GNU Linux-libre 4.19.242-gnu1
[releases.git] / drivers / hv / channel_mgmt.c
1 /*
2  * Copyright (c) 2009, Microsoft Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Authors:
18  *   Haiyang Zhang <haiyangz@microsoft.com>
19  *   Hank Janssen  <hjanssen@microsoft.com>
20  */
21 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
22
23 #include <linux/kernel.h>
24 #include <linux/interrupt.h>
25 #include <linux/sched.h>
26 #include <linux/wait.h>
27 #include <linux/mm.h>
28 #include <linux/slab.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/completion.h>
32 #include <linux/delay.h>
33 #include <linux/hyperv.h>
34 #include <asm/mshyperv.h>
35
36 #include "hyperv_vmbus.h"
37
38 static void init_vp_index(struct vmbus_channel *channel, u16 dev_type);
39
40 static const struct vmbus_device vmbus_devs[] = {
41         /* IDE */
42         { .dev_type = HV_IDE,
43           HV_IDE_GUID,
44           .perf_device = true,
45         },
46
47         /* SCSI */
48         { .dev_type = HV_SCSI,
49           HV_SCSI_GUID,
50           .perf_device = true,
51         },
52
53         /* Fibre Channel */
54         { .dev_type = HV_FC,
55           HV_SYNTHFC_GUID,
56           .perf_device = true,
57         },
58
59         /* Synthetic NIC */
60         { .dev_type = HV_NIC,
61           HV_NIC_GUID,
62           .perf_device = true,
63         },
64
65         /* Network Direct */
66         { .dev_type = HV_ND,
67           HV_ND_GUID,
68           .perf_device = true,
69         },
70
71         /* PCIE */
72         { .dev_type = HV_PCIE,
73           HV_PCIE_GUID,
74           .perf_device = false,
75         },
76
77         /* Synthetic Frame Buffer */
78         { .dev_type = HV_FB,
79           HV_SYNTHVID_GUID,
80           .perf_device = false,
81         },
82
83         /* Synthetic Keyboard */
84         { .dev_type = HV_KBD,
85           HV_KBD_GUID,
86           .perf_device = false,
87         },
88
89         /* Synthetic MOUSE */
90         { .dev_type = HV_MOUSE,
91           HV_MOUSE_GUID,
92           .perf_device = false,
93         },
94
95         /* KVP */
96         { .dev_type = HV_KVP,
97           HV_KVP_GUID,
98           .perf_device = false,
99         },
100
101         /* Time Synch */
102         { .dev_type = HV_TS,
103           HV_TS_GUID,
104           .perf_device = false,
105         },
106
107         /* Heartbeat */
108         { .dev_type = HV_HB,
109           HV_HEART_BEAT_GUID,
110           .perf_device = false,
111         },
112
113         /* Shutdown */
114         { .dev_type = HV_SHUTDOWN,
115           HV_SHUTDOWN_GUID,
116           .perf_device = false,
117         },
118
119         /* File copy */
120         { .dev_type = HV_FCOPY,
121           HV_FCOPY_GUID,
122           .perf_device = false,
123         },
124
125         /* Backup */
126         { .dev_type = HV_BACKUP,
127           HV_VSS_GUID,
128           .perf_device = false,
129         },
130
131         /* Dynamic Memory */
132         { .dev_type = HV_DM,
133           HV_DM_GUID,
134           .perf_device = false,
135         },
136
137         /* Unknown GUID */
138         { .dev_type = HV_UNKNOWN,
139           .perf_device = false,
140         },
141 };
142
143 static const struct {
144         uuid_le guid;
145 } vmbus_unsupported_devs[] = {
146         { HV_AVMA1_GUID },
147         { HV_AVMA2_GUID },
148         { HV_RDV_GUID   },
149 };
150
151 /*
152  * The rescinded channel may be blocked waiting for a response from the host;
153  * take care of that.
154  */
155 static void vmbus_rescind_cleanup(struct vmbus_channel *channel)
156 {
157         struct vmbus_channel_msginfo *msginfo;
158         unsigned long flags;
159
160
161         spin_lock_irqsave(&vmbus_connection.channelmsg_lock, flags);
162         channel->rescind = true;
163         list_for_each_entry(msginfo, &vmbus_connection.chn_msg_list,
164                                 msglistentry) {
165
166                 if (msginfo->waiting_channel == channel) {
167                         complete(&msginfo->waitevent);
168                         break;
169                 }
170         }
171         spin_unlock_irqrestore(&vmbus_connection.channelmsg_lock, flags);
172 }
173
174 static bool is_unsupported_vmbus_devs(const uuid_le *guid)
175 {
176         int i;
177
178         for (i = 0; i < ARRAY_SIZE(vmbus_unsupported_devs); i++)
179                 if (!uuid_le_cmp(*guid, vmbus_unsupported_devs[i].guid))
180                         return true;
181         return false;
182 }
183
184 static u16 hv_get_dev_type(const struct vmbus_channel *channel)
185 {
186         const uuid_le *guid = &channel->offermsg.offer.if_type;
187         u16 i;
188
189         if (is_hvsock_channel(channel) || is_unsupported_vmbus_devs(guid))
190                 return HV_UNKNOWN;
191
192         for (i = HV_IDE; i < HV_UNKNOWN; i++) {
193                 if (!uuid_le_cmp(*guid, vmbus_devs[i].guid))
194                         return i;
195         }
196         pr_info("Unknown GUID: %pUl\n", guid);
197         return i;
198 }
199
200 /**
201  * vmbus_prep_negotiate_resp() - Create default response for Hyper-V Negotiate message
202  * @icmsghdrp: Pointer to msg header structure
203  * @icmsg_negotiate: Pointer to negotiate message structure
204  * @buf: Raw buffer channel data
205  *
206  * @icmsghdrp is of type &struct icmsg_hdr.
207  * Set up and fill in default negotiate response message.
208  *
209  * The fw_version and fw_vercnt specifies the framework version that
210  * we can support.
211  *
212  * The srv_version and srv_vercnt specifies the service
213  * versions we can support.
214  *
215  * Versions are given in decreasing order.
216  *
217  * nego_fw_version and nego_srv_version store the selected protocol versions.
218  *
219  * Mainly used by Hyper-V drivers.
