GNU Linux-libre 6.7.9-gnu
[releases.git] / drivers / hv / ring_buffer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Copyright (c) 2009, Microsoft Corporation.
5  *
6  * Authors:
7  *   Haiyang Zhang <haiyangz@microsoft.com>
8  *   Hank Janssen  <hjanssen@microsoft.com>
9  *   K. Y. Srinivasan <kys@microsoft.com>
10  */
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/hyperv.h>
16 #include <linux/uio.h>
17 #include <linux/vmalloc.h>
18 #include <linux/slab.h>
19 #include <linux/prefetch.h>
20 #include <linux/io.h>
21 #include <asm/mshyperv.h>
22
23 #include "hyperv_vmbus.h"
24
25 #define VMBUS_PKT_TRAILER       8
26
27 /*
28  * When we write to the ring buffer, check if the host needs to
29  * be signaled. Here is the details of this protocol:
30  *
31  *      1. The host guarantees that while it is draining the
32  *         ring buffer, it will set the interrupt_mask to
33  *         indicate it does not need to be interrupted when
34  *         new data is placed.
35  *
36  *      2. The host guarantees that it will completely drain
37  *         the ring buffer before exiting the read loop. Further,
38  *         once the ring buffer is empty, it will clear the
39  *         interrupt_mask and re-check to see if new data has
40  *         arrived.
41  *
42  * KYS: Oct. 30, 2016:
43  * It looks like Windows hosts have logic to deal with DOS attacks that
44  * can be triggered if it receives interrupts when it is not expecting
45  * the interrupt. The host expects interrupts only when the ring
46  * transitions from empty to non-empty (or full to non full on the guest
47  * to host ring).
48  * So, base the signaling decision solely on the ring state until the
49  * host logic is fixed.
50  */
51
52 static void hv_signal_on_write(u32 old_write, struct vmbus_channel *channel)
53 {
54         struct hv_ring_buffer_info *rbi = &channel->outbound;
55
56         virt_mb();
57         if (READ_ONCE(rbi->ring_buffer->interrupt_mask))
58                 return;
59
60         /* check interrupt_mask before read_index */
61         virt_rmb();
62         /*
63          * This is the only case we need to signal when the
64          * ring transitions from being empty to non-empty.
65          */
66         if (old_write == READ_ONCE(rbi->ring_buffer->read_index)) {
67                 ++channel->intr_out_empty;
68                 vmbus_setevent(channel);
69         }
70 }
71
72 /* Get the next write location for the specified ring buffer. */
73 static inline u32
74 hv_get_next_write_location(struct hv_ring_buffer_info *ring_info)
75 {
76         u32 next = ring_info->ring_buffer->write_index;
77
78         return next;
79 }
80
81 /* Set the next write location for the specified ring buffer. */
82 static inline void
83 hv_set_next_write_location(struct hv_ring_buffer_info *ring_info,
84                      u32 next_write_location)
85 {
86         ring_info->ring_buffer->write_index = next_write_location;
87 }
88
89 /* Get the size of the ring buffer. */
90 static inline u32
91 hv_get_ring_buffersize(const struct hv_ring_buffer_info *ring_info)
92 {
93         return ring_info->ring_datasize;
94 }
95
96 /* Get the read and write indices as u64 of the specified ring buffer. */
97 static inline u64
98 hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info)
99 {
100         return (u64)ring_info->ring_buffer->write_index << 32;
101 }
102
103 /*
104  * Helper routine to copy from source to ring buffer.
105  * Assume there is enough room. Handles wrap-around in dest case only!!
