GNU Linux-libre 6.1.24-gnu
[releases.git] / drivers / hid / hid-core.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  HID support for Linux
4  *
5  *  Copyright (c) 1999 Andreas Gal
6  *  Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
7  *  Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
8  *  Copyright (c) 2006-2012 Jiri Kosina
9  */
10
11 /*
12  */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/mm.h>
22 #include <linux/spinlock.h>
23 #include <asm/unaligned.h>
24 #include <asm/byteorder.h>
25 #include <linux/input.h>
26 #include <linux/wait.h>
27 #include <linux/vmalloc.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
30
31 #include <linux/hid.h>
32 #include <linux/hiddev.h>
33 #include <linux/hid-debug.h>
34 #include <linux/hidraw.h>
35
36 #include "hid-ids.h"
37
38 /*
39  * Version Information
40  */
41
42 #define DRIVER_DESC "HID core driver"
43
44 int hid_debug = 0;
45 module_param_named(debug, hid_debug, int, 0600);
46 MODULE_PARM_DESC(debug, "toggle HID debugging messages");
47 EXPORT_SYMBOL_GPL(hid_debug);
48
49 static int hid_ignore_special_drivers = 0;
50 module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
51 MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
52
53 /*
54  * Register a new report for a device.
55  */
56
57 struct hid_report *hid_register_report(struct hid_device *device,
58                                        enum hid_report_type type, unsigned int id,
59                                        unsigned int application)
60 {
61         struct hid_report_enum *report_enum = device->report_enum + type;
62         struct hid_report *report;
63
64         if (id >= HID_MAX_IDS)
65                 return NULL;
66         if (report_enum->report_id_hash[id])
67                 return report_enum->report_id_hash[id];
68
69         report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
70         if (!report)
71                 return NULL;
72
73         if (id != 0)
74                 report_enum->numbered = 1;
75
76         report->id = id;
77         report->type = type;
78         report->size = 0;
79         report->device = device;
80         report->application = application;
81         report_enum->report_id_hash[id] = report;
82
83         list_add_tail(&report->list, &report_enum->report_list);
84         INIT_LIST_HEAD(&report->field_entry_list);
85
86         return report;
87 }
88 EXPORT_SYMBOL_GPL(hid_register_report);
89
90 /*
91  * Register a new field for this report.
92  */
93
94 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages)
95 {
96         struct hid_field *field;
97
98         if (report->maxfield == HID_MAX_FIELDS) {
99                 hid_err(report->device, "too many fields in report\n");
100                 return NULL;
101         }
102
103         field = kzalloc((sizeof(struct hid_field) +
104                          usages * sizeof(struct hid_usage) +
105                          3 * usages * sizeof(unsigned int)), GFP_KERNEL);
106         if (!field)
107                 return NULL;
108
109         field->index = report->maxfield++;
110         report->field[field->index] = field;
111         field->usage = (struct hid_usage *)(field + 1);
112         field->value = (s32 *)(field->usage + usages);
113         field->new_value = (s32 *)(field->value + usages);
114         field->usages_priorities = (s32 *)(field->new_value + usages);
115         field->report = report;
116
117         return field;
118 }
119
120 /*
121  * Open a collection. The type/usage is pushed on the stack.
122  */
123
124 static int open_collection(struct hid_parser *parser, unsigned type)
125 {
126         struct hid_collection *collection;
127         unsigned usage;
128         int collection_index;
129
130         usage = parser->local.usage[0];
131
132         if (parser->collection_stack_ptr == parser->collection_stack_size) {
133                 unsigned int *collection_stack;
134                 unsigned int new_size = parser->collection_stack_size +
135                                         HID_COLLECTION_STACK_SIZE;
136
137                 collection_stack = krealloc(parser->collection_stack,
138                                             new_size * sizeof(unsigned int),
139                                             GFP_KERNEL);
140                 if (!collection_stack)
141                         return -ENOMEM;
142
143                 parser->collection_stack = collection_stack;
144                 parser->collection_stack_size = new_size;
145         }
146
147         if (parser->device->maxcollection == parser->device->collection_size) {
148                 collection = kmalloc(
149                                 array3_size(sizeof(struct hid_collection),
150                                             parser->device->collection_size,
151                                             2),
152                                 GFP_KERNEL);
153                 if (collection == NULL) {
154                         hid_err(parser->device, "failed to reallocate collection array\n");
155                         return -ENOMEM;
156                 }
157                 memcpy(collection, parser->device->collection,
158                         sizeof(struct hid_collection) *
159                         parser->device->collection_size);
160                 memset(collection + parser->device->collection_size, 0,
161                         sizeof(struct hid_collection) *
162                         parser->device->collection_size);
163                 kfree(parser->device->collection);
164                 parser->device->collection = collection;
165                 parser->device->collection_size *= 2;
166         }
167
168         parser->collection_stack[parser->collection_stack_ptr++] =
169                 parser->device->maxcollection;
170
171         collection_index = parser->device->maxcollection++;
172         collection = parser->device->collection + collection_index;
173         collection->type = type;
174         collection->usage = usage;
175         collection->level = parser->collection_stack_ptr - 1;
176         collection->parent_idx = (collection->level == 0) ? -1 :
177                 parser->collection_stack[collection->level - 1];
178
179         if (type == HID_COLLECTION_APPLICATION)
180                 parser->device->maxapplication++;
181
182         return 0;
183 }
184
185 /*
186  * Close a collection.
187  */
188
189 static int close_collection(struct hid_parser *parser)
190 {
191         if (!parser->collection_stack_ptr) {
192                 hid_err(parser->device, "collection stack underflow\n");
193                 return -EINVAL;
194         }
195         parser->collection_stack_ptr--;
196         return 0;
197 }
198
199 /*
200  * Climb up the stack, search for the specified collection type
201  * and return the usage.
202  */
203
204 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
205 {
206         struct hid_collection *collection = parser->device->collection;
207         int n;
208
209         for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
210                 unsigned index = parser->collection_stack[n];
211                 if (collection[index].type == type)
212                         return collection[index].usage;
213         }
214         return 0; /* we know nothing about this usage type */
215 }
216
217 /*
218  * Concatenate usage which defines 16 bits or less with the
219  * currently defined usage page to form a 32 bit usage
220  */
221
222 static void complete_usage(struct hid_parser *parser, unsigned int index)
223 {
224         parser->local.usage[index] &= 0xFFFF;
225         parser->local.usage[index] |=
226                 (parser->global.usage_page & 0xFFFF) << 16;
227 }
228
229 /*
230  * Add a usage to the temporary parser table.
231  */
232
233 static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size)
234 {
235         if (parser->local.usage_index >= HID_MAX_USAGES) {
236                 hid_err(parser->device, "usage index exceeded\n");
237                 return -1;
238         }
239         parser->local.usage[parser->local.usage_index] = usage;
240
241         /*
242          * If Usage item only includes usage id, concatenate it with
243          * currently defined usage page
244          */
245         if (size <= 2)
246                 complete_usage(parser, parser->local.usage_index);
247
248         parser->local.usage_size[parser->local.usage_index] = size;
249         parser->local.collection_index[parser->local.usage_index] =
250                 parser->collection_stack_ptr ?
251                 parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
252         parser->local.usage_index++;
253         return 0;
254 }
255
256 /*
257  * Register a new field for this report.
258  */
259
260 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
261 {
262         struct hid_report *report;
263         struct hid_field *field;
264         unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
265         unsigned int usages;
266         unsigned int offset;
267         unsigned int i;
268         unsigned int application;
269
270         application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
271
272         report = hid_register_report(parser->device, report_type,
273                                      parser->global.report_id, application);
274         if (!report) {
275                 hid_err(parser->device, "hid_register_report failed\n");
276                 return -1;
277         }
278
279         /* Handle both signed and unsigned cases properly */
280         if ((parser->global.logical_minimum < 0 &&
281                 parser->global.logical_maximum <
282                 parser->global.logical_minimum) ||
283                 (parser->global.logical_minimum >= 0 &&
284                 (__u32)parser->global.logical_maximum <
285                 (__u32)parser->global.logical_minimum)) {
286                 dbg_hid("logical range invalid 0x%x 0x%x\n",
287                         parser->global.logical_minimum,
288                         parser->global.logical_maximum);
289                 return -1;
290         }
291
292         offset = report->size;
293         report->size += parser->global.report_size * parser->global.report_count;
294
295         if (parser->device->ll_driver->max_buffer_size)
296                 max_buffer_size = parser->device->ll_driver->max_buffer_size;
297
298         /* Total size check: Allow for possible report index byte */
299         if (report->size > (max_buffer_size - 1) << 3) {
300                 hid_err(parser->device, "report is too long\n");
301                 return -1;
302         }
303
304         if (!parser->local.usage_index) /* Ignore padding fields */
305                 return 0;
306
307         usages = max_t(unsigned, parser->local.usage_index,
308                                  parser->global.report_count);
309
310         field = hid_register_field(report, usages);
311         if (!field)
312                 return 0;
313
314         field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
315         field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
316         field->application = application;
317
318         for (i = 0; i < usages; i++) {
319                 unsigned j = i;
320                 /* Duplicate the last usage we parsed if we have excess values */
321                 if (i >= parser->local.usage_index)
322                         j = parser->local.usage_index - 1;
323                 field->usage[i].hid = parser->local.usage[j];
324                 field->usage[i].collection_index =
325                         parser->local.collection_index[j];
326                 field->usage[i].usage_index = i;
327                 field->usage[i].resolution_multiplier = 1;
328         }
329
330         field->maxusage = usages;
331         field->flags = flags;
332         field->report_offset = offset;
333         field->report_type = report_type;
334         field->report_size = parser->global.report_size;
335         field->report_count = parser->global.report_count;
336         field->logical_minimum = parser->global.logical_minimum;
337         field->logical_maximum = parser->global.logical_maximum;
338         field->physical_minimum = parser->global.physical_minimum;
339         field->physical_maximum = parser->global.physical_maximum;
340         field->unit_exponent = parser->global.unit_exponent;
341         field->unit = parser->global.unit;
342
343         return 0;
344 }
345
346 /*
347  * Read data value from item.
348  */
349
350 static u32 item_udata(struct hid_item *item)
351 {
352         switch (item->size) {
353         case 1: return item->data.u8;
354         case 2: return item->data.u16;
355         case 4: return item->data.u32;
356         }
357         return 0;
358 }
359
360 static s32 item_sdata(struct hid_item *item)
361 {
362         switch (item->size) {
363         case 1: return item->data.s8;
364         case 2: return item->data.s16;
365         case 4: return item->data.s32;
366         }
367         return 0;
368 }
369
370 /*
371  * Process a global item.