220  */
221 bool vmbus_prep_negotiate_resp(struct icmsg_hdr *icmsghdrp,
222                                 u8 *buf, const int *fw_version, int fw_vercnt,
223                                 const int *srv_version, int srv_vercnt,
224                                 int *nego_fw_version, int *nego_srv_version)
225 {
226         int icframe_major, icframe_minor;
227         int icmsg_major, icmsg_minor;
228         int fw_major, fw_minor;
229         int srv_major, srv_minor;
230         int i, j;
231         bool found_match = false;
232         struct icmsg_negotiate *negop;
233
234         icmsghdrp->icmsgsize = 0x10;
235         negop = (struct icmsg_negotiate *)&buf[
236                 sizeof(struct vmbuspipe_hdr) +
237                 sizeof(struct icmsg_hdr)];
238
239         icframe_major = negop->icframe_vercnt;
240         icframe_minor = 0;
241
242         icmsg_major = negop->icmsg_vercnt;
243         icmsg_minor = 0;
244
245         /*
246          * Select the framework version number we will
247          * support.
248          */
249
250         for (i = 0; i < fw_vercnt; i++) {
251                 fw_major = (fw_version[i] >> 16);
252                 fw_minor = (fw_version[i] & 0xFFFF);
253
254                 for (j = 0; j < negop->icframe_vercnt; j++) {
255                         if ((negop->icversion_data[j].major == fw_major) &&
256                             (negop->icversion_data[j].minor == fw_minor)) {
257                                 icframe_major = negop->icversion_data[j].major;
258                                 icframe_minor = negop->icversion_data[j].minor;
259                                 found_match = true;
260                                 break;
261                         }
262                 }
263
264                 if (found_match)
265                         break;
266         }
267
268         if (!found_match)
269                 goto fw_error;
270
271         found_match = false;
272
273         for (i = 0; i < srv_vercnt; i++) {
274                 srv_major = (srv_version[i] >> 16);
275                 srv_minor = (srv_version[i] & 0xFFFF);
276
277                 for (j = negop->icframe_vercnt;
278                         (j < negop->icframe_vercnt + negop->icmsg_vercnt);
279                         j++) {
280
281                         if ((negop->icversion_data[j].major == srv_major) &&
282                                 (negop->icversion_data[j].minor == srv_minor)) {
283
284                                 icmsg_major = negop->icversion_data[j].major;
285                                 icmsg_minor = negop->icversion_data[j].minor;
286                                 found_match = true;
287                                 break;
288                         }
289                 }
290
291                 if (found_match)
292                         break;
293         }
294
295         /*
296          * Respond with the framework and service
297          * version numbers we can support.
298          */
299
300 fw_error:
301         if (!found_match) {
302                 negop->icframe_vercnt = 0;
303                 negop->icmsg_vercnt = 0;
304         } else {
305                 negop->icframe_vercnt = 1;
306                 negop->icmsg_vercnt = 1;
307         }
308
309         if (nego_fw_version)
310                 *nego_fw_version = (icframe_major << 16) | icframe_minor;
311
312         if (nego_srv_version)
313                 *nego_srv_version = (icmsg_major << 16) | icmsg_minor;
314
315         negop->icversion_data[0].major = icframe_major;
316         negop->icversion_data[0].minor = icframe_minor;
317         negop->icversion_data[1].major = icmsg_major;
318         negop->icversion_data[1].minor = icmsg_minor;
319         return found_match;
320 }
321
322 EXPORT_SYMBOL_GPL(vmbus_prep_negotiate_resp);
323
324 /*
325  * alloc_channel - Allocate and initialize a vmbus channel object
326  */
327 static struct vmbus_channel *alloc_channel(void)
328 {
329         struct vmbus_channel *channel;
330
331         channel = kzalloc(sizeof(*channel), GFP_ATOMIC);
332         if (!channel)
333                 return NULL;
334
335         spin_lock_init(&channel->lock);
336         init_completion(&channel->rescind_event);
337
338         INIT_LIST_HEAD(&channel->sc_list);
339         INIT_LIST_HEAD(&channel->percpu_list);
340
341         tasklet_init(&channel->callback_event,
342                      vmbus_on_event, (unsigned long)channel);
343
344         return channel;
345 }
346
347 /*
348  * free_channel - Release the resources used by the vmbus channel object
349  */
350 static void free_channel(struct vmbus_channel *channel)
351 {
352         tasklet_kill(&channel->callback_event);
353         vmbus_remove_channel_attr_group(channel);
354
355         kobject_put(&channel->kobj);
356 }
357
358 static void percpu_channel_enq(void *arg)
359 {
360         struct vmbus_channel *channel = arg;
361         struct hv_per_cpu_context *hv_cpu
362                 = this_cpu_ptr(hv_context.cpu_context);
363
364         list_add_tail_rcu(&channel->percpu_list, &hv_cpu->chan_list);
365 }
366
367 static void percpu_channel_deq(void *arg)
368 {
369         struct vmbus_channel *channel = arg;
370
371         list_del_rcu(&channel->percpu_list);
372 }
373
374
375 static void vmbus_release_relid(u32 relid)
376 {
377         struct vmbus_channel_relid_released msg;
378         int ret;
379
380         memset(&msg, 0, sizeof(struct vmbus_channel_relid_released));
381         msg.child_relid = relid;
382         msg.header.msgtype = CHANNELMSG_RELID_RELEASED;
383         ret = vmbus_post_msg(&msg, sizeof(struct vmbus_channel_relid_released),
384                              true);
385
386         trace_vmbus_release_relid(&msg, ret);
387 }
388
389 void hv_process_channel_removal(u32 relid)
390 {
391         unsigned long flags;
392         struct vmbus_channel *primary_channel, *channel;
393
394         BUG_ON(!mutex_is_locked(&vmbus_connection.channel_mutex));
395
396         /*
397          * Make sure channel is valid as we may have raced.
398          */
399         channel = relid2channel(relid);
400         if (!channel)
401                 return;
402
403         BUG_ON(!channel->rescind);
404         if (channel->target_cpu != get_cpu()) {
405                 put_cpu();
406                 smp_call_function_single(channel->target_cpu,
407                                          percpu_channel_deq, channel, true);
408         } else {
409                 percpu_channel_deq(channel);
410                 put_cpu();
411         }
412
413         if (channel->primary_channel == NULL) {
414                 list_del(&channel->listentry);
415
416                 primary_channel = channel;
417         } else {
418                 primary_channel = channel->primary_channel;
419                 spin_lock_irqsave(&primary_channel->lock, flags);
420                 list_del(&channel->sc_list);
421                 primary_channel->num_sc--;
422                 spin_unlock_irqrestore(&primary_channel->lock, flags);
423         }
424
425         /*
426          * We need to free the bit for init_vp_index() to work in the case
427          * of sub-channel, when we reload drivers like hv_netvsc.
