GNU Linux-libre 4.4.283-gnu1
[releases.git] / drivers / hv / hv_balloon.c
1 /*
2  * Copyright (c) 2012, Microsoft Corporation.
3  *
4  * Author:
5  *   K. Y. Srinivasan <kys@microsoft.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of the GNU General Public License version 2 as published
9  * by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful, but
12  * WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  * NON INFRINGEMENT.  See the GNU General Public License for more
15  * details.
16  *
17  */
18
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21 #include <linux/kernel.h>
22 #include <linux/jiffies.h>
23 #include <linux/mman.h>
24 #include <linux/delay.h>
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/kthread.h>
29 #include <linux/completion.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/memory.h>
32 #include <linux/notifier.h>
33 #include <linux/percpu_counter.h>
34
35 #include <linux/hyperv.h>
36
37 /*
38  * We begin with definitions supporting the Dynamic Memory protocol
39  * with the host.
40  *
41  * Begin protocol definitions.
42  */
43
44
45
46 /*
47  * Protocol versions. The low word is the minor version, the high word the major
48  * version.
49  *
50  * History:
51  * Initial version 1.0
52  * Changed to 0.1 on 2009/03/25
53  * Changes to 0.2 on 2009/05/14
54  * Changes to 0.3 on 2009/12/03
55  * Changed to 1.0 on 2011/04/05
56  */
57
58 #define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor)))
59 #define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16)
60 #define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff)
61
62 enum {
63         DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3),
64         DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0),
65         DYNMEM_PROTOCOL_VERSION_3 = DYNMEM_MAKE_VERSION(2, 0),
66
67         DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1,
68         DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2,
69         DYNMEM_PROTOCOL_VERSION_WIN10 = DYNMEM_PROTOCOL_VERSION_3,
70
71         DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN10
72 };
73
74
75
76 /*
77  * Message Types
78  */
79
80 enum dm_message_type {
81         /*
82          * Version 0.3
83          */
84         DM_ERROR                        = 0,
85         DM_VERSION_REQUEST              = 1,
86         DM_VERSION_RESPONSE             = 2,
87         DM_CAPABILITIES_REPORT          = 3,
88         DM_CAPABILITIES_RESPONSE        = 4,
89         DM_STATUS_REPORT                = 5,
90         DM_BALLOON_REQUEST              = 6,
91         DM_BALLOON_RESPONSE             = 7,
92         DM_UNBALLOON_REQUEST            = 8,
93         DM_UNBALLOON_RESPONSE           = 9,
94         DM_MEM_HOT_ADD_REQUEST          = 10,
95         DM_MEM_HOT_ADD_RESPONSE         = 11,
96         DM_VERSION_03_MAX               = 11,
97         /*
98          * Version 1.0.
99          */
100         DM_INFO_MESSAGE                 = 12,
101         DM_VERSION_1_MAX                = 12
102 };
103
104
105 /*
106  * Structures defining the dynamic memory management
107  * protocol.
108  */
109
110 union dm_version {
111         struct {
112                 __u16 minor_version;
113                 __u16 major_version;
114         };
115         __u32 version;
116 } __packed;
117
118
119 union dm_caps {
120         struct {
121                 __u64 balloon:1;
122                 __u64 hot_add:1;
123                 /*
124                  * To support guests that may have alignment
125                  * limitations on hot-add, the guest can specify
126                  * its alignment requirements; a value of n
127                  * represents an alignment of 2^n in mega bytes.
128                  */
129                 __u64 hot_add_alignment:4;
130                 __u64 reservedz:58;
131         } cap_bits;
132         __u64 caps;
133 } __packed;
134
135 union dm_mem_page_range {
136         struct  {
137                 /*
138                  * The PFN number of the first page in the range.
139                  * 40 bits is the architectural limit of a PFN
140                  * number for AMD64.
141                  */
142                 __u64 start_page:40;
143                 /*
144                  * The number of pages in the range.
145                  */
146                 __u64 page_cnt:24;
147         } finfo;
148         __u64  page_range;
149 } __packed;
150
151
152
153 /*
154  * The header for all dynamic memory messages:
155  *
156  * type: Type of the message.
157  * size: Size of the message in bytes; including the header.
158  * trans_id: The guest is responsible for manufacturing this ID.
159  */
160
161 struct dm_header {
162         __u16 type;
163         __u16 size;
164         __u32 trans_id;
165 } __packed;
166
167 /*
168  * A generic message format for dynamic memory.
169  * Specific message formats are defined later in the file.
170  */
171
172 struct dm_message {
173         struct dm_header hdr;
174         __u8 data[]; /* enclosed message */
175 } __packed;
176
177
178 /*
179  * Specific message types supporting the dynamic memory protocol.
180  */
181
182 /*
183  * Version negotiation message. Sent from the guest to the host.
184  * The guest is free to try different versions until the host
185  * accepts the version.
186  *
187  * dm_version: The protocol version requested.
188  * is_last_attempt: If TRUE, this is the last version guest will request.
189  * reservedz: Reserved field, set to zero.
190  */
191
192 struct dm_version_request {
193         struct dm_header hdr;
194         union dm_version version;
195         __u32 is_last_attempt:1;
196         __u32 reservedz:31;
197 } __packed;
198
199 /*
200  * Version response message; Host to Guest and indicates
201  * if the host has accepted the version sent by the guest.
202  *
203  * is_accepted: If TRUE, host has accepted the version and the guest
204  * should proceed to the next stage of the protocol. FALSE indicates that
205  * guest should re-try with a different version.
206  *
207  * reservedz: Reserved field, set to zero.
208  */
209
210 struct dm_version_response {
211         struct dm_header hdr;
212         __u64 is_accepted:1;
213         __u64 reservedz:63;
214 } __packed;
215
216 /*
217  * Message reporting capabilities. This is sent from the guest to the
218  * host.
219  */
220
221 struct dm_capabilities {
222         struct dm_header hdr;
223         union dm_caps caps;
224         __u64 min_page_cnt;
225         __u64 max_page_number;
226 } __packed;
227
228 /*
229  * Response to the capabilities message. This is sent from the host to the
230  * guest. This message notifies if the host has accepted the guest's
231  * capabilities. If the host has not accepted, the guest must shutdown
232  * the service.
233  *
234  * is_accepted: Indicates if the host has accepted guest's capabilities.
235  * reservedz: Must be 0.
236  */
237
238 struct dm_capabilities_resp_msg {
239         struct dm_header hdr;
240         __u64 is_accepted:1;
241         __u64 reservedz:63;
242 } __packed;
243
244 /*
245  * This message is used to report memory pressure from the guest.
246  * This message is not part of any transaction and there is no
247  * response to this message.
248  *
249  * num_avail: Available memory in pages.
250  * num_committed: Committed memory in pages.
251  * page_file_size: The accumulated size of all page files
252  *                 in the system in pages.
253  * zero_free: The nunber of zero and free pages.