106  */
107 static u32 hv_copyto_ringbuffer(
108         struct hv_ring_buffer_info      *ring_info,
109         u32                             start_write_offset,
110         const void                      *src,
111         u32                             srclen)
112 {
113         void *ring_buffer = hv_get_ring_buffer(ring_info);
114         u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
115
116         memcpy(ring_buffer + start_write_offset, src, srclen);
117
118         start_write_offset += srclen;
119         if (start_write_offset >= ring_buffer_size)
120                 start_write_offset -= ring_buffer_size;
121
122         return start_write_offset;
123 }
124
125 /*
126  *
127  * hv_get_ringbuffer_availbytes()
128  *
129  * Get number of bytes available to read and to write to
130  * for the specified ring buffer
131  */
132 static void
133 hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info *rbi,
134                              u32 *read, u32 *write)
135 {
136         u32 read_loc, write_loc, dsize;
137
138         /* Capture the read/write indices before they changed */
139         read_loc = READ_ONCE(rbi->ring_buffer->read_index);
140         write_loc = READ_ONCE(rbi->ring_buffer->write_index);
141         dsize = rbi->ring_datasize;
142
143         *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
144                 read_loc - write_loc;
145         *read = dsize - *write;
146 }
147
148 /* Get various debug metrics for the specified ring buffer. */
149 int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
150                                 struct hv_ring_buffer_debug_info *debug_info)
151 {
152         u32 bytes_avail_towrite;
153         u32 bytes_avail_toread;
154
155         mutex_lock(&ring_info->ring_buffer_mutex);
156
157         if (!ring_info->ring_buffer) {
158                 mutex_unlock(&ring_info->ring_buffer_mutex);
159                 return -EINVAL;
160         }
161
162         hv_get_ringbuffer_availbytes(ring_info,
163                                      &bytes_avail_toread,
164                                      &bytes_avail_towrite);
165         debug_info->bytes_avail_toread = bytes_avail_toread;
166         debug_info->bytes_avail_towrite = bytes_avail_towrite;
167         debug_info->current_read_index = ring_info->ring_buffer->read_index;
168         debug_info->current_write_index = ring_info->ring_buffer->write_index;
169         debug_info->current_interrupt_mask
170                 = ring_info->ring_buffer->interrupt_mask;
171         mutex_unlock(&ring_info->ring_buffer_mutex);
172
173         return 0;
174 }
175 EXPORT_SYMBOL_GPL(hv_ringbuffer_get_debuginfo);
176
177 /* Initialize a channel's ring buffer info mutex locks */
178 void hv_ringbuffer_pre_init(struct vmbus_channel *channel)
179 {
180         mutex_init(&channel->inbound.ring_buffer_mutex);
181         mutex_init(&channel->outbound.ring_buffer_mutex);
182 }
183
184 /* Initialize the ring buffer. */
185 int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info,
186                        struct page *pages, u32 page_cnt, u32 max_pkt_size)
187 {
188         struct page **pages_wraparound;
189         int i;
190
191         BUILD_BUG_ON((sizeof(struct hv_ring_buffer) != PAGE_SIZE));
192
193         /*
194          * First page holds struct hv_ring_buffer, do wraparound mapping for
195          * the rest.
196          */
197         pages_wraparound = kcalloc(page_cnt * 2 - 1,
198                                    sizeof(struct page *),
199                                    GFP_KERNEL);
200         if (!pages_wraparound)
201                 return -ENOMEM;
202
203         pages_wraparound[0] = pages;
204         for (i = 0; i < 2 * (page_cnt - 1); i++)
205                 pages_wraparound[i + 1] =
206                         &pages[i % (page_cnt - 1) + 1];
207
208         ring_info->ring_buffer = (struct hv_ring_buffer *)
209                 vmap(pages_wraparound, page_cnt * 2 - 1, VM_MAP,
210                         pgprot_decrypted(PAGE_KERNEL));
211
212         kfree(pages_wraparound);
213         if (!ring_info->ring_buffer)
214                 return -ENOMEM;
215
216         /*
217          * Ensure the header page is zero'ed since
218          * encryption status may have changed.
