GNU Linux-libre 5.10.153-gnu1
[releases.git] / drivers / hv / ring_buffer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Copyright (c) 2009, Microsoft Corporation.
5  *
6  * Authors:
7  *   Haiyang Zhang <haiyangz@microsoft.com>
8  *   Hank Janssen  <hjanssen@microsoft.com>
9  *   K. Y. Srinivasan <kys@microsoft.com>
10  */
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/hyperv.h>
16 #include <linux/uio.h>
17 #include <linux/vmalloc.h>
18 #include <linux/slab.h>
19 #include <linux/prefetch.h>
20
21 #include "hyperv_vmbus.h"
22
23 #define VMBUS_PKT_TRAILER       8
24
25 /*
26  * When we write to the ring buffer, check if the host needs to
27  * be signaled. Here is the details of this protocol:
28  *
29  *      1. The host guarantees that while it is draining the
30  *         ring buffer, it will set the interrupt_mask to
31  *         indicate it does not need to be interrupted when
32  *         new data is placed.
33  *
34  *      2. The host guarantees that it will completely drain
35  *         the ring buffer before exiting the read loop. Further,
36  *         once the ring buffer is empty, it will clear the
37  *         interrupt_mask and re-check to see if new data has
38  *         arrived.
39  *
40  * KYS: Oct. 30, 2016:
41  * It looks like Windows hosts have logic to deal with DOS attacks that
42  * can be triggered if it receives interrupts when it is not expecting
43  * the interrupt. The host expects interrupts only when the ring
44  * transitions from empty to non-empty (or full to non full on the guest
45  * to host ring).
46  * So, base the signaling decision solely on the ring state until the
47  * host logic is fixed.
48  */
49
50 static void hv_signal_on_write(u32 old_write, struct vmbus_channel *channel)
51 {
52         struct hv_ring_buffer_info *rbi = &channel->outbound;
53
54         virt_mb();
55         if (READ_ONCE(rbi->ring_buffer->interrupt_mask))
56                 return;
57
58         /* check interrupt_mask before read_index */
59         virt_rmb();
60         /*
61          * This is the only case we need to signal when the
62          * ring transitions from being empty to non-empty.
63          */
64         if (old_write == READ_ONCE(rbi->ring_buffer->read_index)) {
65                 ++channel->intr_out_empty;
66                 vmbus_setevent(channel);
67         }
68 }
69
70 /* Get the next write location for the specified ring buffer. */
71 static inline u32
72 hv_get_next_write_location(struct hv_ring_buffer_info *ring_info)
73 {
74         u32 next = ring_info->ring_buffer->write_index;
75
76         return next;
77 }
78
79 /* Set the next write location for the specified ring buffer. */
80 static inline void
81 hv_set_next_write_location(struct hv_ring_buffer_info *ring_info,
82                      u32 next_write_location)
83 {
84         ring_info->ring_buffer->write_index = next_write_location;
85 }
86
87 /* Set the next read location for the specified ring buffer. */
88 static inline void
89 hv_set_next_read_location(struct hv_ring_buffer_info *ring_info,
90                     u32 next_read_location)
91 {
92         ring_info->ring_buffer->read_index = next_read_location;
93         ring_info->priv_read_index = next_read_location;
94 }
95
96 /* Get the size of the ring buffer. */
97 static inline u32
98 hv_get_ring_buffersize(const struct hv_ring_buffer_info *ring_info)
99 {
100         return ring_info->ring_datasize;
101 }
102
103 /* Get the read and write indices as u64 of the specified ring buffer. */
104 static inline u64
105 hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info)
106 {
107         return (u64)ring_info->ring_buffer->write_index << 32;
108 }
109
110 /*
111  * Helper routine to copy from source to ring buffer.
112  * Assume there is enough room. Handles wrap-around in dest case only!!
