GNU Linux-libre 4.14.332-gnu1
[releases.git] / drivers / gpu / drm / ttm / ttm_page_alloc_dma.c
1 /*
2  * Copyright 2011 (c) Oracle Corp.
3
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sub license,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the
12  * next paragraph) shall be included in all copies or substantial portions
13  * of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Author: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
24  */
25
26 /*
27  * A simple DMA pool losely based on dmapool.c. It has certain advantages
28  * over the DMA pools:
29  * - Pool collects resently freed pages for reuse (and hooks up to
30  *   the shrinker).
31  * - Tracks currently in use pages
32  * - Tracks whether the page is UC, WB or cached (and reverts to WB
33  *   when freed).
34  */
35
36 #if defined(CONFIG_SWIOTLB) || defined(CONFIG_INTEL_IOMMU)
37 #define pr_fmt(fmt) "[TTM] " fmt
38
39 #include <linux/dma-mapping.h>
40 #include <linux/list.h>
41 #include <linux/seq_file.h> /* for seq_printf */
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/highmem.h>
45 #include <linux/mm_types.h>
46 #include <linux/module.h>
47 #include <linux/mm.h>
48 #include <linux/atomic.h>
49 #include <linux/device.h>
50 #include <linux/kthread.h>
51 #include <drm/ttm/ttm_bo_driver.h>
52 #include <drm/ttm/ttm_page_alloc.h>
53 #if IS_ENABLED(CONFIG_AGP)
54 #include <asm/agp.h>
55 #endif
56 #ifdef CONFIG_X86
57 #include <asm/set_memory.h>
58 #endif
59
60 #define NUM_PAGES_TO_ALLOC              (PAGE_SIZE/sizeof(struct page *))
61 #define SMALL_ALLOCATION                4
62 #define FREE_ALL_PAGES                  (~0U)
63 /* times are in msecs */
64 #define IS_UNDEFINED                    (0)
65 #define IS_WC                           (1<<1)
66 #define IS_UC                           (1<<2)
67 #define IS_CACHED                       (1<<3)
68 #define IS_DMA32                        (1<<4)
69
70 enum pool_type {
71         POOL_IS_UNDEFINED,
72         POOL_IS_WC = IS_WC,
73         POOL_IS_UC = IS_UC,
74         POOL_IS_CACHED = IS_CACHED,
75         POOL_IS_WC_DMA32 = IS_WC | IS_DMA32,
76         POOL_IS_UC_DMA32 = IS_UC | IS_DMA32,
77         POOL_IS_CACHED_DMA32 = IS_CACHED | IS_DMA32,
78 };
79 /*
80  * The pool structure. There are usually six pools:
81  *  - generic (not restricted to DMA32):
82  *      - write combined, uncached, cached.
83  *  - dma32 (up to 2^32 - so up 4GB):
84  *      - write combined, uncached, cached.
85  * for each 'struct device'. The 'cached' is for pages that are actively used.
86  * The other ones can be shrunk by the shrinker API if neccessary.
87  * @pools: The 'struct device->dma_pools' link.
88  * @type: Type of the pool
89  * @lock: Protects the inuse_list and free_list from concurrnet access. Must be
90  * used with irqsave/irqrestore variants because pool allocator maybe called
91  * from delayed work.
92  * @inuse_list: Pool of pages that are in use. The order is very important and
93  *   it is in the order that the TTM pages that are put back are in.
94  * @free_list: Pool of pages that are free to be used. No order requirements.
95  * @dev: The device that is associated with these pools.
96  * @size: Size used during DMA allocation.
97  * @npages_free: Count of available pages for re-use.
98  * @npages_in_use: Count of pages that are in use.
99  * @nfrees: Stats when pool is shrinking.
100  * @nrefills: Stats when the pool is grown.
101  * @gfp_flags: Flags to pass for alloc_page.
102  * @name: Name of the pool.
103  * @dev_name: Name derieved from dev - similar to how dev_info works.
104  *   Used during shutdown as the dev_info during release is unavailable.
105  */
106 struct dma_pool {
107         struct list_head pools; /* The 'struct device->dma_pools link */
108         enum pool_type type;
109         spinlock_t lock;
110         struct list_head inuse_list;
111         struct list_head free_list;
112         struct device *dev;
113         unsigned size;
114         unsigned npages_free;
115         unsigned npages_in_use;
116         unsigned long nfrees; /* Stats when shrunk. */
117         unsigned long nrefills; /* Stats when grown. */
118         gfp_t gfp_flags;
119         char name[13]; /* "cached dma32" */
120         char dev_name[64]; /* Constructed from dev */
121 };
122
123 /*
124  * The accounting page keeping track of the allocated page along with
125  * the DMA address.