219          */
220         memset(ring_info->ring_buffer, 0, HV_HYP_PAGE_SIZE);
221
222         ring_info->ring_buffer->read_index =
223                 ring_info->ring_buffer->write_index = 0;
224
225         /* Set the feature bit for enabling flow control. */
226         ring_info->ring_buffer->feature_bits.value = 1;
227
228         ring_info->ring_size = page_cnt << PAGE_SHIFT;
229         ring_info->ring_size_div10_reciprocal =
230                 reciprocal_value(ring_info->ring_size / 10);
231         ring_info->ring_datasize = ring_info->ring_size -
232                 sizeof(struct hv_ring_buffer);
233         ring_info->priv_read_index = 0;
234
235         /* Initialize buffer that holds copies of incoming packets */
236         if (max_pkt_size) {
237                 ring_info->pkt_buffer = kzalloc(max_pkt_size, GFP_KERNEL);
238                 if (!ring_info->pkt_buffer)
239                         return -ENOMEM;
240                 ring_info->pkt_buffer_size = max_pkt_size;
241         }
242
243         spin_lock_init(&ring_info->ring_lock);
244
245         return 0;
246 }
247
248 /* Cleanup the ring buffer. */
249 void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info)
250 {
251         mutex_lock(&ring_info->ring_buffer_mutex);
252         vunmap(ring_info->ring_buffer);
253         ring_info->ring_buffer = NULL;
254         mutex_unlock(&ring_info->ring_buffer_mutex);
255
256         kfree(ring_info->pkt_buffer);
257         ring_info->pkt_buffer = NULL;
258         ring_info->pkt_buffer_size = 0;
259 }
260
261 /*
262  * Check if the ring buffer spinlock is available to take or not; used on
263  * atomic contexts, like panic path (see the Hyper-V framebuffer driver).
264  */
265
266 bool hv_ringbuffer_spinlock_busy(struct vmbus_channel *channel)
267 {
268         struct hv_ring_buffer_info *rinfo = &channel->outbound;
269
270         return spin_is_locked(&rinfo->ring_lock);
271 }
272 EXPORT_SYMBOL_GPL(hv_ringbuffer_spinlock_busy);
273
274 /* Write to the ring buffer. */
275 int hv_ringbuffer_write(struct vmbus_channel *channel,
276                         const struct kvec *kv_list, u32 kv_count,
277                         u64 requestid, u64 *trans_id)
278 {
279         int i;
280         u32 bytes_avail_towrite;
281         u32 totalbytes_towrite = sizeof(u64);
282         u32 next_write_location;
283         u32 old_write;
284         u64 prev_indices;
285         unsigned long flags;
286         struct hv_ring_buffer_info *outring_info = &channel->outbound;
287         struct vmpacket_descriptor *desc = kv_list[0].iov_base;
288         u64 __trans_id, rqst_id = VMBUS_NO_RQSTOR;
289
290         if (channel->rescind)
291                 return -ENODEV;
292
293         for (i = 0; i < kv_count; i++)
294                 totalbytes_towrite += kv_list[i].iov_len;
295
296         spin_lock_irqsave(&outring_info->ring_lock, flags);
297
298         bytes_avail_towrite = hv_get_bytes_to_write(outring_info);
299
300         /*
301          * If there is only room for the packet, assume it is full.
302          * Otherwise, the next time around, we think the ring buffer
303          * is empty since the read index == write index.
304          */
305         if (bytes_avail_towrite <= totalbytes_towrite) {
306                 ++channel->out_full_total;
307
308                 if (!channel->out_full_flag) {
309                         ++channel->out_full_first;
310                         channel->out_full_flag = true;
311                 }
312
313                 spin_unlock_irqrestore(&outring_info->ring_lock, flags);
314                 return -EAGAIN;
315         }
316
317         channel->out_full_flag = false;
318
319         /* Write to the ring buffer */
320         next_write_location = hv_get_next_write_location(outring_info);
321
322         old_write = next_write_location;
323
324         for (i = 0; i < kv_count; i++) {
325                 next_write_location = hv_copyto_ringbuffer(outring_info,
326                                                      next_write_location,
327                                                      kv_list[i].iov_base,
328                                                      kv_list[i].iov_len);
329         }
330
331         /*
332          * Allocate the request ID after the data has been copied into the
333          * ring buffer.  Once this request ID is allocated, the completion
334          * path could find the data and free it.