254  * page_file_writes: The writes to the page file in pages.
255  * io_diff: An indicator of file cache efficiency or page file activity,
256  *          calculated as File Cache Page Fault Count - Page Read Count.
257  *          This value is in pages.
258  *
259  * Some of these metrics are Windows specific and fortunately
260  * the algorithm on the host side that computes the guest memory
261  * pressure only uses num_committed value.
262  */
263
264 struct dm_status {
265         struct dm_header hdr;
266         __u64 num_avail;
267         __u64 num_committed;
268         __u64 page_file_size;
269         __u64 zero_free;
270         __u32 page_file_writes;
271         __u32 io_diff;
272 } __packed;
273
274
275 /*
276  * Message to ask the guest to allocate memory - balloon up message.
277  * This message is sent from the host to the guest. The guest may not be
278  * able to allocate as much memory as requested.
279  *
280  * num_pages: number of pages to allocate.
281  */
282
283 struct dm_balloon {
284         struct dm_header hdr;
285         __u32 num_pages;
286         __u32 reservedz;
287 } __packed;
288
289
290 /*
291  * Balloon response message; this message is sent from the guest
292  * to the host in response to the balloon message.
293  *
294  * reservedz: Reserved; must be set to zero.
295  * more_pages: If FALSE, this is the last message of the transaction.
296  * if TRUE there will atleast one more message from the guest.
297  *
298  * range_count: The number of ranges in the range array.
299  *
300  * range_array: An array of page ranges returned to the host.
301  *
302  */
303
304 struct dm_balloon_response {
305         struct dm_header hdr;
306         __u32 reservedz;
307         __u32 more_pages:1;
308         __u32 range_count:31;
309         union dm_mem_page_range range_array[];
310 } __packed;
311
312 /*
313  * Un-balloon message; this message is sent from the host
314  * to the guest to give guest more memory.
315  *
316  * more_pages: If FALSE, this is the last message of the transaction.
317  * if TRUE there will atleast one more message from the guest.
318  *
319  * reservedz: Reserved; must be set to zero.
320  *
321  * range_count: The number of ranges in the range array.
322  *
323  * range_array: An array of page ranges returned to the host.
324  *
325  */
326
327 struct dm_unballoon_request {
328         struct dm_header hdr;
329         __u32 more_pages:1;
330         __u32 reservedz:31;
331         __u32 range_count;
332         union dm_mem_page_range range_array[];
333 } __packed;
334
335 /*
336  * Un-balloon response message; this message is sent from the guest
337  * to the host in response to an unballoon request.
338  *
339  */
340
341 struct dm_unballoon_response {
342         struct dm_header hdr;
343 } __packed;
344
345
346 /*
347  * Hot add request message. Message sent from the host to the guest.
348  *
349  * mem_range: Memory range to hot add.
350  *
351  * On Linux we currently don't support this since we cannot hot add
352  * arbitrary granularity of memory.
353  */
354
355 struct dm_hot_add {
356         struct dm_header hdr;
357         union dm_mem_page_range range;
358 } __packed;
359
360 /*
361  * Hot add response message.
362  * This message is sent by the guest to report the status of a hot add request.
363  * If page_count is less than the requested page count, then the host should
364  * assume all further hot add requests will fail, since this indicates that
365  * the guest has hit an upper physical memory barrier.
366  *
367  * Hot adds may also fail due to low resources; in this case, the guest must
368  * not complete this message until the hot add can succeed, and the host must
369  * not send a new hot add request until the response is sent.
370  * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS
371  * times it fails the request.
372  *
373  *
374  * page_count: number of pages that were successfully hot added.
375  *
376  * result: result of the operation 1: success, 0: failure.
377  *
378  */
379
380 struct dm_hot_add_response {
381         struct dm_header hdr;
382         __u32 page_count;
383         __u32 result;
384 } __packed;
385
386 /*
387  * Types of information sent from host to the guest.
388  */
389
390 enum dm_info_type {
391         INFO_TYPE_MAX_PAGE_CNT = 0,
392         MAX_INFO_TYPE
393 };
394
395
396 /*
397  * Header for the information message.
398  */
399
400 struct dm_info_header {
401         enum dm_info_type type;
402         __u32 data_size;
403 } __packed;
404
405 /*
406  * This message is sent from the host to the guest to pass
407  * some relevant information (win8 addition).
408  *
409  * reserved: no used.
410  * info_size: size of the information blob.
411  * info: information blob.
412  */
413
414 struct dm_info_msg {
415         struct dm_header hdr;
416         __u32 reserved;
417         __u32 info_size;
418         __u8  info[];
419 };
420
421 /*
422  * End protocol definitions.
423  */
424
425 /*
426  * State to manage hot adding memory into the guest.
427  * The range start_pfn : end_pfn specifies the range
428  * that the host has asked us to hot add. The range
429  * start_pfn : ha_end_pfn specifies the range that we have
430  * currently hot added. We hot add in multiples of 128M
431  * chunks; it is possible that we may not be able to bring
432  * online all the pages in the region. The range
433  * covered_start_pfn:covered_end_pfn defines the pages that can
434  * be brough online.
435  */
436
437 struct hv_hotadd_state {
438         struct list_head list;
439         unsigned long start_pfn;
440         unsigned long covered_start_pfn;
441         unsigned long covered_end_pfn;
442         unsigned long ha_end_pfn;
443         unsigned long end_pfn;
444         /*
445          * A list of gaps.
446          */
447         struct list_head gap_list;
448 };
449
450 struct hv_hotadd_gap {
451         struct list_head list;
452         unsigned long start_pfn;
453         unsigned long end_pfn;
454 };
455
456 struct balloon_state {
457         __u32 num_pages;
458         struct work_struct wrk;
459 };
460
461 struct hot_add_wrk {
462         union dm_mem_page_range ha_page_range;
463         union dm_mem_page_range ha_region_range;
464         struct work_struct wrk;
465 };
466
467 static bool hot_add = true;
468 static bool do_hot_add;
469 /*
470  * Delay reporting memory pressure by
471  * the specified number of seconds.
472  */
473 static uint pressure_report_delay = 45;
474
475 /*
476  * The last time we posted a pressure report to host.
477  */
478 static unsigned long last_post_time;
479
480 module_param(hot_add, bool, (S_IRUGO | S_IWUSR));
481 MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add");
482
483 module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR));
484 MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure");
485 static atomic_t trans_id = ATOMIC_INIT(0);
486
487 static int dm_ring_size = (5 * PAGE_SIZE);
488
489 /*
490  * Driver specific state.
491  */
492
493 enum hv_dm_state {
494         DM_INITIALIZING = 0,
495         DM_INITIALIZED,
496         DM_BALLOON_UP,
497         DM_BALLOON_DOWN,
498         DM_HOT_ADD,
499         DM_INIT_ERROR
500 };
501
502
503 static __u8 recv_buffer[PAGE_SIZE];
504 static __u8 *send_buffer;
505 #define PAGES_IN_2M     512
506 #define HA_CHUNK (32 * 1024)
507
508 struct hv_dynmem_device {
509         struct hv_device *dev;
510         enum hv_dm_state state;
511         struct completion host_event;
512         struct completion config_event;
513
514         /*
515          * Number of pages we have currently ballooned out.