126  * @page_list: The link to the 'page_list' in 'struct dma_pool'.
127  * @vaddr: The virtual address of the page
128  * @dma: The bus address of the page. If the page is not allocated
129  *   via the DMA API, it will be -1.
130  */
131 struct dma_page {
132         struct list_head page_list;
133         void *vaddr;
134         struct page *p;
135         dma_addr_t dma;
136 };
137
138 /*
139  * Limits for the pool. They are handled without locks because only place where
140  * they may change is in sysfs store. They won't have immediate effect anyway
141  * so forcing serialization to access them is pointless.
142  */
143
144 struct ttm_pool_opts {
145         unsigned        alloc_size;
146         unsigned        max_size;
147         unsigned        small;
148 };
149
150 /*
151  * Contains the list of all of the 'struct device' and their corresponding
152  * DMA pools. Guarded by _mutex->lock.
153  * @pools: The link to 'struct ttm_pool_manager->pools'
154  * @dev: The 'struct device' associated with the 'pool'
155  * @pool: The 'struct dma_pool' associated with the 'dev'
156  */
157 struct device_pools {
158         struct list_head pools;
159         struct device *dev;
160         struct dma_pool *pool;
161 };
162
163 /*
164  * struct ttm_pool_manager - Holds memory pools for fast allocation
165  *
166  * @lock: Lock used when adding/removing from pools
167  * @pools: List of 'struct device' and 'struct dma_pool' tuples.
168  * @options: Limits for the pool.
169  * @npools: Total amount of pools in existence.
170  * @shrinker: The structure used by [un|]register_shrinker
171  */
172 struct ttm_pool_manager {
173         struct mutex            lock;
174         struct list_head        pools;
175         struct ttm_pool_opts    options;
176         unsigned                npools;
177         struct shrinker         mm_shrink;
178         struct kobject          kobj;
179 };
180
181 static struct ttm_pool_manager *_manager;
182
183 static struct attribute ttm_page_pool_max = {
184         .name = "pool_max_size",
185         .mode = S_IRUGO | S_IWUSR
186 };
187 static struct attribute ttm_page_pool_small = {
188         .name = "pool_small_allocation",
189         .mode = S_IRUGO | S_IWUSR
190 };
191 static struct attribute ttm_page_pool_alloc_size = {
192         .name = "pool_allocation_size",
193         .mode = S_IRUGO | S_IWUSR
194 };
195
196 static struct attribute *ttm_pool_attrs[] = {
197         &ttm_page_pool_max,
198         &ttm_page_pool_small,
199         &ttm_page_pool_alloc_size,
200         NULL
201 };
202
203 static void ttm_pool_kobj_release(struct kobject *kobj)
204 {
205         struct ttm_pool_manager *m =
206                 container_of(kobj, struct ttm_pool_manager, kobj);
207         kfree(m);
208 }
209
210 static ssize_t ttm_pool_store(struct kobject *kobj, struct attribute *attr,
211                               const char *buffer, size_t size)
212 {
213         struct ttm_pool_manager *m =
214                 container_of(kobj, struct ttm_pool_manager, kobj);
215         int chars;
216         unsigned val;
217         chars = sscanf(buffer, "%u", &val);
218         if (chars == 0)
219                 return size;
220
221         /* Convert kb to number of pages */
222         val = val / (PAGE_SIZE >> 10);
223
224         if (attr == &ttm_page_pool_max)
225                 m->options.max_size = val;
226         else if (attr == &ttm_page_pool_small)
227                 m->options.small = val;
228         else if (attr == &ttm_page_pool_alloc_size) {
229                 if (val > NUM_PAGES_TO_ALLOC*8) {
230                         pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n",
231                                NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7),
232                                NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
233                         return size;
234                 } else if (val > NUM_PAGES_TO_ALLOC) {
235                         pr_warn("Setting allocation size to larger than %lu is not recommended\n",
236                                 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
237                 }
238                 m->options.alloc_size = val;
239         }
240
241         return size;
242 }
243
244 static ssize_t ttm_pool_show(struct kobject *kobj, struct attribute *attr,
245                              char *buffer)
246 {
247         struct ttm_pool_manager *m =
248                 container_of(kobj, struct ttm_pool_manager, kobj);
249         unsigned val = 0;
250
251         if (attr == &ttm_page_pool_max)
252                 val = m->options.max_size;
253         else if (attr == &ttm_page_pool_small)
254                 val = m->options.small;
255         else if (attr == &ttm_page_pool_alloc_size)
256                 val = m->options.alloc_size;
257
258         val = val * (PAGE_SIZE >> 10);
259
260         return snprintf(buffer, PAGE_SIZE, "%u\n", val);
261 }
262
