GNU Linux-libre 4.19.245-gnu1
[releases.git] / drivers / hv / hv.c
1 /*
2  * Copyright (c) 2009, Microsoft Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Authors:
18  *   Haiyang Zhang <haiyangz@microsoft.com>
19  *   Hank Janssen  <hjanssen@microsoft.com>
20  *
21  */
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/slab.h>
27 #include <linux/vmalloc.h>
28 #include <linux/hyperv.h>
29 #include <linux/version.h>
30 #include <linux/random.h>
31 #include <linux/clockchips.h>
32 #include <asm/mshyperv.h>
33 #include "hyperv_vmbus.h"
34
35 /* The one and only */
36 struct hv_context hv_context = {
37         .synic_initialized      = false,
38 };
39
40 /*
41  * If false, we're using the old mechanism for stimer0 interrupts
42  * where it sends a VMbus message when it expires. The old
43  * mechanism is used when running on older versions of Hyper-V
44  * that don't support Direct Mode. While Hyper-V provides
45  * four stimer's per CPU, Linux uses only stimer0.
46  */
47 static bool direct_mode_enabled;
48 static int stimer0_irq;
49 static int stimer0_vector;
50
51 #define HV_TIMER_FREQUENCY (10 * 1000 * 1000) /* 100ns period */
52 #define HV_MAX_MAX_DELTA_TICKS 0xffffffff
53 #define HV_MIN_DELTA_TICKS 1
54
55 /*
56  * hv_init - Main initialization routine.
57  *
58  * This routine must be called before any other routines in here are called
59  */
60 int hv_init(void)
61 {
62         hv_context.cpu_context = alloc_percpu(struct hv_per_cpu_context);
63         if (!hv_context.cpu_context)
64                 return -ENOMEM;
65
66         direct_mode_enabled = ms_hyperv.misc_features &
67                         HV_STIMER_DIRECT_MODE_AVAILABLE;
68         return 0;
69 }
70
71 /*
72  * hv_post_message - Post a message using the hypervisor message IPC.
73  *
74  * This involves a hypercall.
75  */
76 int hv_post_message(union hv_connection_id connection_id,
77                   enum hv_message_type message_type,
78                   void *payload, size_t payload_size)
79 {
80         struct hv_input_post_message *aligned_msg;
81         struct hv_per_cpu_context *hv_cpu;
82         u64 status;
83
84         if (payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT)
85                 return -EMSGSIZE;
86
87         hv_cpu = get_cpu_ptr(hv_context.cpu_context);
88         aligned_msg = hv_cpu->post_msg_page;
89         aligned_msg->connectionid = connection_id;
90         aligned_msg->reserved = 0;
91         aligned_msg->message_type = message_type;
92         aligned_msg->payload_size = payload_size;
93         memcpy((void *)aligned_msg->payload, payload, payload_size);
94
95         status = hv_do_hypercall(HVCALL_POST_MESSAGE, aligned_msg, NULL);
96
97         /* Preemption must remain disabled until after the hypercall
98          * so some other thread can't get scheduled onto this cpu and
99          * corrupt the per-cpu post_msg_page
100          */
101         put_cpu_ptr(hv_cpu);
102
103         return status & 0xFFFF;
104 }
105
106 /*
107  * ISR for when stimer0 is operating in Direct Mode.  Direct Mode
108  * does not use VMbus or any VMbus messages, so process here and not
109  * in the VMbus driver code.