428          */
429         if (channel->affinity_policy == HV_LOCALIZED)
430                 cpumask_clear_cpu(channel->target_cpu,
431                                   &primary_channel->alloced_cpus_in_node);
432
433         vmbus_release_relid(relid);
434
435         free_channel(channel);
436 }
437
438 void vmbus_free_channels(void)
439 {
440         struct vmbus_channel *channel, *tmp;
441
442         list_for_each_entry_safe(channel, tmp, &vmbus_connection.chn_list,
443                 listentry) {
444                 /* hv_process_channel_removal() needs this */
445                 channel->rescind = true;
446
447                 vmbus_device_unregister(channel->device_obj);
448         }
449 }
450
451 /* Note: the function can run concurrently for primary/sub channels. */
452 static void vmbus_add_channel_work(struct work_struct *work)
453 {
454         struct vmbus_channel *newchannel =
455                 container_of(work, struct vmbus_channel, add_channel_work);
456         struct vmbus_channel *primary_channel = newchannel->primary_channel;
457         unsigned long flags;
458         u16 dev_type;
459         int ret;
460
461         dev_type = hv_get_dev_type(newchannel);
462
463         init_vp_index(newchannel, dev_type);
464
465         if (newchannel->target_cpu != get_cpu()) {
466                 put_cpu();
467                 smp_call_function_single(newchannel->target_cpu,
468                                          percpu_channel_enq,
469                                          newchannel, true);
470         } else {
471                 percpu_channel_enq(newchannel);
472                 put_cpu();
473         }
474
475         /*
476          * This state is used to indicate a successful open
477          * so that when we do close the channel normally, we
478          * can cleanup properly.
479          */
480         newchannel->state = CHANNEL_OPEN_STATE;
481
482         if (primary_channel != NULL) {
483                 /* newchannel is a sub-channel. */
484                 struct hv_device *dev = primary_channel->device_obj;
485
486                 if (vmbus_add_channel_kobj(dev, newchannel))
487                         goto err_deq_chan;
488
489                 if (primary_channel->sc_creation_callback != NULL)
490                         primary_channel->sc_creation_callback(newchannel);
491
492                 newchannel->probe_done = true;
493                 return;
494         }
495
496         /*
497          * Start the process of binding the primary channel to the driver
498          */
499         newchannel->device_obj = vmbus_device_create(
500                 &newchannel->offermsg.offer.if_type,
501                 &newchannel->offermsg.offer.if_instance,
502                 newchannel);
503         if (!newchannel->device_obj)
504                 goto err_deq_chan;
505
506         newchannel->device_obj->device_id = dev_type;
507         /*
508          * Add the new device to the bus. This will kick off device-driver
509          * binding which eventually invokes the device driver's AddDevice()
510          * method.
511          */
512         ret = vmbus_device_register(newchannel->device_obj);
513
514         if (ret != 0) {
515                 pr_err("unable to add child device object (relid %d)\n",
516                         newchannel->offermsg.child_relid);
517                 kfree(newchannel->device_obj);
518                 goto err_deq_chan;
519         }
520
521         newchannel->probe_done = true;
522         return;
523
524 err_deq_chan:
525         mutex_lock(&vmbus_connection.channel_mutex);
526
527         /*
528          * We need to set the flag, otherwise
529          * vmbus_onoffer_rescind() can be blocked.
530          */
531         newchannel->probe_done = true;
532
533         if (primary_channel == NULL) {
534                 list_del(&newchannel->listentry);
535         } else {
536                 spin_lock_irqsave(&primary_channel->lock, flags);
537                 list_del(&newchannel->sc_list);
538                 spin_unlock_irqrestore(&primary_channel->lock, flags);
539         }
540
541         mutex_unlock(&vmbus_connection.channel_mutex);
542
543         if (newchannel->target_cpu != get_cpu()) {
544                 put_cpu();
545                 smp_call_function_single(newchannel->target_cpu,
546                                          percpu_channel_deq,
547                                          newchannel, true);
548         } else {
549                 percpu_channel_deq(newchannel);
550                 put_cpu();
551         }
552
553         vmbus_release_relid(newchannel->offermsg.child_relid);
554
555         free_channel(newchannel);
556 }
557
558 /*
559  * vmbus_process_offer - Process the offer by creating a channel/device
560  * associated with this offer
561  */
562 static void vmbus_process_offer(struct vmbus_channel *newchannel)
563 {
564         struct vmbus_channel *channel;
565         struct workqueue_struct *wq;
566         unsigned long flags;
567         bool fnew = true;
568
569         mutex_lock(&vmbus_connection.channel_mutex);
570
571         /*
572          * Now that we have acquired the channel_mutex,
573          * we can release the potentially racing rescind thread.
574          */
575         atomic_dec(&vmbus_connection.offer_in_progress);
576
577         list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
578                 if (!uuid_le_cmp(channel->offermsg.offer.if_type,
579                                  newchannel->offermsg.offer.if_type) &&
580                     !uuid_le_cmp(channel->offermsg.offer.if_instance,
581                                  newchannel->offermsg.offer.if_instance)) {
582                         fnew = false;
583                         break;
584                 }
585         }
586
587         if (fnew)
588                 list_add_tail(&newchannel->listentry,
589                               &vmbus_connection.chn_list);
590         else {
591                 /*
592                  * Check to see if this is a valid sub-channel.
593                  */
594                 if (newchannel->offermsg.offer.sub_channel_index == 0) {
595                         mutex_unlock(&vmbus_connection.channel_mutex);
596                         /*
597                          * Don't call free_channel(), because newchannel->kobj
598                          * is not initialized yet.
599                          */
600                         kfree(newchannel);
601                         WARN_ON_ONCE(1);
602                         return;
603                 }
604                 /*
605                  * Process the sub-channel.