263 static const struct sysfs_ops ttm_pool_sysfs_ops = {
264         .show = &ttm_pool_show,
265         .store = &ttm_pool_store,
266 };
267
268 static struct kobj_type ttm_pool_kobj_type = {
269         .release = &ttm_pool_kobj_release,
270         .sysfs_ops = &ttm_pool_sysfs_ops,
271         .default_attrs = ttm_pool_attrs,
272 };
273
274 #ifndef CONFIG_X86
275 static int set_pages_array_wb(struct page **pages, int addrinarray)
276 {
277 #if IS_ENABLED(CONFIG_AGP)
278         int i;
279
280         for (i = 0; i < addrinarray; i++)
281                 unmap_page_from_agp(pages[i]);
282 #endif
283         return 0;
284 }
285
286 static int set_pages_array_wc(struct page **pages, int addrinarray)
287 {
288 #if IS_ENABLED(CONFIG_AGP)
289         int i;
290
291         for (i = 0; i < addrinarray; i++)
292                 map_page_into_agp(pages[i]);
293 #endif
294         return 0;
295 }
296
297 static int set_pages_array_uc(struct page **pages, int addrinarray)
298 {
299 #if IS_ENABLED(CONFIG_AGP)
300         int i;
301
302         for (i = 0; i < addrinarray; i++)
303                 map_page_into_agp(pages[i]);
304 #endif
305         return 0;
306 }
307 #endif /* for !CONFIG_X86 */
308
309 static int ttm_set_pages_caching(struct dma_pool *pool,
310                                  struct page **pages, unsigned cpages)
311 {
312         int r = 0;
313         /* Set page caching */
314         if (pool->type & IS_UC) {
315                 r = set_pages_array_uc(pages, cpages);
316                 if (r)
317                         pr_err("%s: Failed to set %d pages to uc!\n",
318                                pool->dev_name, cpages);
319         }
320         if (pool->type & IS_WC) {
321                 r = set_pages_array_wc(pages, cpages);
322                 if (r)
323                         pr_err("%s: Failed to set %d pages to wc!\n",
324                                pool->dev_name, cpages);
325         }
326         return r;
327 }
328
329 static void __ttm_dma_free_page(struct dma_pool *pool, struct dma_page *d_page)
330 {
331         dma_addr_t dma = d_page->dma;
332         dma_free_coherent(pool->dev, pool->size, d_page->vaddr, dma);
333
334         kfree(d_page);
335         d_page = NULL;
336 }
337 static struct dma_page *__ttm_dma_alloc_page(struct dma_pool *pool)
338 {
339         struct dma_page *d_page;
340
341         d_page = kmalloc(sizeof(struct dma_page), GFP_KERNEL);
342         if (!d_page)
343                 return NULL;
344
345         d_page->vaddr = dma_alloc_coherent(pool->dev, pool->size,
346                                            &d_page->dma,
347                                            pool->gfp_flags);
348         if (d_page->vaddr) {
349                 if (is_vmalloc_addr(d_page->vaddr))
350                         d_page->p = vmalloc_to_page(d_page->vaddr);
351                 else
352                         d_page->p = virt_to_page(d_page->vaddr);
353         } else {
354                 kfree(d_page);
355                 d_page = NULL;
356         }
357         return d_page;
358 }
359 static enum pool_type ttm_to_type(int flags, enum ttm_caching_state cstate)
360 {
361         enum pool_type type = IS_UNDEFINED;
362
363         if (flags & TTM_PAGE_FLAG_DMA32)
364                 type |= IS_DMA32;
365         if (cstate == tt_cached)
366                 type |= IS_CACHED;
367         else if (cstate == tt_uncached)
368                 type |= IS_UC;
369         else
370                 type |= IS_WC;
371
372         return type;
373 }
374
375 static void ttm_pool_update_free_locked(struct dma_pool *pool,
376                                         unsigned freed_pages)
377 {
378         pool->npages_free -= freed_pages;
379         pool->nfrees += freed_pages;
380
381 }
382
383 /* set memory back to wb and free the pages. */
384 static void ttm_dma_pages_put(struct dma_pool *pool, struct list_head *d_pages,
385                               struct page *pages[], unsigned npages)
386 {
387         struct dma_page *d_page, *tmp;
388
389         /* Don't set WB on WB page pool. */
390         if (npages && !(pool->type & IS_CACHED) &&
391             set_pages_array_wb(pages, npages))
392                 pr_err("%s: Failed to set %d pages to wb!\n",
393                        pool->dev_name, npages);
394
395         list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
396                 list_del(&d_page->page_list);
397                 __ttm_dma_free_page(pool, d_page);
398         }
399 }
400
401 static void ttm_dma_page_put(struct dma_pool *pool, struct dma_page *d_page)
402 {
403         /* Don't set WB on WB page pool. */
404         if (!(pool->type & IS_CACHED) && set_pages_array_wb(&d_page->p, 1))
405                 pr_err("%s: Failed to set %d pages to wb!\n",
406                        pool->dev_name, 1);
407
408         list_del(&d_page->page_list);
409         __ttm_dma_free_page(pool, d_page);
410 }
411
412 /*
413  * Free pages from pool.