110  */
111
112 static void hv_stimer0_isr(void)
113 {
114         struct hv_per_cpu_context *hv_cpu;
115
116         hv_cpu = this_cpu_ptr(hv_context.cpu_context);
117         hv_cpu->clk_evt->event_handler(hv_cpu->clk_evt);
118         add_interrupt_randomness(stimer0_vector, 0);
119 }
120
121 static int hv_ce_set_next_event(unsigned long delta,
122                                 struct clock_event_device *evt)
123 {
124         u64 current_tick;
125
126         WARN_ON(!clockevent_state_oneshot(evt));
127
128         current_tick = hyperv_cs->read(NULL);
129         current_tick += delta;
130         hv_init_timer(0, current_tick);
131         return 0;
132 }
133
134 static int hv_ce_shutdown(struct clock_event_device *evt)
135 {
136         hv_init_timer(0, 0);
137         hv_init_timer_config(0, 0);
138         if (direct_mode_enabled)
139                 hv_disable_stimer0_percpu_irq(stimer0_irq);
140
141         return 0;
142 }
143
144 static int hv_ce_set_oneshot(struct clock_event_device *evt)
145 {
146         union hv_timer_config timer_cfg;
147
148         timer_cfg.as_uint64 = 0;
149         timer_cfg.enable = 1;
150         timer_cfg.auto_enable = 1;
151         if (direct_mode_enabled) {
152                 /*
153                  * When it expires, the timer will directly interrupt
154                  * on the specified hardware vector/IRQ.
155                  */
156                 timer_cfg.direct_mode = 1;
157                 timer_cfg.apic_vector = stimer0_vector;
158                 hv_enable_stimer0_percpu_irq(stimer0_irq);
159         } else {
160                 /*
161                  * When it expires, the timer will generate a VMbus message,
162                  * to be handled by the normal VMbus interrupt handler.
163                  */
164                 timer_cfg.direct_mode = 0;
165                 timer_cfg.sintx = VMBUS_MESSAGE_SINT;
166         }
167         hv_init_timer_config(0, timer_cfg.as_uint64);
168         return 0;
169 }
170
171 static void hv_init_clockevent_device(struct clock_event_device *dev, int cpu)
172 {
173         dev->name = "Hyper-V clockevent";
174         dev->features = CLOCK_EVT_FEAT_ONESHOT;
175         dev->cpumask = cpumask_of(cpu);
176         dev->rating = 1000;
177         /*
178          * Avoid settint dev->owner = THIS_MODULE deliberately as doing so will
179          * result in clockevents_config_and_register() taking additional
180          * references to the hv_vmbus module making it impossible to unload.
181          */
182
183         dev->set_state_shutdown = hv_ce_shutdown;
184         dev->set_state_oneshot = hv_ce_set_oneshot;
185         dev->set_next_event = hv_ce_set_next_event;
186 }
187
188
189 int hv_synic_alloc(void)
190 {
191         int cpu;
192         struct hv_per_cpu_context *hv_cpu;
193
194         /*
195          * First, zero all per-cpu memory areas so hv_synic_free() can
196          * detect what memory has been allocated and cleanup properly
197          * after any failures.
198          */
199         for_each_present_cpu(cpu) {
200                 hv_cpu = per_cpu_ptr(hv_context.cpu_context, cpu);
201                 memset(hv_cpu, 0, sizeof(*hv_cpu));
202         }
203
204         hv_context.hv_numa_map = kcalloc(nr_node_ids, sizeof(struct cpumask),
205                                          GFP_KERNEL);
206         if (hv_context.hv_numa_map == NULL) {
207                 pr_err("Unable to allocate NUMA map\n");
208                 goto err;
209         }
210
211         for_each_present_cpu(cpu) {
212                 hv_cpu = per_cpu_ptr(hv_context.cpu_context, cpu);
213
214                 tasklet_init(&hv_cpu->msg_dpc,
215                              vmbus_on_msg_dpc, (unsigned long) hv_cpu);
216
217                 hv_cpu->clk_evt = kzalloc(sizeof(struct clock_event_device),
218                                           GFP_KERNEL);
219                 if (hv_cpu->clk_evt == NULL) {
220                         pr_err("Unable to allocate clock event device\n");