335          */
336
337         if (desc->flags == VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED) {
338                 if (channel->next_request_id_callback != NULL) {
339                         rqst_id = channel->next_request_id_callback(channel, requestid);
340                         if (rqst_id == VMBUS_RQST_ERROR) {
341                                 spin_unlock_irqrestore(&outring_info->ring_lock, flags);
342                                 return -EAGAIN;
343                         }
344                 }
345         }
346         desc = hv_get_ring_buffer(outring_info) + old_write;
347         __trans_id = (rqst_id == VMBUS_NO_RQSTOR) ? requestid : rqst_id;
348         /*
349          * Ensure the compiler doesn't generate code that reads the value of
350          * the transaction ID from the ring buffer, which is shared with the
351          * Hyper-V host and subject to being changed at any time.
352          */
353         WRITE_ONCE(desc->trans_id, __trans_id);
354         if (trans_id)
355                 *trans_id = __trans_id;
356
357         /* Set previous packet start */
358         prev_indices = hv_get_ring_bufferindices(outring_info);
359
360         next_write_location = hv_copyto_ringbuffer(outring_info,
361                                              next_write_location,
362                                              &prev_indices,
363                                              sizeof(u64));
364
365         /* Issue a full memory barrier before updating the write index */
366         virt_mb();
367
368         /* Now, update the write location */
369         hv_set_next_write_location(outring_info, next_write_location);
370
371
372         spin_unlock_irqrestore(&outring_info->ring_lock, flags);
373
374         hv_signal_on_write(old_write, channel);
375
376         if (channel->rescind) {
377                 if (rqst_id != VMBUS_NO_RQSTOR) {
378                         /* Reclaim request ID to avoid leak of IDs */
379                         if (channel->request_addr_callback != NULL)
380                                 channel->request_addr_callback(channel, rqst_id);
381                 }
382                 return -ENODEV;
383         }
384
385         return 0;
386 }
387
388 int hv_ringbuffer_read(struct vmbus_channel *channel,
389                        void *buffer, u32 buflen, u32 *buffer_actual_len,
390                        u64 *requestid, bool raw)
391 {
392         struct vmpacket_descriptor *desc;
393         u32 packetlen, offset;
394
395         if (unlikely(buflen == 0))
396                 return -EINVAL;
397
398         *buffer_actual_len = 0;
399         *requestid = 0;
400
401         /* Make sure there is something to read */
402         desc = hv_pkt_iter_first(channel);
403         if (desc == NULL) {
404                 /*
405                  * No error is set when there is even no header, drivers are
406                  * supposed to analyze buffer_actual_len.
407                  */
408                 return 0;
409         }
410
411         offset = raw ? 0 : (desc->offset8 << 3);
412         packetlen = (desc->len8 << 3) - offset;
413         *buffer_actual_len = packetlen;
414         *requestid = desc->trans_id;
415
416         if (unlikely(packetlen > buflen))
417                 return -ENOBUFS;
418
419         /* since ring is double mapped, only one copy is necessary */
420         memcpy(buffer, (const char *)desc + offset, packetlen);
421
422         /* Advance ring index to next packet descriptor */
423         __hv_pkt_iter_next(channel, desc);
424
425         /* Notify host of update */
426         hv_pkt_iter_close(channel);
427
428         return 0;
429 }
430
431 /*
432  * Determine number of bytes available in ring buffer after
433  * the current iterator (priv_read_index) location.
434  *
435  * This is similar to hv_get_bytes_to_read but with private
436  * read index instead.
437  */
438 static u32 hv_pkt_iter_avail(const struct hv_ring_buffer_info *rbi)
439 {
440         u32 priv_read_loc = rbi->priv_read_index;
441         u32 write_loc;
442
443         /*
444          * The Hyper-V host writes the packet data, then uses
445          * store_release() to update the write_index.  Use load_acquire()
446          * here to prevent loads of the packet data from being re-ordered
447          * before the read of the write_index and potentially getting
448          * stale data.