372  */
373
374 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
375 {
376         __s32 raw_value;
377         switch (item->tag) {
378         case HID_GLOBAL_ITEM_TAG_PUSH:
379
380                 if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
381                         hid_err(parser->device, "global environment stack overflow\n");
382                         return -1;
383                 }
384
385                 memcpy(parser->global_stack + parser->global_stack_ptr++,
386                         &parser->global, sizeof(struct hid_global));
387                 return 0;
388
389         case HID_GLOBAL_ITEM_TAG_POP:
390
391                 if (!parser->global_stack_ptr) {
392                         hid_err(parser->device, "global environment stack underflow\n");
393                         return -1;
394                 }
395
396                 memcpy(&parser->global, parser->global_stack +
397                         --parser->global_stack_ptr, sizeof(struct hid_global));
398                 return 0;
399
400         case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
401                 parser->global.usage_page = item_udata(item);
402                 return 0;
403
404         case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
405                 parser->global.logical_minimum = item_sdata(item);
406                 return 0;
407
408         case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
409                 if (parser->global.logical_minimum < 0)
410                         parser->global.logical_maximum = item_sdata(item);
411                 else
412                         parser->global.logical_maximum = item_udata(item);
413                 return 0;
414
415         case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
416                 parser->global.physical_minimum = item_sdata(item);
417                 return 0;
418
419         case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
420                 if (parser->global.physical_minimum < 0)
421                         parser->global.physical_maximum = item_sdata(item);
422                 else
423                         parser->global.physical_maximum = item_udata(item);
424                 return 0;
425
426         case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
427                 /* Many devices provide unit exponent as a two's complement
428                  * nibble due to the common misunderstanding of HID
429                  * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
430                  * both this and the standard encoding. */
431                 raw_value = item_sdata(item);
432                 if (!(raw_value & 0xfffffff0))
433                         parser->global.unit_exponent = hid_snto32(raw_value, 4);
434                 else
435                         parser->global.unit_exponent = raw_value;
436                 return 0;
437
438         case HID_GLOBAL_ITEM_TAG_UNIT:
439                 parser->global.unit = item_udata(item);
440                 return 0;
441
442         case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
443                 parser->global.report_size = item_udata(item);
444                 if (parser->global.report_size > 256) {
445                         hid_err(parser->device, "invalid report_size %d\n",
446                                         parser->global.report_size);
447                         return -1;
448                 }
449                 return 0;
450
451         case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
452                 parser->global.report_count = item_udata(item);
453                 if (parser->global.report_count > HID_MAX_USAGES) {
454                         hid_err(parser->device, "invalid report_count %d\n",
455                                         parser->global.report_count);
456                         return -1;
457                 }
458                 return 0;
459
460         case HID_GLOBAL_ITEM_TAG_REPORT_ID:
461                 parser->global.report_id = item_udata(item);
462                 if (parser->global.report_id == 0 ||
463                     parser->global.report_id >= HID_MAX_IDS) {
464                         hid_err(parser->device, "report_id %u is invalid\n",
465                                 parser->global.report_id);
466                         return -1;
467                 }
468                 return 0;
469
470         default:
471                 hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
472                 return -1;
473         }
474 }
475
476 /*
477  * Process a local item.
478  */
479
480 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
481 {
482         __u32 data;
483         unsigned n;
484         __u32 count;
485
486         data = item_udata(item);
487
488         switch (item->tag) {
489         case HID_LOCAL_ITEM_TAG_DELIMITER:
490
491                 if (data) {
492                         /*
493                          * We treat items before the first delimiter
494                          * as global to all usage sets (branch 0).
495                          * In the moment we process only these global
496                          * items and the first delimiter set.
497                          */
498                         if (parser->local.delimiter_depth != 0) {
499                                 hid_err(parser->device, "nested delimiters\n");
500                                 return -1;
501                         }
502                         parser->local.delimiter_depth++;
503                         parser->local.delimiter_branch++;
504                 } else {
505                         if (parser->local.delimiter_depth < 1) {
506                                 hid_err(parser->device, "bogus close delimiter\n");
507                                 return -1;
508                         }
509                         parser->local.delimiter_depth--;
510                 }
511                 return 0;
512
513         case HID_LOCAL_ITEM_TAG_USAGE:
514
515                 if (parser->local.delimiter_branch > 1) {
516                         dbg_hid("alternative usage ignored\n");
517                         return 0;
518                 }
519
520                 return hid_add_usage(parser, data, item->size);
521
522         case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
523
524                 if (parser->local.delimiter_branch > 1) {
525                         dbg_hid("alternative usage ignored\n");
526                         return 0;
527                 }
528
529                 parser->local.usage_minimum = data;
530                 return 0;
531
532         case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
533
534                 if (parser->local.delimiter_branch > 1) {
535                         dbg_hid("alternative usage ignored\n");
536                         return 0;
537                 }
538
539                 count = data - parser->local.usage_minimum;
540                 if (count + parser->local.usage_index >= HID_MAX_USAGES) {
541                         /*
542                          * We do not warn if the name is not set, we are
543                          * actually pre-scanning the device.
544                          */
545                         if (dev_name(&parser->device->dev))
546                                 hid_warn(parser->device,
547                                          "ignoring exceeding usage max\n");
548                         data = HID_MAX_USAGES - parser->local.usage_index +
549                                 parser->local.usage_minimum - 1;
550                         if (data <= 0) {
551                                 hid_err(parser->device,
552                                         "no more usage index available\n");
553                                 return -1;
554                         }
555                 }
556
557                 for (n = parser->local.usage_minimum; n <= data; n++)
558                         if (hid_add_usage(parser, n, item->size)) {
559                                 dbg_hid("hid_add_usage failed\n");
560                                 return -1;
561                         }
562                 return 0;
563
564         default:
565
566                 dbg_hid("unknown local item tag 0x%x\n", item->tag);
567                 return 0;
568         }
569         return 0;
570 }
571
572 /*
573  * Concatenate Usage Pages into Usages where relevant:
574  * As per specification, 6.2.2.8: "When the parser encounters a main item it
575  * concatenates the last declared Usage Page with a Usage to form a complete
576  * usage value."
577  */
578
579 static void hid_concatenate_last_usage_page(struct hid_parser *parser)
580 {
581         int i;
582         unsigned int usage_page;
583         unsigned int current_page;
584
585         if (!parser->local.usage_index)
586                 return;
587
588         usage_page = parser->global.usage_page;
589
590         /*
591          * Concatenate usage page again only if last declared Usage Page
592          * has not been already used in previous usages concatenation
593          */
594         for (i = parser->local.usage_index - 1; i >= 0; i--) {
595                 if (parser->local.usage_size[i] > 2)
596                         /* Ignore extended usages */
597                         continue;
598
599                 current_page = parser->local.usage[i] >> 16;
600                 if (current_page == usage_page)
601                         break;
602
603                 complete_usage(parser, i);
604         }
605 }
606
607 /*
608  * Process a main item.
609  */
610
611 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
612 {
613         __u32 data;
614         int ret;
615
616         hid_concatenate_last_usage_page(parser);
617
618         data = item_udata(item);
619
620         switch (item->tag) {
621         case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
622                 ret = open_collection(parser, data & 0xff);
623                 break;
624         case HID_MAIN_ITEM_TAG_END_COLLECTION:
625                 ret = close_collection(parser);
626                 break;
627         case HID_MAIN_ITEM_TAG_INPUT:
628                 ret = hid_add_field(parser, HID_INPUT_REPORT, data);
629                 break;
630         case HID_MAIN_ITEM_TAG_OUTPUT:
631                 ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
632                 break;
633         case HID_MAIN_ITEM_TAG_FEATURE:
634                 ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
635                 break;
636         default:
637                 hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
638                 ret = 0;
639         }
640
641         memset(&parser->local, 0, sizeof(parser->local));       /* Reset the local parser environment */
642
643         return ret;
644 }
645
646 /*
647  * Process a reserved item.
648  */
649
650 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
651 {
652         dbg_hid("reserved item type, tag 0x%x\n", item->tag);
653         return 0;
654 }
655
656 /*
657  * Free a report and all registered fields. The field->usage and
658  * field->value table's are allocated behind the field, so we need
659  * only to free(field) itself.
660  */
661
662 static void hid_free_report(struct hid_report *report)
663 {
664         unsigned n;
665
666         kfree(report->field_entries);
667
668         for (n = 0; n < report->maxfield; n++)
669                 kfree(report->field[n]);
670         kfree(report);
671 }
672
673 /*
674  * Close report. This function returns the device
675  * state to the point prior to hid_open_report().
676  */
677 static void hid_close_report(struct hid_device *device)
678 {
679         unsigned i, j;
680
681         for (i = 0; i < HID_REPORT_TYPES; i++) {
682                 struct hid_report_enum *report_enum = device->report_enum + i;
683
684                 for (j = 0; j < HID_MAX_IDS; j++) {
685                         struct hid_report *report = report_enum->report_id_hash[j];
686                         if (report)
687                                 hid_free_report(report);
688                 }
689                 memset(report_enum, 0, sizeof(*report_enum));
690                 INIT_LIST_HEAD(&report_enum->report_list);
691         }
692
693         kfree(device->rdesc);
694         device->rdesc = NULL;
695         device->rsize = 0;
696
697         kfree(device->collection);
698         device->collection = NULL;
699         device->collection_size = 0;
700         device->maxcollection = 0;
701         device->maxapplication = 0;
702
703         device->status &= ~HID_STAT_PARSED;
704 }
705
706 /*
707  * Free a device structure, all reports, and all fields.
708  */
709
710 static void hid_device_release(struct device *dev)
711 {
712         struct hid_device *hid = to_hid_device(dev);
713
714         hid_close_report(hid);
715         kfree(hid->dev_rdesc);
716         kfree(hid);
717 }
718
719 /*
720  * Fetch a report description item from the data stream. We support long
721  * items, though they are not used yet.
722  */
723
724 static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
725 {
726         u8 b;
727
728         if ((end - start) <= 0)
729                 return NULL;
730
731         b = *start++;
732
733         item->type = (b >> 2) & 3;
734         item->tag  = (b >> 4) & 15;
735
736         if (item->tag == HID_ITEM_TAG_LONG) {
737
738                 item->format = HID_ITEM_FORMAT_LONG;
739
740                 if ((end - start) < 2)
741                         return NULL;
742
743                 item->size = *start++;
744                 item->tag  = *start++;
745
746                 if ((end - start) < item->size)
747                         return NULL;
748
749                 item->data.longdata = start;
750                 start += item->size;
751                 return start;
752         }
753
754         item->format = HID_ITEM_FORMAT_SHORT;
755         item->size = b & 3;
756
757         switch (item->size) {
758         case 0:
759                 return start;
760
761         case 1:
762                 if ((end - start) < 1)
763                         return NULL;
764                 item->data.u8 = *start++;
765                 return start;
766
767         case 2:
768                 if ((end - start) < 2)
769                         return NULL;
770                 item->data.u16 = get_unaligned_le16(start);
771                 start = (__u8 *)((__le16 *)start + 1);
772                 return start;
773
774         case 3:
775                 item->size++;
776                 if ((end - start) < 4)
777                         return NULL;
778                 item->data.u32 = get_unaligned_le32(start);
779                 start = (__u8 *)((__le32 *)start + 1);
780                 return start;
781         }
782
783         return NULL;
784 }
785
786 static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
787 {
788         struct hid_device *hid = parser->device;
789
790         if (usage == HID_DG_CONTACTID)
791                 hid->group = HID_GROUP_MULTITOUCH;
792 }
793
794 static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
795 {
796         if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
797             parser->global.report_size == 8)
798                 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
799
800         if (usage == 0xff0000c6 && parser->global.report_count == 1 &&
801             parser->global.report_size == 8)
802                 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
803 }
804
805 static void hid_scan_collection(struct hid_parser *parser, unsigned type)
806 {
807         struct hid_device *hid = parser->device;
808         int i;
809
810         if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
811             type == HID_COLLECTION_PHYSICAL)
812                 hid->group = HID_GROUP_SENSOR_HUB;
813
814         if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
815             hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
816             hid->group == HID_GROUP_MULTITOUCH)
817                 hid->group = HID_GROUP_GENERIC;
818
819         if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
820                 for (i = 0; i < parser->local.usage_index; i++)
821                         if (parser->local.usage[i] == HID_GD_POINTER)
822                                 parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
823
824         if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
825                 parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
826
827         if ((parser->global.usage_page << 16) == HID_UP_GOOGLEVENDOR)
828                 for (i = 0; i < parser->local.usage_index; i++)
829                         if (parser->local.usage[i] ==
830                                         (HID_UP_GOOGLEVENDOR | 0x0001))
831                                 parser->device->group =
832                                         HID_GROUP_VIVALDI;
833 }
834
835 static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
836 {
837         __u32 data;
838         int i;
839
840         hid_concatenate_last_usage_page(parser);
841
842         data = item_udata(item);
843
844         switch (item->tag) {
845         case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
846                 hid_scan_collection(parser, data & 0xff);
847                 break;
848         case HID_MAIN_ITEM_TAG_END_COLLECTION:
849                 break;
850         case HID_MAIN_ITEM_TAG_INPUT:
851                 /* ignore constant inputs, they will be ignored by hid-input */
852                 if (data & HID_MAIN_ITEM_CONSTANT)
853                         break;
854                 for (i = 0; i < parser->local.usage_index; i++)
855                         hid_scan_input_usage(parser, parser->local.usage[i]);
856                 break;
857         case HID_MAIN_ITEM_TAG_OUTPUT:
858                 break;
859         case HID_MAIN_ITEM_TAG_FEATURE:
860                 for (i = 0; i < parser->local.usage_index; i++)
861                         hid_scan_feature_usage(parser, parser->local.usage[i]);
862                 break;
863         }
864
865         /* Reset the local parser environment */
866         memset(&parser->local, 0, sizeof(parser->local));
867
868         return 0;
869 }
870
871 /*
872  * Scan a report descriptor before the device is added to the bus.