113  */
114 static u32 hv_copyto_ringbuffer(
115         struct hv_ring_buffer_info      *ring_info,
116         u32                             start_write_offset,
117         const void                      *src,
118         u32                             srclen)
119 {
120         void *ring_buffer = hv_get_ring_buffer(ring_info);
121         u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
122
123         memcpy(ring_buffer + start_write_offset, src, srclen);
124
125         start_write_offset += srclen;
126         if (start_write_offset >= ring_buffer_size)
127                 start_write_offset -= ring_buffer_size;
128
129         return start_write_offset;
130 }
131
132 /*
133  *
134  * hv_get_ringbuffer_availbytes()
135  *
136  * Get number of bytes available to read and to write to
137  * for the specified ring buffer
138  */
139 static void
140 hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info *rbi,
141                              u32 *read, u32 *write)
142 {
143         u32 read_loc, write_loc, dsize;
144
145         /* Capture the read/write indices before they changed */
146         read_loc = READ_ONCE(rbi->ring_buffer->read_index);
147         write_loc = READ_ONCE(rbi->ring_buffer->write_index);
148         dsize = rbi->ring_datasize;
149
150         *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
151                 read_loc - write_loc;
152         *read = dsize - *write;
153 }
154
155 /* Get various debug metrics for the specified ring buffer. */
156 int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
157                                 struct hv_ring_buffer_debug_info *debug_info)
158 {
159         u32 bytes_avail_towrite;
160         u32 bytes_avail_toread;
161
162         mutex_lock(&ring_info->ring_buffer_mutex);
163
164         if (!ring_info->ring_buffer) {
165                 mutex_unlock(&ring_info->ring_buffer_mutex);
166                 return -EINVAL;
167         }
168
169         hv_get_ringbuffer_availbytes(ring_info,
170                                      &bytes_avail_toread,
171                                      &bytes_avail_towrite);
172         debug_info->bytes_avail_toread = bytes_avail_toread;
173         debug_info->bytes_avail_towrite = bytes_avail_towrite;
174         debug_info->current_read_index = ring_info->ring_buffer->read_index;
175         debug_info->current_write_index = ring_info->ring_buffer->write_index;
176         debug_info->current_interrupt_mask
177                 = ring_info->ring_buffer->interrupt_mask;
178         mutex_unlock(&ring_info->ring_buffer_mutex);
179
180         return 0;
181 }
182 EXPORT_SYMBOL_GPL(hv_ringbuffer_get_debuginfo);
183
184 /* Initialize a channel's ring buffer info mutex locks */
185 void hv_ringbuffer_pre_init(struct vmbus_channel *channel)
186 {
187         mutex_init(&channel->inbound.ring_buffer_mutex);
188         mutex_init(&channel->outbound.ring_buffer_mutex);
189 }
190
191 /* Initialize the ring buffer. */
192 int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info,
193                        struct page *pages, u32 page_cnt)
194 {
195         int i;
196         struct page **pages_wraparound;
197
198         BUILD_BUG_ON((sizeof(struct hv_ring_buffer) != PAGE_SIZE));
199
200         /*
201          * First page holds struct hv_ring_buffer, do wraparound mapping for
202          * the rest.
