GNU Linux-libre 5.15.54-gnu
[releases.git] / drivers / hwmon / occ / common.c
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright IBM Corp 2019
3
4 #include <linux/device.h>
5 #include <linux/export.h>
6 #include <linux/hwmon.h>
7 #include <linux/hwmon-sysfs.h>
8 #include <linux/jiffies.h>
9 #include <linux/kernel.h>
10 #include <linux/math64.h>
11 #include <linux/module.h>
12 #include <linux/mutex.h>
13 #include <linux/sysfs.h>
14 #include <asm/unaligned.h>
15
16 #include "common.h"
17
18 #define EXTN_FLAG_SENSOR_ID             BIT(7)
19
20 #define OCC_ERROR_COUNT_THRESHOLD       2       /* required by OCC spec */
21
22 #define OCC_STATE_SAFE                  4
23 #define OCC_SAFE_TIMEOUT                msecs_to_jiffies(60000) /* 1 min */
24
25 #define OCC_UPDATE_FREQUENCY            msecs_to_jiffies(1000)
26
27 #define OCC_TEMP_SENSOR_FAULT           0xFF
28
29 #define OCC_FRU_TYPE_VRM                3
30
31 /* OCC sensor type and version definitions */
32
33 struct temp_sensor_1 {
34         u16 sensor_id;
35         u16 value;
36 } __packed;
37
38 struct temp_sensor_2 {
39         u32 sensor_id;
40         u8 fru_type;
41         u8 value;
42 } __packed;
43
44 struct temp_sensor_10 {
45         u32 sensor_id;
46         u8 fru_type;
47         u8 value;
48         u8 throttle;
49         u8 reserved;
50 } __packed;
51
52 struct freq_sensor_1 {
53         u16 sensor_id;
54         u16 value;
55 } __packed;
56
57 struct freq_sensor_2 {
58         u32 sensor_id;
59         u16 value;
60 } __packed;
61
62 struct power_sensor_1 {
63         u16 sensor_id;
64         u32 update_tag;
65         u32 accumulator;
66         u16 value;
67 } __packed;
68
69 struct power_sensor_2 {
70         u32 sensor_id;
71         u8 function_id;
72         u8 apss_channel;
73         u16 reserved;
74         u32 update_tag;
75         u64 accumulator;
76         u16 value;
77 } __packed;
78
79 struct power_sensor_data {
80         u16 value;
81         u32 update_tag;
82         u64 accumulator;
83 } __packed;
84
85 struct power_sensor_data_and_time {
86         u16 update_time;
87         u16 value;
88         u32 update_tag;
89         u64 accumulator;
90 } __packed;
91
92 struct power_sensor_a0 {
93         u32 sensor_id;
94         struct power_sensor_data_and_time system;
95         u32 reserved;
96         struct power_sensor_data_and_time proc;
97         struct power_sensor_data vdd;
98         struct power_sensor_data vdn;
99 } __packed;
100
101 struct caps_sensor_2 {
102         u16 cap;
103         u16 system_power;
104         u16 n_cap;
105         u16 max;
106         u16 min;
107         u16 user;
108         u8 user_source;
109 } __packed;
110
111 struct caps_sensor_3 {
112         u16 cap;
113         u16 system_power;
114         u16 n_cap;
115         u16 max;
116         u16 hard_min;
117         u16 soft_min;
118         u16 user;
119         u8 user_source;
120 } __packed;
121
122 struct extended_sensor {
123         union {
124                 u8 name[4];
125                 u32 sensor_id;
126         };
127         u8 flags;
128         u8 reserved;
129         u8 data[6];
130 } __packed;
131
132 static int occ_poll(struct occ *occ)
133 {
134         int rc;
135         u8 cmd[7];
136         struct occ_poll_response_header *header;
137
138         /* big endian */
139         cmd[0] = 0;                     /* sequence number */
140         cmd[1] = 0;                     /* cmd type */
141         cmd[2] = 0;                     /* data length msb */
142         cmd[3] = 1;                     /* data length lsb */
143         cmd[4] = occ->poll_cmd_data;    /* data */
144         cmd[5] = 0;                     /* checksum msb */
145         cmd[6] = 0;                     /* checksum lsb */
146
147         /* mutex should already be locked if necessary */
148         rc = occ->send_cmd(occ, cmd, sizeof(cmd), &occ->resp, sizeof(occ->resp));
149         if (rc) {
150                 occ->last_error = rc;
151                 if (occ->error_count++ > OCC_ERROR_COUNT_THRESHOLD)
152                         occ->error = rc;
153
154                 goto done;
155         }
156
157         /* clear error since communication was successful */
158         occ->error_count = 0;
159         occ->last_error = 0;
160         occ->error = 0;
161
162         /* check for safe state */
163         header = (struct occ_poll_response_header *)occ->resp.data;
164         if (header->occ_state == OCC_STATE_SAFE) {
165                 if (occ->last_safe) {
166                         if (time_after(jiffies,
167                                        occ->last_safe + OCC_SAFE_TIMEOUT))
168                                 occ->error = -EHOSTDOWN;
169                 } else {
170                         occ->last_safe = jiffies;
171                 }
172         } else {
173                 occ->last_safe = 0;
174         }
175
176 done:
177         occ_sysfs_poll_done(occ);
178         return rc;
179 }
180
181 static int occ_set_user_power_cap(struct occ *occ, u16 user_power_cap)
182 {
183         int rc;
184         u8 cmd[8];
185         u8 resp[8];
186         __be16 user_power_cap_be = cpu_to_be16(user_power_cap);
187
188         cmd[0] = 0;     /* sequence number */
189         cmd[1] = 0x22;  /* cmd type */