606                  */
607                 newchannel->primary_channel = channel;
608                 spin_lock_irqsave(&channel->lock, flags);
609                 list_add_tail(&newchannel->sc_list, &channel->sc_list);
610                 spin_unlock_irqrestore(&channel->lock, flags);
611         }
612
613         mutex_unlock(&vmbus_connection.channel_mutex);
614
615         /*
616          * vmbus_process_offer() mustn't call channel->sc_creation_callback()
617          * directly for sub-channels, because sc_creation_callback() ->
618          * vmbus_open() may never get the host's response to the
619          * OPEN_CHANNEL message (the host may rescind a channel at any time,
620          * e.g. in the case of hot removing a NIC), and vmbus_onoffer_rescind()
621          * may not wake up the vmbus_open() as it's blocked due to a non-zero
622          * vmbus_connection.offer_in_progress, and finally we have a deadlock.
623          *
624          * The above is also true for primary channels, if the related device
625          * drivers use sync probing mode by default.
626          *
627          * And, usually the handling of primary channels and sub-channels can
628          * depend on each other, so we should offload them to different
629          * workqueues to avoid possible deadlock, e.g. in sync-probing mode,
630          * NIC1's netvsc_subchan_work() can race with NIC2's netvsc_probe() ->
631          * rtnl_lock(), and causes deadlock: the former gets the rtnl_lock
632          * and waits for all the sub-channels to appear, but the latter
633          * can't get the rtnl_lock and this blocks the handling of
634          * sub-channels.
635          */
636         INIT_WORK(&newchannel->add_channel_work, vmbus_add_channel_work);
637         wq = fnew ? vmbus_connection.handle_primary_chan_wq :
638                     vmbus_connection.handle_sub_chan_wq;
639         queue_work(wq, &newchannel->add_channel_work);
640 }
641
642 /*
643  * We use this state to statically distribute the channel interrupt load.
644  */
645 static int next_numa_node_id;
646 /*
647  * init_vp_index() accesses global variables like next_numa_node_id, and
648  * it can run concurrently for primary channels and sub-channels: see
649  * vmbus_process_offer(), so we need the lock to protect the global
650  * variables.
651  */
652 static DEFINE_SPINLOCK(bind_channel_to_cpu_lock);
653
654 /*
655  * Starting with Win8, we can statically distribute the incoming
656  * channel interrupt load by binding a channel to VCPU.
657  * We distribute the interrupt loads to one or more NUMA nodes based on
658  * the channel's affinity_policy.
659  *
660  * For pre-win8 hosts or non-performance critical channels we assign the
661  * first CPU in the first NUMA node.
662  */
663 static void init_vp_index(struct vmbus_channel *channel, u16 dev_type)
664 {
665         u32 cur_cpu;
666         bool perf_chn = vmbus_devs[dev_type].perf_device;
667         struct vmbus_channel *primary = channel->primary_channel;
668         int next_node;
669         cpumask_var_t available_mask;
670         struct cpumask *alloced_mask;
671
672         if ((vmbus_proto_version == VERSION_WS2008) ||
673             (vmbus_proto_version == VERSION_WIN7) || (!perf_chn) ||
674             !alloc_cpumask_var(&available_mask, GFP_KERNEL)) {
675                 /*
676                  * Prior to win8, all channel interrupts are
677                  * delivered on cpu 0.
678                  * Also if the channel is not a performance critical
679                  * channel, bind it to cpu 0.
680                  * In case alloc_cpumask_var() fails, bind it to cpu 0.
681                  */
682                 channel->numa_node = 0;
683                 channel->target_cpu = 0;
684                 channel->target_vp = hv_cpu_number_to_vp_number(0);
685                 return;
686         }
687
688         spin_lock(&bind_channel_to_cpu_lock);
689
690         /*
691          * Based on the channel affinity policy, we will assign the NUMA
692          * nodes.
693          */
694
695         if ((channel->affinity_policy == HV_BALANCED) || (!primary)) {
696                 while (true) {
697                         next_node = next_numa_node_id++;
698                         if (next_node == nr_node_ids) {
699                                 next_node = next_numa_node_id = 0;
700                                 continue;
701                         }
702                         if (cpumask_empty(cpumask_of_node(next_node)))
703                                 continue;
704                         break;
705                 }
706                 channel->numa_node = next_node;
707                 primary = channel;
708         }
709         alloced_mask = &hv_context.hv_numa_map[primary->numa_node];
710
711         if (cpumask_weight(alloced_mask) ==
712             cpumask_weight(cpumask_of_node(primary->numa_node))) {
713                 /*
714                  * We have cycled through all the CPUs in the node;
715                  * reset the alloced map.
716                  */
717                 cpumask_clear(alloced_mask);
718         }
719
720         cpumask_xor(available_mask, alloced_mask,
721                     cpumask_of_node(primary->numa_node));
722
723         cur_cpu = -1;
724
725         if (primary->affinity_policy == HV_LOCALIZED) {
726                 /*
727                  * Normally Hyper-V host doesn't create more subchannels
728                  * than there are VCPUs on the node but it is possible when not
729                  * all present VCPUs on the node are initialized by guest.
730                  * Clear the alloced_cpus_in_node to start over.
731                  */
732                 if (cpumask_equal(&primary->alloced_cpus_in_node,
733                                   cpumask_of_node(primary->numa_node)))
734                         cpumask_clear(&primary->alloced_cpus_in_node);
735         }
736
737         while (true) {
738                 cur_cpu = cpumask_next(cur_cpu, available_mask);
739                 if (cur_cpu >= nr_cpu_ids) {
740                         cur_cpu = -1;
741                         cpumask_copy(available_mask,
742                                      cpumask_of_node(primary->numa_node));
743                         continue;
744                 }
745
746                 if (primary->affinity_policy == HV_LOCALIZED) {
747                         /*
748                          * NOTE: in the case of sub-channel, we clear the
749                          * sub-channel related bit(s) in
750                          * primary->alloced_cpus_in_node in
751                          * hv_process_channel_removal(), so when we
752                          * reload drivers like hv_netvsc in SMP guest, here
753                          * we're able to re-allocate
754                          * bit from primary->alloced_cpus_in_node.