516          */
517         unsigned int num_pages_ballooned;
518         unsigned int num_pages_onlined;
519         unsigned int num_pages_added;
520
521         /*
522          * State to manage the ballooning (up) operation.
523          */
524         struct balloon_state balloon_wrk;
525
526         /*
527          * State to execute the "hot-add" operation.
528          */
529         struct hot_add_wrk ha_wrk;
530
531         /*
532          * This state tracks if the host has specified a hot-add
533          * region.
534          */
535         bool host_specified_ha_region;
536
537         /*
538          * State to synchronize hot-add.
539          */
540         struct completion  ol_waitevent;
541         bool ha_waiting;
542         /*
543          * This thread handles hot-add
544          * requests from the host as well as notifying
545          * the host with regards to memory pressure in
546          * the guest.
547          */
548         struct task_struct *thread;
549
550         struct mutex ha_region_mutex;
551
552         /*
553          * A list of hot-add regions.
554          */
555         struct list_head ha_region_list;
556
557         /*
558          * We start with the highest version we can support
559          * and downgrade based on the host; we save here the
560          * next version to try.
561          */
562         __u32 next_version;
563 };
564
565 static struct hv_dynmem_device dm_device;
566
567 static void post_status(struct hv_dynmem_device *dm);
568
569 #ifdef CONFIG_MEMORY_HOTPLUG
570 static int hv_memory_notifier(struct notifier_block *nb, unsigned long val,
571                               void *v)
572 {
573         struct memory_notify *mem = (struct memory_notify *)v;
574
575         switch (val) {
576         case MEM_GOING_ONLINE:
577                 mutex_lock(&dm_device.ha_region_mutex);
578                 break;
579
580         case MEM_ONLINE:
581                 dm_device.num_pages_onlined += mem->nr_pages;
582         case MEM_CANCEL_ONLINE:
583                 if (val == MEM_ONLINE ||
584                     mutex_is_locked(&dm_device.ha_region_mutex))
585                         mutex_unlock(&dm_device.ha_region_mutex);
586                 if (dm_device.ha_waiting) {
587                         dm_device.ha_waiting = false;
588                         complete(&dm_device.ol_waitevent);
589                 }
590                 break;
591
592         case MEM_OFFLINE:
593                 mutex_lock(&dm_device.ha_region_mutex);
594                 dm_device.num_pages_onlined -= mem->nr_pages;
595                 mutex_unlock(&dm_device.ha_region_mutex);
596                 break;
597         case MEM_GOING_OFFLINE:
598         case MEM_CANCEL_OFFLINE:
599                 break;
600         }
601         return NOTIFY_OK;
602 }
603
604 static struct notifier_block hv_memory_nb = {
605         .notifier_call = hv_memory_notifier,
606         .priority = 0
607 };
608
609 /* Check if the particular page is backed and can be onlined and online it. */
610 static void hv_page_online_one(struct hv_hotadd_state *has, struct page *pg)
611 {
612         unsigned long cur_start_pgp;
613         unsigned long cur_end_pgp;
614         struct hv_hotadd_gap *gap;
615
616         cur_start_pgp = (unsigned long)pfn_to_page(has->covered_start_pfn);
617         cur_end_pgp = (unsigned long)pfn_to_page(has->covered_end_pfn);
618
619         /* The page is not backed. */
620         if (((unsigned long)pg < cur_start_pgp) ||
621             ((unsigned long)pg >= cur_end_pgp))
622                 return;
623
624         /* Check for gaps. */
625         list_for_each_entry(gap, &has->gap_list, list) {
626                 cur_start_pgp = (unsigned long)
627                         pfn_to_page(gap->start_pfn);
628                 cur_end_pgp = (unsigned long)
629                         pfn_to_page(gap->end_pfn);
630                 if (((unsigned long)pg >= cur_start_pgp) &&
631                     ((unsigned long)pg < cur_end_pgp)) {
632                         return;
633                 }
634         }
635
636         /* This frame is currently backed; online the page. */
637         __online_page_set_limits(pg);
638         __online_page_increment_counters(pg);
639         __online_page_free(pg);
640 }
641
642 static void hv_bring_pgs_online(struct hv_hotadd_state *has,
643                                 unsigned long start_pfn, unsigned long size)
644 {
645         int i;
646
647         for (i = 0; i < size; i++)
648                 hv_page_online_one(has, pfn_to_page(start_pfn + i));
649 }
650
651 static void hv_mem_hot_add(unsigned long start, unsigned long size,
652                                 unsigned long pfn_count,
653                                 struct hv_hotadd_state *has)
654 {
655         int ret = 0;
656         int i, nid;
657         unsigned long start_pfn;
658         unsigned long processed_pfn;
659         unsigned long total_pfn = pfn_count;
660
661         for (i = 0; i < (size/HA_CHUNK); i++) {
662                 start_pfn = start + (i * HA_CHUNK);
663                 has->ha_end_pfn +=  HA_CHUNK;
664
665                 if (total_pfn > HA_CHUNK) {
666                         processed_pfn = HA_CHUNK;
667                         total_pfn -= HA_CHUNK;
668                 } else {
669                         processed_pfn = total_pfn;
670                         total_pfn = 0;
671                 }
672
673                 has->covered_end_pfn +=  processed_pfn;
674
675                 init_completion(&dm_device.ol_waitevent);
676                 dm_device.ha_waiting = true;
677
678                 mutex_unlock(&dm_device.ha_region_mutex);
679                 nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn));
680                 ret = add_memory(nid, PFN_PHYS((start_pfn)),
681                                 (HA_CHUNK << PAGE_SHIFT));
682
683                 if (ret) {
684                         pr_info("hot_add memory failed error is %d\n", ret);
685                         if (ret == -EEXIST) {
686                                 /*
687                                  * This error indicates that the error
688                                  * is not a transient failure. This is the
689                                  * case where the guest's physical address map
690                                  * precludes hot adding memory. Stop all further
691                                  * memory hot-add.
692                                  */
693                                 do_hot_add = false;
694                         }
695                         has->ha_end_pfn -= HA_CHUNK;
696                         has->covered_end_pfn -=  processed_pfn;
697                         mutex_lock(&dm_device.ha_region_mutex);
698                         break;
699                 }
700
701                 /*
702                  * Wait for the memory block to be onlined.
703                  * Since the hot add has succeeded, it is ok to
704                  * proceed even if the pages in the hot added region
705                  * have not been "onlined" within the allowed time.