190         cmd[2] = 0;     /* data length msb */
191         cmd[3] = 2;     /* data length lsb */
192
193         memcpy(&cmd[4], &user_power_cap_be, 2);
194
195         cmd[6] = 0;     /* checksum msb */
196         cmd[7] = 0;     /* checksum lsb */
197
198         rc = mutex_lock_interruptible(&occ->lock);
199         if (rc)
200                 return rc;
201
202         rc = occ->send_cmd(occ, cmd, sizeof(cmd), resp, sizeof(resp));
203
204         mutex_unlock(&occ->lock);
205
206         return rc;
207 }
208
209 int occ_update_response(struct occ *occ)
210 {
211         int rc = mutex_lock_interruptible(&occ->lock);
212
213         if (rc)
214                 return rc;
215
216         /* limit the maximum rate of polling the OCC */
217         if (time_after(jiffies, occ->next_update)) {
218                 rc = occ_poll(occ);
219                 occ->next_update = jiffies + OCC_UPDATE_FREQUENCY;
220         } else {
221                 rc = occ->last_error;
222         }
223
224         mutex_unlock(&occ->lock);
225         return rc;
226 }
227
228 static ssize_t occ_show_temp_1(struct device *dev,
229                                struct device_attribute *attr, char *buf)
230 {
231         int rc;
232         u32 val = 0;
233         struct temp_sensor_1 *temp;
234         struct occ *occ = dev_get_drvdata(dev);
235         struct occ_sensors *sensors = &occ->sensors;
236         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
237
238         rc = occ_update_response(occ);
239         if (rc)
240                 return rc;
241
242         temp = ((struct temp_sensor_1 *)sensors->temp.data) + sattr->index;
243
244         switch (sattr->nr) {
245         case 0:
246                 val = get_unaligned_be16(&temp->sensor_id);
247                 break;
248         case 1:
249                 /*
250                  * If a sensor reading has expired and couldn't be refreshed,
251                  * OCC returns 0xFFFF for that sensor.
252                  */
253                 if (temp->value == 0xFFFF)
254                         return -EREMOTEIO;
255                 val = get_unaligned_be16(&temp->value) * 1000;
256                 break;
257         default:
258                 return -EINVAL;
259         }
260
261         return sysfs_emit(buf, "%u\n", val);
262 }
263
264 static ssize_t occ_show_temp_2(struct device *dev,
265                                struct device_attribute *attr, char *buf)
266 {
267         int rc;
268         u32 val = 0;
269         struct temp_sensor_2 *temp;
270         struct occ *occ = dev_get_drvdata(dev);
271         struct occ_sensors *sensors = &occ->sensors;
272         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
273
274         rc = occ_update_response(occ);
275         if (rc)
276                 return rc;
277
278         temp = ((struct temp_sensor_2 *)sensors->temp.data) + sattr->index;
279
280         switch (sattr->nr) {
281         case 0:
282                 val = get_unaligned_be32(&temp->sensor_id);
283                 break;
284         case 1:
285                 val = temp->value;
286                 if (val == OCC_TEMP_SENSOR_FAULT)
287                         return -EREMOTEIO;
288
289                 /*
290                  * VRM doesn't return temperature, only alarm bit. This
291                  * attribute maps to tempX_alarm instead of tempX_input for
292                  * VRM
293                  */
294                 if (temp->fru_type != OCC_FRU_TYPE_VRM) {
295                         /* sensor not ready */
296                         if (val == 0)
297                                 return -EAGAIN;
298
299                         val *= 1000;
300                 }
301                 break;
302         case 2:
303                 val = temp->fru_type;
304                 break;
305         case 3:
306                 val = temp->value == OCC_TEMP_SENSOR_FAULT;
307                 break;
308         default:
309                 return -EINVAL;
310         }
311
312         return sysfs_emit(buf, "%u\n", val);
313 }
314
315 static ssize_t occ_show_temp_10(struct device *dev,
316                                 struct device_attribute *attr, char *buf)
317 {
318         int rc;
319         u32 val = 0;
320         struct temp_sensor_10 *temp;
321         struct occ *occ = dev_get_drvdata(dev);
322         struct occ_sensors *sensors = &occ->sensors;
323         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
324
325         rc = occ_update_response(occ);
326         if (rc)
327                 return rc;
328
329         temp = ((struct temp_sensor_10 *)sensors->temp.data) + sattr->index;
330
331         switch (sattr->nr) {
332         case 0:
333                 val = get_unaligned_be32(&temp->sensor_id);
334                 break;
335         case 1:
336                 val = temp->value;
337                 if (val == OCC_TEMP_SENSOR_FAULT)
338                         return -EREMOTEIO;
339
340                 /* sensor not ready */
341                 if (val == 0)
342                         return -EAGAIN;
343
344                 val *= 1000;
345                 break;
346         case 2:
347                 val = temp->fru_type;
348                 break;
349         case 3:
