GNU Linux-libre 5.10.215-gnu1
[releases.git] / drivers / hv / ring_buffer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Copyright (c) 2009, Microsoft Corporation.
5  *
6  * Authors:
7  *   Haiyang Zhang <haiyangz@microsoft.com>
8  *   Hank Janssen  <hjanssen@microsoft.com>
9  *   K. Y. Srinivasan <kys@microsoft.com>
10  */
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/hyperv.h>
16 #include <linux/uio.h>
17 #include <linux/vmalloc.h>
18 #include <linux/slab.h>
19 #include <linux/prefetch.h>
20
21 #include "hyperv_vmbus.h"
22
23 #define VMBUS_PKT_TRAILER       8
24
25 /*
26  * When we write to the ring buffer, check if the host needs to
27  * be signaled. Here is the details of this protocol:
28  *
29  *      1. The host guarantees that while it is draining the
30  *         ring buffer, it will set the interrupt_mask to
31  *         indicate it does not need to be interrupted when
32  *         new data is placed.
33  *
34  *      2. The host guarantees that it will completely drain
35  *         the ring buffer before exiting the read loop. Further,
36  *         once the ring buffer is empty, it will clear the
37  *         interrupt_mask and re-check to see if new data has
38  *         arrived.
39  *
40  * KYS: Oct. 30, 2016:
41  * It looks like Windows hosts have logic to deal with DOS attacks that
42  * can be triggered if it receives interrupts when it is not expecting
43  * the interrupt. The host expects interrupts only when the ring
44  * transitions from empty to non-empty (or full to non full on the guest
45  * to host ring).
46  * So, base the signaling decision solely on the ring state until the
47  * host logic is fixed.
48  */
49
50 static void hv_signal_on_write(u32 old_write, struct vmbus_channel *channel)
51 {
52         struct hv_ring_buffer_info *rbi = &channel->outbound;
53
54         virt_mb();
55         if (READ_ONCE(rbi->ring_buffer->interrupt_mask))
56                 return;
57
58         /* check interrupt_mask before read_index */
59         virt_rmb();
60         /*
61          * This is the only case we need to signal when the
62          * ring transitions from being empty to non-empty.
63          */
64         if (old_write == READ_ONCE(rbi->ring_buffer->read_index)) {
65                 ++channel->intr_out_empty;
66                 vmbus_setevent(channel);
67         }
68 }
69
70 /* Get the next write location for the specified ring buffer. */
71 static inline u32
72 hv_get_next_write_location(struct hv_ring_buffer_info *ring_info)
73 {
74         u32 next = ring_info->ring_buffer->write_index;
75
76         return next;
77 }
78
79 /* Set the next write location for the specified ring buffer. */
80 static inline void
81 hv_set_next_write_location(struct hv_ring_buffer_info *ring_info,
82                      u32 next_write_location)
83 {
84         ring_info->ring_buffer->write_index = next_write_location;
85 }
86
87 /* Set the next read location for the specified ring buffer. */
88 static inline void
89 hv_set_next_read_location(struct hv_ring_buffer_info *ring_info,
90                     u32 next_read_location)
91 {
92         ring_info->ring_buffer->read_index = next_read_location;
93         ring_info->priv_read_index = next_read_location;
94 }
95
96 /* Get the size of the ring buffer. */
97 static inline u32
98 hv_get_ring_buffersize(const struct hv_ring_buffer_info *ring_info)
99 {
100         return ring_info->ring_datasize;
101 }
102
103 /* Get the read and write indices as u64 of the specified ring buffer. */
104 static inline u64
105 hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info)
106 {
107         return (u64)ring_info->ring_buffer->write_index << 32;
108 }
109
110 /*
111  * Helper routine to copy from source to ring buffer.
112  * Assume there is enough room. Handles wrap-around in dest case only!!