221                         goto err;
222                 }
223                 hv_init_clockevent_device(hv_cpu->clk_evt, cpu);
224
225                 hv_cpu->synic_message_page =
226                         (void *)get_zeroed_page(GFP_ATOMIC);
227                 if (hv_cpu->synic_message_page == NULL) {
228                         pr_err("Unable to allocate SYNIC message page\n");
229                         goto err;
230                 }
231
232                 hv_cpu->synic_event_page = (void *)get_zeroed_page(GFP_ATOMIC);
233                 if (hv_cpu->synic_event_page == NULL) {
234                         pr_err("Unable to allocate SYNIC event page\n");
235                         goto err;
236                 }
237
238                 hv_cpu->post_msg_page = (void *)get_zeroed_page(GFP_ATOMIC);
239                 if (hv_cpu->post_msg_page == NULL) {
240                         pr_err("Unable to allocate post msg page\n");
241                         goto err;
242                 }
243
244                 INIT_LIST_HEAD(&hv_cpu->chan_list);
245         }
246
247         if (direct_mode_enabled &&
248             hv_setup_stimer0_irq(&stimer0_irq, &stimer0_vector,
249                                 hv_stimer0_isr))
250                 goto err;
251
252         return 0;
253 err:
254         /*
255          * Any memory allocations that succeeded will be freed when
256          * the caller cleans up by calling hv_synic_free()
257          */
258         return -ENOMEM;
259 }
260
261
262 void hv_synic_free(void)
263 {
264         int cpu;
265
266         for_each_present_cpu(cpu) {
267                 struct hv_per_cpu_context *hv_cpu
268                         = per_cpu_ptr(hv_context.cpu_context, cpu);
269
270                 kfree(hv_cpu->clk_evt);
271                 free_page((unsigned long)hv_cpu->synic_event_page);
272                 free_page((unsigned long)hv_cpu->synic_message_page);
273                 free_page((unsigned long)hv_cpu->post_msg_page);
274         }
275
276         kfree(hv_context.hv_numa_map);
277 }
278
279 /*
280  * hv_synic_init - Initialize the Synthetic Interrupt Controller.
281  *
282  * If it is already initialized by another entity (ie x2v shim), we need to
283  * retrieve the initialized message and event pages.  Otherwise, we create and
284  * initialize the message and event pages.
285  */
286 int hv_synic_init(unsigned int cpu)
287 {
288         struct hv_per_cpu_context *hv_cpu
289                 = per_cpu_ptr(hv_context.cpu_context, cpu);
290         union hv_synic_simp simp;
291         union hv_synic_siefp siefp;
292         union hv_synic_sint shared_sint;
293         union hv_synic_scontrol sctrl;
294
295         /* Setup the Synic's message page */
296         hv_get_simp(simp.as_uint64);
297         simp.simp_enabled = 1;
298         simp.base_simp_gpa = virt_to_phys(hv_cpu->synic_message_page)
299                 >> PAGE_SHIFT;
300
301         hv_set_simp(simp.as_uint64);
302
303         /* Setup the Synic's event page */
304         hv_get_siefp(siefp.as_uint64);
305         siefp.siefp_enabled = 1;
306         siefp.base_siefp_gpa = virt_to_phys(hv_cpu->synic_event_page)
307                 >> PAGE_SHIFT;
308
309         hv_set_siefp(siefp.as_uint64);
310
311         /* Setup the shared SINT. */
312         hv_get_synint_state(VMBUS_MESSAGE_SINT, shared_sint.as_uint64);
313
314         shared_sint.vector = HYPERVISOR_CALLBACK_VECTOR;
315         shared_sint.masked = false;
316         if (ms_hyperv.hints & HV_DEPRECATING_AEOI_RECOMMENDED)
317                 shared_sint.auto_eoi = false;
318         else
319                 shared_sint.auto_eoi = true;
320
321         hv_set_synint_state(VMBUS_MESSAGE_SINT, shared_sint.as_uint64);
322
323         /* Enable the global synic bit */
324         hv_get_synic_state(sctrl.as_uint64);
325         sctrl.enable = 1;
326
327         hv_set_synic_state(sctrl.as_uint64);
328
329         hv_context.synic_initialized = true;
330
331         /*
332          * Register the per-cpu clockevent source.