873  * Sets device groups and other properties that determine what driver
874  * to load.
875  */
876 static int hid_scan_report(struct hid_device *hid)
877 {
878         struct hid_parser *parser;
879         struct hid_item item;
880         __u8 *start = hid->dev_rdesc;
881         __u8 *end = start + hid->dev_rsize;
882         static int (*dispatch_type[])(struct hid_parser *parser,
883                                       struct hid_item *item) = {
884                 hid_scan_main,
885                 hid_parser_global,
886                 hid_parser_local,
887                 hid_parser_reserved
888         };
889
890         parser = vzalloc(sizeof(struct hid_parser));
891         if (!parser)
892                 return -ENOMEM;
893
894         parser->device = hid;
895         hid->group = HID_GROUP_GENERIC;
896
897         /*
898          * The parsing is simpler than the one in hid_open_report() as we should
899          * be robust against hid errors. Those errors will be raised by
900          * hid_open_report() anyway.
901          */
902         while ((start = fetch_item(start, end, &item)) != NULL)
903                 dispatch_type[item.type](parser, &item);
904
905         /*
906          * Handle special flags set during scanning.
907          */
908         if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
909             (hid->group == HID_GROUP_MULTITOUCH))
910                 hid->group = HID_GROUP_MULTITOUCH_WIN_8;
911
912         /*
913          * Vendor specific handlings
914          */
915         switch (hid->vendor) {
916         case USB_VENDOR_ID_WACOM:
917                 hid->group = HID_GROUP_WACOM;
918                 break;
919         case USB_VENDOR_ID_SYNAPTICS:
920                 if (hid->group == HID_GROUP_GENERIC)
921                         if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
922                             && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
923                                 /*
924                                  * hid-rmi should take care of them,
925                                  * not hid-generic
926                                  */
927                                 hid->group = HID_GROUP_RMI;
928                 break;
929         }
930
931         kfree(parser->collection_stack);
932         vfree(parser);
933         return 0;
934 }
935
936 /**
937  * hid_parse_report - parse device report
938  *
939  * @hid: hid device
940  * @start: report start
941  * @size: report size
942  *
943  * Allocate the device report as read by the bus driver. This function should
944  * only be called from parse() in ll drivers.
945  */
946 int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
947 {
948         hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
949         if (!hid->dev_rdesc)
950                 return -ENOMEM;
951         hid->dev_rsize = size;
952         return 0;
953 }
954 EXPORT_SYMBOL_GPL(hid_parse_report);
955
956 static const char * const hid_report_names[] = {
957         "HID_INPUT_REPORT",
958         "HID_OUTPUT_REPORT",
959         "HID_FEATURE_REPORT",
960 };
961 /**
962  * hid_validate_values - validate existing device report's value indexes
963  *
964  * @hid: hid device
965  * @type: which report type to examine
966  * @id: which report ID to examine (0 for first)
967  * @field_index: which report field to examine
968  * @report_counts: expected number of values
969  *
970  * Validate the number of values in a given field of a given report, after
971  * parsing.
972  */
973 struct hid_report *hid_validate_values(struct hid_device *hid,
974                                        enum hid_report_type type, unsigned int id,
975                                        unsigned int field_index,
976                                        unsigned int report_counts)
977 {
978         struct hid_report *report;
979
980         if (type > HID_FEATURE_REPORT) {
981                 hid_err(hid, "invalid HID report type %u\n", type);
982                 return NULL;
983         }
984
985         if (id >= HID_MAX_IDS) {
986                 hid_err(hid, "invalid HID report id %u\n", id);
987                 return NULL;
988         }
989
990         /*
991          * Explicitly not using hid_get_report() here since it depends on
992          * ->numbered being checked, which may not always be the case when
993          * drivers go to access report values.
994          */
995         if (id == 0) {
996                 /*
997                  * Validating on id 0 means we should examine the first
998                  * report in the list.
999                  */
1000                 report = list_first_entry_or_null(
1001                                 &hid->report_enum[type].report_list,
1002                                 struct hid_report, list);
1003         } else {
1004                 report = hid->report_enum[type].report_id_hash[id];
1005         }
1006         if (!report) {
1007                 hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
1008                 return NULL;
1009         }
1010         if (report->maxfield <= field_index) {
1011                 hid_err(hid, "not enough fields in %s %u\n",
1012                         hid_report_names[type], id);
1013                 return NULL;
1014         }
1015         if (report->field[field_index]->report_count < report_counts) {
1016                 hid_err(hid, "not enough values in %s %u field %u\n",
1017                         hid_report_names[type], id, field_index);
1018                 return NULL;
1019         }
1020         return report;
1021 }
1022 EXPORT_SYMBOL_GPL(hid_validate_values);
1023
1024 static int hid_calculate_multiplier(struct hid_device *hid,
1025                                      struct hid_field *multiplier)
1026 {
1027         int m;
1028         __s32 v = *multiplier->value;
1029         __s32 lmin = multiplier->logical_minimum;
1030         __s32 lmax = multiplier->logical_maximum;
1031         __s32 pmin = multiplier->physical_minimum;
1032         __s32 pmax = multiplier->physical_maximum;
1033
1034         /*
1035          * "Because OS implementations will generally divide the control's
1036          * reported count by the Effective Resolution Multiplier, designers
1037          * should take care not to establish a potential Effective
1038          * Resolution Multiplier of zero."
1039          * HID Usage Table, v1.12, Section 4.3.1, p31
1040          */
1041         if (lmax - lmin == 0)
1042                 return 1;
1043         /*
1044          * Handling the unit exponent is left as an exercise to whoever
1045          * finds a device where that exponent is not 0.
1046          */
1047         m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin);
1048         if (unlikely(multiplier->unit_exponent != 0)) {
1049                 hid_warn(hid,
1050                          "unsupported Resolution Multiplier unit exponent %d\n",
1051                          multiplier->unit_exponent);
1052         }
1053
1054         /* There are no devices with an effective multiplier > 255 */
1055         if (unlikely(m == 0 || m > 255 || m < -255)) {
1056                 hid_warn(hid, "unsupported Resolution Multiplier %d\n", m);
1057                 m = 1;
1058         }
1059
1060         return m;
1061 }
1062
1063 static void hid_apply_multiplier_to_field(struct hid_device *hid,
1064                                           struct hid_field *field,
1065                                           struct hid_collection *multiplier_collection,
1066                                           int effective_multiplier)
1067 {
1068         struct hid_collection *collection;
1069         struct hid_usage *usage;
1070         int i;
1071
1072         /*
1073          * If multiplier_collection is NULL, the multiplier applies
1074          * to all fields in the report.
1075          * Otherwise, it is the Logical Collection the multiplier applies to
1076          * but our field may be in a subcollection of that collection.
1077          */
1078         for (i = 0; i < field->maxusage; i++) {
1079                 usage = &field->usage[i];
1080
1081                 collection = &hid->collection[usage->collection_index];
1082                 while (collection->parent_idx != -1 &&
1083                        collection != multiplier_collection)
1084                         collection = &hid->collection[collection->parent_idx];
1085
1086                 if (collection->parent_idx != -1 ||
1087                     multiplier_collection == NULL)
1088                         usage->resolution_multiplier = effective_multiplier;
1089
1090         }
1091 }
1092
1093 static void hid_apply_multiplier(struct hid_device *hid,
1094                                  struct hid_field *multiplier)
1095 {
1096         struct hid_report_enum *rep_enum;
1097         struct hid_report *rep;
1098         struct hid_field *field;
1099         struct hid_collection *multiplier_collection;
1100         int effective_multiplier;
1101         int i;
1102
1103         /*
1104          * "The Resolution Multiplier control must be contained in the same
1105          * Logical Collection as the control(s) to which it is to be applied.
1106          * If no Resolution Multiplier is defined, then the Resolution
1107          * Multiplier defaults to 1.  If more than one control exists in a
1108          * Logical Collection, the Resolution Multiplier is associated with
1109          * all controls in the collection. If no Logical Collection is
1110          * defined, the Resolution Multiplier is associated with all
1111          * controls in the report."
1112          * HID Usage Table, v1.12, Section 4.3.1, p30
1113          *
1114          * Thus, search from the current collection upwards until we find a
1115          * logical collection. Then search all fields for that same parent
1116          * collection. Those are the fields the multiplier applies to.
1117          *
1118          * If we have more than one multiplier, it will overwrite the
1119          * applicable fields later.
1120          */
1121         multiplier_collection = &hid->collection[multiplier->usage->collection_index];
1122         while (multiplier_collection->parent_idx != -1 &&
1123                multiplier_collection->type != HID_COLLECTION_LOGICAL)
1124                 multiplier_collection = &hid->collection[multiplier_collection->parent_idx];
1125
1126         effective_multiplier = hid_calculate_multiplier(hid, multiplier);
1127
1128         rep_enum = &hid->report_enum[HID_INPUT_REPORT];
1129         list_for_each_entry(rep, &rep_enum->report_list, list) {
1130                 for (i = 0; i < rep->maxfield; i++) {
1131                         field = rep->field[i];
1132                         hid_apply_multiplier_to_field(hid, field,
1133                                                       multiplier_collection,
1134                                                       effective_multiplier);
1135                 }
1136         }
1137 }
1138
1139 /*
1140  * hid_setup_resolution_multiplier - set up all resolution multipliers
1141  *
1142  * @device: hid device
1143  *
1144  * Search for all Resolution Multiplier Feature Reports and apply their
1145  * value to all matching Input items. This only updates the internal struct
1146  * fields.
1147  *
1148  * The Resolution Multiplier is applied by the hardware. If the multiplier
1149  * is anything other than 1, the hardware will send pre-multiplied events
1150  * so that the same physical interaction generates an accumulated
1151  *      accumulated_value = value * * multiplier
1152  * This may be achieved by sending
1153  * - "value * multiplier" for each event, or
1154  * - "value" but "multiplier" times as frequently, or
1155  * - a combination of the above
1156  * The only guarantee is that the same physical interaction always generates
1157  * an accumulated 'value * multiplier'.
1158  *
1159  * This function must be called before any event processing and after
1160  * any SetRequest to the Resolution Multiplier.