113  */
114 static u32 hv_copyto_ringbuffer(
115         struct hv_ring_buffer_info      *ring_info,
116         u32                             start_write_offset,
117         const void                      *src,
118         u32                             srclen)
119 {
120         void *ring_buffer = hv_get_ring_buffer(ring_info);
121         u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
122
123         memcpy(ring_buffer + start_write_offset, src, srclen);
124
125         start_write_offset += srclen;
126         if (start_write_offset >= ring_buffer_size)
127                 start_write_offset -= ring_buffer_size;
128
129         return start_write_offset;
130 }
131
132 /*
133  *
134  * hv_get_ringbuffer_availbytes()
135  *
136  * Get number of bytes available to read and to write to
137  * for the specified ring buffer
138  */
139 static void
140 hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info *rbi,
141                              u32 *read, u32 *write)
142 {
143         u32 read_loc, write_loc, dsize;
144
145         /* Capture the read/write indices before they changed */
146         read_loc = READ_ONCE(rbi->ring_buffer->read_index);
147         write_loc = READ_ONCE(rbi->ring_buffer->write_index);
148         dsize = rbi->ring_datasize;
149
150         *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
151                 read_loc - write_loc;
152         *read = dsize - *write;
153 }
154
155 /* Get various debug metrics for the specified ring buffer. */
156 int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
157                                 struct hv_ring_buffer_debug_info *debug_info)
158 {
159         u32 bytes_avail_towrite;
160         u32 bytes_avail_toread;
161
162         mutex_lock(&ring_info->ring_buffer_mutex);
163
164         if (!ring_info->ring_buffer) {
165                 mutex_unlock(&ring_info->ring_buffer_mutex);
166                 return -EINVAL;
167         }
168
169         hv_get_ringbuffer_availbytes(ring_info,
170                                      &bytes_avail_toread,
171                                      &bytes_avail_towrite);
172         debug_info->bytes_avail_toread = bytes_avail_toread;
173         debug_info->bytes_avail_towrite = bytes_avail_towrite;
174         debug_info->current_read_index = ring_info->ring_buffer->read_index;
175         debug_info->current_write_index = ring_info->ring_buffer->write_index;
176         debug_info->current_interrupt_mask
177                 = ring_info->ring_buffer->interrupt_mask;
178         mutex_unlock(&ring_info->ring_buffer_mutex);
179
180         return 0;
181 }
182 EXPORT_SYMBOL_GPL(hv_ringbuffer_get_debuginfo);
183
184 /* Initialize a channel's ring buffer info mutex locks */
185 void hv_ringbuffer_pre_init(struct vmbus_channel *channel)
186 {
187         mutex_init(&channel->inbound.ring_buffer_mutex);
188         mutex_init(&channel->outbound.ring_buffer_mutex);
189 }
190
191 /* Initialize the ring buffer. */
192 int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info,
193                        struct page *pages, u32 page_cnt)
194 {
195         int i;
196         struct page **pages_wraparound;
197
198         BUILD_BUG_ON((sizeof(struct hv_ring_buffer) != PAGE_SIZE));
199
200         /*
201          * First page holds struct hv_ring_buffer, do wraparound mapping for
202          * the rest.
203          */
204         pages_wraparound = kcalloc(page_cnt * 2 - 1, sizeof(struct page *),
205                                    GFP_KERNEL);
206         if (!pages_wraparound)
207                 return -ENOMEM;
208
209         pages_wraparound[0] = pages;
210         for (i = 0; i < 2 * (page_cnt - 1); i++)
211                 pages_wraparound[i + 1] = &pages[i % (page_cnt - 1) + 1];
212
213         ring_info->ring_buffer = (struct hv_ring_buffer *)
214                 vmap(pages_wraparound, page_cnt * 2 - 1, VM_MAP, PAGE_KERNEL);
215
216         kfree(pages_wraparound);
217
218
219         if (!ring_info->ring_buffer)
220                 return -ENOMEM;
221
222         ring_info->ring_buffer->read_index =
223                 ring_info->ring_buffer->write_index = 0;
224
225         /* Set the feature bit for enabling flow control. */
226         ring_info->ring_buffer->feature_bits.value = 1;
227
228         ring_info->ring_size = page_cnt << PAGE_SHIFT;
229         ring_info->ring_size_div10_reciprocal =
230                 reciprocal_value(ring_info->ring_size / 10);
231         ring_info->ring_datasize = ring_info->ring_size -
232                 sizeof(struct hv_ring_buffer);
233         ring_info->priv_read_index = 0;
234
235         spin_lock_init(&ring_info->ring_lock);
236
237         return 0;
238 }
239
240 /* Cleanup the ring buffer. */
241 void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info)
242 {
243         mutex_lock(&ring_info->ring_buffer_mutex);
244         vunmap(ring_info->ring_buffer);
245         ring_info->ring_buffer = NULL;
246         mutex_unlock(&ring_info->ring_buffer_mutex);
247 }
248
249 /*
250  * Check if the ring buffer spinlock is available to take or not; used on
251  * atomic contexts, like panic path (see the Hyper-V framebuffer driver).