414  *
415  * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
416  * number of pages in one go.
417  *
418  * @pool: to free the pages from
419  * @nr_free: If set to true will free all pages in pool
420  * @use_static: Safe to use static buffer
421  **/
422 static unsigned ttm_dma_page_pool_free(struct dma_pool *pool, unsigned nr_free,
423                                        bool use_static)
424 {
425         static struct page *static_buf[NUM_PAGES_TO_ALLOC];
426         unsigned long irq_flags;
427         struct dma_page *dma_p, *tmp;
428         struct page **pages_to_free;
429         struct list_head d_pages;
430         unsigned freed_pages = 0,
431                  npages_to_free = nr_free;
432
433         if (NUM_PAGES_TO_ALLOC < nr_free)
434                 npages_to_free = NUM_PAGES_TO_ALLOC;
435 #if 0
436         if (nr_free > 1) {
437                 pr_debug("%s: (%s:%d) Attempting to free %d (%d) pages\n",
438                          pool->dev_name, pool->name, current->pid,
439                          npages_to_free, nr_free);
440         }
441 #endif
442         if (use_static)
443                 pages_to_free = static_buf;
444         else
445                 pages_to_free = kmalloc(npages_to_free * sizeof(struct page *),
446                                         GFP_KERNEL);
447
448         if (!pages_to_free) {
449                 pr_err("%s: Failed to allocate memory for pool free operation\n",
450                        pool->dev_name);
451                 return 0;
452         }
453         INIT_LIST_HEAD(&d_pages);
454 restart:
455         spin_lock_irqsave(&pool->lock, irq_flags);
456
457         /* We picking the oldest ones off the list */
458         list_for_each_entry_safe_reverse(dma_p, tmp, &pool->free_list,
459                                          page_list) {
460                 if (freed_pages >= npages_to_free)
461                         break;
462
463                 /* Move the dma_page from one list to another. */
464                 list_move(&dma_p->page_list, &d_pages);
465
466                 pages_to_free[freed_pages++] = dma_p->p;
467                 /* We can only remove NUM_PAGES_TO_ALLOC at a time. */
468                 if (freed_pages >= NUM_PAGES_TO_ALLOC) {
469
470                         ttm_pool_update_free_locked(pool, freed_pages);
471                         /**
472                          * Because changing page caching is costly
473                          * we unlock the pool to prevent stalling.
474                          */
475                         spin_unlock_irqrestore(&pool->lock, irq_flags);
476
477                         ttm_dma_pages_put(pool, &d_pages, pages_to_free,
478                                           freed_pages);
479
480                         INIT_LIST_HEAD(&d_pages);
481
482                         if (likely(nr_free != FREE_ALL_PAGES))
483                                 nr_free -= freed_pages;
484
485                         if (NUM_PAGES_TO_ALLOC >= nr_free)
486                                 npages_to_free = nr_free;
487                         else
488                                 npages_to_free = NUM_PAGES_TO_ALLOC;
489
490                         freed_pages = 0;
491
492                         /* free all so restart the processing */
493                         if (nr_free)
494                                 goto restart;
495
496                         /* Not allowed to fall through or break because
497                          * following context is inside spinlock while we are
498                          * outside here.