706                  */
707                 wait_for_completion_timeout(&dm_device.ol_waitevent, 5*HZ);
708                 mutex_lock(&dm_device.ha_region_mutex);
709                 post_status(&dm_device);
710         }
711
712         return;
713 }
714
715 static void hv_online_page(struct page *pg)
716 {
717         struct list_head *cur;
718         struct hv_hotadd_state *has;
719         unsigned long cur_start_pgp;
720         unsigned long cur_end_pgp;
721
722         list_for_each(cur, &dm_device.ha_region_list) {
723                 has = list_entry(cur, struct hv_hotadd_state, list);
724                 cur_start_pgp = (unsigned long)
725                         pfn_to_page(has->start_pfn);
726                 cur_end_pgp = (unsigned long)pfn_to_page(has->end_pfn);
727
728                 /* The page belongs to a different HAS. */
729                 if (((unsigned long)pg < cur_start_pgp) ||
730                     ((unsigned long)pg >= cur_end_pgp))
731                         continue;
732
733                 hv_page_online_one(has, pg);
734                 break;
735         }
736 }
737
738 static int pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt)
739 {
740         struct list_head *cur;
741         struct hv_hotadd_state *has;
742         struct hv_hotadd_gap *gap;
743         unsigned long residual, new_inc;
744
745         if (list_empty(&dm_device.ha_region_list))
746                 return false;
747
748         list_for_each(cur, &dm_device.ha_region_list) {
749                 has = list_entry(cur, struct hv_hotadd_state, list);
750
751                 /*
752                  * If the pfn range we are dealing with is not in the current
753                  * "hot add block", move on.
754                  */
755                 if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
756                         continue;
757
758                 /*
759                  * If the current start pfn is not where the covered_end
760                  * is, create a gap and update covered_end_pfn.
761                  */
762                 if (has->covered_end_pfn != start_pfn) {
763                         gap = kzalloc(sizeof(struct hv_hotadd_gap), GFP_ATOMIC);
764                         if (!gap)
765                                 return -ENOMEM;
766
767                         INIT_LIST_HEAD(&gap->list);
768                         gap->start_pfn = has->covered_end_pfn;
769                         gap->end_pfn = start_pfn;
770                         list_add_tail(&gap->list, &has->gap_list);
771
772                         has->covered_end_pfn = start_pfn;
773                 }
774
775                 /*
776                  * If the current hot add-request extends beyond
777                  * our current limit; extend it.
778                  */
779                 if ((start_pfn + pfn_cnt) > has->end_pfn) {
780                         residual = (start_pfn + pfn_cnt - has->end_pfn);
781                         /*
782                          * Extend the region by multiples of HA_CHUNK.
783                          */
784                         new_inc = (residual / HA_CHUNK) * HA_CHUNK;
785                         if (residual % HA_CHUNK)
786                                 new_inc += HA_CHUNK;
787
788                         has->end_pfn += new_inc;
789                 }
790
791                 return 1;
792         }
793
794         return 0;
795 }
796
797 static unsigned long handle_pg_range(unsigned long pg_start,
798                                         unsigned long pg_count)
799 {
800         unsigned long start_pfn = pg_start;
801         unsigned long pfn_cnt = pg_count;
802         unsigned long size;
803         struct list_head *cur;
804         struct hv_hotadd_state *has;
805         unsigned long pgs_ol = 0;
806         unsigned long old_covered_state;
807
808         if (list_empty(&dm_device.ha_region_list))
809                 return 0;
810
811         list_for_each(cur, &dm_device.ha_region_list) {
812                 has = list_entry(cur, struct hv_hotadd_state, list);
813
814                 /*
815                  * If the pfn range we are dealing with is not in the current
816                  * "hot add block", move on.
817                  */
818                 if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
819                         continue;
820
821                 old_covered_state = has->covered_end_pfn;
822
823                 if (start_pfn < has->ha_end_pfn) {
824                         /*
825                          * This is the case where we are backing pages
826                          * in an already hot added region. Bring
827                          * these pages online first.
828                          */
829                         pgs_ol = has->ha_end_pfn - start_pfn;
830                         if (pgs_ol > pfn_cnt)
831                                 pgs_ol = pfn_cnt;
832
833                         has->covered_end_pfn +=  pgs_ol;
834                         pfn_cnt -= pgs_ol;
835                         /*
836                          * Check if the corresponding memory block is already
837                          * online by checking its last previously backed page.
838                          * In case it is we need to bring rest (which was not
839                          * backed previously) online too.
840                          */
841                         if (start_pfn > has->start_pfn &&
842                             !PageReserved(pfn_to_page(start_pfn - 1)))
843                                 hv_bring_pgs_online(has, start_pfn, pgs_ol);
844
845                 }
846
847                 if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) {
848                         /*
849                          * We have some residual hot add range
850                          * that needs to be hot added; hot add
851                          * it now. Hot add a multiple of
852                          * of HA_CHUNK that fully covers the pages
853                          * we have.
854                          */
855                         size = (has->end_pfn - has->ha_end_pfn);
856                         if (pfn_cnt <= size) {
857                                 size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK);
858                                 if (pfn_cnt % HA_CHUNK)
859                                         size += HA_CHUNK;
860                         } else {
861                                 pfn_cnt = size;
862                         }
863                         hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has);
864                 }
865                 /*
866                  * If we managed to online any pages that were given to us,
867                  * we declare success.
868                  */
869                 return has->covered_end_pfn - old_covered_state;
870
871         }
872
873         return 0;
874 }
875
876 static unsigned long process_hot_add(unsigned long pg_start,
877                                         unsigned long pfn_cnt,
878                                         unsigned long rg_start,
879                                         unsigned long rg_size)
880 {
881         struct hv_hotadd_state *ha_region = NULL;
882         int covered;
883
884         if (pfn_cnt == 0)
885                 return 0;
886
887         if (!dm_device.host_specified_ha_region) {
888                 covered = pfn_covered(pg_start, pfn_cnt);
889                 if (covered < 0)
890                         return 0;
891
892                 if (covered)
893                         goto do_pg_range;
894         }
895
896         /*
897          * If the host has specified a hot-add range; deal with it first.
898          */
899
900         if (rg_size != 0) {
901                 ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL);
902                 if (!ha_region)
903                         return 0;
904
905                 INIT_LIST_HEAD(&ha_region->list);
906                 INIT_LIST_HEAD(&ha_region->gap_list);
907
908                 list_add_tail(&ha_region->list, &dm_device.ha_region_list);
909                 ha_region->start_pfn = rg_start;
910                 ha_region->ha_end_pfn = rg_start;
911                 ha_region->covered_start_pfn = pg_start;
912                 ha_region->covered_end_pfn = pg_start;
913                 ha_region->end_pfn = rg_start + rg_size;
914         }
915
916 do_pg_range:
917         /*
918          * Process the page range specified; bringing them
919          * online if possible.