1161  */
1162 void hid_setup_resolution_multiplier(struct hid_device *hid)
1163 {
1164         struct hid_report_enum *rep_enum;
1165         struct hid_report *rep;
1166         struct hid_usage *usage;
1167         int i, j;
1168
1169         rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1170         list_for_each_entry(rep, &rep_enum->report_list, list) {
1171                 for (i = 0; i < rep->maxfield; i++) {
1172                         /* Ignore if report count is out of bounds. */
1173                         if (rep->field[i]->report_count < 1)
1174                                 continue;
1175
1176                         for (j = 0; j < rep->field[i]->maxusage; j++) {
1177                                 usage = &rep->field[i]->usage[j];
1178                                 if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER)
1179                                         hid_apply_multiplier(hid,
1180                                                              rep->field[i]);
1181                         }
1182                 }
1183         }
1184 }
1185 EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier);
1186
1187 /**
1188  * hid_open_report - open a driver-specific device report
1189  *
1190  * @device: hid device
1191  *
1192  * Parse a report description into a hid_device structure. Reports are
1193  * enumerated, fields are attached to these reports.
1194  * 0 returned on success, otherwise nonzero error value.
1195  *
1196  * This function (or the equivalent hid_parse() macro) should only be
1197  * called from probe() in drivers, before starting the device.
1198  */
1199 int hid_open_report(struct hid_device *device)
1200 {
1201         struct hid_parser *parser;
1202         struct hid_item item;
1203         unsigned int size;
1204         __u8 *start;
1205         __u8 *buf;
1206         __u8 *end;
1207         __u8 *next;
1208         int ret;
1209         int i;
1210         static int (*dispatch_type[])(struct hid_parser *parser,
1211                                       struct hid_item *item) = {
1212                 hid_parser_main,
1213                 hid_parser_global,
1214                 hid_parser_local,
1215                 hid_parser_reserved
1216         };
1217
1218         if (WARN_ON(device->status & HID_STAT_PARSED))
1219                 return -EBUSY;
1220
1221         start = device->dev_rdesc;
1222         if (WARN_ON(!start))
1223                 return -ENODEV;
1224         size = device->dev_rsize;
1225
1226         buf = kmemdup(start, size, GFP_KERNEL);
1227         if (buf == NULL)
1228                 return -ENOMEM;
1229
1230         if (device->driver->report_fixup)
1231                 start = device->driver->report_fixup(device, buf, &size);
1232         else
1233                 start = buf;
1234
1235         start = kmemdup(start, size, GFP_KERNEL);
1236         kfree(buf);
1237         if (start == NULL)
1238                 return -ENOMEM;
1239
1240         device->rdesc = start;
1241         device->rsize = size;
1242
1243         parser = vzalloc(sizeof(struct hid_parser));
1244         if (!parser) {
1245                 ret = -ENOMEM;
1246                 goto alloc_err;
1247         }
1248
1249         parser->device = device;
1250
1251         end = start + size;
1252
1253         device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1254                                      sizeof(struct hid_collection), GFP_KERNEL);
1255         if (!device->collection) {
1256                 ret = -ENOMEM;
1257                 goto err;
1258         }
1259         device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1260         for (i = 0; i < HID_DEFAULT_NUM_COLLECTIONS; i++)
1261                 device->collection[i].parent_idx = -1;
1262
1263         ret = -EINVAL;
1264         while ((next = fetch_item(start, end, &item)) != NULL) {
1265                 start = next;
1266
1267                 if (item.format != HID_ITEM_FORMAT_SHORT) {
1268                         hid_err(device, "unexpected long global item\n");
1269                         goto err;
1270                 }
1271
1272                 if (dispatch_type[item.type](parser, &item)) {
1273                         hid_err(device, "item %u %u %u %u parsing failed\n",
1274                                 item.format, (unsigned)item.size,
1275                                 (unsigned)item.type, (unsigned)item.tag);
1276                         goto err;
1277                 }
1278
1279                 if (start == end) {
1280                         if (parser->collection_stack_ptr) {
1281                                 hid_err(device, "unbalanced collection at end of report description\n");
1282                                 goto err;
1283                         }
1284                         if (parser->local.delimiter_depth) {
1285                                 hid_err(device, "unbalanced delimiter at end of report description\n");
1286                                 goto err;
1287                         }
1288
1289                         /*
1290                          * fetch initial values in case the device's
1291                          * default multiplier isn't the recommended 1
1292                          */
1293                         hid_setup_resolution_multiplier(device);
1294
1295                         kfree(parser->collection_stack);
1296                         vfree(parser);
1297                         device->status |= HID_STAT_PARSED;
1298
1299                         return 0;
1300                 }
1301         }
1302
1303         hid_err(device, "item fetching failed at offset %u/%u\n",
1304                 size - (unsigned int)(end - start), size);
1305 err:
1306         kfree(parser->collection_stack);
1307 alloc_err:
1308         vfree(parser);
1309         hid_close_report(device);
1310         return ret;
1311 }
1312 EXPORT_SYMBOL_GPL(hid_open_report);
1313
1314 /*
1315  * Convert a signed n-bit integer to signed 32-bit integer. Common
1316  * cases are done through the compiler, the screwed things has to be
1317  * done by hand.
1318  */
1319
1320 static s32 snto32(__u32 value, unsigned n)
1321 {
1322         if (!value || !n)
1323                 return 0;
1324
1325         if (n > 32)
1326                 n = 32;
1327
1328         switch (n) {
1329         case 8:  return ((__s8)value);
1330         case 16: return ((__s16)value);
1331         case 32: return ((__s32)value);
1332         }
1333         return value & (1 << (n - 1)) ? value | (~0U << n) : value;
1334 }
1335
1336 s32 hid_snto32(__u32 value, unsigned n)
1337 {
1338         return snto32(value, n);
1339 }
1340 EXPORT_SYMBOL_GPL(hid_snto32);
1341
1342 /*
1343  * Convert a signed 32-bit integer to a signed n-bit integer.
1344  */
1345
1346 static u32 s32ton(__s32 value, unsigned n)
1347 {
1348         s32 a = value >> (n - 1);
1349         if (a && a != -1)
1350                 return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1351         return value & ((1 << n) - 1);
1352 }
1353
1354 /*
1355  * Extract/implement a data field from/to a little endian report (bit array).
1356  *
1357  * Code sort-of follows HID spec:
1358  *     http://www.usb.org/developers/hidpage/HID1_11.pdf
1359  *
1360  * While the USB HID spec allows unlimited length bit fields in "report
1361  * descriptors", most devices never use more than 16 bits.
1362  * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1363  * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1364  */
1365
1366 static u32 __extract(u8 *report, unsigned offset, int n)
1367 {
1368         unsigned int idx = offset / 8;
1369         unsigned int bit_nr = 0;
1370         unsigned int bit_shift = offset % 8;
1371         int bits_to_copy = 8 - bit_shift;
1372         u32 value = 0;
1373         u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1374
1375         while (n > 0) {
1376                 value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1377                 n -= bits_to_copy;
1378                 bit_nr += bits_to_copy;
1379                 bits_to_copy = 8;
1380                 bit_shift = 0;
1381                 idx++;
1382         }
1383
1384         return value & mask;
1385 }
1386
1387 u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1388                         unsigned offset, unsigned n)
1389 {
1390         if (n > 32) {
1391                 hid_warn_once(hid, "%s() called with n (%d) > 32! (%s)\n",
1392                               __func__, n, current->comm);
1393                 n = 32;
1394         }
1395
1396         return __extract(report, offset, n);
1397 }
1398 EXPORT_SYMBOL_GPL(hid_field_extract);
1399
1400 /*
1401  * "implement" : set bits in a little endian bit stream.
1402  * Same concepts as "extract" (see comments above).
1403  * The data mangled in the bit stream remains in little endian
1404  * order the whole time. It make more sense to talk about
1405  * endianness of register values by considering a register
1406  * a "cached" copy of the little endian bit stream.
1407  */
1408
1409 static void __implement(u8 *report, unsigned offset, int n, u32 value)
1410 {
1411         unsigned int idx = offset / 8;
1412         unsigned int bit_shift = offset % 8;
1413         int bits_to_set = 8 - bit_shift;
1414
1415         while (n - bits_to_set >= 0) {
1416                 report[idx] &= ~(0xff << bit_shift);
1417                 report[idx] |= value << bit_shift;
1418                 value >>= bits_to_set;
1419                 n -= bits_to_set;
1420                 bits_to_set = 8;
1421                 bit_shift = 0;
1422                 idx++;
1423         }
1424
1425         /* last nibble */
1426         if (n) {
1427                 u8 bit_mask = ((1U << n) - 1);
1428                 report[idx] &= ~(bit_mask << bit_shift);
1429                 report[idx] |= value << bit_shift;
1430         }
1431 }
1432
1433 static void implement(const struct hid_device *hid, u8 *report,
1434                       unsigned offset, unsigned n, u32 value)
1435 {
1436         if (unlikely(n > 32)) {
1437                 hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1438                          __func__, n, current->comm);
1439                 n = 32;
1440         } else if (n < 32) {
1441                 u32 m = (1U << n) - 1;
1442
1443                 if (unlikely(value > m)) {
1444                         hid_warn(hid,
1445                                  "%s() called with too large value %d (n: %d)! (%s)\n",
1446                                  __func__, value, n, current->comm);
1447                         WARN_ON(1);
1448                         value &= m;
1449                 }
1450         }
1451
1452         __implement(report, offset, n, value);
1453 }
1454
1455 /*
1456  * Search an array for a value.
1457  */
1458
1459 static int search(__s32 *array, __s32 value, unsigned n)
1460 {
1461         while (n--) {
1462                 if (*array++ == value)
1463                         return 0;
1464         }
1465         return -1;
1466 }
1467
1468 /**
1469  * hid_match_report - check if driver's raw_event should be called
1470  *
1471  * @hid: hid device
1472  * @report: hid report to match against
1473  *
1474  * compare hid->driver->report_table->report_type to report->type
1475  */
1476 static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1477 {
1478         const struct hid_report_id *id = hid->driver->report_table;
1479
1480         if (!id) /* NULL means all */
1481                 return 1;
1482
1483         for (; id->report_type != HID_TERMINATOR; id++)
1484                 if (id->report_type == HID_ANY_ID ||
1485                                 id->report_type == report->type)
1486                         return 1;
1487         return 0;
1488 }
1489
1490 /**
1491  * hid_match_usage - check if driver's event should be called
1492  *
1493  * @hid: hid device
1494  * @usage: usage to match against
1495  *
1496  * compare hid->driver->usage_table->usage_{type,code} to
1497  * usage->usage_{type,code}
1498  */
1499 static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1500 {
1501         const struct hid_usage_id *id = hid->driver->usage_table;
1502
1503         if (!id) /* NULL means all */
1504                 return 1;
1505
1506         for (; id->usage_type != HID_ANY_ID - 1; id++)
1507                 if ((id->usage_hid == HID_ANY_ID ||
1508                                 id->usage_hid == usage->hid) &&
1509                                 (id->usage_type == HID_ANY_ID ||
1510                                 id->usage_type == usage->type) &&
1511                                 (id->usage_code == HID_ANY_ID ||
1512                                  id->usage_code == usage->code))
1513                         return 1;
1514         return 0;
1515 }
1516
1517 static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1518                 struct hid_usage *usage, __s32 value, int interrupt)
1519 {
1520         struct hid_driver *hdrv = hid->driver;
1521         int ret;
1522
1523         if (!list_empty(&hid->debug_list))
1524                 hid_dump_input(hid, usage, value);
1525
1526         if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1527                 ret = hdrv->event(hid, field, usage, value);
1528                 if (ret != 0) {
1529                         if (ret < 0)
1530                                 hid_err(hid, "%s's event failed with %d\n",
1531                                                 hdrv->name, ret);
1532                         return;
1533                 }
1534         }
1535
1536         if (hid->claimed & HID_CLAIMED_INPUT)
1537                 hidinput_hid_event(hid, field, usage, value);
1538         if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1539                 hid->hiddev_hid_event(hid, field, usage, value);
1540 }
1541
1542 /*
1543  * Checks if the given value is valid within this field
1544  */
1545 static inline int hid_array_value_is_valid(struct hid_field *field,
1546                                            __s32 value)
1547 {
1548         __s32 min = field->logical_minimum;
1549
1550         /*
1551          * Value needs to be between logical min and max, and
1552          * (value - min) is used as an index in the usage array.