252  */
253
254 bool hv_ringbuffer_spinlock_busy(struct vmbus_channel *channel)
255 {
256         struct hv_ring_buffer_info *rinfo = &channel->outbound;
257
258         return spin_is_locked(&rinfo->ring_lock);
259 }
260 EXPORT_SYMBOL_GPL(hv_ringbuffer_spinlock_busy);
261
262 /* Write to the ring buffer. */
263 int hv_ringbuffer_write(struct vmbus_channel *channel,
264                         const struct kvec *kv_list, u32 kv_count,
265                         u64 requestid)
266 {
267         int i;
268         u32 bytes_avail_towrite;
269         u32 totalbytes_towrite = sizeof(u64);
270         u32 next_write_location;
271         u32 old_write;
272         u64 prev_indices;
273         unsigned long flags;
274         struct hv_ring_buffer_info *outring_info = &channel->outbound;
275         struct vmpacket_descriptor *desc = kv_list[0].iov_base;
276         u64 rqst_id = VMBUS_NO_RQSTOR;
277
278         if (channel->rescind)
279                 return -ENODEV;
280
281         for (i = 0; i < kv_count; i++)
282                 totalbytes_towrite += kv_list[i].iov_len;
283
284         spin_lock_irqsave(&outring_info->ring_lock, flags);
285
286         bytes_avail_towrite = hv_get_bytes_to_write(outring_info);
287
288         /*
289          * If there is only room for the packet, assume it is full.
290          * Otherwise, the next time around, we think the ring buffer
291          * is empty since the read index == write index.
292          */
293         if (bytes_avail_towrite <= totalbytes_towrite) {
294                 ++channel->out_full_total;
295
296                 if (!channel->out_full_flag) {
297                         ++channel->out_full_first;
298                         channel->out_full_flag = true;
299                 }
300
301                 spin_unlock_irqrestore(&outring_info->ring_lock, flags);
302                 return -EAGAIN;
303         }
304
305         channel->out_full_flag = false;
306
307         /* Write to the ring buffer */
308         next_write_location = hv_get_next_write_location(outring_info);
309
310         old_write = next_write_location;
311
312         for (i = 0; i < kv_count; i++) {
313                 next_write_location = hv_copyto_ringbuffer(outring_info,
314                                                      next_write_location,
315                                                      kv_list[i].iov_base,
316                                                      kv_list[i].iov_len);
317         }
318
319         /*
320          * Allocate the request ID after the data has been copied into the
321          * ring buffer.  Once this request ID is allocated, the completion
322          * path could find the data and free it.
323          */
324
325         if (desc->flags == VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED) {
326                 rqst_id = vmbus_next_request_id(&channel->requestor, requestid);
327                 if (rqst_id == VMBUS_RQST_ERROR) {
328                         spin_unlock_irqrestore(&outring_info->ring_lock, flags);
329                         return -EAGAIN;
330                 }
331         }
332         desc = hv_get_ring_buffer(outring_info) + old_write;
333         desc->trans_id = (rqst_id == VMBUS_NO_RQSTOR) ? requestid : rqst_id;
334
335         /* Set previous packet start */
336         prev_indices = hv_get_ring_bufferindices(outring_info);
337
338         next_write_location = hv_copyto_ringbuffer(outring_info,
339                                              next_write_location,
340                                              &prev_indices,
341                                              sizeof(u64));
342
343         /* Issue a full memory barrier before updating the write index */
344         virt_mb();
345
346         /* Now, update the write location */
347         hv_set_next_write_location(outring_info, next_write_location);
348
349
350         spin_unlock_irqrestore(&outring_info->ring_lock, flags);
351
352         hv_signal_on_write(old_write, channel);
353
354         if (channel->rescind) {
355                 if (rqst_id != VMBUS_NO_RQSTOR) {
356                         /* Reclaim request ID to avoid leak of IDs */
357                         vmbus_request_addr(&channel->requestor, rqst_id);
358                 }
359                 return -ENODEV;
360         }
361
362         return 0;
363 }
364
365 int hv_ringbuffer_read(struct vmbus_channel *channel,
366                        void *buffer, u32 buflen, u32 *buffer_actual_len,
367                        u64 *requestid, bool raw)
368 {
369         struct vmpacket_descriptor *desc;
370         u32 packetlen, offset;
371
372         if (unlikely(buflen == 0))
373                 return -EINVAL;
374
375         *buffer_actual_len = 0;
376         *requestid = 0;
377
378         /* Make sure there is something to read */
379         desc = hv_pkt_iter_first(channel);
380         if (desc == NULL) {
381                 /*
382                  * No error is set when there is even no header, drivers are
383                  * supposed to analyze buffer_actual_len.