203          */
204         pages_wraparound = kcalloc(page_cnt * 2 - 1, sizeof(struct page *),
205                                    GFP_KERNEL);
206         if (!pages_wraparound)
207                 return -ENOMEM;
208
209         pages_wraparound[0] = pages;
210         for (i = 0; i < 2 * (page_cnt - 1); i++)
211                 pages_wraparound[i + 1] = &pages[i % (page_cnt - 1) + 1];
212
213         ring_info->ring_buffer = (struct hv_ring_buffer *)
214                 vmap(pages_wraparound, page_cnt * 2 - 1, VM_MAP, PAGE_KERNEL);
215
216         kfree(pages_wraparound);
217
218
219         if (!ring_info->ring_buffer)
220                 return -ENOMEM;
221
222         ring_info->ring_buffer->read_index =
223                 ring_info->ring_buffer->write_index = 0;
224
225         /* Set the feature bit for enabling flow control. */
226         ring_info->ring_buffer->feature_bits.value = 1;
227
228         ring_info->ring_size = page_cnt << PAGE_SHIFT;
229         ring_info->ring_size_div10_reciprocal =
230                 reciprocal_value(ring_info->ring_size / 10);
231         ring_info->ring_datasize = ring_info->ring_size -
232                 sizeof(struct hv_ring_buffer);
233         ring_info->priv_read_index = 0;
234
235         spin_lock_init(&ring_info->ring_lock);
236
237         return 0;
238 }
239
240 /* Cleanup the ring buffer. */
241 void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info)
242 {
243         mutex_lock(&ring_info->ring_buffer_mutex);
244         vunmap(ring_info->ring_buffer);
245         ring_info->ring_buffer = NULL;
246         mutex_unlock(&ring_info->ring_buffer_mutex);
247 }
248
249 /* Write to the ring buffer. */
250 int hv_ringbuffer_write(struct vmbus_channel *channel,
251                         const struct kvec *kv_list, u32 kv_count)
252 {
253         int i;
254         u32 bytes_avail_towrite;
255         u32 totalbytes_towrite = sizeof(u64);
256         u32 next_write_location;
257         u32 old_write;
258         u64 prev_indices;
259         unsigned long flags;
260         struct hv_ring_buffer_info *outring_info = &channel->outbound;
261
262         if (channel->rescind)
263                 return -ENODEV;
264
265         for (i = 0; i < kv_count; i++)
266                 totalbytes_towrite += kv_list[i].iov_len;
267
268         spin_lock_irqsave(&outring_info->ring_lock, flags);
269
270         bytes_avail_towrite = hv_get_bytes_to_write(outring_info);
271
272         /*
273          * If there is only room for the packet, assume it is full.
274          * Otherwise, the next time around, we think the ring buffer
275          * is empty since the read index == write index.
276          */
277         if (bytes_avail_towrite <= totalbytes_towrite) {
278                 ++channel->out_full_total;
279
280                 if (!channel->out_full_flag) {
281                         ++channel->out_full_first;
282                         channel->out_full_flag = true;
283                 }
284
285                 spin_unlock_irqrestore(&outring_info->ring_lock, flags);
286                 return -EAGAIN;
287         }
288
289         channel->out_full_flag = false;
290
291         /* Write to the ring buffer */
292         next_write_location = hv_get_next_write_location(outring_info);
293
294         old_write = next_write_location;
295
296         for (i = 0; i < kv_count; i++) {
297                 next_write_location = hv_copyto_ringbuffer(outring_info,
298                                                      next_write_location,
299                                                      kv_list[i].iov_base,
300                                                      kv_list[i].iov_len);
301         }
302
303         /* Set previous packet start */
304         prev_indices = hv_get_ring_bufferindices(outring_info);
305
306         next_write_location = hv_copyto_ringbuffer(outring_info,
307                                              next_write_location,
308                                              &prev_indices,
309                                              sizeof(u64));
310
311         /* Issue a full memory barrier before updating the write index */
312         virt_mb();
313
314         /* Now, update the write location */
315         hv_set_next_write_location(outring_info, next_write_location);
316
317
318         spin_unlock_irqrestore(&outring_info->ring_lock, flags);
319
320         hv_signal_on_write(old_write, channel);
321
322         if (channel->rescind)
323                 return -ENODEV;
324
325         return 0;
326 }
327
328 int hv_ringbuffer_read(struct vmbus_channel *channel,
329                        void *buffer, u32 buflen, u32 *buffer_actual_len,
330                        u64 *requestid, bool raw)
331 {
332         struct vmpacket_descriptor *desc;
333         u32 packetlen, offset;
334
335         if (unlikely(buflen == 0))
336                 return -EINVAL;
337
338         *buffer_actual_len = 0;
339         *requestid = 0;
340
341         /* Make sure there is something to read */
342         desc = hv_pkt_iter_first(channel);
343         if (desc == NULL) {
344                 /*
345                  * No error is set when there is even no header, drivers are
346                  * supposed to analyze buffer_actual_len.