1553          * This array is of size field->maxusage
1554          */
1555         return value >= min &&
1556                value <= field->logical_maximum &&
1557                value - min < field->maxusage;
1558 }
1559
1560 /*
1561  * Fetch the field from the data. The field content is stored for next
1562  * report processing (we do differential reporting to the layer).
1563  */
1564 static void hid_input_fetch_field(struct hid_device *hid,
1565                                   struct hid_field *field,
1566                                   __u8 *data)
1567 {
1568         unsigned n;
1569         unsigned count = field->report_count;
1570         unsigned offset = field->report_offset;
1571         unsigned size = field->report_size;
1572         __s32 min = field->logical_minimum;
1573         __s32 *value;
1574
1575         value = field->new_value;
1576         memset(value, 0, count * sizeof(__s32));
1577         field->ignored = false;
1578
1579         for (n = 0; n < count; n++) {
1580
1581                 value[n] = min < 0 ?
1582                         snto32(hid_field_extract(hid, data, offset + n * size,
1583                                size), size) :
1584                         hid_field_extract(hid, data, offset + n * size, size);
1585
1586                 /* Ignore report if ErrorRollOver */
1587                 if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1588                     hid_array_value_is_valid(field, value[n]) &&
1589                     field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1) {
1590                         field->ignored = true;
1591                         return;
1592                 }
1593         }
1594 }
1595
1596 /*
1597  * Process a received variable field.
1598  */
1599
1600 static void hid_input_var_field(struct hid_device *hid,
1601                                 struct hid_field *field,
1602                                 int interrupt)
1603 {
1604         unsigned int count = field->report_count;
1605         __s32 *value = field->new_value;
1606         unsigned int n;
1607
1608         for (n = 0; n < count; n++)
1609                 hid_process_event(hid,
1610                                   field,
1611                                   &field->usage[n],
1612                                   value[n],
1613                                   interrupt);
1614
1615         memcpy(field->value, value, count * sizeof(__s32));
1616 }
1617
1618 /*
1619  * Process a received array field. The field content is stored for
1620  * next report processing (we do differential reporting to the layer).
1621  */
1622
1623 static void hid_input_array_field(struct hid_device *hid,
1624                                   struct hid_field *field,
1625                                   int interrupt)
1626 {
1627         unsigned int n;
1628         unsigned int count = field->report_count;
1629         __s32 min = field->logical_minimum;
1630         __s32 *value;
1631
1632         value = field->new_value;
1633
1634         /* ErrorRollOver */
1635         if (field->ignored)
1636                 return;
1637
1638         for (n = 0; n < count; n++) {
1639                 if (hid_array_value_is_valid(field, field->value[n]) &&
1640                     search(value, field->value[n], count))
1641                         hid_process_event(hid,
1642                                           field,
1643                                           &field->usage[field->value[n] - min],
1644                                           0,
1645                                           interrupt);
1646
1647                 if (hid_array_value_is_valid(field, value[n]) &&
1648                     search(field->value, value[n], count))
1649                         hid_process_event(hid,
1650                                           field,
1651                                           &field->usage[value[n] - min],
1652                                           1,
1653                                           interrupt);
1654         }
1655
1656         memcpy(field->value, value, count * sizeof(__s32));
1657 }
1658
1659 /*
1660  * Analyse a received report, and fetch the data from it. The field
1661  * content is stored for next report processing (we do differential
1662  * reporting to the layer).
1663  */
1664 static void hid_process_report(struct hid_device *hid,
1665                                struct hid_report *report,
1666                                __u8 *data,
1667                                int interrupt)
1668 {
1669         unsigned int a;
1670         struct hid_field_entry *entry;
1671         struct hid_field *field;
1672
1673         /* first retrieve all incoming values in data */
1674         for (a = 0; a < report->maxfield; a++)
1675                 hid_input_fetch_field(hid, report->field[a], data);
1676
1677         if (!list_empty(&report->field_entry_list)) {
1678                 /* INPUT_REPORT, we have a priority list of fields */
1679                 list_for_each_entry(entry,
1680                                     &report->field_entry_list,
1681                                     list) {
1682                         field = entry->field;
1683
1684                         if (field->flags & HID_MAIN_ITEM_VARIABLE)
1685                                 hid_process_event(hid,
1686                                                   field,
1687                                                   &field->usage[entry->index],
1688                                                   field->new_value[entry->index],
1689                                                   interrupt);
1690                         else
1691                                 hid_input_array_field(hid, field, interrupt);
1692                 }
1693
1694                 /* we need to do the memcpy at the end for var items */
1695                 for (a = 0; a < report->maxfield; a++) {
1696                         field = report->field[a];
1697
1698                         if (field->flags & HID_MAIN_ITEM_VARIABLE)
1699                                 memcpy(field->value, field->new_value,
1700                                        field->report_count * sizeof(__s32));
1701                 }
1702         } else {
1703                 /* FEATURE_REPORT, regular processing */
1704                 for (a = 0; a < report->maxfield; a++) {
1705                         field = report->field[a];
1706
1707                         if (field->flags & HID_MAIN_ITEM_VARIABLE)
1708                                 hid_input_var_field(hid, field, interrupt);
1709                         else
1710                                 hid_input_array_field(hid, field, interrupt);
1711                 }
1712         }
1713 }
1714
1715 /*
1716  * Insert a given usage_index in a field in the list
1717  * of processed usages in the report.
1718  *
1719  * The elements of lower priority score are processed
1720  * first.
1721  */
1722 static void __hid_insert_field_entry(struct hid_device *hid,
1723                                      struct hid_report *report,
1724                                      struct hid_field_entry *entry,
1725                                      struct hid_field *field,
1726                                      unsigned int usage_index)
1727 {
1728         struct hid_field_entry *next;
1729
1730         entry->field = field;
1731         entry->index = usage_index;
1732         entry->priority = field->usages_priorities[usage_index];
1733
1734         /* insert the element at the correct position */
1735         list_for_each_entry(next,
1736                             &report->field_entry_list,
1737                             list) {
1738                 /*
1739                  * the priority of our element is strictly higher
1740                  * than the next one, insert it before
1741                  */
1742                 if (entry->priority > next->priority) {
1743                         list_add_tail(&entry->list, &next->list);
1744                         return;
1745                 }
1746         }
1747
1748         /* lowest priority score: insert at the end */
1749         list_add_tail(&entry->list, &report->field_entry_list);
1750 }
1751
1752 static void hid_report_process_ordering(struct hid_device *hid,
1753                                         struct hid_report *report)
1754 {
1755         struct hid_field *field;
1756         struct hid_field_entry *entries;
1757         unsigned int a, u, usages;
1758         unsigned int count = 0;
1759
1760         /* count the number of individual fields in the report */
1761         for (a = 0; a < report->maxfield; a++) {
1762                 field = report->field[a];
1763
1764                 if (field->flags & HID_MAIN_ITEM_VARIABLE)
1765                         count += field->report_count;
1766                 else
1767                         count++;
1768         }
1769
1770         /* allocate the memory to process the fields */
1771         entries = kcalloc(count, sizeof(*entries), GFP_KERNEL);
1772         if (!entries)
1773                 return;
1774
1775         report->field_entries = entries;
1776
1777         /*
1778          * walk through all fields in the report and
1779          * store them by priority order in report->field_entry_list
1780          *
1781          * - Var elements are individualized (field + usage_index)
1782          * - Arrays are taken as one, we can not chose an order for them
1783          */
1784         usages = 0;
1785         for (a = 0; a < report->maxfield; a++) {
1786                 field = report->field[a];
1787
1788                 if (field->flags & HID_MAIN_ITEM_VARIABLE) {
1789                         for (u = 0; u < field->report_count; u++) {
1790                                 __hid_insert_field_entry(hid, report,
1791                                                          &entries[usages],
1792                                                          field, u);
1793                                 usages++;
1794                         }
1795                 } else {
1796                         __hid_insert_field_entry(hid, report, &entries[usages],
1797                                                  field, 0);
1798                         usages++;
1799                 }
1800         }
1801 }
1802
1803 static void hid_process_ordering(struct hid_device *hid)
1804 {
1805         struct hid_report *report;
1806         struct hid_report_enum *report_enum = &hid->report_enum[HID_INPUT_REPORT];
1807
1808         list_for_each_entry(report, &report_enum->report_list, list)
1809                 hid_report_process_ordering(hid, report);
1810 }
1811
1812 /*
1813  * Output the field into the report.
1814  */
1815
1816 static void hid_output_field(const struct hid_device *hid,
1817                              struct hid_field *field, __u8 *data)
1818 {
1819         unsigned count = field->report_count;
1820         unsigned offset = field->report_offset;
1821         unsigned size = field->report_size;
1822         unsigned n;
1823
1824         for (n = 0; n < count; n++) {
1825                 if (field->logical_minimum < 0) /* signed values */
1826                         implement(hid, data, offset + n * size, size,
1827                                   s32ton(field->value[n], size));
1828                 else                            /* unsigned values */
1829                         implement(hid, data, offset + n * size, size,
1830                                   field->value[n]);
1831         }
1832 }
1833
1834 /*
1835  * Compute the size of a report.
1836  */
1837 static size_t hid_compute_report_size(struct hid_report *report)
1838 {
1839         if (report->size)
1840                 return ((report->size - 1) >> 3) + 1;
1841
1842         return 0;
1843 }
1844
1845 /*
1846  * Create a report. 'data' has to be allocated using
1847  * hid_alloc_report_buf() so that it has proper size.
1848  */
1849
1850 void hid_output_report(struct hid_report *report, __u8 *data)
1851 {
1852         unsigned n;
1853
1854         if (report->id > 0)
1855                 *data++ = report->id;
1856
1857         memset(data, 0, hid_compute_report_size(report));
1858         for (n = 0; n < report->maxfield; n++)
1859                 hid_output_field(report->device, report->field[n], data);
1860 }
1861 EXPORT_SYMBOL_GPL(hid_output_report);
1862
1863 /*
1864  * Allocator for buffer that is going to be passed to hid_output_report()
1865  */
1866 u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1867 {
1868         /*
1869          * 7 extra bytes are necessary to achieve proper functionality
1870          * of implement() working on 8 byte chunks
1871          */
1872
1873         u32 len = hid_report_len(report) + 7;
1874
1875         return kmalloc(len, flags);
1876 }
1877 EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1878
1879 /*
1880  * Set a field value. The report this field belongs to has to be
1881  * created and transferred to the device, to set this value in the
1882  * device.