384                  */
385                 return 0;
386         }
387
388         offset = raw ? 0 : (desc->offset8 << 3);
389         packetlen = (desc->len8 << 3) - offset;
390         *buffer_actual_len = packetlen;
391         *requestid = desc->trans_id;
392
393         if (unlikely(packetlen > buflen))
394                 return -ENOBUFS;
395
396         /* since ring is double mapped, only one copy is necessary */
397         memcpy(buffer, (const char *)desc + offset, packetlen);
398
399         /* Advance ring index to next packet descriptor */
400         __hv_pkt_iter_next(channel, desc);
401
402         /* Notify host of update */
403         hv_pkt_iter_close(channel);
404
405         return 0;
406 }
407
408 /*
409  * Determine number of bytes available in ring buffer after
410  * the current iterator (priv_read_index) location.
411  *
412  * This is similar to hv_get_bytes_to_read but with private
413  * read index instead.
414  */
415 static u32 hv_pkt_iter_avail(const struct hv_ring_buffer_info *rbi)
416 {
417         u32 priv_read_loc = rbi->priv_read_index;
418         u32 write_loc;
419
420         /*
421          * The Hyper-V host writes the packet data, then uses
422          * store_release() to update the write_index.  Use load_acquire()
423          * here to prevent loads of the packet data from being re-ordered
424          * before the read of the write_index and potentially getting
425          * stale data.
426          */
427         write_loc = virt_load_acquire(&rbi->ring_buffer->write_index);
428
429         if (write_loc >= priv_read_loc)
430                 return write_loc - priv_read_loc;
431         else
432                 return (rbi->ring_datasize - priv_read_loc) + write_loc;
433 }
434
435 /*
436  * Get first vmbus packet from ring buffer after read_index
437  *
438  * If ring buffer is empty, returns NULL and no other action needed.
439  */
440 struct vmpacket_descriptor *hv_pkt_iter_first(struct vmbus_channel *channel)
441 {
442         struct hv_ring_buffer_info *rbi = &channel->inbound;
443         struct vmpacket_descriptor *desc;
444
445         hv_debug_delay_test(channel, MESSAGE_DELAY);
446         if (hv_pkt_iter_avail(rbi) < sizeof(struct vmpacket_descriptor))
447                 return NULL;
448
449         desc = hv_get_ring_buffer(rbi) + rbi->priv_read_index;
450         if (desc)
451                 prefetch((char *)desc + (desc->len8 << 3));
452
453         return desc;
454 }
455 EXPORT_SYMBOL_GPL(hv_pkt_iter_first);
456
457 /*
458  * Get next vmbus packet from ring buffer.
459  *
460  * Advances the current location (priv_read_index) and checks for more
461  * data. If the end of the ring buffer is reached, then return NULL.
462  */
463 struct vmpacket_descriptor *
464 __hv_pkt_iter_next(struct vmbus_channel *channel,
465                    const struct vmpacket_descriptor *desc)
466 {
467         struct hv_ring_buffer_info *rbi = &channel->inbound;
468         u32 packetlen = desc->len8 << 3;
469         u32 dsize = rbi->ring_datasize;
470
471         hv_debug_delay_test(channel, MESSAGE_DELAY);
472         /* bump offset to next potential packet */
473         rbi->priv_read_index += packetlen + VMBUS_PKT_TRAILER;
474         if (rbi->priv_read_index >= dsize)
475                 rbi->priv_read_index -= dsize;
476
477         /* more data? */
478         return hv_pkt_iter_first(channel);
479 }
480 EXPORT_SYMBOL_GPL(__hv_pkt_iter_next);
481
482 /* How many bytes were read in this iterator cycle */
483 static u32 hv_pkt_iter_bytes_read(const struct hv_ring_buffer_info *rbi,
484                                         u32 start_read_index)
485 {
486         if (rbi->priv_read_index >= start_read_index)
487                 return rbi->priv_read_index - start_read_index;
488         else
489                 return rbi->ring_datasize - start_read_index +
490                         rbi->priv_read_index;
491 }
492
493 /*
494  * Update host ring buffer after iterating over packets. If the host has
495  * stopped queuing new entries because it found the ring buffer full, and
496  * sufficient space is being freed up, signal the host. But be careful to
497  * only signal the host when necessary, both for performance reasons and
498  * because Hyper-V protects itself by throttling guests that signal
499  * inappropriately.