920          */
921         return handle_pg_range(pg_start, pfn_cnt);
922 }
923
924 #endif
925
926 static void hot_add_req(struct work_struct *dummy)
927 {
928         struct dm_hot_add_response resp;
929 #ifdef CONFIG_MEMORY_HOTPLUG
930         unsigned long pg_start, pfn_cnt;
931         unsigned long rg_start, rg_sz;
932 #endif
933         struct hv_dynmem_device *dm = &dm_device;
934
935         memset(&resp, 0, sizeof(struct dm_hot_add_response));
936         resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE;
937         resp.hdr.size = sizeof(struct dm_hot_add_response);
938
939 #ifdef CONFIG_MEMORY_HOTPLUG
940         mutex_lock(&dm_device.ha_region_mutex);
941         pg_start = dm->ha_wrk.ha_page_range.finfo.start_page;
942         pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt;
943
944         rg_start = dm->ha_wrk.ha_region_range.finfo.start_page;
945         rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt;
946
947         if ((rg_start == 0) && (!dm->host_specified_ha_region)) {
948                 unsigned long region_size;
949                 unsigned long region_start;
950
951                 /*
952                  * The host has not specified the hot-add region.
953                  * Based on the hot-add page range being specified,
954                  * compute a hot-add region that can cover the pages
955                  * that need to be hot-added while ensuring the alignment
956                  * and size requirements of Linux as it relates to hot-add.
957                  */
958                 region_start = pg_start;
959                 region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK;
960                 if (pfn_cnt % HA_CHUNK)
961                         region_size += HA_CHUNK;
962
963                 region_start = (pg_start / HA_CHUNK) * HA_CHUNK;
964
965                 rg_start = region_start;
966                 rg_sz = region_size;
967         }
968
969         if (do_hot_add)
970                 resp.page_count = process_hot_add(pg_start, pfn_cnt,
971                                                 rg_start, rg_sz);
972
973         dm->num_pages_added += resp.page_count;
974         mutex_unlock(&dm_device.ha_region_mutex);
975 #endif
976         /*
977          * The result field of the response structure has the
978          * following semantics:
979          *
980          * 1. If all or some pages hot-added: Guest should return success.
981          *
982          * 2. If no pages could be hot-added:
983          *
984          * If the guest returns success, then the host
985          * will not attempt any further hot-add operations. This
986          * signifies a permanent failure.
987          *
988          * If the guest returns failure, then this failure will be
989          * treated as a transient failure and the host may retry the
990          * hot-add operation after some delay.
991          */
992         if (resp.page_count > 0)
993                 resp.result = 1;
994         else if (!do_hot_add)
995                 resp.result = 1;
996         else
997                 resp.result = 0;
998
999         if (!do_hot_add || (resp.page_count == 0))
1000                 pr_info("Memory hot add failed\n");
1001
1002         dm->state = DM_INITIALIZED;
1003         resp.hdr.trans_id = atomic_inc_return(&trans_id);
1004         vmbus_sendpacket(dm->dev->channel, &resp,
1005                         sizeof(struct dm_hot_add_response),
1006                         (unsigned long)NULL,
1007                         VM_PKT_DATA_INBAND, 0);
1008 }
1009
1010 static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg)
1011 {
1012         struct dm_info_header *info_hdr;
1013
1014         info_hdr = (struct dm_info_header *)msg->info;
1015
1016         switch (info_hdr->type) {
1017         case INFO_TYPE_MAX_PAGE_CNT:
1018                 pr_info("Received INFO_TYPE_MAX_PAGE_CNT\n");
1019                 pr_info("Data Size is %d\n", info_hdr->data_size);
1020                 break;
1021         default:
1022                 pr_info("Received Unknown type: %d\n", info_hdr->type);
1023         }
1024 }
1025
1026 static unsigned long compute_balloon_floor(void)
1027 {
1028         unsigned long min_pages;
1029 #define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
1030         /* Simple continuous piecewiese linear function:
1031          *  max MiB -> min MiB  gradient
1032          *       0         0
1033          *      16        16
1034          *      32        24
1035          *     128        72    (1/2)
1036          *     512       168    (1/4)
1037          *    2048       360    (1/8)
1038          *    8192       744    (1/16)
1039          *   32768      1512    (1/32)
1040          */
1041         if (totalram_pages < MB2PAGES(128))
1042                 min_pages = MB2PAGES(8) + (totalram_pages >> 1);
1043         else if (totalram_pages < MB2PAGES(512))
1044                 min_pages = MB2PAGES(40) + (totalram_pages >> 2);
1045         else if (totalram_pages < MB2PAGES(2048))
1046                 min_pages = MB2PAGES(104) + (totalram_pages >> 3);
1047         else if (totalram_pages < MB2PAGES(8192))
1048                 min_pages = MB2PAGES(232) + (totalram_pages >> 4);
1049         else
1050                 min_pages = MB2PAGES(488) + (totalram_pages >> 5);
1051 #undef MB2PAGES
1052         return min_pages;
1053 }
1054
1055 /*
1056  * Post our status as it relates memory pressure to the
1057  * host. Host expects the guests to post this status
1058  * periodically at 1 second intervals.
1059  *
1060  * The metrics specified in this protocol are very Windows
1061  * specific and so we cook up numbers here to convey our memory
1062  * pressure.
1063  */
1064
1065 static void post_status(struct hv_dynmem_device *dm)
1066 {
1067         struct dm_status status;
1068         struct sysinfo val;
1069         unsigned long now = jiffies;
1070         unsigned long last_post = last_post_time;
1071
1072         if (pressure_report_delay > 0) {
1073                 --pressure_report_delay;
1074                 return;
1075         }
1076
1077         if (!time_after(now, (last_post_time + HZ)))
1078                 return;
1079
1080         si_meminfo(&val);
1081         memset(&status, 0, sizeof(struct dm_status));
1082         status.hdr.type = DM_STATUS_REPORT;
1083         status.hdr.size = sizeof(struct dm_status);
1084         status.hdr.trans_id = atomic_inc_return(&trans_id);
1085
1086         /*
1087          * The host expects the guest to report free and committed memory.
1088          * Furthermore, the host expects the pressure information to include
1089          * the ballooned out pages. For a given amount of memory that we are
1090          * managing we need to compute a floor below which we should not
1091          * balloon. Compute this and add it to the pressure report.
1092          * We also need to report all offline pages (num_pages_added -
1093          * num_pages_onlined) as committed to the host, otherwise it can try
1094          * asking us to balloon them out.
1095          */
1096         status.num_avail = val.freeram;
1097         status.num_committed = vm_memory_committed() +
1098                 dm->num_pages_ballooned +
1099                 (dm->num_pages_added > dm->num_pages_onlined ?
1100                  dm->num_pages_added - dm->num_pages_onlined : 0) +
1101                 compute_balloon_floor();
1102
1103         /*
1104          * If our transaction ID is no longer current, just don't
1105          * send the status. This can happen if we were interrupted
1106          * after we picked our transaction ID.
1107          */
1108         if (status.hdr.trans_id != atomic_read(&trans_id))
1109                 return;
1110
1111         /*
1112          * If the last post time that we sampled has changed,
1113          * we have raced, don't post the status.