1883  */
1884
1885 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1886 {
1887         unsigned size;
1888
1889         if (!field)
1890                 return -1;
1891
1892         size = field->report_size;
1893
1894         hid_dump_input(field->report->device, field->usage + offset, value);
1895
1896         if (offset >= field->report_count) {
1897                 hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1898                                 offset, field->report_count);
1899                 return -1;
1900         }
1901         if (field->logical_minimum < 0) {
1902                 if (value != snto32(s32ton(value, size), size)) {
1903                         hid_err(field->report->device, "value %d is out of range\n", value);
1904                         return -1;
1905                 }
1906         }
1907         field->value[offset] = value;
1908         return 0;
1909 }
1910 EXPORT_SYMBOL_GPL(hid_set_field);
1911
1912 static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1913                 const u8 *data)
1914 {
1915         struct hid_report *report;
1916         unsigned int n = 0;     /* Normally report number is 0 */
1917
1918         /* Device uses numbered reports, data[0] is report number */
1919         if (report_enum->numbered)
1920                 n = *data;
1921
1922         report = report_enum->report_id_hash[n];
1923         if (report == NULL)
1924                 dbg_hid("undefined report_id %u received\n", n);
1925
1926         return report;
1927 }
1928
1929 /*
1930  * Implement a generic .request() callback, using .raw_request()
1931  * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1932  */
1933 int __hid_request(struct hid_device *hid, struct hid_report *report,
1934                 enum hid_class_request reqtype)
1935 {
1936         char *buf;
1937         int ret;
1938         u32 len;
1939
1940         buf = hid_alloc_report_buf(report, GFP_KERNEL);
1941         if (!buf)
1942                 return -ENOMEM;
1943
1944         len = hid_report_len(report);
1945
1946         if (reqtype == HID_REQ_SET_REPORT)
1947                 hid_output_report(report, buf);
1948
1949         ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1950                                           report->type, reqtype);
1951         if (ret < 0) {
1952                 dbg_hid("unable to complete request: %d\n", ret);
1953                 goto out;
1954         }
1955
1956         if (reqtype == HID_REQ_GET_REPORT)
1957                 hid_input_report(hid, report->type, buf, ret, 0);
1958
1959         ret = 0;
1960
1961 out:
1962         kfree(buf);
1963         return ret;
1964 }
1965 EXPORT_SYMBOL_GPL(__hid_request);
1966
1967 int hid_report_raw_event(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size,
1968                          int interrupt)
1969 {
1970         struct hid_report_enum *report_enum = hid->report_enum + type;
1971         struct hid_report *report;
1972         struct hid_driver *hdrv;
1973         int max_buffer_size = HID_MAX_BUFFER_SIZE;
1974         u32 rsize, csize = size;
1975         u8 *cdata = data;
1976         int ret = 0;
1977
1978         report = hid_get_report(report_enum, data);
1979         if (!report)
1980                 goto out;
1981
1982         if (report_enum->numbered) {
1983                 cdata++;
1984                 csize--;
1985         }
1986
1987         rsize = hid_compute_report_size(report);
1988
1989         if (hid->ll_driver->max_buffer_size)
1990                 max_buffer_size = hid->ll_driver->max_buffer_size;
1991
1992         if (report_enum->numbered && rsize >= max_buffer_size)
1993                 rsize = max_buffer_size - 1;
1994         else if (rsize > max_buffer_size)
1995                 rsize = max_buffer_size;
1996
1997         if (csize < rsize) {
1998                 dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1999                                 csize, rsize);
2000                 memset(cdata + csize, 0, rsize - csize);
2001         }
2002
2003         if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
2004                 hid->hiddev_report_event(hid, report);
2005         if (hid->claimed & HID_CLAIMED_HIDRAW) {
2006                 ret = hidraw_report_event(hid, data, size);
2007                 if (ret)
2008                         goto out;
2009         }
2010
2011         if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
2012                 hid_process_report(hid, report, cdata, interrupt);
2013                 hdrv = hid->driver;
2014                 if (hdrv && hdrv->report)
2015                         hdrv->report(hid, report);
2016         }
2017
2018         if (hid->claimed & HID_CLAIMED_INPUT)
2019                 hidinput_report_event(hid, report);
2020 out:
2021         return ret;
2022 }
2023 EXPORT_SYMBOL_GPL(hid_report_raw_event);
2024
2025 /**
2026  * hid_input_report - report data from lower layer (usb, bt...)
2027  *
2028  * @hid: hid device
2029  * @type: HID report type (HID_*_REPORT)
2030  * @data: report contents
2031  * @size: size of data parameter
2032  * @interrupt: distinguish between interrupt and control transfers
2033  *
2034  * This is data entry for lower layers.
2035  */
2036 int hid_input_report(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size,
2037                      int interrupt)
2038 {
2039         struct hid_report_enum *report_enum;
2040         struct hid_driver *hdrv;
2041         struct hid_report *report;
2042         int ret = 0;
2043
2044         if (!hid)
2045                 return -ENODEV;
2046
2047         if (down_trylock(&hid->driver_input_lock))
2048                 return -EBUSY;
2049
2050         if (!hid->driver) {
2051                 ret = -ENODEV;
2052                 goto unlock;
2053         }
2054         report_enum = hid->report_enum + type;
2055         hdrv = hid->driver;
2056
2057         if (!size) {
2058                 dbg_hid("empty report\n");
2059                 ret = -1;
2060                 goto unlock;
2061         }
2062
2063         /* Avoid unnecessary overhead if debugfs is disabled */
2064         if (!list_empty(&hid->debug_list))
2065                 hid_dump_report(hid, type, data, size);
2066
2067         report = hid_get_report(report_enum, data);
2068
2069         if (!report) {
2070                 ret = -1;
2071                 goto unlock;
2072         }
2073
2074         if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
2075                 ret = hdrv->raw_event(hid, report, data, size);
2076                 if (ret < 0)
2077                         goto unlock;
2078         }
2079
2080         ret = hid_report_raw_event(hid, type, data, size, interrupt);
2081
2082 unlock:
2083         up(&hid->driver_input_lock);
2084         return ret;
2085 }
2086 EXPORT_SYMBOL_GPL(hid_input_report);
2087
2088 bool hid_match_one_id(const struct hid_device *hdev,
2089                       const struct hid_device_id *id)
2090 {
2091         return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
2092                 (id->group == HID_GROUP_ANY || id->group == hdev->group) &&
2093                 (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
2094                 (id->product == HID_ANY_ID || id->product == hdev->product);
2095 }
2096
2097 const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
2098                 const struct hid_device_id *id)
2099 {
2100         for (; id->bus; id++)
2101                 if (hid_match_one_id(hdev, id))
2102                         return id;
2103
2104         return NULL;
2105 }
2106 EXPORT_SYMBOL_GPL(hid_match_id);
2107
2108 static const struct hid_device_id hid_hiddev_list[] = {
2109         { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
2110         { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
2111         { }
2112 };
2113
2114 static bool hid_hiddev(struct hid_device *hdev)
2115 {
2116         return !!hid_match_id(hdev, hid_hiddev_list);
2117 }
2118
2119
2120 static ssize_t
2121 read_report_descriptor(struct file *filp, struct kobject *kobj,
2122                 struct bin_attribute *attr,
2123                 char *buf, loff_t off, size_t count)
2124 {
2125         struct device *dev = kobj_to_dev(kobj);
2126         struct hid_device *hdev = to_hid_device(dev);
2127
2128         if (off >= hdev->rsize)
2129                 return 0;
2130
2131         if (off + count > hdev->rsize)
2132                 count = hdev->rsize - off;
2133
2134         memcpy(buf, hdev->rdesc + off, count);
2135
2136         return count;
2137 }
2138
2139 static ssize_t
2140 show_country(struct device *dev, struct device_attribute *attr,
2141                 char *buf)
2142 {
2143         struct hid_device *hdev = to_hid_device(dev);
2144
2145         return sprintf(buf, "%02x\n", hdev->country & 0xff);
2146 }
2147
2148 static struct bin_attribute dev_bin_attr_report_desc = {
2149         .attr = { .name = "report_descriptor", .mode = 0444 },
2150         .read = read_report_descriptor,
2151         .size = HID_MAX_DESCRIPTOR_SIZE,
2152 };
2153
2154 static const struct device_attribute dev_attr_country = {
2155         .attr = { .name = "country", .mode = 0444 },
2156         .show = show_country,
2157 };
2158
2159 int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
2160 {
2161         static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
2162                 "Joystick", "Gamepad", "Keyboard", "Keypad",
2163                 "Multi-Axis Controller"
2164         };
2165         const char *type, *bus;
2166         char buf[64] = "";
2167         unsigned int i;
2168         int len;
2169         int ret;
2170
2171         if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
2172                 connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
2173         if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
2174                 connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
2175         if (hdev->bus != BUS_USB)
2176                 connect_mask &= ~HID_CONNECT_HIDDEV;
2177         if (hid_hiddev(hdev))
2178                 connect_mask |= HID_CONNECT_HIDDEV_FORCE;
2179
2180         if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
2181                                 connect_mask & HID_CONNECT_HIDINPUT_FORCE))
2182                 hdev->claimed |= HID_CLAIMED_INPUT;
2183
2184         if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
2185                         !hdev->hiddev_connect(hdev,
2186                                 connect_mask & HID_CONNECT_HIDDEV_FORCE))
2187                 hdev->claimed |= HID_CLAIMED_HIDDEV;
2188         if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
2189                 hdev->claimed |= HID_CLAIMED_HIDRAW;
2190
2191         if (connect_mask & HID_CONNECT_DRIVER)
2192                 hdev->claimed |= HID_CLAIMED_DRIVER;
2193
2194         /* Drivers with the ->raw_event callback set are not required to connect
2195          * to any other listener. */
2196         if (!hdev->claimed && !hdev->driver->raw_event) {
2197                 hid_err(hdev, "device has no listeners, quitting\n");
2198                 return -ENODEV;
2199         }
2200
2201         hid_process_ordering(hdev);
2202
2203         if ((hdev->claimed & HID_CLAIMED_INPUT) &&
2204                         (connect_mask & HID_CONNECT_FF) && hdev->ff_init)
2205                 hdev->ff_init(hdev);
2206
2207         len = 0;
2208         if (hdev->claimed & HID_CLAIMED_INPUT)
2209                 len += sprintf(buf + len, "input");
2210         if (hdev->claimed & HID_CLAIMED_HIDDEV)
2211                 len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
2212                                 ((struct hiddev *)hdev->hiddev)->minor);
2213         if (hdev->claimed & HID_CLAIMED_HIDRAW)
2214                 len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
2215                                 ((struct hidraw *)hdev->hidraw)->minor);
2216
2217         type = "Device";
2218         for (i = 0; i < hdev->maxcollection; i++) {
2219                 struct hid_collection *col = &hdev->collection[i];
2220                 if (col->type == HID_COLLECTION_APPLICATION &&
2221                    (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
2222                    (col->usage & 0xffff) < ARRAY_SIZE(types)) {
2223                         type = types[col->usage & 0xffff];
2224                         break;
2225                 }
2226         }
2227
2228         switch (hdev->bus) {
2229         case BUS_USB:
2230                 bus = "USB";
2231                 break;
2232         case BUS_BLUETOOTH:
2233                 bus = "BLUETOOTH";
2234                 break;
2235         case BUS_I2C:
2236                 bus = "I2C";
2237                 break;
2238         case BUS_VIRTUAL:
2239                 bus = "VIRTUAL";
2240                 break;
2241         case BUS_INTEL_ISHTP:
2242         case BUS_AMD_SFH:
2243                 bus = "SENSOR HUB";
2244                 break;
2245         default:
2246                 bus = "<UNKNOWN>";
2247         }
2248
2249         ret = device_create_file(&hdev->dev, &dev_attr_country);
2250         if (ret)
2251                 hid_warn(hdev,
2252                          "can't create sysfs country code attribute err: %d\n", ret);
2253
2254         hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
2255                  buf, bus, hdev->version >> 8, hdev->version & 0xff,
2256                  type, hdev->name, hdev->phys);
2257
2258         return 0;
2259 }
2260 EXPORT_SYMBOL_GPL(hid_connect);
2261
2262 void hid_disconnect(struct hid_device *hdev)
2263 {
2264         device_remove_file(&hdev->dev, &dev_attr_country);
2265         if (hdev->claimed & HID_CLAIMED_INPUT)
2266                 hidinput_disconnect(hdev);
2267         if (hdev->claimed & HID_CLAIMED_HIDDEV)
2268                 hdev->hiddev_disconnect(hdev);
2269         if (hdev->claimed & HID_CLAIMED_HIDRAW)
2270                 hidraw_disconnect(hdev);
2271         hdev->claimed = 0;
2272 }
2273 EXPORT_SYMBOL_GPL(hid_disconnect);
2274
2275 /**
2276  * hid_hw_start - start underlying HW
2277  * @hdev: hid device
2278  * @connect_mask: which outputs to connect, see HID_CONNECT_*
2279  *
2280  * Call this in probe function *after* hid_parse. This will setup HW
2281  * buffers and start the device (if not defeirred to device open).