500  *
501  * Determining when to signal is tricky. There are three key data inputs
502  * that must be handled in this order to avoid race conditions:
503  *
504  * 1. Update the read_index
505  * 2. Read the pending_send_sz
506  * 3. Read the current write_index
507  *
508  * The interrupt_mask is not used to determine when to signal. The
509  * interrupt_mask is used only on the guest->host ring buffer when
510  * sending requests to the host. The host does not use it on the host->
511  * guest ring buffer to indicate whether it should be signaled.
512  */
513 void hv_pkt_iter_close(struct vmbus_channel *channel)
514 {
515         struct hv_ring_buffer_info *rbi = &channel->inbound;
516         u32 curr_write_sz, pending_sz, bytes_read, start_read_index;
517
518         /*
519          * Make sure all reads are done before we update the read index since
520          * the writer may start writing to the read area once the read index
521          * is updated.
522          */
523         virt_rmb();
524         start_read_index = rbi->ring_buffer->read_index;
525         rbi->ring_buffer->read_index = rbi->priv_read_index;
526
527         /*
528          * Older versions of Hyper-V (before WS2102 and Win8) do not
529          * implement pending_send_sz and simply poll if the host->guest
530          * ring buffer is full.  No signaling is needed or expected.
531          */
532         if (!rbi->ring_buffer->feature_bits.feat_pending_send_sz)
533                 return;
534
535         /*
536          * Issue a full memory barrier before making the signaling decision.
537          * If reading pending_send_sz were to be reordered and happen
538          * before we commit the new read_index, a race could occur.  If the
539          * host were to set the pending_send_sz after we have sampled
540          * pending_send_sz, and the ring buffer blocks before we commit the
541          * read index, we could miss sending the interrupt. Issue a full
542          * memory barrier to address this.
543          */
544         virt_mb();
545
546         /*
547          * If the pending_send_sz is zero, then the ring buffer is not
548          * blocked and there is no need to signal.  This is far by the
549          * most common case, so exit quickly for best performance.
550          */
551         pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz);
552         if (!pending_sz)
553                 return;
554
555         /*
556          * Ensure the read of write_index in hv_get_bytes_to_write()
557          * happens after the read of pending_send_sz.
558          */
559         virt_rmb();
560         curr_write_sz = hv_get_bytes_to_write(rbi);
561         bytes_read = hv_pkt_iter_bytes_read(rbi, start_read_index);
562
563         /*
564          * We want to signal the host only if we're transitioning
565          * from a "not enough free space" state to a "enough free
566          * space" state.  For example, it's possible that this function
567          * could run and free up enough space to signal the host, and then
568          * run again and free up additional space before the host has a
569          * chance to clear the pending_send_sz.  The 2nd invocation would
570          * be a null transition from "enough free space" to "enough free
571          * space", which doesn't warrant a signal.
572          *
573          * Exactly filling the ring buffer is treated as "not enough
574          * space". The ring buffer always must have at least one byte
575          * empty so the empty and full conditions are distinguishable.
576          * hv_get_bytes_to_write() doesn't fully tell the truth in
577          * this regard.
578          *
579          * So first check if we were in the "enough free space" state
580          * before we began the iteration. If so, the host was not
581          * blocked, and there's no need to signal.
582          */
583         if (curr_write_sz - bytes_read > pending_sz)
584                 return;
585
586         /*
587          * Similarly, if the new state is "not enough space", then
588          * there's no need to signal.
589          */
590         if (curr_write_sz <= pending_sz)
591                 return;
592
593         ++channel->intr_in_full;
594         vmbus_setevent(channel);
595 }
596 EXPORT_SYMBOL_GPL(hv_pkt_iter_close);