499                          */
500                         goto out;
501
502                 }
503         }
504
505         /* remove range of pages from the pool */
506         if (freed_pages) {
507                 ttm_pool_update_free_locked(pool, freed_pages);
508                 nr_free -= freed_pages;
509         }
510
511         spin_unlock_irqrestore(&pool->lock, irq_flags);
512
513         if (freed_pages)
514                 ttm_dma_pages_put(pool, &d_pages, pages_to_free, freed_pages);
515 out:
516         if (pages_to_free != static_buf)
517                 kfree(pages_to_free);
518         return nr_free;
519 }
520
521 static void ttm_dma_free_pool(struct device *dev, enum pool_type type)
522 {
523         struct device_pools *p;
524         struct dma_pool *pool;
525
526         if (!dev)
527                 return;
528
529         mutex_lock(&_manager->lock);
530         list_for_each_entry_reverse(p, &_manager->pools, pools) {
531                 if (p->dev != dev)
532                         continue;
533                 pool = p->pool;
534                 if (pool->type != type)
535                         continue;
536
537                 list_del(&p->pools);
538                 kfree(p);
539                 _manager->npools--;
540                 break;
541         }
542         list_for_each_entry_reverse(pool, &dev->dma_pools, pools) {
543                 if (pool->type != type)
544                         continue;
545                 /* Takes a spinlock.. */
546                 /* OK to use static buffer since global mutex is held. */
547                 ttm_dma_page_pool_free(pool, FREE_ALL_PAGES, true);
548                 WARN_ON(((pool->npages_in_use + pool->npages_free) != 0));
549                 /* This code path is called after _all_ references to the
550                  * struct device has been dropped - so nobody should be
551                  * touching it. In case somebody is trying to _add_ we are
552                  * guarded by the mutex. */
553                 list_del(&pool->pools);
554                 kfree(pool);
555                 break;
556         }
557         mutex_unlock(&_manager->lock);
558 }
559
560 /*
561  * On free-ing of the 'struct device' this deconstructor is run.
562  * Albeit the pool might have already been freed earlier.
563  */
564 static void ttm_dma_pool_release(struct device *dev, void *res)
565 {
566         struct dma_pool *pool = *(struct dma_pool **)res;
567
568         if (pool)
569                 ttm_dma_free_pool(dev, pool->type);
570 }
571
572 static int ttm_dma_pool_match(struct device *dev, void *res, void *match_data)
573 {
574         return *(struct dma_pool **)res == match_data;
575 }
576
577 static struct dma_pool *ttm_dma_pool_init(struct device *dev, gfp_t flags,
578                                           enum pool_type type)
579 {
580         char *n[] = {"wc", "uc", "cached", " dma32", "unknown",};
581         enum pool_type t[] = {IS_WC, IS_UC, IS_CACHED, IS_DMA32, IS_UNDEFINED};
582         struct device_pools *sec_pool = NULL;
583         struct dma_pool *pool = NULL, **ptr;
584         unsigned i;
585         int ret = -ENODEV;
586         char *p;
587
588         if (!dev)
589                 return NULL;
590
591         ptr = devres_alloc(ttm_dma_pool_release, sizeof(*ptr), GFP_KERNEL);
592         if (!ptr)
593                 return NULL;
594
595         ret = -ENOMEM;
596
597         pool = kmalloc_node(sizeof(struct dma_pool), GFP_KERNEL,
598                             dev_to_node(dev));
599         if (!pool)
600                 goto err_mem;
601
602         sec_pool = kmalloc_node(sizeof(struct device_pools), GFP_KERNEL,
603                                 dev_to_node(dev));
604         if (!sec_pool)
605                 goto err_mem;
606
607         INIT_LIST_HEAD(&sec_pool->pools);
608         sec_pool->dev = dev;
609         sec_pool->pool =  pool;
610
611         INIT_LIST_HEAD(&pool->free_list);
612         INIT_LIST_HEAD(&pool->inuse_list);
613         INIT_LIST_HEAD(&pool->pools);
614         spin_lock_init(&pool->lock);
615         pool->dev = dev;
616         pool->npages_free = pool->npages_in_use = 0;
617         pool->nfrees = 0;
618         pool->gfp_flags = flags;
619         pool->size = PAGE_SIZE;
620         pool->type = type;
621         pool->nrefills = 0;
622         p = pool->name;
623         for (i = 0; i < 5; i++) {
624                 if (type & t[i]) {
625                         p += snprintf(p, sizeof(pool->name) - (p - pool->name),
626                                       "%s", n[i]);
627                 }
628         }
629         *p = 0;
630         /* We copy the name for pr_ calls b/c when dma_pool_destroy is called
631          * - the kobj->name has already been deallocated.*/
632         snprintf(pool->dev_name, sizeof(pool->dev_name), "%s %s",
633                  dev_driver_string(dev), dev_name(dev));
634         mutex_lock(&_manager->lock);
635         /* You can get the dma_pool from either the global: */
636         list_add(&sec_pool->pools, &_manager->pools);
637         _manager->npools++;
638         /* or from 'struct device': */
639         list_add(&pool->pools, &dev->dma_pools);
640         mutex_unlock(&_manager->lock);
641
642         *ptr = pool;
643         devres_add(dev, ptr);
644
645         return pool;
646 err_mem:
647         devres_free(ptr);
648         kfree(sec_pool);
649         kfree(pool);
650         return ERR_PTR(ret);
651 }
652
653 static struct dma_pool *ttm_dma_find_pool(struct device *dev,
654                                           enum pool_type type)
655 {
656         struct dma_pool *pool, *tmp, *found = NULL;
657
658         if (type == IS_UNDEFINED)
659                 return found;
660
661         /* NB: We iterate on the 'struct dev' which has no spinlock, but
662          * it does have a kref which we have taken. The kref is taken during
663          * graphic driver loading - in the drm_pci_init it calls either
664          * pci_dev_get or pci_register_driver which both end up taking a kref
665          * on 'struct device'.