1114          */
1115         if (last_post != last_post_time)
1116                 return;
1117
1118         last_post_time = jiffies;
1119         vmbus_sendpacket(dm->dev->channel, &status,
1120                                 sizeof(struct dm_status),
1121                                 (unsigned long)NULL,
1122                                 VM_PKT_DATA_INBAND, 0);
1123
1124 }
1125
1126 static void free_balloon_pages(struct hv_dynmem_device *dm,
1127                          union dm_mem_page_range *range_array)
1128 {
1129         int num_pages = range_array->finfo.page_cnt;
1130         __u64 start_frame = range_array->finfo.start_page;
1131         struct page *pg;
1132         int i;
1133
1134         for (i = 0; i < num_pages; i++) {
1135                 pg = pfn_to_page(i + start_frame);
1136                 __free_page(pg);
1137                 dm->num_pages_ballooned--;
1138         }
1139 }
1140
1141
1142
1143 static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm,
1144                                         unsigned int num_pages,
1145                                         struct dm_balloon_response *bl_resp,
1146                                         int alloc_unit)
1147 {
1148         unsigned int i = 0;
1149         struct page *pg;
1150
1151         if (num_pages < alloc_unit)
1152                 return 0;
1153
1154         for (i = 0; (i * alloc_unit) < num_pages; i++) {
1155                 if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) >
1156                         PAGE_SIZE)
1157                         return i * alloc_unit;
1158
1159                 /*
1160                  * We execute this code in a thread context. Furthermore,
1161                  * we don't want the kernel to try too hard.
1162                  */
1163                 pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY |
1164                                 __GFP_NOMEMALLOC | __GFP_NOWARN,
1165                                 get_order(alloc_unit << PAGE_SHIFT));
1166
1167                 if (!pg)
1168                         return i * alloc_unit;
1169
1170                 dm->num_pages_ballooned += alloc_unit;
1171
1172                 /*
1173                  * If we allocatted 2M pages; split them so we
1174                  * can free them in any order we get.
1175                  */
1176
1177                 if (alloc_unit != 1)
1178                         split_page(pg, get_order(alloc_unit << PAGE_SHIFT));
1179
1180                 bl_resp->range_count++;
1181                 bl_resp->range_array[i].finfo.start_page =
1182                         page_to_pfn(pg);
1183                 bl_resp->range_array[i].finfo.page_cnt = alloc_unit;
1184                 bl_resp->hdr.size += sizeof(union dm_mem_page_range);
1185
1186         }
1187
1188         return num_pages;
1189 }
1190
1191
1192
1193 static void balloon_up(struct work_struct *dummy)
1194 {
1195         unsigned int num_pages = dm_device.balloon_wrk.num_pages;
1196         unsigned int num_ballooned = 0;
1197         struct dm_balloon_response *bl_resp;
1198         int alloc_unit;
1199         int ret;
1200         bool done = false;
1201         int i;
1202         struct sysinfo val;
1203         unsigned long floor;
1204
1205         /* The host balloons pages in 2M granularity. */
1206         WARN_ON_ONCE(num_pages % PAGES_IN_2M != 0);
1207
1208         /*
1209          * We will attempt 2M allocations. However, if we fail to
1210          * allocate 2M chunks, we will go back to 4k allocations.
1211          */
1212         alloc_unit = 512;
1213
1214         si_meminfo(&val);
1215         floor = compute_balloon_floor();
1216
1217         /* Refuse to balloon below the floor, keep the 2M granularity. */
1218         if (val.freeram < num_pages || val.freeram - num_pages < floor) {
1219                 num_pages = val.freeram > floor ? (val.freeram - floor) : 0;
1220                 num_pages -= num_pages % PAGES_IN_2M;
1221         }
1222
1223         while (!done) {
1224                 bl_resp = (struct dm_balloon_response *)send_buffer;
1225                 memset(send_buffer, 0, PAGE_SIZE);
1226                 bl_resp->hdr.type = DM_BALLOON_RESPONSE;
1227                 bl_resp->hdr.size = sizeof(struct dm_balloon_response);
1228                 bl_resp->more_pages = 1;
1229
1230
1231                 num_pages -= num_ballooned;
1232                 num_ballooned = alloc_balloon_pages(&dm_device, num_pages,
1233                                                     bl_resp, alloc_unit);
1234
1235                 if (alloc_unit != 1 && num_ballooned == 0) {
1236                         alloc_unit = 1;
1237                         continue;
1238                 }
1239
1240                 if (num_ballooned == 0 || num_ballooned == num_pages) {
1241                         bl_resp->more_pages = 0;
1242                         done = true;
1243                         dm_device.state = DM_INITIALIZED;
1244                 }
1245
1246                 /*
1247                  * We are pushing a lot of data through the channel;
1248                  * deal with transient failures caused because of the
1249                  * lack of space in the ring buffer.
1250                  */
1251
1252                 do {
1253                         bl_resp->hdr.trans_id = atomic_inc_return(&trans_id);
1254                         ret = vmbus_sendpacket(dm_device.dev->channel,
1255                                                 bl_resp,
1256                                                 bl_resp->hdr.size,
1257                                                 (unsigned long)NULL,
1258                                                 VM_PKT_DATA_INBAND, 0);
1259
1260                         if (ret == -EAGAIN)
1261                                 msleep(20);
1262                         post_status(&dm_device);
1263                 } while (ret == -EAGAIN);
1264
1265                 if (ret) {
1266                         /*
1267                          * Free up the memory we allocatted.
1268                          */
1269                         pr_info("Balloon response failed\n");
1270
1271                         for (i = 0; i < bl_resp->range_count; i++)
1272                                 free_balloon_pages(&dm_device,
1273                                                  &bl_resp->range_array[i]);
1274
1275                         done = true;
1276                 }
1277         }
1278
1279 }
1280
1281 static void balloon_down(struct hv_dynmem_device *dm,
1282                         struct dm_unballoon_request *req)
1283 {
1284         union dm_mem_page_range *range_array = req->range_array;
1285         int range_count = req->range_count;
1286         struct dm_unballoon_response resp;
1287         int i;
1288
1289         for (i = 0; i < range_count; i++) {
1290                 free_balloon_pages(dm, &range_array[i]);
1291                 complete(&dm_device.config_event);
1292         }
1293
1294         if (req->more_pages == 1)
1295                 return;
1296
1297         memset(&resp, 0, sizeof(struct dm_unballoon_response));
1298         resp.hdr.type = DM_UNBALLOON_RESPONSE;
1299         resp.hdr.trans_id = atomic_inc_return(&trans_id);
1300         resp.hdr.size = sizeof(struct dm_unballoon_response);
1301
1302         vmbus_sendpacket(dm_device.dev->channel, &resp,
1303                                 sizeof(struct dm_unballoon_response),
1304                                 (unsigned long)NULL,
1305                                 VM_PKT_DATA_INBAND, 0);
1306
1307         dm->state = DM_INITIALIZED;
1308 }
1309
1310 static void balloon_onchannelcallback(void *context);
1311
1312 static int dm_thread_func(void *dm_dev)
1313 {
1314         struct hv_dynmem_device *dm = dm_dev;
1315
1316         while (!kthread_should_stop()) {
1317                 wait_for_completion_interruptible_timeout(
1318                                                 &dm_device.config_event, 1*HZ);
1319                 /*
1320                  * The host expects us to post information on the memory
1321                  * pressure every second.
