on us */
1093 static void occ_parse_poll_response(struct occ *occ)
1094 {
1095         unsigned int i, old_offset, offset = 0, size = 0;
1096         struct occ_sensor *sensor;
1097         struct occ_sensors *sensors = &occ->sensors;
1098         struct occ_response *resp = &occ->resp;
1099         struct occ_poll_response *poll =
1100                 (struct occ_poll_response *)&resp->data[0];
1101         struct occ_poll_response_header *header = &poll->header;
1102         struct occ_sensor_data_block *block = &poll->block;
1103
1104         dev_info(occ->bus_dev, "OCC found, code level: %.16s\n",
1105                  header->occ_code_level);
1106
1107         for (i = 0; i < header->num_sensor_data_blocks; ++i) {
1108                 block = (struct occ_sensor_data_block *)((u8 *)block + offset);
1109                 old_offset = offset;
1110                 offset = (block->header.num_sensors *
1111                           block->header.sensor_length) + sizeof(block->header);
1112                 size += offset;
1113
1114                 /* validate all the length/size fields */
1115                 if ((size + sizeof(*header)) >= OCC_RESP_DATA_BYTES) {
1116                         dev_warn(occ->bus_dev, "exceeded response buffer\n");
1117                         return;
1118                 }
1119
1120                 dev_dbg(occ->bus_dev, " %04x..%04x: %.4s (%d sensors)\n",
1121                         old_offset, offset - 1, block->header.eye_catcher,
1122                         block->header.num_sensors);
1123
1124                 /* match sensor block type */
1125                 if (strncmp(block->header.eye_catcher, "TEMP", 4) == 0)
1126                         sensor = &sensors->temp;
1127                 else if (strncmp(block->header.eye_catcher, "FREQ", 4) == 0)
1128                         sensor = &sensors->freq;
1129                 else if (strncmp(block->header.eye_catcher, "POWR", 4) == 0)
1130                         sensor = &sensors->power;
1131                 else if (strncmp(block->header.eye_catcher, "CAPS", 4) == 0)
1132                         sensor = &sensors->caps;
1133                 else if (strncmp(block->header.eye_catcher, "EXTN", 4) == 0)
1134                         sensor = &sensors->extended;
1135                 else {
1136                         dev_warn(occ->bus_dev, "sensor not supported %.4s\n",
1137                                  block->header.eye_catcher);
1138                         continue;
1139                 }
1140
1141                 sensor->num_sensors = block->header.num_sensors;
1142                 sensor->version = block->header.sensor_format;
1143                 sensor->data = &block->data;
1144         }
1145
1146         dev_dbg(occ->bus_dev, "Max resp size: %u+%zd=%zd\n", size,
1147                 sizeof(*header), size + sizeof(*header));
1148 }
1149
1150 int occ_active(struct occ *occ, bool active)
1151 {
1152         int rc = mutex_lock_interruptible(&occ->lock);
1153
1154         if (rc)
1155                 return rc;
1156
1157         if (active) {
1158                 if (occ->active) {
1159                         rc = -EALREADY;
1160                         goto unlock;
1161                 }
1162
1163                 occ->error_count = 0;
1164                 occ->last_safe = 0;
1165
1166                 rc = occ_poll(occ);
1167                 if (rc < 0) {
1168                         dev_err(occ->bus_dev,
1169                                 "failed to get OCC poll response=%02x: %d\n",
1170                                 occ->resp.return_status, rc);
1171                         goto unlock;
1172                 }
1173
1174                 occ->active = true;
1175                 occ->next_update = jiffies + OCC_UPDATE_FREQUENCY;
1176                 occ_parse_poll_response(occ);
1177
1178                 rc = occ_setup_sensor_attrs(occ);
1179                 if (rc) {
1180                         dev_err(occ->bus_dev,
1181                                 "failed to setup sensor attrs: %d\n", rc);
1182                         goto unlock;
1183                 }
1184
1185                 occ->hwmon = hwmon_device_register_with_groups(occ->bus_dev,
1186                                                                "occ", occ,
1187                                                                occ->groups);
1188                 if (IS_ERR(occ->hwmon)) {
1189                         rc = PTR_ERR(occ->hwmon);
1190                         occ->hwmon = NULL;
1191                         dev_err(occ->bus_dev,
1192                                 "failed to register hwmon device: %d\n", rc);
1193                         goto unlock;
1194                 }
1195         } else {
1196                 if (!occ->active) {
1197                         rc = -EALREADY;
1198                         goto unlock;
1199                 }
1200
1201                 if (occ->hwmon)
1202                         hwmon_device_unregister(occ->hwmon);
1203                 occ->active = false;
1204                 occ->hwmon = NULL;
1205         }
1206
1207 unlock:
1208         mutex_unlock(&occ->lock);
1209         return rc;
1210 }
1211
1212 int occ_setup(struct occ *occ)
1213 {
1214         int rc;
1215
1216         mutex_init(&occ->lock);
1217         occ->groups[0] = &occ->group;
1218
1219         rc = occ_setup_sysfs(occ);
1220         if (rc) {
1221                 dev_err(occ->bus_dev, "failed to setup sysfs: %d\n", rc);
1222                 return rc;
1223         }
1224
1225         if (!device_property_read_bool(occ->bus_dev, "ibm,no-poll-on-init")) {
1226                 rc = occ_active(occ, true);
1227                 if (rc)
1228                         occ_shutdown_sysfs(occ);
1229         }
1230
1231         return rc;
1232 }
1233 EXPORT_SYMBOL_GPL(occ_setup);
1234
1235 void occ_shutdown(struct occ *occ)
1236 {
1237         mutex_lock(&occ->lock);
1238
1239         occ_shutdown_sysfs(occ);
1240
1241         if (occ->hwmon)
1242                 hwmon_device_unregister(occ->hwmon);
1243         occ->hwmon = NULL;
1244
1245         mutex_unlock(&occ->lock);
1246 }
1247 EXPORT_SYMBOL_GPL(occ_shutdown);
1248
1249 MODULE_AUTHOR("Eddie James <eajames@linux.ibm.com>");
1250 MODULE_DESCRIPTION("Common OCC hwmon code");
1251 MODULE_LICENSE("GPL");