350                 val = temp->value == OCC_TEMP_SENSOR_FAULT;
351                 break;
352         case 4:
353                 val = temp->throttle * 1000;
354                 break;
355         default:
356                 return -EINVAL;
357         }
358
359         return sysfs_emit(buf, "%u\n", val);
360 }
361
362 static ssize_t occ_show_freq_1(struct device *dev,
363                                struct device_attribute *attr, char *buf)
364 {
365         int rc;
366         u16 val = 0;
367         struct freq_sensor_1 *freq;
368         struct occ *occ = dev_get_drvdata(dev);
369         struct occ_sensors *sensors = &occ->sensors;
370         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
371
372         rc = occ_update_response(occ);
373         if (rc)
374                 return rc;
375
376         freq = ((struct freq_sensor_1 *)sensors->freq.data) + sattr->index;
377
378         switch (sattr->nr) {
379         case 0:
380                 val = get_unaligned_be16(&freq->sensor_id);
381                 break;
382         case 1:
383                 val = get_unaligned_be16(&freq->value);
384                 break;
385         default:
386                 return -EINVAL;
387         }
388
389         return sysfs_emit(buf, "%u\n", val);
390 }
391
392 static ssize_t occ_show_freq_2(struct device *dev,
393                                struct device_attribute *attr, char *buf)
394 {
395         int rc;
396         u32 val = 0;
397         struct freq_sensor_2 *freq;
398         struct occ *occ = dev_get_drvdata(dev);
399         struct occ_sensors *sensors = &occ->sensors;
400         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
401
402         rc = occ_update_response(occ);
403         if (rc)
404                 return rc;
405
406         freq = ((struct freq_sensor_2 *)sensors->freq.data) + sattr->index;
407
408         switch (sattr->nr) {
409         case 0:
410                 val = get_unaligned_be32(&freq->sensor_id);
411                 break;
412         case 1:
413                 val = get_unaligned_be16(&freq->value);
414                 break;
415         default:
416                 return -EINVAL;
417         }
418
419         return sysfs_emit(buf, "%u\n", val);
420 }
421
422 static ssize_t occ_show_power_1(struct device *dev,
423                                 struct device_attribute *attr, char *buf)
424 {
425         int rc;
426         u64 val = 0;
427         struct power_sensor_1 *power;
428         struct occ *occ = dev_get_drvdata(dev);
429         struct occ_sensors *sensors = &occ->sensors;
430         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
431
432         rc = occ_update_response(occ);
433         if (rc)
434                 return rc;
435
436         power = ((struct power_sensor_1 *)sensors->power.data) + sattr->index;
437
438         switch (sattr->nr) {
439         case 0:
440                 val = get_unaligned_be16(&power->sensor_id);
441                 break;
442         case 1:
443                 val = get_unaligned_be32(&power->accumulator) /
444                         get_unaligned_be32(&power->update_tag);
445                 val *= 1000000ULL;
446                 break;
447         case 2:
448                 val = (u64)get_unaligned_be32(&power->update_tag) *
449                            occ->powr_sample_time_us;
450                 break;
451         case 3:
452                 val = get_unaligned_be16(&power->value) * 1000000ULL;
453                 break;
454         default:
455                 return -EINVAL;
456         }
457
458         return sysfs_emit(buf, "%llu\n", val);
459 }
460
461 static u64 occ_get_powr_avg(u64 *accum, u32 *samples)
462 {
463         u64 divisor = get_unaligned_be32(samples);
464
465         return (divisor == 0) ? 0 :
466                 div64_u64(get_unaligned_be64(accum) * 1000000ULL, divisor);
467 }
468
469 static ssize_t occ_show_power_2(struct device *dev,
470                                 struct device_attribute *attr, char *buf)
471 {
472         int rc;
473         u64 val = 0;
474         struct power_sensor_2 *power;
475         struct occ *occ = dev_get_drvdata(dev);
476         struct occ_sensors *sensors = &occ->sensors;
477         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
478
479         rc = occ_update_response(occ);
480         if (rc)
481                 return rc;
482
483         power = ((struct power_sensor_2 *)sensors->power.data) + sattr->index;
484
485         switch (sattr->nr) {
486         case 0:
487                 return sysfs_emit(buf, "%u_%u_%u\n",
488                                   get_unaligned_be32(&power->sensor_id),
489                                   power->function_id, power->apss_channel);
490         case 1:
491                 val = occ_get_powr_avg(&power->accumulator,
492                                        &power->update_tag);
493                 break;
494         case 2:
495                 val = (u64)get_unaligned_be32(&power->update_tag) *
496                            occ->powr_sample_time_us;
497                 break;
498         case 3:
499                 val = get_unaligned_be16(&power->value) * 1000000ULL;
500                 break;
501         default:
502                 return -EINVAL;
503         }
504