1322                  */
1323                 reinit_completion(&dm_device.config_event);
1324                 post_status(dm);
1325         }
1326
1327         return 0;
1328 }
1329
1330
1331 static void version_resp(struct hv_dynmem_device *dm,
1332                         struct dm_version_response *vresp)
1333 {
1334         struct dm_version_request version_req;
1335         int ret;
1336
1337         if (vresp->is_accepted) {
1338                 /*
1339                  * We are done; wakeup the
1340                  * context waiting for version
1341                  * negotiation.
1342                  */
1343                 complete(&dm->host_event);
1344                 return;
1345         }
1346         /*
1347          * If there are more versions to try, continue
1348          * with negotiations; if not
1349          * shutdown the service since we are not able
1350          * to negotiate a suitable version number
1351          * with the host.
1352          */
1353         if (dm->next_version == 0)
1354                 goto version_error;
1355
1356         memset(&version_req, 0, sizeof(struct dm_version_request));
1357         version_req.hdr.type = DM_VERSION_REQUEST;
1358         version_req.hdr.size = sizeof(struct dm_version_request);
1359         version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1360         version_req.version.version = dm->next_version;
1361
1362         /*
1363          * Set the next version to try in case current version fails.
1364          * Win7 protocol ought to be the last one to try.
1365          */
1366         switch (version_req.version.version) {
1367         case DYNMEM_PROTOCOL_VERSION_WIN8:
1368                 dm->next_version = DYNMEM_PROTOCOL_VERSION_WIN7;
1369                 version_req.is_last_attempt = 0;
1370                 break;
1371         default:
1372                 dm->next_version = 0;
1373                 version_req.is_last_attempt = 1;
1374         }
1375
1376         ret = vmbus_sendpacket(dm->dev->channel, &version_req,
1377                                 sizeof(struct dm_version_request),
1378                                 (unsigned long)NULL,
1379                                 VM_PKT_DATA_INBAND, 0);
1380
1381         if (ret)
1382                 goto version_error;
1383
1384         return;
1385
1386 version_error:
1387         dm->state = DM_INIT_ERROR;
1388         complete(&dm->host_event);
1389 }
1390
1391 static void cap_resp(struct hv_dynmem_device *dm,
1392                         struct dm_capabilities_resp_msg *cap_resp)
1393 {
1394         if (!cap_resp->is_accepted) {
1395                 pr_info("Capabilities not accepted by host\n");
1396                 dm->state = DM_INIT_ERROR;
1397         }
1398         complete(&dm->host_event);
1399 }
1400
1401 static void balloon_onchannelcallback(void *context)
1402 {
1403         struct hv_device *dev = context;
1404         u32 recvlen;
1405         u64 requestid;
1406         struct dm_message *dm_msg;
1407         struct dm_header *dm_hdr;
1408         struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1409         struct dm_balloon *bal_msg;
1410         struct dm_hot_add *ha_msg;
1411         union dm_mem_page_range *ha_pg_range;
1412         union dm_mem_page_range *ha_region;
1413
1414         memset(recv_buffer, 0, sizeof(recv_buffer));
1415         vmbus_recvpacket(dev->channel, recv_buffer,
1416                          PAGE_SIZE, &recvlen, &requestid);
1417
1418         if (recvlen > 0) {
1419                 dm_msg = (struct dm_message *)recv_buffer;
1420                 dm_hdr = &dm_msg->hdr;
1421
1422                 switch (dm_hdr->type) {
1423                 case DM_VERSION_RESPONSE:
1424                         version_resp(dm,
1425                                  (struct dm_version_response *)dm_msg);
1426                         break;
1427
1428                 case DM_CAPABILITIES_RESPONSE:
1429                         cap_resp(dm,
1430                                  (struct dm_capabilities_resp_msg *)dm_msg);
1431                         break;
1432
1433                 case DM_BALLOON_REQUEST:
1434                         if (dm->state == DM_BALLOON_UP)
1435                                 pr_warn("Currently ballooning\n");
1436                         bal_msg = (struct dm_balloon *)recv_buffer;
1437                         dm->state = DM_BALLOON_UP;
1438                         dm_device.balloon_wrk.num_pages = bal_msg->num_pages;
1439                         schedule_work(&dm_device.balloon_wrk.wrk);
1440                         break;
1441
1442                 case DM_UNBALLOON_REQUEST:
1443                         dm->state = DM_BALLOON_DOWN;
1444                         balloon_down(dm,
1445                                  (struct dm_unballoon_request *)recv_buffer);
1446                         break;
1447
1448                 case DM_MEM_HOT_ADD_REQUEST:
1449                         if (dm->state == DM_HOT_ADD)
1450                                 pr_warn("Currently hot-adding\n");
1451                         dm->state = DM_HOT_ADD;
1452                         ha_msg = (struct dm_hot_add *)recv_buffer;
1453                         if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) {
1454                                 /*
1455                                  * This is a normal hot-add request specifying
1456                                  * hot-add memory.
1457                                  */
1458                                 ha_pg_range = &ha_msg->range;
1459                                 dm->ha_wrk.ha_page_range = *ha_pg_range;
1460                                 dm->ha_wrk.ha_region_range.page_range = 0;
1461                         } else {
1462                                 /*
1463                                  * Host is specifying that we first hot-add
1464                                  * a region and then partially populate this
1465                                  * region.
1466                                  */
1467                                 dm->host_specified_ha_region = true;
1468                                 ha_pg_range = &ha_msg->range;
1469                                 ha_region = &ha_pg_range[1];
1470                                 dm->ha_wrk.ha_page_range = *ha_pg_range;
1471                                 dm->ha_wrk.ha_region_range = *ha_region;
1472                         }
1473                         schedule_work(&dm_device.ha_wrk.wrk);
1474                         break;
1475
1476                 case DM_INFO_MESSAGE:
1477                         process_info(dm, (struct dm_info_msg *)dm_msg);
1478                         break;
1479
1480                 default:
1481                         pr_err("Unhandled message: type: %d\n", dm_hdr->type);
1482
1483                 }
1484         }
1485
1486 }
1487
1488 static int balloon_probe(struct hv_device *dev,
1489                         const struct hv_vmbus_device_id *dev_id)
1490 {
1491         int ret;
1492         unsigned long t;
1493         struct dm_version_request version_req;
1494         struct dm_capabilities cap_msg;
1495
1496         do_hot_add = hot_add;
1497
1498         /*
1499          * First allocate a send buffer.