449          */
450         write_loc = virt_load_acquire(&rbi->ring_buffer->write_index);
451
452         if (write_loc >= priv_read_loc)
453                 return write_loc - priv_read_loc;
454         else
455                 return (rbi->ring_datasize - priv_read_loc) + write_loc;
456 }
457
458 /*
459  * Get first vmbus packet from ring buffer after read_index
460  *
461  * If ring buffer is empty, returns NULL and no other action needed.
462  */
463 struct vmpacket_descriptor *hv_pkt_iter_first(struct vmbus_channel *channel)
464 {
465         struct hv_ring_buffer_info *rbi = &channel->inbound;
466         struct vmpacket_descriptor *desc, *desc_copy;
467         u32 bytes_avail, pkt_len, pkt_offset;
468
469         hv_debug_delay_test(channel, MESSAGE_DELAY);
470
471         bytes_avail = hv_pkt_iter_avail(rbi);
472         if (bytes_avail < sizeof(struct vmpacket_descriptor))
473                 return NULL;
474         bytes_avail = min(rbi->pkt_buffer_size, bytes_avail);
475
476         desc = (struct vmpacket_descriptor *)(hv_get_ring_buffer(rbi) + rbi->priv_read_index);
477
478         /*
479          * Ensure the compiler does not use references to incoming Hyper-V values (which
480          * could change at any moment) when reading local variables later in the code
481          */
482         pkt_len = READ_ONCE(desc->len8) << 3;
483         pkt_offset = READ_ONCE(desc->offset8) << 3;
484
485         /*
486          * If pkt_len is invalid, set it to the smaller of hv_pkt_iter_avail() and
487          * rbi->pkt_buffer_size
488          */
489         if (pkt_len < sizeof(struct vmpacket_descriptor) || pkt_len > bytes_avail)
490                 pkt_len = bytes_avail;
491
492         /*
493          * If pkt_offset is invalid, arbitrarily set it to
494          * the size of vmpacket_descriptor
495          */
496         if (pkt_offset < sizeof(struct vmpacket_descriptor) || pkt_offset > pkt_len)
497                 pkt_offset = sizeof(struct vmpacket_descriptor);
498
499         /* Copy the Hyper-V packet out of the ring buffer */
500         desc_copy = (struct vmpacket_descriptor *)rbi->pkt_buffer;
501         memcpy(desc_copy, desc, pkt_len);
502
503         /*
504          * Hyper-V could still change len8 and offset8 after the earlier read.
505          * Ensure that desc_copy has legal values for len8 and offset8 that
506          * are consistent with the copy we just made
507          */
508         desc_copy->len8 = pkt_len >> 3;
509         desc_copy->offset8 = pkt_offset >> 3;
510
511         return desc_copy;
512 }
513 EXPORT_SYMBOL_GPL(hv_pkt_iter_first);
514
515 /*
516  * Get next vmbus packet from ring buffer.
517  *
518  * Advances the current location (priv_read_index) and checks for more
519  * data. If the end of the ring buffer is reached, then return NULL.
520  */
521 struct vmpacket_descriptor *
522 __hv_pkt_iter_next(struct vmbus_channel *channel,
523                    const struct vmpacket_descriptor *desc)
524 {
525         struct hv_ring_buffer_info *rbi = &channel->inbound;
526         u32 packetlen = desc->len8 << 3;
527         u32 dsize = rbi->ring_datasize;
528
529         hv_debug_delay_test(channel, MESSAGE_DELAY);
530         /* bump offset to next potential packet */
531         rbi->priv_read_index += packetlen + VMBUS_PKT_TRAILER;
532         if (rbi->priv_read_index >= dsize)
533                 rbi->priv_read_index -= dsize;
534
535         /* more data? */
536         return hv_pkt_iter_first(channel);
537 }
538 EXPORT_SYMBOL_GPL(__hv_pkt_iter_next);
539
540 /* How many bytes were read in this iterator cycle */
541 static u32 hv_pkt_iter_bytes_read(const struct hv_ring_buffer_info *rbi,
542                                         u32 start_read_index)
543 {
544         if (rbi->priv_read_index >= start_read_index)
545                 return rbi->priv_read_index - start_read_index;
546         else
547                 return rbi->ring_datasize - start_read_index +
548                         rbi->priv_read_index;
549 }
550
551 /*
552  * Update host ring buffer after iterating over packets. If the host has
553  * stopped queuing new entries because it found the ring buffer full, and
554  * sufficient space is being freed up, signal the host. But be careful to
555  * only signal the host when necessary, both for performance reasons and
556  * because Hyper-V protects itself by throttling guests that signal
557  * inappropriately.