505         return sysfs_emit(buf, "%llu\n", val);
506 }
507
508 static ssize_t occ_show_power_a0(struct device *dev,
509                                  struct device_attribute *attr, char *buf)
510 {
511         int rc;
512         u64 val = 0;
513         struct power_sensor_a0 *power;
514         struct occ *occ = dev_get_drvdata(dev);
515         struct occ_sensors *sensors = &occ->sensors;
516         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
517
518         rc = occ_update_response(occ);
519         if (rc)
520                 return rc;
521
522         power = ((struct power_sensor_a0 *)sensors->power.data) + sattr->index;
523
524         switch (sattr->nr) {
525         case 0:
526                 return sysfs_emit(buf, "%u_system\n",
527                                   get_unaligned_be32(&power->sensor_id));
528         case 1:
529                 val = occ_get_powr_avg(&power->system.accumulator,
530                                        &power->system.update_tag);
531                 break;
532         case 2:
533                 val = (u64)get_unaligned_be32(&power->system.update_tag) *
534                            occ->powr_sample_time_us;
535                 break;
536         case 3:
537                 val = get_unaligned_be16(&power->system.value) * 1000000ULL;
538                 break;
539         case 4:
540                 return sysfs_emit(buf, "%u_proc\n",
541                                   get_unaligned_be32(&power->sensor_id));
542         case 5:
543                 val = occ_get_powr_avg(&power->proc.accumulator,
544                                        &power->proc.update_tag);
545                 break;
546         case 6:
547                 val = (u64)get_unaligned_be32(&power->proc.update_tag) *
548                            occ->powr_sample_time_us;
549                 break;
550         case 7:
551                 val = get_unaligned_be16(&power->proc.value) * 1000000ULL;
552                 break;
553         case 8:
554                 return sysfs_emit(buf, "%u_vdd\n",
555                                   get_unaligned_be32(&power->sensor_id));
556         case 9:
557                 val = occ_get_powr_avg(&power->vdd.accumulator,
558                                        &power->vdd.update_tag);
559                 break;
560         case 10:
561                 val = (u64)get_unaligned_be32(&power->vdd.update_tag) *
562                            occ->powr_sample_time_us;
563                 break;
564         case 11:
565                 val = get_unaligned_be16(&power->vdd.value) * 1000000ULL;
566                 break;
567         case 12:
568                 return sysfs_emit(buf, "%u_vdn\n",
569                                   get_unaligned_be32(&power->sensor_id));
570         case 13:
571                 val = occ_get_powr_avg(&power->vdn.accumulator,
572                                        &power->vdn.update_tag);
573                 break;
574         case 14:
575                 val = (u64)get_unaligned_be32(&power->vdn.update_tag) *
576                            occ->powr_sample_time_us;
577                 break;
578         case 15:
579                 val = get_unaligned_be16(&power->vdn.value) * 1000000ULL;
580                 break;
581         default:
582                 return -EINVAL;
583         }
584
585         return sysfs_emit(buf, "%llu\n", val);
586 }
587
588 static ssize_t occ_show_caps_1_2(struct device *dev,
589                                  struct device_attribute *attr, char *buf)
590 {
591         int rc;
592         u64 val = 0;
593         struct caps_sensor_2 *caps;
594         struct occ *occ = dev_get_drvdata(dev);
595         struct occ_sensors *sensors = &occ->sensors;
596         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
597
598         rc = occ_update_response(occ);
599         if (rc)
600                 return rc;
601
602         caps = ((struct caps_sensor_2 *)sensors->caps.data) + sattr->index;
603
604         switch (sattr->nr) {
605         case 0:
606                 return sysfs_emit(buf, "system\n");
607         case 1:
608                 val = get_unaligned_be16(&caps->cap) * 1000000ULL;
609                 break;
610         case 2:
611                 val = get_unaligned_be16(&caps->system_power) * 1000000ULL;
612                 break;
613         case 3:
614                 val = get_unaligned_be16(&caps->n_cap) * 1000000ULL;
615                 break;
616         case 4:
617                 val = get_unaligned_be16(&caps->max) * 1000000ULL;
618                 break;
619         case 5:
620                 val = get_unaligned_be16(&caps->min) * 1000000ULL;
621                 break;
622         case 6:
623                 val = get_unaligned_be16(&caps->user) * 1000000ULL;
624                 break;
625         case 7:
626                 if (occ->sensors.caps.version == 1)
627                         return -EINVAL;
628
629                 val = caps->user_source;
630                 break;
631         default:
632                 return -EINVAL;
633         }
634
635         return sysfs_emit(buf, "%llu\n", val);
636 }
637
638 static ssize_t occ_show_caps_3(struct device *dev,
639                                struct device_attribute *attr, char *buf)
640 {
641         int rc;