347                  */
348                 return 0;
349         }
350
351         offset = raw ? 0 : (desc->offset8 << 3);
352         packetlen = (desc->len8 << 3) - offset;
353         *buffer_actual_len = packetlen;
354         *requestid = desc->trans_id;
355
356         if (unlikely(packetlen > buflen))
357                 return -ENOBUFS;
358
359         /* since ring is double mapped, only one copy is necessary */
360         memcpy(buffer, (const char *)desc + offset, packetlen);
361
362         /* Advance ring index to next packet descriptor */
363         __hv_pkt_iter_next(channel, desc);
364
365         /* Notify host of update */
366         hv_pkt_iter_close(channel);
367
368         return 0;
369 }
370
371 /*
372  * Determine number of bytes available in ring buffer after
373  * the current iterator (priv_read_index) location.
374  *
375  * This is similar to hv_get_bytes_to_read but with private
376  * read index instead.
377  */
378 static u32 hv_pkt_iter_avail(const struct hv_ring_buffer_info *rbi)
379 {
380         u32 priv_read_loc = rbi->priv_read_index;
381         u32 write_loc;
382
383         /*
384          * The Hyper-V host writes the packet data, then uses
385          * store_release() to update the write_index.  Use load_acquire()
386          * here to prevent loads of the packet data from being re-ordered
387          * before the read of the write_index and potentially getting
388          * stale data.
389          */
390         write_loc = virt_load_acquire(&rbi->ring_buffer->write_index);
391
392         if (write_loc >= priv_read_loc)
393                 return write_loc - priv_read_loc;
394         else
395                 return (rbi->ring_datasize - priv_read_loc) + write_loc;
396 }
397
398 /*
399  * Get first vmbus packet from ring buffer after read_index
400  *
401  * If ring buffer is empty, returns NULL and no other action needed.
402  */
403 struct vmpacket_descriptor *hv_pkt_iter_first(struct vmbus_channel *channel)
404 {
405         struct hv_ring_buffer_info *rbi = &channel->inbound;
406         struct vmpacket_descriptor *desc;
407
408         hv_debug_delay_test(channel, MESSAGE_DELAY);
409         if (hv_pkt_iter_avail(rbi) < sizeof(struct vmpacket_descriptor))
410                 return NULL;
411
412         desc = hv_get_ring_buffer(rbi) + rbi->priv_read_index;
413         if (desc)
414                 prefetch((char *)desc + (desc->len8 << 3));
415
416         return desc;
417 }
418 EXPORT_SYMBOL_GPL(hv_pkt_iter_first);
419
420 /*
421  * Get next vmbus packet from ring buffer.
422  *
423  * Advances the current location (priv_read_index) and checks for more
424  * data. If the end of the ring buffer is reached, then return NULL.
425  */
426 struct vmpacket_descriptor *
427 __hv_pkt_iter_next(struct vmbus_channel *channel,
428                    const struct vmpacket_descriptor *desc)
429 {
430         struct hv_ring_buffer_info *rbi = &channel->inbound;
431         u32 packetlen = desc->len8 << 3;
432         u32 dsize = rbi->ring_datasize;
433
434         hv_debug_delay_test(channel, MESSAGE_DELAY);
435         /* bump offset to next potential packet */
436         rbi->priv_read_index += packetlen + VMBUS_PKT_TRAILER;
437         if (rbi->priv_read_index >= dsize)
438                 rbi->priv_read_index -= dsize;
439
440         /* more data? */
441         return hv_pkt_iter_first(channel);
442 }
443 EXPORT_SYMBOL_GPL(__hv_pkt_iter_next);
444
445 /* How many bytes were read in this iterator cycle */
446 static u32 hv_pkt_iter_bytes_read(const struct hv_ring_buffer_info *rbi,
447                                         u32 start_read_index)
448 {
449         if (rbi->priv_read_index >= start_read_index)
450                 return rbi->priv_read_index - start_read_index;
451         else
452                 return rbi->ring_datasize - start_read_index +
453                         rbi->priv_read_index;
454 }
455
456 /*
457  * Update host ring buffer after iterating over packets. If the host has
458  * stopped queuing new entries because it found the ring buffer full, and
459  * sufficient space is being freed up, signal the host. But be careful to
460  * only signal the host when necessary, both for performance reasons and
461  * because Hyper-V protects itself by throttling guests that signal
462  * inappropriately.