666          *
667          * On teardown, the graphic drivers end up quiescing the TTM (put_pages)
668          * and calls the dev_res deconstructors: ttm_dma_pool_release. The nice
669          * thing is at that point of time there are no pages associated with the
670          * driver so this function will not be called.
671          */
672         list_for_each_entry_safe(pool, tmp, &dev->dma_pools, pools) {
673                 if (pool->type != type)
674                         continue;
675                 found = pool;
676                 break;
677         }
678         return found;
679 }
680
681 /*
682  * Free pages the pages that failed to change the caching state. If there
683  * are pages that have changed their caching state already put them to the
684  * pool.
685  */
686 static void ttm_dma_handle_caching_state_failure(struct dma_pool *pool,
687                                                  struct list_head *d_pages,
688                                                  struct page **failed_pages,
689                                                  unsigned cpages)
690 {
691         struct dma_page *d_page, *tmp;
692         struct page *p;
693         unsigned i = 0;
694
695         p = failed_pages[0];
696         if (!p)
697                 return;
698         /* Find the failed page. */
699         list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
700                 if (d_page->p != p)
701                         continue;
702                 /* .. and then progress over the full list. */
703                 list_del(&d_page->page_list);
704                 __ttm_dma_free_page(pool, d_page);
705                 if (++i < cpages)
706                         p = failed_pages[i];
707                 else
708                         break;
709         }
710
711 }
712
713 /*
714  * Allocate 'count' pages, and put 'need' number of them on the
715  * 'pages' and as well on the 'dma_address' starting at 'dma_offset' offset.
716  * The full list of pages should also be on 'd_pages'.
717  * We return zero for success, and negative numbers as errors.
718  */
719 static int ttm_dma_pool_alloc_new_pages(struct dma_pool *pool,
720                                         struct list_head *d_pages,
721                                         unsigned count)
722 {
723         struct page **caching_array;
724         struct dma_page *dma_p;
725         struct page *p;
726         int r = 0;
727         unsigned i, cpages;
728         unsigned max_cpages = min(count,
729                         (unsigned)(PAGE_SIZE/sizeof(struct page *)));
730
731         /* allocate array for page caching change */
732         caching_array = kmalloc(max_cpages*sizeof(struct page *), GFP_KERNEL);
733
734         if (!caching_array) {
735                 pr_err("%s: Unable to allocate table for new pages\n",
736                        pool->dev_name);
737                 return -ENOMEM;
738         }
739
740         if (count > 1) {
741                 pr_debug("%s: (%s:%d) Getting %d pages\n",
742                          pool->dev_name, pool->name, current->pid, count);
743         }
744
745         for (i = 0, cpages = 0; i < count; ++i) {
746                 dma_p = __ttm_dma_alloc_page(pool);
747                 if (!dma_p) {
748                         pr_err("%s: Unable to get page %u\n",
749                                pool->dev_name, i);
750
751                         /* store already allocated pages in the pool after
752                          * setting the caching state */
753                         if (cpages) {
754                                 r = ttm_set_pages_caching(pool, caching_array,
755                                                           cpages);
756                                 if (r)
757                                         ttm_dma_handle_caching_state_failure(
758                                                 pool, d_pages, caching_array,
759                                                 cpages);
760                         }
761                         r = -ENOMEM;
762                         goto out;
763                 }
764                 p = dma_p->p;
765 #ifdef CONFIG_HIGHMEM
766                 /* gfp flags of highmem page should never be dma32 so we
767                  * we should be fine in such case
768                  */
769                 if (!PageHighMem(p))
770 #endif
771                 {
772                         caching_array[cpages++] = p;
773                         if (cpages == max_cpages) {
774                                 /* Note: Cannot hold the spinlock */
775                                 r = ttm_set_pages_caching(pool, caching_array,
776                                                  cpages);
777                                 if (r) {
778                                         ttm_dma_handle_caching_state_failure(
779                                                 pool, d_pages, caching_array,
780                                                 cpages);
781                                         goto out;
782                                 }
783                                 cpages = 0;
784                         }
785                 }
786                 list_add(&dma_p->page_list, d_pages);
787         }
788
789         if (cpages) {
790                 r = ttm_set_pages_caching(pool, caching_array, cpages);
791                 if (r)
792                         ttm_dma_handle_caching_state_failure(pool, d_pages,
793                                         caching_array, cpages);
794         }
795 out:
796         kfree(caching_array);
797         return r;
798 }
799
800 /*
801  * @return count of pages still required to fulfill the request.