642         u64 val = 0;
643         struct caps_sensor_3 *caps;
644         struct occ *occ = dev_get_drvdata(dev);
645         struct occ_sensors *sensors = &occ->sensors;
646         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
647
648         rc = occ_update_response(occ);
649         if (rc)
650                 return rc;
651
652         caps = ((struct caps_sensor_3 *)sensors->caps.data) + sattr->index;
653
654         switch (sattr->nr) {
655         case 0:
656                 return sysfs_emit(buf, "system\n");
657         case 1:
658                 val = get_unaligned_be16(&caps->cap) * 1000000ULL;
659                 break;
660         case 2:
661                 val = get_unaligned_be16(&caps->system_power) * 1000000ULL;
662                 break;
663         case 3:
664                 val = get_unaligned_be16(&caps->n_cap) * 1000000ULL;
665                 break;
666         case 4:
667                 val = get_unaligned_be16(&caps->max) * 1000000ULL;
668                 break;
669         case 5:
670                 val = get_unaligned_be16(&caps->hard_min) * 1000000ULL;
671                 break;
672         case 6:
673                 val = get_unaligned_be16(&caps->user) * 1000000ULL;
674                 break;
675         case 7:
676                 val = caps->user_source;
677                 break;
678         default:
679                 return -EINVAL;
680         }
681
682         return sysfs_emit(buf, "%llu\n", val);
683 }
684
685 static ssize_t occ_store_caps_user(struct device *dev,
686                                    struct device_attribute *attr,
687                                    const char *buf, size_t count)
688 {
689         int rc;
690         u16 user_power_cap;
691         unsigned long long value;
692         struct occ *occ = dev_get_drvdata(dev);
693
694         rc = kstrtoull(buf, 0, &value);
695         if (rc)
696                 return rc;
697
698         user_power_cap = div64_u64(value, 1000000ULL); /* microwatt to watt */
699
700         rc = occ_set_user_power_cap(occ, user_power_cap);
701         if (rc)
702                 return rc;
703
704         return count;
705 }
706
707 static ssize_t occ_show_extended(struct device *dev,
708                                  struct device_attribute *attr, char *buf)
709 {
710         int rc;
711         struct extended_sensor *extn;
712         struct occ *occ = dev_get_drvdata(dev);
713         struct occ_sensors *sensors = &occ->sensors;
714         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
715
716         rc = occ_update_response(occ);
717         if (rc)
718                 return rc;
719
720         extn = ((struct extended_sensor *)sensors->extended.data) +
721                 sattr->index;
722
723         switch (sattr->nr) {
724         case 0:
725                 if (extn->flags & EXTN_FLAG_SENSOR_ID) {
726                         rc = sysfs_emit(buf, "%u",
727                                         get_unaligned_be32(&extn->sensor_id));
728                 } else {
729                         rc = sysfs_emit(buf, "%02x%02x%02x%02x\n",
730                                         extn->name[0], extn->name[1],
731                                         extn->name[2], extn->name[3]);
732                 }
733                 break;
734         case 1:
735                 rc = sysfs_emit(buf, "%02x\n", extn->flags);
736                 break;
737         case 2:
738                 rc = sysfs_emit(buf, "%02x%02x%02x%02x%02x%02x\n",
739                                 extn->data[0], extn->data[1], extn->data[2],
740                                 extn->data[3], extn->data[4], extn->data[5]);
741                 break;
742         default:
743                 return -EINVAL;
744         }
745
746         return rc;
747 }
748
749 /*
750  * Some helper macros to make it easier to define an occ_attribute. Since these
751  * are dynamically allocated, we shouldn't use the existing kernel macros which
752  * stringify the name argument.
753  */
754 #define ATTR_OCC(_name, _mode, _show, _store) {                         \
755         .attr   = {                                                     \
756                 .name = _name,                                          \
757                 .mode = VERIFY_OCTAL_PERMISSIONS(_mode),                \
758         },                                                              \
759         .show   = _show,                                                \
760         .store  = _store,                                               \
761 }
762
763 #define SENSOR_ATTR_OCC(_name, _mode, _show, _store, _nr, _index) {     \
764         .dev_attr       = ATTR_OCC(_name, _mode, _show, _store),        \
765         .index          = _index,                                       \
766         .nr             = _nr,                                          \
767 }
768
769 #define OCC_INIT_ATTR(_name, _mode, _show, _store, _nr, _index)         \
770         ((struct sensor_device_attribute_2)                             \
771                 SENSOR_ATTR_OCC(_name, _mode, _show, _store, _nr, _index))
772
773 /*
774  * Allocate and instatiate sensor_device_attribute_2s. It's most efficient to
775  * use our own instead of the built-in hwmon attribute types.