2282  * hid_hw_stop must be called if this was successful.
2283  */
2284 int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
2285 {
2286         int error;
2287
2288         error = hdev->ll_driver->start(hdev);
2289         if (error)
2290                 return error;
2291
2292         if (connect_mask) {
2293                 error = hid_connect(hdev, connect_mask);
2294                 if (error) {
2295                         hdev->ll_driver->stop(hdev);
2296                         return error;
2297                 }
2298         }
2299
2300         return 0;
2301 }
2302 EXPORT_SYMBOL_GPL(hid_hw_start);
2303
2304 /**
2305  * hid_hw_stop - stop underlying HW
2306  * @hdev: hid device
2307  *
2308  * This is usually called from remove function or from probe when something
2309  * failed and hid_hw_start was called already.
2310  */
2311 void hid_hw_stop(struct hid_device *hdev)
2312 {
2313         hid_disconnect(hdev);
2314         hdev->ll_driver->stop(hdev);
2315 }
2316 EXPORT_SYMBOL_GPL(hid_hw_stop);
2317
2318 /**
2319  * hid_hw_open - signal underlying HW to start delivering events
2320  * @hdev: hid device
2321  *
2322  * Tell underlying HW to start delivering events from the device.
2323  * This function should be called sometime after successful call
2324  * to hid_hw_start().
2325  */
2326 int hid_hw_open(struct hid_device *hdev)
2327 {
2328         int ret;
2329
2330         ret = mutex_lock_killable(&hdev->ll_open_lock);
2331         if (ret)
2332                 return ret;
2333
2334         if (!hdev->ll_open_count++) {
2335                 ret = hdev->ll_driver->open(hdev);
2336                 if (ret)
2337                         hdev->ll_open_count--;
2338         }
2339
2340         mutex_unlock(&hdev->ll_open_lock);
2341         return ret;
2342 }
2343 EXPORT_SYMBOL_GPL(hid_hw_open);
2344
2345 /**
2346  * hid_hw_close - signal underlaying HW to stop delivering events
2347  *
2348  * @hdev: hid device
2349  *
2350  * This function indicates that we are not interested in the events
2351  * from this device anymore. Delivery of events may or may not stop,
2352  * depending on the number of users still outstanding.
2353  */
2354 void hid_hw_close(struct hid_device *hdev)
2355 {
2356         mutex_lock(&hdev->ll_open_lock);
2357         if (!--hdev->ll_open_count)
2358                 hdev->ll_driver->close(hdev);
2359         mutex_unlock(&hdev->ll_open_lock);
2360 }
2361 EXPORT_SYMBOL_GPL(hid_hw_close);
2362
2363 /**
2364  * hid_hw_request - send report request to device
2365  *
2366  * @hdev: hid device
2367  * @report: report to send
2368  * @reqtype: hid request type
2369  */
2370 void hid_hw_request(struct hid_device *hdev,
2371                     struct hid_report *report, enum hid_class_request reqtype)
2372 {
2373         if (hdev->ll_driver->request)
2374                 return hdev->ll_driver->request(hdev, report, reqtype);
2375
2376         __hid_request(hdev, report, reqtype);
2377 }
2378 EXPORT_SYMBOL_GPL(hid_hw_request);
2379
2380 /**
2381  * hid_hw_raw_request - send report request to device
2382  *
2383  * @hdev: hid device
2384  * @reportnum: report ID
2385  * @buf: in/out data to transfer
2386  * @len: length of buf
2387  * @rtype: HID report type
2388  * @reqtype: HID_REQ_GET_REPORT or HID_REQ_SET_REPORT
2389  *
2390  * Return: count of data transferred, negative if error
2391  *
2392  * Same behavior as hid_hw_request, but with raw buffers instead.
2393  */
2394 int hid_hw_raw_request(struct hid_device *hdev,
2395                        unsigned char reportnum, __u8 *buf,
2396                        size_t len, enum hid_report_type rtype, enum hid_class_request reqtype)
2397 {
2398         unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
2399
2400         if (hdev->ll_driver->max_buffer_size)
2401                 max_buffer_size = hdev->ll_driver->max_buffer_size;
2402
2403         if (len < 1 || len > max_buffer_size || !buf)
2404                 return -EINVAL;
2405
2406         return hdev->ll_driver->raw_request(hdev, reportnum, buf, len,
2407                                             rtype, reqtype);
2408 }
2409 EXPORT_SYMBOL_GPL(hid_hw_raw_request);
2410
2411 /**
2412  * hid_hw_output_report - send output report to device
2413  *
2414  * @hdev: hid device
2415  * @buf: raw data to transfer
2416  * @len: length of buf
2417  *
2418  * Return: count of data transferred, negative if error
2419  */
2420 int hid_hw_output_report(struct hid_device *hdev, __u8 *buf, size_t len)
2421 {
2422         unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
2423
2424         if (hdev->ll_driver->max_buffer_size)
2425                 max_buffer_size = hdev->ll_driver->max_buffer_size;
2426
2427         if (len < 1 || len > max_buffer_size || !buf)
2428                 return -EINVAL;
2429
2430         if (hdev->ll_driver->output_report)
2431                 return hdev->ll_driver->output_report(hdev, buf, len);
2432
2433         return -ENOSYS;
2434 }
2435 EXPORT_SYMBOL_GPL(hid_hw_output_report);
2436
2437 #ifdef CONFIG_PM
2438 int hid_driver_suspend(struct hid_device *hdev, pm_message_t state)
2439 {
2440         if (hdev->driver && hdev->driver->suspend)
2441                 return hdev->driver->suspend(hdev, state);
2442
2443         return 0;
2444 }
2445 EXPORT_SYMBOL_GPL(hid_driver_suspend);
2446
2447 int hid_driver_reset_resume(struct hid_device *hdev)
2448 {
2449         if (hdev->driver && hdev->driver->reset_resume)
2450                 return hdev->driver->reset_resume(hdev);
2451
2452         return 0;
2453 }
2454 EXPORT_SYMBOL_GPL(hid_driver_reset_resume);
2455
2456 int hid_driver_resume(struct hid_device *hdev)
2457 {
2458         if (hdev->driver && hdev->driver->resume)
2459                 return hdev->driver->resume(hdev);
2460
2461         return 0;
2462 }
2463 EXPORT_SYMBOL_GPL(hid_driver_resume);
2464 #endif /* CONFIG_PM */
2465
2466 struct hid_dynid {
2467         struct list_head list;
2468         struct hid_device_id id;
2469 };
2470
2471 /**
2472  * new_id_store - add a new HID device ID to this driver and re-probe devices
2473  * @drv: target device driver
2474  * @buf: buffer for scanning device ID data
2475  * @count: input size
2476  *
2477  * Adds a new dynamic hid device ID to this driver,
2478  * and causes the driver to probe for all devices again.
2479  */
2480 static ssize_t new_id_store(struct device_driver *drv, const char *buf,
2481                 size_t count)
2482 {
2483         struct hid_driver *hdrv = to_hid_driver(drv);
2484         struct hid_dynid *dynid;
2485         __u32 bus, vendor, product;
2486         unsigned long driver_data = 0;
2487         int ret;
2488
2489         ret = sscanf(buf, "%x %x %x %lx",
2490                         &bus, &vendor, &product, &driver_data);
2491         if (ret < 3)
2492                 return -EINVAL;
2493
2494         dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
2495         if (!dynid)
2496                 return -ENOMEM;
2497
2498         dynid->id.bus = bus;
2499         dynid->id.group = HID_GROUP_ANY;
2500         dynid->id.vendor = vendor;
2501         dynid->id.product = product;
2502         dynid->id.driver_data = driver_data;
2503
2504         spin_lock(&hdrv->dyn_lock);
2505         list_add_tail(&dynid->list, &hdrv->dyn_list);
2506         spin_unlock(&hdrv->dyn_lock);
2507
2508         ret = driver_attach(&hdrv->driver);
2509
2510         return ret ? : count;
2511 }
2512 static DRIVER_ATTR_WO(new_id);
2513
2514 static struct attribute *hid_drv_attrs[] = {
2515         &driver_attr_new_id.attr,
2516         NULL,
2517 };
2518 ATTRIBUTE_GROUPS(hid_drv);
2519
2520 static void hid_free_dynids(struct hid_driver *hdrv)
2521 {
2522         struct hid_dynid *dynid, *n;
2523
2524         spin_lock(&hdrv->dyn_lock);
2525         list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2526                 list_del(&dynid->list);
2527                 kfree(dynid);
2528         }
2529         spin_unlock(&hdrv->dyn_lock);
2530 }
2531
2532 const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2533                                              struct hid_driver *hdrv)
2534 {
2535         struct hid_dynid *dynid;
2536
2537         spin_lock(&hdrv->dyn_lock);
2538         list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2539                 if (hid_match_one_id(hdev, &dynid->id)) {
2540                         spin_unlock(&hdrv->dyn_lock);
2541                         return &dynid->id;
2542                 }
2543         }
2544         spin_unlock(&hdrv->dyn_lock);
2545
2546         return hid_match_id(hdev, hdrv->id_table);
2547 }
2548 EXPORT_SYMBOL_GPL(hid_match_device);
2549
2550 static int hid_bus_match(struct device *dev, struct device_driver *drv)
2551 {
2552         struct hid_driver *hdrv = to_hid_driver(drv);
2553         struct hid_device *hdev = to_hid_device(dev);
2554
2555         return hid_match_device(hdev, hdrv) != NULL;
2556 }
2557
2558 /**
2559  * hid_compare_device_paths - check if both devices share the same path
2560  * @hdev_a: hid device
2561  * @hdev_b: hid device
2562  * @separator: char to use as separator
2563  *
2564  * Check if two devices share the same path up to the last occurrence of
2565  * the separator char. Both paths must exist (i.e., zero-length paths
2566  * don't match).
2567  */
2568 bool hid_compare_device_paths(struct hid_device *hdev_a,
2569                               struct hid_device *hdev_b, char separator)
2570 {
2571         int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
2572         int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
2573
2574         if (n1 != n2 || n1 <= 0 || n2 <= 0)
2575                 return false;
2576
2577         return !strncmp(hdev_a->phys, hdev_b->phys, n1);
2578 }
2579 EXPORT_SYMBOL_GPL(hid_compare_device_paths);
2580
2581 static int hid_device_probe(struct device *dev)
2582 {
2583         struct hid_driver *hdrv = to_hid_driver(dev->driver);
2584         struct hid_device *hdev = to_hid_device(dev);
2585         const struct hid_device_id *id;
2586         int ret = 0;
2587
2588         if (down_interruptible(&hdev->driver_input_lock)) {
2589                 ret = -EINTR;
2590                 goto end;
2591         }
2592         hdev->io_started = false;
2593
2594         clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
2595
2596         if (!hdev->driver) {
2597                 id = hid_match_device(hdev, hdrv);
2598                 if (id == NULL) {
2599                         ret = -ENODEV;
2600                         goto unlock;
2601                 }
2602
2603                 if (hdrv->match) {
2604                         if (!hdrv->match(hdev, hid_ignore_special_drivers)) {
2605                                 ret = -ENODEV;
2606                                 goto unlock;
2607                         }
2608                 } else {
2609                         /*
2610                          * hid-generic implements .match(), so if
2611                          * hid_ignore_special_drivers is set, we can safely
2612                          * return.