558  *
559  * Determining when to signal is tricky. There are three key data inputs
560  * that must be handled in this order to avoid race conditions:
561  *
562  * 1. Update the read_index
563  * 2. Read the pending_send_sz
564  * 3. Read the current write_index
565  *
566  * The interrupt_mask is not used to determine when to signal. The
567  * interrupt_mask is used only on the guest->host ring buffer when
568  * sending requests to the host. The host does not use it on the host->
569  * guest ring buffer to indicate whether it should be signaled.
570  */
571 void hv_pkt_iter_close(struct vmbus_channel *channel)
572 {
573         struct hv_ring_buffer_info *rbi = &channel->inbound;
574         u32 curr_write_sz, pending_sz, bytes_read, start_read_index;
575
576         /*
577          * Make sure all reads are done before we update the read index since
578          * the writer may start writing to the read area once the read index
579          * is updated.
580          */
581         virt_rmb();
582         start_read_index = rbi->ring_buffer->read_index;
583         rbi->ring_buffer->read_index = rbi->priv_read_index;
584
585         /*
586          * Older versions of Hyper-V (before WS2102 and Win8) do not
587          * implement pending_send_sz and simply poll if the host->guest
588          * ring buffer is full.  No signaling is needed or expected.
589          */
590         if (!rbi->ring_buffer->feature_bits.feat_pending_send_sz)
591                 return;
592
593         /*
594          * Issue a full memory barrier before making the signaling decision.
595          * If reading pending_send_sz were to be reordered and happen
596          * before we commit the new read_index, a race could occur.  If the
597          * host were to set the pending_send_sz after we have sampled
598          * pending_send_sz, and the ring buffer blocks before we commit the
599          * read index, we could miss sending the interrupt. Issue a full
600          * memory barrier to address this.
601          */
602         virt_mb();
603
604         /*
605          * If the pending_send_sz is zero, then the ring buffer is not
606          * blocked and there is no need to signal.  This is far by the
607          * most common case, so exit quickly for best performance.
608          */
609         pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz);
610         if (!pending_sz)
611                 return;
612
613         /*
614          * Ensure the read of write_index in hv_get_bytes_to_write()
615          * happens after the read of pending_send_sz.
616          */
617         virt_rmb();
618         curr_write_sz = hv_get_bytes_to_write(rbi);
619         bytes_read = hv_pkt_iter_bytes_read(rbi, start_read_index);
620
621         /*
622          * We want to signal the host only if we're transitioning
623          * from a "not enough free space" state to a "enough free
624          * space" state.  For example, it's possible that this function
625          * could run and free up enough space to signal the host, and then
626          * run again and free up additional space before the host has a
627          * chance to clear the pending_send_sz.  The 2nd invocation would
628          * be a null transition from "enough free space" to "enough free
629          * space", which doesn't warrant a signal.
630          *
631          * Exactly filling the ring buffer is treated as "not enough
632          * space". The ring buffer always must have at least one byte
633          * empty so the empty and full conditions are distinguishable.
634          * hv_get_bytes_to_write() doesn't fully tell the truth in
635          * this regard.
636          *
637          * So first check if we were in the "enough free space" state
638          * before we began the iteration. If so, the host was not
639          * blocked, and there's no need to signal.
640          */
641         if (curr_write_sz - bytes_read > pending_sz)
642                 return;
643
644         /*
645          * Similarly, if the new state is "not enough space", then
646          * there's no need to signal.
647          */
648         if (curr_write_sz <= pending_sz)
649                 return;
650
651         ++channel->intr_in_full;
652         vmbus_setevent(channel);
653 }
654 EXPORT_SYMBOL_GPL(hv_pkt_iter_close);