776  */
777 static int occ_setup_sensor_attrs(struct occ *occ)
778 {
779         unsigned int i, s, num_attrs = 0;
780         struct device *dev = occ->bus_dev;
781         struct occ_sensors *sensors = &occ->sensors;
782         struct occ_attribute *attr;
783         struct temp_sensor_2 *temp;
784         ssize_t (*show_temp)(struct device *, struct device_attribute *,
785                              char *) = occ_show_temp_1;
786         ssize_t (*show_freq)(struct device *, struct device_attribute *,
787                              char *) = occ_show_freq_1;
788         ssize_t (*show_power)(struct device *, struct device_attribute *,
789                               char *) = occ_show_power_1;
790         ssize_t (*show_caps)(struct device *, struct device_attribute *,
791                              char *) = occ_show_caps_1_2;
792
793         switch (sensors->temp.version) {
794         case 1:
795                 num_attrs += (sensors->temp.num_sensors * 2);
796                 break;
797         case 2:
798                 num_attrs += (sensors->temp.num_sensors * 4);
799                 show_temp = occ_show_temp_2;
800                 break;
801         case 0x10:
802                 num_attrs += (sensors->temp.num_sensors * 5);
803                 show_temp = occ_show_temp_10;
804                 break;
805         default:
806                 sensors->temp.num_sensors = 0;
807         }
808
809         switch (sensors->freq.version) {
810         case 2:
811                 show_freq = occ_show_freq_2;
812                 fallthrough;
813         case 1:
814                 num_attrs += (sensors->freq.num_sensors * 2);
815                 break;
816         default:
817                 sensors->freq.num_sensors = 0;
818         }
819
820         switch (sensors->power.version) {
821         case 2:
822                 show_power = occ_show_power_2;
823                 fallthrough;
824         case 1:
825                 num_attrs += (sensors->power.num_sensors * 4);
826                 break;
827         case 0xA0:
828                 num_attrs += (sensors->power.num_sensors * 16);
829                 show_power = occ_show_power_a0;
830                 break;
831         default:
832                 sensors->power.num_sensors = 0;
833         }
834
835         switch (sensors->caps.version) {
836         case 1:
837                 num_attrs += (sensors->caps.num_sensors * 7);
838                 break;
839         case 3:
840                 show_caps = occ_show_caps_3;
841                 fallthrough;
842         case 2:
843                 num_attrs += (sensors->caps.num_sensors * 8);
844                 break;
845         default:
846                 sensors->caps.num_sensors = 0;
847         }
848
849         switch (sensors->extended.version) {
850         case 1:
851                 num_attrs += (sensors->extended.num_sensors * 3);
852                 break;
853         default:
854                 sensors->extended.num_sensors = 0;
855         }
856
857         occ->attrs = devm_kzalloc(dev, sizeof(*occ->attrs) * num_attrs,
858                                   GFP_KERNEL);
859         if (!occ->attrs)
860                 return -ENOMEM;
861
862         /* null-terminated list */
863         occ->group.attrs = devm_kzalloc(dev, sizeof(*occ->group.attrs) *
864                                         num_attrs + 1, GFP_KERNEL);
865         if (!occ->group.attrs)
866                 return -ENOMEM;
867
868         attr = occ->attrs;
869
870         for (i = 0; i < sensors->temp.num_sensors; ++i) {
871                 s = i + 1;
872                 temp = ((struct temp_sensor_2 *)sensors->temp.data) + i;
873
874                 snprintf(attr->name, sizeof(attr->name), "temp%d_label", s);
875                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL,
876                                              0, i);
877                 attr++;
878
879                 if (sensors->temp.version == 2 &&
880                     temp->fru_type == OCC_FRU_TYPE_VRM) {
881                         snprintf(attr->name, sizeof(attr->name),
882                                  "temp%d_alarm", s);
883                 } else {
884                         snprintf(attr->name, sizeof(attr->name),
885                                  "temp%d_input", s);
886                 }
887
888                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL,
889                                              1, i);
890                 attr++;
891
892                 if (sensors->temp.version > 1) {
893                         snprintf(attr->name, sizeof(attr->name),
894                                  "temp%d_fru_type", s);
895                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
896                                                      show_temp, NULL, 2, i);
897                         attr++;
898
899                         snprintf(attr->name, sizeof(attr->name),
900                                  "temp%d_fault", s);
901                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
902                                                      show_temp, NULL, 3, i);
903                         attr++;
904
905                         if (sensors->temp.version == 0x10) {
906                                 snprintf(attr->name, sizeof(attr->name),
907                                          "temp%d_max", s);
908                                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
909                                                              show_temp, NULL,
910                                                              4, i);
911                                 attr++;
912                         }
913                 }
914         }
915
916         for (i = 0; i < sensors->freq.num_sensors; ++i) {
917                 s = i + 1;
918
919                 snprintf(attr->name, sizeof(attr->name), "freq%d_label", s);
920                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_freq, NULL,
921                                              0, i);
922                 attr++;
923
924                 snprintf(attr->name, sizeof(attr->name), "freq%d_input", s);
925                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_freq, NULL,
926                                              1, i);
927                 attr++;
928         }
929
930         if (sensors->power.version == 0xA0) {
931                 /*
932                  * Special case for many-attribute power sensor. Split it into
933                  * a sensor number per power type, emulating several sensors.