802  */
803 static int ttm_dma_page_pool_fill_locked(struct dma_pool *pool,
804                                          unsigned long *irq_flags)
805 {
806         unsigned count = _manager->options.small;
807         int r = pool->npages_free;
808
809         if (count > pool->npages_free) {
810                 struct list_head d_pages;
811
812                 INIT_LIST_HEAD(&d_pages);
813
814                 spin_unlock_irqrestore(&pool->lock, *irq_flags);
815
816                 /* Returns how many more are neccessary to fulfill the
817                  * request. */
818                 r = ttm_dma_pool_alloc_new_pages(pool, &d_pages, count);
819
820                 spin_lock_irqsave(&pool->lock, *irq_flags);
821                 if (!r) {
822                         /* Add the fresh to the end.. */
823                         list_splice(&d_pages, &pool->free_list);
824                         ++pool->nrefills;
825                         pool->npages_free += count;
826                         r = count;
827                 } else {
828                         struct dma_page *d_page;
829                         unsigned cpages = 0;
830
831                         pr_err("%s: Failed to fill %s pool (r:%d)!\n",
832                                pool->dev_name, pool->name, r);
833
834                         list_for_each_entry(d_page, &d_pages, page_list) {
835                                 cpages++;
836                         }
837                         list_splice_tail(&d_pages, &pool->free_list);
838                         pool->npages_free += cpages;
839                         r = cpages;
840                 }
841         }
842         return r;
843 }
844
845 /*
846  * @return count of pages still required to fulfill the request.
847  * The populate list is actually a stack (not that is matters as TTM
848  * allocates one page at a time.
849  */
850 static int ttm_dma_pool_get_pages(struct dma_pool *pool,
851                                   struct ttm_dma_tt *ttm_dma,
852                                   unsigned index)
853 {
854         struct dma_page *d_page;
855         struct ttm_tt *ttm = &ttm_dma->ttm;
856         unsigned long irq_flags;
857         int count, r = -ENOMEM;
858
859         spin_lock_irqsave(&pool->lock, irq_flags);
860         count = ttm_dma_page_pool_fill_locked(pool, &irq_flags);
861         if (count) {
862                 d_page = list_first_entry(&pool->free_list, struct dma_page, page_list);
863                 ttm->pages[index] = d_page->p;
864                 ttm_dma->dma_address[index] = d_page->dma;
865                 list_move_tail(&d_page->page_list, &ttm_dma->pages_list);
866                 r = 0;
867                 pool->npages_in_use += 1;
868                 pool->npages_free -= 1;
869         }
870         spin_unlock_irqrestore(&pool->lock, irq_flags);
871         return r;
872 }
873
874 /*
875  * On success pages list will hold count number of correctly
876  * cached pages. On failure will hold the negative return value (-ENOMEM, etc).