333          */
334         if (ms_hyperv.features & HV_MSR_SYNTIMER_AVAILABLE)
335                 clockevents_config_and_register(hv_cpu->clk_evt,
336                                                 HV_TIMER_FREQUENCY,
337                                                 HV_MIN_DELTA_TICKS,
338                                                 HV_MAX_MAX_DELTA_TICKS);
339         return 0;
340 }
341
342 /*
343  * hv_synic_clockevents_cleanup - Cleanup clockevent devices
344  */
345 void hv_synic_clockevents_cleanup(void)
346 {
347         int cpu;
348
349         if (!(ms_hyperv.features & HV_MSR_SYNTIMER_AVAILABLE))
350                 return;
351
352         if (direct_mode_enabled)
353                 hv_remove_stimer0_irq(stimer0_irq);
354
355         for_each_present_cpu(cpu) {
356                 struct hv_per_cpu_context *hv_cpu
357                         = per_cpu_ptr(hv_context.cpu_context, cpu);
358
359                 clockevents_unbind_device(hv_cpu->clk_evt, cpu);
360         }
361 }
362
363 /*
364  * hv_synic_cleanup - Cleanup routine for hv_synic_init().
365  */
366 int hv_synic_cleanup(unsigned int cpu)
367 {
368         union hv_synic_sint shared_sint;
369         union hv_synic_simp simp;
370         union hv_synic_siefp siefp;
371         union hv_synic_scontrol sctrl;
372         struct vmbus_channel *channel, *sc;
373         bool channel_found = false;
374         unsigned long flags;
375
376         if (!hv_context.synic_initialized)
377                 return -EFAULT;
378
379         /*
380          * Search for channels which are bound to the CPU we're about to
381          * cleanup. In case we find one and vmbus is still connected we need to
382          * fail, this will effectively prevent CPU offlining. There is no way
383          * we can re-bind channels to different CPUs for now.
384          */
385         mutex_lock(&vmbus_connection.channel_mutex);
386         list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
387                 if (channel->target_cpu == cpu) {
388                         channel_found = true;
389                         break;
390                 }
391                 spin_lock_irqsave(&channel->lock, flags);
392                 list_for_each_entry(sc, &channel->sc_list, sc_list) {
393                         if (sc->target_cpu == cpu) {
394                                 channel_found = true;
395                                 break;
396                         }
397                 }
398                 spin_unlock_irqrestore(&channel->lock, flags);
399                 if (channel_found)
400                         break;
401         }
402         mutex_unlock(&vmbus_connection.channel_mutex);
403
404         if (channel_found && vmbus_connection.conn_state == CONNECTED)
405                 return -EBUSY;
406
407         /* Turn off clockevent device */
408         if (ms_hyperv.features & HV_MSR_SYNTIMER_AVAILABLE) {
409                 struct hv_per_cpu_context *hv_cpu
410                         = this_cpu_ptr(hv_context.cpu_context);
411
412                 clockevents_unbind_device(hv_cpu->clk_evt, cpu);
413                 hv_ce_shutdown(hv_cpu->clk_evt);
414         }
415
416         hv_get_synint_state(VMBUS_MESSAGE_SINT, shared_sint.as_uint64);
417
418         shared_sint.masked = 1;
419
420         /* Need to correctly cleanup in the case of SMP!!! */
421         /* Disable the interrupt */
422         hv_set_synint_state(VMBUS_MESSAGE_SINT, shared_sint.as_uint64);
423
424         hv_get_simp(simp.as_uint64);
425         simp.simp_enabled = 0;
426         simp.base_simp_gpa = 0;
427
428         hv_set_simp(simp.as_uint64);
429
430         hv_get_siefp(siefp.as_uint64);
431         siefp.siefp_enabled = 0;
432         siefp.base_siefp_gpa = 0;
433
434         hv_set_siefp(siefp.as_uint64);
435
436         /* Disable the global synic bit */
437         hv_get_synic_state(sctrl.as_uint64);
438         sctrl.enable = 0;
439         hv_set_synic_state(sctrl.as_uint64);
440
441         return 0;
442 }