934                  */
935                 for (i = 0; i < sensors->power.num_sensors; ++i) {
936                         unsigned int j;
937                         unsigned int nr = 0;
938
939                         s = (i * 4) + 1;
940
941                         for (j = 0; j < 4; ++j) {
942                                 snprintf(attr->name, sizeof(attr->name),
943                                          "power%d_label", s);
944                                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
945                                                              show_power, NULL,
946                                                              nr++, i);
947                                 attr++;
948
949                                 snprintf(attr->name, sizeof(attr->name),
950                                          "power%d_average", s);
951                                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
952                                                              show_power, NULL,
953                                                              nr++, i);
954                                 attr++;
955
956                                 snprintf(attr->name, sizeof(attr->name),
957                                          "power%d_average_interval", s);
958                                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
959                                                              show_power, NULL,
960                                                              nr++, i);
961                                 attr++;
962
963                                 snprintf(attr->name, sizeof(attr->name),
964                                          "power%d_input", s);
965                                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
966                                                              show_power, NULL,
967                                                              nr++, i);
968                                 attr++;
969
970                                 s++;
971                         }
972                 }
973
974                 s = (sensors->power.num_sensors * 4) + 1;
975         } else {
976                 for (i = 0; i < sensors->power.num_sensors; ++i) {
977                         s = i + 1;
978
979                         snprintf(attr->name, sizeof(attr->name),
980                                  "power%d_label", s);
981                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
982                                                      show_power, NULL, 0, i);
983                         attr++;
984
985                         snprintf(attr->name, sizeof(attr->name),
986                                  "power%d_average", s);
987                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
988                                                      show_power, NULL, 1, i);
989                         attr++;
990
991                         snprintf(attr->name, sizeof(attr->name),
992                                  "power%d_average_interval", s);
993                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
994                                                      show_power, NULL, 2, i);
995                         attr++;
996
997                         snprintf(attr->name, sizeof(attr->name),
998                                  "power%d_input", s);
999                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1000                                                      show_power, NULL, 3, i);
1001                         attr++;
1002                 }
1003
1004                 s = sensors->power.num_sensors + 1;
1005         }
1006
1007         if (sensors->caps.num_sensors >= 1) {
1008                 snprintf(attr->name, sizeof(attr->name), "power%d_label", s);
1009                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1010                                              0, 0);
1011                 attr++;
1012
1013                 snprintf(attr->name, sizeof(attr->name), "power%d_cap", s);
1014                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1015                                              1, 0);
1016                 attr++;
1017
1018                 snprintf(attr->name, sizeof(attr->name), "power%d_input", s);
1019                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1020                                              2, 0);
1021                 attr++;
1022
1023                 snprintf(attr->name, sizeof(attr->name),
1024                          "power%d_cap_not_redundant", s);
1025                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1026                                              3, 0);
1027                 attr++;
1028
1029                 snprintf(attr->name, sizeof(attr->name), "power%d_cap_max", s);
1030                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1031                                              4, 0);
1032                 attr++;
1033
1034                 snprintf(attr->name, sizeof(attr->name), "power%d_cap_min", s);
1035                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1036                                              5, 0);
1037                 attr++;
1038
1039                 snprintf(attr->name, sizeof(attr->name), "power%d_cap_user",
1040                          s);
1041                 attr->sensor = OCC_INIT_ATTR(attr->name, 0644, show_caps,
1042                                              occ_store_caps_user, 6, 0);
1043                 attr++;
1044
1045                 if (sensors->caps.version > 1) {
1046                         snprintf(attr->name, sizeof(attr->name),
1047                                  "power%d_cap_user_source", s);
1048                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1049                                                      show_caps, NULL, 7, 0);
1050                         attr++;