755                          */
756                         if (!cpumask_test_cpu(cur_cpu,
757                                               &primary->alloced_cpus_in_node)) {
758                                 cpumask_set_cpu(cur_cpu,
759                                                 &primary->alloced_cpus_in_node);
760                                 cpumask_set_cpu(cur_cpu, alloced_mask);
761                                 break;
762                         }
763                 } else {
764                         cpumask_set_cpu(cur_cpu, alloced_mask);
765                         break;
766                 }
767         }
768
769         channel->target_cpu = cur_cpu;
770         channel->target_vp = hv_cpu_number_to_vp_number(cur_cpu);
771
772         spin_unlock(&bind_channel_to_cpu_lock);
773
774         free_cpumask_var(available_mask);
775 }
776
777 #define UNLOAD_DELAY_UNIT_MS    10              /* 10 milliseconds */
778 #define UNLOAD_WAIT_MS          (100*1000)      /* 100 seconds */
779 #define UNLOAD_WAIT_LOOPS       (UNLOAD_WAIT_MS/UNLOAD_DELAY_UNIT_MS)
780 #define UNLOAD_MSG_MS           (5*1000)        /* Every 5 seconds */
781 #define UNLOAD_MSG_LOOPS        (UNLOAD_MSG_MS/UNLOAD_DELAY_UNIT_MS)
782
783 static void vmbus_wait_for_unload(void)
784 {
785         int cpu;
786         void *page_addr;
787         struct hv_message *msg;
788         struct vmbus_channel_message_header *hdr;
789         u32 message_type, i;
790
791         /*
792          * CHANNELMSG_UNLOAD_RESPONSE is always delivered to the CPU which was
793          * used for initial contact or to CPU0 depending on host version. When
794          * we're crashing on a different CPU let's hope that IRQ handler on
795          * the cpu which receives CHANNELMSG_UNLOAD_RESPONSE is still
796          * functional and vmbus_unload_response() will complete
797          * vmbus_connection.unload_event. If not, the last thing we can do is
798          * read message pages for all CPUs directly.
799          *
800          * Wait up to 100 seconds since an Azure host must writeback any dirty
801          * data in its disk cache before the VMbus UNLOAD request will
802          * complete. This flushing has been empirically observed to take up
803          * to 50 seconds in cases with a lot of dirty data, so allow additional
804          * leeway and for inaccuracies in mdelay(). But eventually time out so
805          * that the panic path can't get hung forever in case the response
806          * message isn't seen.
807          */
808         for (i = 1; i <= UNLOAD_WAIT_LOOPS; i++) {
809                 if (completion_done(&vmbus_connection.unload_event))
810                         goto completed;
811
812                 for_each_online_cpu(cpu) {
813                         struct hv_per_cpu_context *hv_cpu
814                                 = per_cpu_ptr(hv_context.cpu_context, cpu);
815
816                         page_addr = hv_cpu->synic_message_page;
817                         msg = (struct hv_message *)page_addr
818                                 + VMBUS_MESSAGE_SINT;
819
820                         message_type = READ_ONCE(msg->header.message_type);
821                         if (message_type == HVMSG_NONE)
822                                 continue;
823
824                         hdr = (struct vmbus_channel_message_header *)
825                                 msg->u.payload;
826
827                         if (hdr->msgtype == CHANNELMSG_UNLOAD_RESPONSE)
828                                 complete(&vmbus_connection.unload_event);
829
830                         vmbus_signal_eom(msg, message_type);
831                 }
832
833                 /*
834                  * Give a notice periodically so someone watching the
835                  * serial output won't think it is completely hung.
836                  */
837                 if (!(i % UNLOAD_MSG_LOOPS))
838                         pr_notice("Waiting for VMBus UNLOAD to complete\n");
839
840                 mdelay(UNLOAD_DELAY_UNIT_MS);
841         }
842         pr_err("Continuing even though VMBus UNLOAD did not complete\n");
843
844 completed:
845         /*
846          * We're crashing and already got the UNLOAD_RESPONSE, cleanup all
847          * maybe-pending messages on all CPUs to be able to receive new
848          * messages after we reconnect.
849          */
850         for_each_online_cpu(cpu) {
851                 struct hv_per_cpu_context *hv_cpu
852                         = per_cpu_ptr(hv_context.cpu_context, cpu);
853
854                 page_addr = hv_cpu->synic_message_page;
855                 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
856                 msg->header.message_type = HVMSG_NONE;
857         }
858 }
859
860 /*
861  * vmbus_unload_response - Handler for the unload response.
862  */
863 static void vmbus_unload_response(struct vmbus_channel_message_header *hdr)
864 {
865         /*
866          * This is a global event; just wakeup the waiting thread.
867          * Once we successfully unload, we can cleanup the monitor state.
868          */
869         complete(&vmbus_connection.unload_event);
870 }
871
872 void vmbus_initiate_unload(bool crash)
873 {
874         struct vmbus_channel_message_header hdr;
875
876         if (xchg(&vmbus_connection.conn_state, DISCONNECTED) == DISCONNECTED)
877                 return;
878
879         /* Pre-Win2012R2 hosts don't support reconnect */
880         if (vmbus_proto_version < VERSION_WIN8_1)
881                 return;
882
883         init_completion(&vmbus_connection.unload_event);
884         memset(&hdr, 0, sizeof(struct vmbus_channel_message_header));
885         hdr.msgtype = CHANNELMSG_UNLOAD;
886         vmbus_post_msg(&hdr, sizeof(struct vmbus_channel_message_header),
887                        !crash);
888
889         /*
890          * vmbus_initiate_unload() is also called on crash and the crash can be
891          * happening in an interrupt context, where scheduling is impossible.
892          */
893         if (!crash)
894                 wait_for_completion(&vmbus_connection.unload_event);
895         else
896                 vmbus_wait_for_unload();
897 }
898
899 /*
900  * vmbus_onoffer - Handler for channel offers from vmbus in parent partition.
901  *
902  */
903 static void vmbus_onoffer(struct vmbus_channel_message_header *hdr)
904 {
905         struct vmbus_channel_offer_channel *offer;
906         struct vmbus_channel *newchannel;
907
908         offer = (struct vmbus_channel_offer_channel *)hdr;
909
910         trace_vmbus_onoffer(offer);
911
912         /* Allocate the channel object and save this offer. */
913         newchannel = alloc_channel();
914         if (!newchannel) {
915                 vmbus_release_relid(offer->child_relid);
916                 atomic_dec(&vmbus_connection.offer_in_progress);
917                 pr_err("Unable to allocate channel object\n");
918                 return;
919         }
920
921         /*
922          * Setup state for signalling the host.
923          */
924         newchannel->sig_event = VMBUS_EVENT_CONNECTION_ID;
925
926         if (vmbus_proto_version != VERSION_WS2008) {
927                 newchannel->is_dedicated_interrupt =
928                                 (offer->is_dedicated_interrupt != 0);
929                 newchannel->sig_event = offer->connection_id;
930         }
931
932         memcpy(&newchannel->offermsg, offer,
933                sizeof(struct vmbus_channel_offer_channel));
934         newchannel->monitor_grp = (u8)offer->monitorid / 32;
935         newchannel->monitor_bit = (u8)offer->monitorid % 32;
936
937         vmbus_process_offer(newchannel);
938 }
939
940 /*
941  * vmbus_onoffer_rescind - Rescind offer handler.