463  *
464  * Determining when to signal is tricky. There are three key data inputs
465  * that must be handled in this order to avoid race conditions:
466  *
467  * 1. Update the read_index
468  * 2. Read the pending_send_sz
469  * 3. Read the current write_index
470  *
471  * The interrupt_mask is not used to determine when to signal. The
472  * interrupt_mask is used only on the guest->host ring buffer when
473  * sending requests to the host. The host does not use it on the host->
474  * guest ring buffer to indicate whether it should be signaled.
475  */
476 void hv_pkt_iter_close(struct vmbus_channel *channel)
477 {
478         struct hv_ring_buffer_info *rbi = &channel->inbound;
479         u32 curr_write_sz, pending_sz, bytes_read, start_read_index;
480
481         /*
482          * Make sure all reads are done before we update the read index since
483          * the writer may start writing to the read area once the read index
484          * is updated.
485          */
486         virt_rmb();
487         start_read_index = rbi->ring_buffer->read_index;
488         rbi->ring_buffer->read_index = rbi->priv_read_index;
489
490         /*
491          * Older versions of Hyper-V (before WS2102 and Win8) do not
492          * implement pending_send_sz and simply poll if the host->guest
493          * ring buffer is full.  No signaling is needed or expected.
494          */
495         if (!rbi->ring_buffer->feature_bits.feat_pending_send_sz)
496                 return;
497
498         /*
499          * Issue a full memory barrier before making the signaling decision.
500          * If reading pending_send_sz were to be reordered and happen
501          * before we commit the new read_index, a race could occur.  If the
502          * host were to set the pending_send_sz after we have sampled
503          * pending_send_sz, and the ring buffer blocks before we commit the
504          * read index, we could miss sending the interrupt. Issue a full
505          * memory barrier to address this.
506          */
507         virt_mb();
508
509         /*
510          * If the pending_send_sz is zero, then the ring buffer is not
511          * blocked and there is no need to signal.  This is far by the
512          * most common case, so exit quickly for best performance.
513          */
514         pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz);
515         if (!pending_sz)
516                 return;
517
518         /*
519          * Ensure the read of write_index in hv_get_bytes_to_write()
520          * happens after the read of pending_send_sz.
521          */
522         virt_rmb();
523         curr_write_sz = hv_get_bytes_to_write(rbi);
524         bytes_read = hv_pkt_iter_bytes_read(rbi, start_read_index);
525
526         /*
527          * We want to signal the host only if we're transitioning
528          * from a "not enough free space" state to a "enough free
529          * space" state.  For example, it's possible that this function
530          * could run and free up enough space to signal the host, and then
531          * run again and free up additional space before the host has a
532          * chance to clear the pending_send_sz.  The 2nd invocation would
533          * be a null transition from "enough free space" to "enough free
534          * space", which doesn't warrant a signal.
535          *
536          * Exactly filling the ring buffer is treated as "not enough
537          * space". The ring buffer always must have at least one byte
538          * empty so the empty and full conditions are distinguishable.
539          * hv_get_bytes_to_write() doesn't fully tell the truth in
540          * this regard.
541          *
542          * So first check if we were in the "enough free space" state
543          * before we began the iteration. If so, the host was not
544          * blocked, and there's no need to signal.
545          */
546         if (curr_write_sz - bytes_read > pending_sz)
547                 return;
548
549         /*
550          * Similarly, if the new state is "not enough space", then
551          * there's no need to signal.
552          */
553         if (curr_write_sz <= pending_sz)
554                 return;
555
556         ++channel->intr_in_full;
557         vmbus_setevent(channel);
558 }
559 EXPORT_SYMBOL_GPL(hv_pkt_iter_close);