1051                 }
1052         }
1053
1054         for (i = 0; i < sensors->extended.num_sensors; ++i) {
1055                 s = i + 1;
1056
1057                 snprintf(attr->name, sizeof(attr->name), "extn%d_label", s);
1058                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1059                                              occ_show_extended, NULL, 0, i);
1060                 attr++;
1061
1062                 snprintf(attr->name, sizeof(attr->name), "extn%d_flags", s);
1063                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1064                                              occ_show_extended, NULL, 1, i);
1065                 attr++;
1066
1067                 snprintf(attr->name, sizeof(attr->name), "extn%d_input", s);
1068                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1069                                              occ_show_extended, NULL, 2, i);
1070                 attr++;
1071         }
1072
1073         /* put the sensors in the group */
1074         for (i = 0; i < num_attrs; ++i) {
1075                 sysfs_attr_init(&occ->attrs[i].sensor.dev_attr.attr);
1076                 occ->group.attrs[i] = &occ->attrs[i].sensor.dev_attr.attr;
1077         }
1078
1079         return 0;
1080 }
1081
1082 /* only need to do this once at startup, as OCC won't change sensors on us */
1083 static void occ_parse_poll_response(struct occ *occ)
1084 {
1085         unsigned int i, old_offset, offset = 0, size = 0;
1086         struct occ_sensor *sensor;
1087         struct occ_sensors *sensors = &occ->sensors;
1088         struct occ_response *resp = &occ->resp;
1089         struct occ_poll_response *poll =
1090                 (struct occ_poll_response *)&resp->data[0];
1091         struct occ_poll_response_header *header = &poll->header;
1092         struct occ_sensor_data_block *block = &poll->block;
1093
1094         dev_info(occ->bus_dev, "OCC found, code level: %.16s\n",
1095                  header->occ_code_level);
1096
1097         for (i = 0; i < header->num_sensor_data_blocks; ++i) {
1098                 block = (struct occ_sensor_data_block *)((u8 *)block + offset);
1099                 old_offset = offset;
1100                 offset = (block->header.num_sensors *
1101                           block->header.sensor_length) + sizeof(block->header);
1102                 size += offset;
1103
1104                 /* validate all the length/size fields */
1105                 if ((size + sizeof(*header)) >= OCC_RESP_DATA_BYTES) {
1106                         dev_warn(occ->bus_dev, "exceeded response buffer\n");
1107                         return;
1108                 }
1109
1110                 dev_dbg(occ->bus_dev, " %04x..%04x: %.4s (%d sensors)\n",
1111                         old_offset, offset - 1, block->header.eye_catcher,
1112                         block->header.num_sensors);
1113
1114                 /* match sensor block type */
1115                 if (strncmp(block->header.eye_catcher, "TEMP", 4) == 0)
1116                         sensor = &sensors->temp;
1117                 else if (strncmp(block->header.eye_catcher, "FREQ", 4) == 0)
1118                         sensor = &sensors->freq;
1119                 else if (strncmp(block->header.eye_catcher, "POWR", 4) == 0)
1120                         sensor = &sensors->power;
1121                 else if (strncmp(block->header.eye_catcher, "CAPS", 4) == 0)
1122                         sensor = &sensors->caps;
1123                 else if (strncmp(block->header.eye_catcher, "EXTN", 4) == 0)
1124                         sensor = &sensors->extended;
1125                 else {
1126                         dev_warn(occ->bus_dev, "sensor not supported %.4s\n",
1127                                  block->header.eye_catcher);
1128                         continue;
1129                 }
1130
1131                 sensor->num_sensors = block->header.num_sensors;
1132                 sensor->version = block->header.sensor_format;
1133                 sensor->data = &block->data;
1134         }
1135
1136         dev_dbg(occ->bus_dev, "Max resp size: %u+%zd=%zd\n", size,
1137                 sizeof(*header), size + sizeof(*header));
1138 }
1139
1140 int occ_setup(struct occ *occ, const char *name)
1141 {
1142         int rc;
1143
1144         mutex_init(&occ->lock);
1145         occ->groups[0] = &occ->group;
1146
1147         /* no need to lock */
1148         rc = occ_poll(occ);
1149         if (rc == -ESHUTDOWN) {
1150                 dev_info(occ->bus_dev, "host is not ready\n");
1151                 return rc;
1152         } else if (rc < 0) {
1153                 dev_err(occ->bus_dev,
1154                         "failed to get OCC poll response=%02x: %d\n",
1155                         occ->resp.return_status, rc);
1156                 return rc;
1157         }
1158
1159         occ->next_update = jiffies + OCC_UPDATE_FREQUENCY;
1160         occ_parse_poll_response(occ);
1161
1162         rc = occ_setup_sensor_attrs(occ);
1163         if (rc) {
1164                 dev_err(occ->bus_dev, "failed to setup sensor attrs: %d\n",
1165                         rc);
1166                 return rc;
1167         }
1168
1169         occ->hwmon = devm_hwmon_device_register_with_groups(occ->bus_dev, name,
1170                                                             occ, occ->groups);
1171         if (IS_ERR(occ->hwmon)) {
1172                 rc = PTR_ERR(occ->hwmon);
1173                 dev_err(occ->bus_dev, "failed to register hwmon device: %d\n",
1174                         rc);
1175                 return rc;
1176         }
1177
1178         rc = occ_setup_sysfs(occ);
1179         if (rc)
1180                 dev_err(occ->bus_dev, "failed to setup sysfs: %d\n", rc);
1181
1182         return rc;
1183 }
1184 EXPORT_SYMBOL_GPL(occ_setup);
1185
1186 MODULE_AUTHOR("Eddie James <eajames@linux.ibm.com>");
1187 MODULE_DESCRIPTION("Common OCC hwmon code");
1188 MODULE_LICENSE("GPL");