2613                          */
2614                         if (hid_ignore_special_drivers) {
2615                                 ret = -ENODEV;
2616                                 goto unlock;
2617                         }
2618                 }
2619
2620                 /* reset the quirks that has been previously set */
2621                 hdev->quirks = hid_lookup_quirk(hdev);
2622                 hdev->driver = hdrv;
2623                 if (hdrv->probe) {
2624                         ret = hdrv->probe(hdev, id);
2625                 } else { /* default probe */
2626                         ret = hid_open_report(hdev);
2627                         if (!ret)
2628                                 ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2629                 }
2630                 if (ret) {
2631                         hid_close_report(hdev);
2632                         hdev->driver = NULL;
2633                 }
2634         }
2635 unlock:
2636         if (!hdev->io_started)
2637                 up(&hdev->driver_input_lock);
2638 end:
2639         return ret;
2640 }
2641
2642 static void hid_device_remove(struct device *dev)
2643 {
2644         struct hid_device *hdev = to_hid_device(dev);
2645         struct hid_driver *hdrv;
2646
2647         down(&hdev->driver_input_lock);
2648         hdev->io_started = false;
2649
2650         hdrv = hdev->driver;
2651         if (hdrv) {
2652                 if (hdrv->remove)
2653                         hdrv->remove(hdev);
2654                 else /* default remove */
2655                         hid_hw_stop(hdev);
2656                 hid_close_report(hdev);
2657                 hdev->driver = NULL;
2658         }
2659
2660         if (!hdev->io_started)
2661                 up(&hdev->driver_input_lock);
2662 }
2663
2664 static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2665                              char *buf)
2666 {
2667         struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2668
2669         return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2670                          hdev->bus, hdev->group, hdev->vendor, hdev->product);
2671 }
2672 static DEVICE_ATTR_RO(modalias);
2673
2674 static struct attribute *hid_dev_attrs[] = {
2675         &dev_attr_modalias.attr,
2676         NULL,
2677 };
2678 static struct bin_attribute *hid_dev_bin_attrs[] = {
2679         &dev_bin_attr_report_desc,
2680         NULL
2681 };
2682 static const struct attribute_group hid_dev_group = {
2683         .attrs = hid_dev_attrs,
2684         .bin_attrs = hid_dev_bin_attrs,
2685 };
2686 __ATTRIBUTE_GROUPS(hid_dev);
2687
2688 static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
2689 {
2690         struct hid_device *hdev = to_hid_device(dev);
2691
2692         if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2693                         hdev->bus, hdev->vendor, hdev->product))
2694                 return -ENOMEM;
2695
2696         if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2697                 return -ENOMEM;
2698
2699         if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2700                 return -ENOMEM;
2701
2702         if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2703                 return -ENOMEM;
2704
2705         if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2706                            hdev->bus, hdev->group, hdev->vendor, hdev->product))
2707                 return -ENOMEM;
2708
2709         return 0;
2710 }
2711
2712 struct bus_type hid_bus_type = {
2713         .name           = "hid",
2714         .dev_groups     = hid_dev_groups,
2715         .drv_groups     = hid_drv_groups,
2716         .match          = hid_bus_match,
2717         .probe          = hid_device_probe,
2718         .remove         = hid_device_remove,
2719         .uevent         = hid_uevent,
2720 };
2721 EXPORT_SYMBOL(hid_bus_type);
2722
2723 int hid_add_device(struct hid_device *hdev)
2724 {
2725         static atomic_t id = ATOMIC_INIT(0);
2726         int ret;
2727
2728         if (WARN_ON(hdev->status & HID_STAT_ADDED))
2729                 return -EBUSY;
2730
2731         hdev->quirks = hid_lookup_quirk(hdev);
2732
2733         /* we need to kill them here, otherwise they will stay allocated to
2734          * wait for coming driver */
2735         if (hid_ignore(hdev))
2736                 return -ENODEV;
2737
2738         /*
2739          * Check for the mandatory transport channel.
2740          */
2741          if (!hdev->ll_driver->raw_request) {
2742                 hid_err(hdev, "transport driver missing .raw_request()\n");
2743                 return -EINVAL;
2744          }
2745
2746         /*
2747          * Read the device report descriptor once and use as template
2748          * for the driver-specific modifications.
2749          */
2750         ret = hdev->ll_driver->parse(hdev);
2751         if (ret)
2752                 return ret;
2753         if (!hdev->dev_rdesc)
2754                 return -ENODEV;
2755
2756         /*
2757          * Scan generic devices for group information
2758          */
2759         if (hid_ignore_special_drivers) {
2760                 hdev->group = HID_GROUP_GENERIC;
2761         } else if (!hdev->group &&
2762                    !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2763                 ret = hid_scan_report(hdev);
2764                 if (ret)
2765                         hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2766         }
2767
2768         hdev->id = atomic_inc_return(&id);
2769
2770         /* XXX hack, any other cleaner solution after the driver core
2771          * is converted to allow more than 20 bytes as the device name? */
2772         dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2773                      hdev->vendor, hdev->product, hdev->id);
2774
2775         hid_debug_register(hdev, dev_name(&hdev->dev));
2776         ret = device_add(&hdev->dev);
2777         if (!ret)
2778                 hdev->status |= HID_STAT_ADDED;
2779         else
2780                 hid_debug_unregister(hdev);
2781
2782         return ret;
2783 }
2784 EXPORT_SYMBOL_GPL(hid_add_device);
2785
2786 /**
2787  * hid_allocate_device - allocate new hid device descriptor
2788  *
2789  * Allocate and initialize hid device, so that hid_destroy_device might be
2790  * used to free it.
2791  *
2792  * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2793  * error value.
2794  */
2795 struct hid_device *hid_allocate_device(void)
2796 {
2797         struct hid_device *hdev;
2798         int ret = -ENOMEM;
2799
2800         hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2801         if (hdev == NULL)
2802                 return ERR_PTR(ret);
2803
2804         device_initialize(&hdev->dev);
2805         hdev->dev.release = hid_device_release;
2806         hdev->dev.bus = &hid_bus_type;
2807         device_enable_async_suspend(&hdev->dev);
2808
2809         hid_close_report(hdev);
2810
2811         init_waitqueue_head(&hdev->debug_wait);
2812         INIT_LIST_HEAD(&hdev->debug_list);
2813         spin_lock_init(&hdev->debug_list_lock);
2814         sema_init(&hdev->driver_input_lock, 1);
2815         mutex_init(&hdev->ll_open_lock);
2816
2817         return hdev;
2818 }
2819 EXPORT_SYMBOL_GPL(hid_allocate_device);
2820
2821 static void hid_remove_device(struct hid_device *hdev)
2822 {
2823         if (hdev->status & HID_STAT_ADDED) {
2824                 device_del(&hdev->dev);
2825                 hid_debug_unregister(hdev);
2826                 hdev->status &= ~HID_STAT_ADDED;
2827         }
2828         kfree(hdev->dev_rdesc);
2829         hdev->dev_rdesc = NULL;
2830         hdev->dev_rsize = 0;
2831 }
2832
2833 /**
2834  * hid_destroy_device - free previously allocated device
2835  *
2836  * @hdev: hid device
2837  *
2838  * If you allocate hid_device through hid_allocate_device, you should ever
2839  * free by this function.
2840  */
2841 void hid_destroy_device(struct hid_device *hdev)
2842 {
2843         hid_remove_device(hdev);
2844         put_device(&hdev->dev);
2845 }
2846 EXPORT_SYMBOL_GPL(hid_destroy_device);
2847
2848
2849 static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2850 {
2851         struct hid_driver *hdrv = data;
2852         struct hid_device *hdev = to_hid_device(dev);
2853
2854         if (hdev->driver == hdrv &&
2855             !hdrv->match(hdev, hid_ignore_special_drivers) &&
2856             !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
2857                 return device_reprobe(dev);
2858
2859         return 0;
2860 }
2861
2862 static int __hid_bus_driver_added(struct device_driver *drv, void *data)
2863 {
2864         struct hid_driver *hdrv = to_hid_driver(drv);
2865
2866         if (hdrv->match) {
2867                 bus_for_each_dev(&hid_bus_type, NULL, hdrv,
2868                                  __hid_bus_reprobe_drivers);
2869         }
2870
2871         return 0;
2872 }
2873
2874 static int __bus_removed_driver(struct device_driver *drv, void *data)
2875 {
2876         return bus_rescan_devices(&hid_bus_type);
2877 }
2878
2879 int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2880                 const char *mod_name)
2881 {
2882         int ret;
2883
2884         hdrv->driver.name = hdrv->name;
2885         hdrv->driver.bus = &hid_bus_type;
2886         hdrv->driver.owner = owner;
2887         hdrv->driver.mod_name = mod_name;
2888
2889         INIT_LIST_HEAD(&hdrv->dyn_list);
2890         spin_lock_init(&hdrv->dyn_lock);
2891
2892         ret = driver_register(&hdrv->driver);
2893
2894         if (ret == 0)
2895                 bus_for_each_drv(&hid_bus_type, NULL, NULL,
2896                                  __hid_bus_driver_added);
2897
2898         return ret;
2899 }
2900 EXPORT_SYMBOL_GPL(__hid_register_driver);
2901
2902 void hid_unregister_driver(struct hid_driver *hdrv)
2903 {
2904         driver_unregister(&hdrv->driver);
2905         hid_free_dynids(hdrv);
2906
2907         bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
2908 }
2909 EXPORT_SYMBOL_GPL(hid_unregister_driver);
2910
2911 int hid_check_keys_pressed(struct hid_device *hid)
2912 {
2913         struct hid_input *hidinput;
2914         int i;
2915
2916         if (!(hid->claimed & HID_CLAIMED_INPUT))
2917                 return 0;
2918
2919         list_for_each_entry(hidinput, &hid->inputs, list) {
2920                 for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2921                         if (hidinput->input->key[i])
2922                                 return 1;
2923         }
2924
2925         return 0;
2926 }
2927 EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2928
2929 static int __init hid_init(void)
2930 {
2931         int ret;
2932
2933         if (hid_debug)
2934                 pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
2935                         "debugfs is now used for inspecting the device (report descriptor, reports)\n");
2936
2937         ret = bus_register(&hid_bus_type);
2938         if (ret) {
2939                 pr_err("can't register hid bus\n");
2940                 goto err;
2941         }
2942
2943         ret = hidraw_init();
2944         if (ret)
2945                 goto err_bus;
2946
2947         hid_debug_init();
2948
2949         return 0;
2950 err_bus:
2951         bus_unregister(&hid_bus_type);
2952 err:
2953         return ret;
2954 }
2955
2956 static void __exit hid_exit(void)
2957 {
2958         hid_debug_exit();
2959         hidraw_exit();
2960         bus_unregister(&hid_bus_type);
2961         hid_quirks_exit(HID_BUS_ANY);
2962 }
2963
2964 module_init(hid_init);
2965 module_exit(hid_exit);
2966
2967 MODULE_AUTHOR("Andreas Gal");
2968 MODULE_AUTHOR("Vojtech Pavlik");
2969 MODULE_AUTHOR("Jiri Kosina");
2970 MODULE_LICENSE("GPL");