1500          */
1501
1502         send_buffer = kmalloc(PAGE_SIZE, GFP_KERNEL);
1503         if (!send_buffer)
1504                 return -ENOMEM;
1505
1506         ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0,
1507                         balloon_onchannelcallback, dev);
1508
1509         if (ret)
1510                 goto probe_error0;
1511
1512         dm_device.dev = dev;
1513         dm_device.state = DM_INITIALIZING;
1514         dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN8;
1515         init_completion(&dm_device.host_event);
1516         init_completion(&dm_device.config_event);
1517         INIT_LIST_HEAD(&dm_device.ha_region_list);
1518         mutex_init(&dm_device.ha_region_mutex);
1519         INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up);
1520         INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req);
1521         dm_device.host_specified_ha_region = false;
1522
1523         dm_device.thread =
1524                  kthread_run(dm_thread_func, &dm_device, "hv_balloon");
1525         if (IS_ERR(dm_device.thread)) {
1526                 ret = PTR_ERR(dm_device.thread);
1527                 goto probe_error1;
1528         }
1529
1530 #ifdef CONFIG_MEMORY_HOTPLUG
1531         set_online_page_callback(&hv_online_page);
1532         register_memory_notifier(&hv_memory_nb);
1533 #endif
1534
1535         hv_set_drvdata(dev, &dm_device);
1536         /*
1537          * Initiate the hand shake with the host and negotiate
1538          * a version that the host can support. We start with the
1539          * highest version number and go down if the host cannot
1540          * support it.
1541          */
1542         memset(&version_req, 0, sizeof(struct dm_version_request));
1543         version_req.hdr.type = DM_VERSION_REQUEST;
1544         version_req.hdr.size = sizeof(struct dm_version_request);
1545         version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1546         version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN10;
1547         version_req.is_last_attempt = 0;
1548
1549         ret = vmbus_sendpacket(dev->channel, &version_req,
1550                                 sizeof(struct dm_version_request),
1551                                 (unsigned long)NULL,
1552                                 VM_PKT_DATA_INBAND, 0);
1553         if (ret)
1554                 goto probe_error2;
1555
1556         t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1557         if (t == 0) {
1558                 ret = -ETIMEDOUT;
1559                 goto probe_error2;
1560         }
1561
1562         /*
1563          * If we could not negotiate a compatible version with the host
1564          * fail the probe function.
1565          */
1566         if (dm_device.state == DM_INIT_ERROR) {
1567                 ret = -ETIMEDOUT;
1568                 goto probe_error2;
1569         }
1570         /*
1571          * Now submit our capabilities to the host.
1572          */
1573         memset(&cap_msg, 0, sizeof(struct dm_capabilities));
1574         cap_msg.hdr.type = DM_CAPABILITIES_REPORT;
1575         cap_msg.hdr.size = sizeof(struct dm_capabilities);
1576         cap_msg.hdr.trans_id = atomic_inc_return(&trans_id);
1577
1578         cap_msg.caps.cap_bits.balloon = 1;
1579         cap_msg.caps.cap_bits.hot_add = 1;
1580
1581         /*
1582          * Specify our alignment requirements as it relates
1583          * memory hot-add. Specify 128MB alignment.
1584          */
1585         cap_msg.caps.cap_bits.hot_add_alignment = 7;
1586
1587         /*
1588          * Currently the host does not use these
1589          * values and we set them to what is done in the
1590          * Windows driver.
1591          */
1592         cap_msg.min_page_cnt = 0;
1593         cap_msg.max_page_number = -1;
1594
1595         ret = vmbus_sendpacket(dev->channel, &cap_msg,
1596                                 sizeof(struct dm_capabilities),
1597                                 (unsigned long)NULL,
1598                                 VM_PKT_DATA_INBAND, 0);
1599         if (ret)
1600                 goto probe_error2;
1601
1602         t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1603         if (t == 0) {
1604                 ret = -ETIMEDOUT;
1605                 goto probe_error2;
1606         }
1607
1608         /*
1609          * If the host does not like our capabilities,
1610          * fail the probe function.
1611          */
1612         if (dm_device.state == DM_INIT_ERROR) {
1613                 ret = -ETIMEDOUT;
1614                 goto probe_error2;
1615         }
1616
1617         dm_device.state = DM_INITIALIZED;
1618
1619         return 0;
1620
1621 probe_error2:
1622 #ifdef CONFIG_MEMORY_HOTPLUG
1623         restore_online_page_callback(&hv_online_page);
1624 #endif
1625         kthread_stop(dm_device.thread);
1626
1627 probe_error1:
1628         vmbus_close(dev->channel);
1629 probe_error0:
1630         kfree(send_buffer);
1631         return ret;
1632 }
1633
1634 static int balloon_remove(struct hv_device *dev)
1635 {
1636         struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1637         struct list_head *cur, *tmp;
1638         struct hv_hotadd_state *has;
1639         struct hv_hotadd_gap *gap, *tmp_gap;
1640
1641         if (dm->num_pages_ballooned != 0)
1642                 pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned);
1643
1644         cancel_work_sync(&dm->balloon_wrk.wrk);
1645         cancel_work_sync(&dm->ha_wrk.wrk);
1646
1647         vmbus_close(dev->channel);
1648         kthread_stop(dm->thread);
1649         kfree(send_buffer);
1650 #ifdef CONFIG_MEMORY_HOTPLUG
1651         restore_online_page_callback(&hv_online_page);
1652         unregister_memory_notifier(&hv_memory_nb);
1653 #endif
1654         list_for_each_safe(cur, tmp, &dm->ha_region_list) {
1655                 has = list_entry(cur, struct hv_hotadd_state, list);
1656                 list_for_each_entry_safe(gap, tmp_gap, &has->gap_list, list) {
1657                         list_del(&gap->list);
1658                         kfree(gap);
1659                 }
1660                 list_del(&has->list);
1661                 kfree(has);
1662         }
1663
1664         return 0;
1665 }
1666
1667 static const struct hv_vmbus_device_id id_table[] = {
1668         /* Dynamic Memory Class ID */
1669         /* 525074DC-8985-46e2-8057-A307DC18A502 */
1670         { HV_DM_GUID, },
1671         { },
1672 };
1673
1674 MODULE_DEVICE_TABLE(vmbus, id_table);
1675
1676 static  struct hv_driver balloon_drv = {
1677         .name = "hv_balloon",
1678         .id_table = id_table,
1679         .probe =  balloon_probe,
1680         .remove =  balloon_remove,
1681 };
1682
1683 static int __init init_balloon_drv(void)
1684 {
1685
1686         return vmbus_driver_register(&balloon_drv);
1687 }
1688
1689 module_init(init_balloon_drv);
1690
1691 MODULE_DESCRIPTION("Hyper-V Balloon");
1692 MODULE_LICENSE("GPL");