942  *
943  * We queue a work item to process this offer synchronously
944  */
945 static void vmbus_onoffer_rescind(struct vmbus_channel_message_header *hdr)
946 {
947         struct vmbus_channel_rescind_offer *rescind;
948         struct vmbus_channel *channel;
949         struct device *dev;
950
951         rescind = (struct vmbus_channel_rescind_offer *)hdr;
952
953         trace_vmbus_onoffer_rescind(rescind);
954
955         /*
956          * The offer msg and the corresponding rescind msg
957          * from the host are guranteed to be ordered -
958          * offer comes in first and then the rescind.
959          * Since we process these events in work elements,
960          * and with preemption, we may end up processing
961          * the events out of order. Given that we handle these
962          * work elements on the same CPU, this is possible only
963          * in the case of preemption. In any case wait here
964          * until the offer processing has moved beyond the
965          * point where the channel is discoverable.
966          */
967
968         while (atomic_read(&vmbus_connection.offer_in_progress) != 0) {
969                 /*
970                  * We wait here until any channel offer is currently
971                  * being processed.
972                  */
973                 msleep(1);
974         }
975
976         mutex_lock(&vmbus_connection.channel_mutex);
977         channel = relid2channel(rescind->child_relid);
978         mutex_unlock(&vmbus_connection.channel_mutex);
979
980         if (channel == NULL) {
981                 /*
982                  * We failed in processing the offer message;
983                  * we would have cleaned up the relid in that
984                  * failure path.
985                  */
986                 return;
987         }
988
989         /*
990          * Before setting channel->rescind in vmbus_rescind_cleanup(), we
991          * should make sure the channel callback is not running any more.
992          */
993         vmbus_reset_channel_cb(channel);
994
995         /*
996          * Now wait for offer handling to complete.
997          */
998         vmbus_rescind_cleanup(channel);
999         while (READ_ONCE(channel->probe_done) == false) {
1000                 /*
1001                  * We wait here until any channel offer is currently
1002                  * being processed.
1003                  */
1004                 msleep(1);
1005         }
1006
1007         /*
1008          * At this point, the rescind handling can proceed safely.
1009          */
1010
1011         if (channel->device_obj) {
1012                 if (channel->chn_rescind_callback) {
1013                         channel->chn_rescind_callback(channel);
1014                         return;
1015                 }
1016                 /*
1017                  * We will have to unregister this device from the
1018                  * driver core.
1019                  */
1020                 dev = get_device(&channel->device_obj->device);
1021                 if (dev) {
1022                         vmbus_device_unregister(channel->device_obj);
1023                         put_device(dev);
1024                 }
1025         } else if (channel->primary_channel != NULL) {
1026                 /*
1027                  * Sub-channel is being rescinded. Following is the channel
1028                  * close sequence when initiated from the driveri (refer to
1029                  * vmbus_close() for details):
1030                  * 1. Close all sub-channels first
1031                  * 2. Then close the primary channel.
1032                  */
1033                 mutex_lock(&vmbus_connection.channel_mutex);
1034                 if (channel->state == CHANNEL_OPEN_STATE) {
1035                         /*
1036                          * The channel is currently not open;
1037                          * it is safe for us to cleanup the channel.
1038                          */
1039                         hv_process_channel_removal(rescind->child_relid);
1040                 } else {
1041                         complete(&channel->rescind_event);
1042                 }
1043                 mutex_unlock(&vmbus_connection.channel_mutex);
1044         }
1045 }
1046
1047 void vmbus_hvsock_device_unregister(struct vmbus_channel *channel)
1048 {
1049         BUG_ON(!is_hvsock_channel(channel));
1050
1051         /* We always get a rescind msg when a connection is closed. */
1052         while (!READ_ONCE(channel->probe_done) || !READ_ONCE(channel->rescind))
1053                 msleep(1);
1054
1055         vmbus_device_unregister(channel->device_obj);
1056 }
1057 EXPORT_SYMBOL_GPL(vmbus_hvsock_device_unregister);
1058
1059
1060 /*
1061  * vmbus_onoffers_delivered -
1062  * This is invoked when all offers have been delivered.
1063  *
1064  * Nothing to do here.
1065  */
1066 static void vmbus_onoffers_delivered(
1067                         struct vmbus_channel_message_header *hdr)
1068 {
1069 }
1070
1071 /*
1072  * vmbus_onopen_result - Open result handler.
1073  *
1074  * This is invoked when we received a response to our channel open request.
1075  * Find the matching request, copy the response and signal the requesting
1076  * thread.
1077  */
1078 static void vmbus_onopen_result(struct vmbus_channel_message_header *hdr)
1079 {
1080         struct vmbus_channel_open_result *result;
1081         struct vmbus_channel_msginfo *msginfo;
1082         struct vmbus_channel_message_header *requestheader;
1083         struct vmbus_channel_open_channel *openmsg;
1084         unsigned long flags;
1085
1086         result = (struct vmbus_channel_open_result *)hdr;
1087
1088         trace_vmbus_onopen_result(result);
1089
1090         /*
1091          * Find the open msg, copy the result and signal/unblock the wait event
1092          */
1093         spin_lock_irqsave(&vmbus_connection.channelmsg_lock, flags);
1094
1095         list_for_each_entry(msginfo, &vmbus_connection.chn_msg_list,
1096                                 msglistentry) {
1097                 requestheader =
1098                         (struct vmbus_channel_message_header *)msginfo->msg;
1099
1100                 if (requestheader->msgtype == CHANNELMSG_OPENCHANNEL) {
1101                         openmsg =
1102                         (struct vmbus_channel_open_channel *)msginfo->msg;
1103                         if (openmsg->child_relid == result->child_relid &&
1104                             openmsg->openid == result->openid) {
1105                                 memcpy(&msginfo->response.open_result,
1106                                        result,
1107                                        sizeof(
1108                                         struct vmbus_channel_open_result));
1109                                 complete(&msginfo->waitevent);
1110                                 break;
1111                         }
1112                 }
1113         }
1114         spin_unlock_irqrestore(&vmbus_connection.channelmsg_lock, flags);
1115 }
1116
1117 /*
1118  * vmbus_ongpadl_created - GPADL created handler.
1119  *
1120  * This is invoked when we received a response to our gpadl create request.
1121  * Find the matching request, copy the response and signal the requesting
1122  * thread.
1123  */
1124 static void vmbus_ongpadl_created(struct vmbus_channel_message_header *hdr)
1125 {
1126         struct vmbus_channel_gpadl_created *gpadlcreated;
1127         struct vmbus_channel_msginfo *msginfo;
1128         struct vmbus_channel_message_header *requestheader;
1129         struct vmbus_channel_gpadl_header *gpadlheader;
1130         unsigned long flags;
1131
1132         gpadlcreated = (struct vmbus_channel_gpadl_created *)hdr;
1133
1134         trace_vmbus_ongpadl_created(gpadlcreated);
1135
1136         /*
1137          * Find the establish msg, copy the result and signal/unblock the wait
1138          * event
1139          */
1140         spin_lock_irqsave(&vmbus_connection.channelmsg_lock, flags);
1141
1142         list_for_each_entry(msginfo, &vmbus_connection.chn_msg_list,
1143                                 msglistentry) {
1144                 requestheader =
1145                         (struct vmbus_channel_message_header *)msginfo->msg;
1146
1147                 if (requestheader->msgtype == CHANNELMSG_GPADL_HEADER) {
1148                         gpadlheader =
1149                         (struct vmbus_channel_gpadl_header *)requestheader;
1150
1151                         if ((gpadlcreated->child_relid ==
1152                              gpadlheader->child_relid) &&
1153                             (gpadlcreated->gpadl == gpadlheader->gpadl)) {
1154                                 memcpy(&msginfo->response.gpadl_created,
1155                                        gpadlcreated,
1156                                        sizeof(
1157                                         struct vmbus_channel_gpadl_created));
1158                                 complete(&msginfo->waitevent);
1159                                 break;
1160                         }
1161                 }
1162         }
1163         spin_unlock_irqrestore(&vmbus_connection.channelmsg_lock, flags);
1164 }
1165
1166 /*
1167  * vmbus_ongpadl_torndown - GPADL torndown handler.
1168  *
1169  * This is invoked when we received a response to our gpadl teardown request.
1170  * Find the matching request, copy the response and signal the requesting
1171  * thread.
1172  */
1173 static void vmbus_ongpadl_torndown(
1174                         struct vmbus_channel_message_header *hdr)
1175 {
1176         struct vmbus_channel_gpadl_torndown *gpadl_torndown;
1177         struct vmbus_channel_msginfo *msginfo;
1178         struct vmbus_channel_message_header *requestheader;
1179         struct vmbus_channel_gpadl_teardown *gpadl_teardown;
1180         unsigned long flags;
1181
1182         gpadl_torndown = (struct vmbus_channel_gpadl_torndown *)hdr;
1183
1184         trace_vmbus_ongpadl_torndown(gpadl_torndown);
1185
1186         /*
1187          * Find the open msg, copy the result and signal/unblock the wait event
1188          */
1189         spin_lock_irqsave(&vmbus_connection.channelmsg_lock, flags);
1190
1191         list_for_each_entry(msginfo, &vmbus_connection.chn_msg_list,
1192                                 msglistentry) {
1193                 requestheader =
1194                         (struct vmbus_channel_message_header *)msginfo->msg;
1195
1196                 if (requestheader->msgtype == CHANNELMSG_GPADL_TEARDOWN) {
1197                         gpadl_teardown =
1198                         (struct vmbus_channel_gpadl_teardown *)requestheader;
1199
1200                         if (gpadl_torndown->gpadl == gpadl_teardown->gpadl) {
1201                                 memcpy(&msginfo->response.gpadl_torndown,
1202                                        gpadl_torndown,
1203                                        sizeof(
1204                                         struct vmbus_channel_gpadl_torndown));
1205                                 complete(&msginfo->waitevent);
1206                                 break;
1207                         }
1208                 }
1209         }
1210         spin_unlock_irqrestore(&vmbus_connection.channelmsg_lock, flags);
1211 }
1212
1213 /*
1214  * vmbus_onversion_response - Version response handler
1215  *
1216  * This is invoked when we received a response to our initiate contact request.
1217  * Find the matching request, copy the response and signal the requesting
1218  * thread.
1219  */
1220 static void vmbus_onversion_response(
1221                 struct vmbus_channel_message_header *hdr)
1222 {
1223         struct vmbus_channel_msginfo *msginfo;
1224         struct vmbus_channel_message_header *requestheader;
1225         struct vmbus_channel_version_response *version_response;
1226         unsigned long flags;
1227
1228         version_response = (struct vmbus_channel_version_response *)hdr;
1229
1230         trace_vmbus_onversion_response(version_response);
1231
1232         spin_lock_irqsave(&vmbus_connection.channelmsg_lock, flags);
1233
1234         list_for_each_entry(msginfo, &vmbus_connection.chn_msg_list,
1235                                 msglistentry) {
1236                 requestheader =
1237                         (struct vmbus_channel_message_header *)msginfo->msg;
1238
1239                 if (requestheader->msgtype ==
1240                     CHANNELMSG_INITIATE_CONTACT) {
1241                         memcpy(&msginfo->response.version_response,
1242                               version_response,
1243                               sizeof(struct vmbus_channel_version_response));
1244                         complete(&msginfo->waitevent);
1245                 }
1246         }
1247         spin_unlock_irqrestore(&vmbus_connection.channelmsg_lock, flags);
1248 }
1249
1250 /* Channel message dispatch table */
1251 const struct vmbus_channel_message_table_entry
1252 channel_message_table[CHANNELMSG_COUNT] = {
1253         { CHANNELMSG_INVALID,                   0, NULL },
1254         { CHANNELMSG_OFFERCHANNEL,              0, vmbus_onoffer },
1255         { CHANNELMSG_RESCIND_CHANNELOFFER,      0, vmbus_onoffer_rescind },
1256         { CHANNELMSG_REQUESTOFFERS,             0, NULL },
1257         { CHANNELMSG_ALLOFFERS_DELIVERED,       1, vmbus_onoffers_delivered },
1258         { CHANNELMSG_OPENCHANNEL,               0, NULL },
1259         { CHANNELMSG_OPENCHANNEL_RESULT,        1, vmbus_onopen_result },
1260         { CHANNELMSG_CLOSECHANNEL,              0, NULL },
1261         { CHANNELMSG_GPADL_HEADER,              0, NULL },
1262         { CHANNELMSG_GPADL_BODY,                0, NULL },
1263         { CHANNELMSG_GPADL_CREATED,             1, vmbus_ongpadl_created },
1264         { CHANNELMSG_GPADL_TEARDOWN,            0, NULL },
1265         { CHANNELMSG_GPADL_TORNDOWN,            1, vmbus_ongpadl_torndown },
1266         { CHANNELMSG_RELID_RELEASED,            0, NULL },
1267         { CHANNELMSG_INITIATE_CONTACT,          0, NULL },
1268         { CHANNELMSG_VERSION_RESPONSE,          1, vmbus_onversion_response },
1269         { CHANNELMSG_UNLOAD,                    0, NULL },
1270         { CHANNELMSG_UNLOAD_RESPONSE,           1, vmbus_unload_response },
1271         { CHANNELMSG_18,                        0, NULL },
1272         { CHANNELMSG_19,                        0, NULL },
1273         { CHANNELMSG_20,                        0, NULL },
1274         { CHANNELMSG_TL_CONNECT_REQUEST,        0, NULL },
1275         { CHANNELMSG_22,                        0, NULL },
1276         { CHANNELMSG_TL_CONNECT_RESULT,         0, NULL },
1277 };
1278
1279 /*
1280  * vmbus_onmessage - Handler for channel protocol messages.
1281  *
1282  * This is invoked in the vmbus worker thread context.
1283  */
1284 void vmbus_onmessage(void *context)
1285 {
1286         struct hv_message *msg = context;
1287         struct vmbus_channel_message_header *hdr;
1288
1289         hdr = (struct vmbus_channel_message_header *)msg->u.payload;
1290
1291         trace_vmbus_on_message(hdr);
1292
1293         /*
1294          * vmbus_on_msg_dpc() makes sure the hdr->msgtype here can not go
1295          * out of bound and the message_handler pointer can not be NULL.
1296          */
1297         channel_message_table[hdr->msgtype].message_handler(hdr);
1298 }
1299
1300 /*
1301  * vmbus_request_offers - Send a request to get all our pending offers.
1302  */
1303 int vmbus_request_offers(void)
1304 {
1305         struct vmbus_channel_message_header *msg;
1306         struct vmbus_channel_msginfo *msginfo;
1307         int ret;
1308
1309         msginfo = kmalloc(sizeof(*msginfo) +
1310                           sizeof(struct vmbus_channel_message_header),
1311                           GFP_KERNEL);
1312         if (!msginfo)
1313                 return -ENOMEM;
1314
1315         msg = (struct vmbus_channel_message_header *)msginfo->msg;
1316
1317         msg->msgtype = CHANNELMSG_REQUESTOFFERS;
1318
1319         ret = vmbus_post_msg(msg, sizeof(struct vmbus_channel_message_header),
1320                              true);
1321
1322         trace_vmbus_request_offers(ret);
1323
1324         if (ret != 0) {
1325                 pr_err("Unable to request offers - %d\n", ret);
1326
1327                 goto cleanup;
1328         }
1329
1330 cleanup:
1331         kfree(msginfo);
1332
1333         return ret;
1334 }
1335
1336 /*
1337  * Retrieve the (sub) channel on which to send an outgoing request.
1338  * When a primary channel has multiple sub-channels, we try to
1339  * distribute the load equally amongst all available channels.
1340  */
1341 struct vmbus_channel *vmbus_get_outgoing_channel(struct vmbus_channel *primary)
1342 {
1343         struct list_head *cur, *tmp;
1344         int cur_cpu;
1345         struct vmbus_channel *cur_channel;
1346         struct vmbus_channel *outgoing_channel = primary;
1347         int next_channel;
1348         int i = 1;
1349
1350         if (list_empty(&primary->sc_list))
1351                 return outgoing_channel;
1352
1353         next_channel = primary->next_oc++;
1354
1355         if (next_channel > (primary->num_sc)) {
1356                 primary->next_oc = 0;
1357                 return outgoing_channel;
1358         }
1359
1360         cur_cpu = hv_cpu_number_to_vp_number(smp_processor_id());
1361         list_for_each_safe(cur, tmp, &primary->sc_list) {
1362                 cur_channel = list_entry(cur, struct vmbus_channel, sc_list);
1363                 if (cur_channel->state != CHANNEL_OPENED_STATE)
1364                         continue;
1365
1366                 if (cur_channel->target_vp == cur_cpu)
1367                         return cur_channel;
1368
1369                 if (i == next_channel)
1370                         return cur_channel;
1371
1372                 i++;
1373         }
1374
1375         return outgoing_channel;
1376 }
1377 EXPORT_SYMBOL_GPL(vmbus_get_outgoing_channel);
1378
1379 static void invoke_sc_cb(struct vmbus_channel *primary_channel)
1380 {
1381         struct list_head *cur, *tmp;
1382         struct vmbus_channel *cur_channel;
1383
1384         if (primary_channel->sc_creation_callback == NULL)
1385                 return;
1386
1387         list_for_each_safe(cur, tmp, &primary_channel->sc_list) {
1388                 cur_channel = list_entry(cur, struct vmbus_channel, sc_list);
1389
1390                 primary_channel->sc_creation_callback(cur_channel);
1391         }
1392 }
1393
1394 void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel,
1395                                 void (*sc_cr_cb)(struct vmbus_channel *new_sc))
1396 {
1397         primary_channel->sc_creation_callback = sc_cr_cb;
1398 }
1399 EXPORT_SYMBOL_GPL(vmbus_set_sc_create_callback);
1400
1401 bool vmbus_are_subchannels_present(struct vmbus_channel *primary)
1402 {
1403         bool ret;
1404
1405         ret = !list_empty(&primary->sc_list);
1406
1407         if (ret) {
1408                 /*
1409                  * Invoke the callback on sub-channel creation.
1410                  * This will present a uniform interface to the
1411                  * clients.
1412                  */
1413                 invoke_sc_cb(primary);
1414         }
1415
1416         return ret;
1417 }
1418 EXPORT_SYMBOL_GPL(vmbus_are_subchannels_present);
1419
1420 void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel,
1421                 void (*chn_rescind_cb)(struct vmbus_channel *))
1422 {
1423         channel->chn_rescind_callback = chn_rescind_cb;
1424 }
1425 EXPORT_SYMBOL_GPL(vmbus_set_chn_rescind_callback);