877  */
878 int ttm_dma_populate(struct ttm_dma_tt *ttm_dma, struct device *dev)
879 {
880         struct ttm_tt *ttm = &ttm_dma->ttm;
881         struct ttm_mem_global *mem_glob = ttm->glob->mem_glob;
882         struct dma_pool *pool;
883         enum pool_type type;
884         unsigned i;
885         gfp_t gfp_flags;
886         int ret;
887
888         if (ttm->state != tt_unpopulated)
889                 return 0;
890
891         type = ttm_to_type(ttm->page_flags, ttm->caching_state);
892         if (ttm->page_flags & TTM_PAGE_FLAG_DMA32)
893                 gfp_flags = GFP_USER | GFP_DMA32;
894         else
895                 gfp_flags = GFP_HIGHUSER;
896         if (ttm->page_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
897                 gfp_flags |= __GFP_ZERO;
898
899         pool = ttm_dma_find_pool(dev, type);
900         if (!pool) {
901                 pool = ttm_dma_pool_init(dev, gfp_flags, type);
902                 if (IS_ERR_OR_NULL(pool)) {
903                         return -ENOMEM;
904                 }
905         }
906
907         INIT_LIST_HEAD(&ttm_dma->pages_list);
908         for (i = 0; i < ttm->num_pages; ++i) {
909                 ret = ttm_dma_pool_get_pages(pool, ttm_dma, i);
910                 if (ret != 0) {
911                         ttm_dma_unpopulate(ttm_dma, dev);
912                         return -ENOMEM;
913                 }
914
915                 ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
916                                                 false, false);
917                 if (unlikely(ret != 0)) {
918                         ttm_dma_unpopulate(ttm_dma, dev);
919                         return -ENOMEM;
920                 }
921         }
922
923         if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
924                 ret = ttm_tt_swapin(ttm);
925                 if (unlikely(ret != 0)) {
926                         ttm_dma_unpopulate(ttm_dma, dev);
927                         return ret;
928                 }
929         }
930
931         ttm->state = tt_unbound;
932         return 0;
933 }
934 EXPORT_SYMBOL_GPL(ttm_dma_populate);
935
936 /* Put all pages in pages list to correct pool to wait for reuse */
937 void ttm_dma_unpopulate(struct ttm_dma_tt *ttm_dma, struct device *dev)
938 {
939         struct ttm_tt *ttm = &ttm_dma->ttm;
940         struct dma_pool *pool;
941         struct dma_page *d_page, *next;
942         enum pool_type type;
943         bool is_cached = false;
944         unsigned count = 0, i, npages = 0;
945         unsigned long irq_flags;
946
947         type = ttm_to_type(ttm->page_flags, ttm->caching_state);
948         pool = ttm_dma_find_pool(dev, type);
949         if (!pool)
950                 return;
951
952         is_cached = (ttm_dma_find_pool(pool->dev,
953                      ttm_to_type(ttm->page_flags, tt_cached)) == pool);
954
955         /* make sure pages array match list and count number of pages */
956         list_for_each_entry(d_page, &ttm_dma->pages_list, page_list) {
957                 ttm->pages[count] = d_page->p;
958                 count++;
959         }
960
961         spin_lock_irqsave(&pool->lock, irq_flags);
962         pool->npages_in_use -= count;
963         if (is_cached) {
964                 pool->nfrees += count;
965         } else {
966                 pool->npages_free += count;
967                 list_splice(&ttm_dma->pages_list, &pool->free_list);
968                 /*
969                  * Wait to have at at least NUM_PAGES_TO_ALLOC number of pages
970                  * to free in order to minimize calls to set_memory_wb().
971                  */
972                 if (pool->npages_free >= (_manager->options.max_size +
973                                           NUM_PAGES_TO_ALLOC))
974                         npages = pool->npages_free - _manager->options.max_size;
975         }
976         spin_unlock_irqrestore(&pool->lock, irq_flags);
977
978         if (is_cached) {
979                 list_for_each_entry_safe(d_page, next, &ttm_dma->pages_list, page_list) {
980                         ttm_mem_global_free_page(ttm->glob->mem_glob,
981                                                  d_page->p);
982                         ttm_dma_page_put(pool, d_page);
983                 }
984         } else {
985                 for (i = 0; i < count; i++) {
986                         ttm_mem_global_free_page(ttm->glob->mem_glob,
987                                                  ttm->pages[i]);
988                 }
989         }
990
991         INIT_LIST_HEAD(&ttm_dma->pages_list);
992         for (i = 0; i < ttm->num_pages; i++) {
993                 ttm->pages[i] = NULL;
994                 ttm_dma->dma_address[i] = 0;
995         }
996
997         /* shrink pool if necessary (only on !is_cached pools)*/
998         if (npages)
999                 ttm_dma_page_pool_free(pool, npages, false);
1000         ttm->state = tt_unpopulated;
1001 }
1002 EXPORT_SYMBOL_GPL(ttm_dma_unpopulate);
1003
1004 /**
1005  * Callback for mm to request pool to reduce number of page held.
1006  *
1007  * XXX: (dchinner) Deadlock warning!
1008  *
1009  * I'm getting sadder as I hear more pathetical whimpers about needing per-pool
1010  * shrinkers
1011  */
1012 static unsigned long
1013 ttm_dma_pool_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1014 {
1015         static unsigned start_pool;
1016         unsigned idx = 0;
1017         unsigned pool_offset;
1018         unsigned shrink_pages = sc->nr_to_scan;
1019         struct device_pools *p;
1020         unsigned long freed = 0;
1021
1022         if (list_empty(&_manager->pools))
1023                 return SHRINK_STOP;
1024
1025         if (!mutex_trylock(&_manager->lock))
1026                 return SHRINK_STOP;
1027         if (!_manager->npools)
1028                 goto out;
1029         pool_offset = ++start_pool % _manager->npools;
1030         list_for_each_entry(p, &_manager->pools, pools) {
1031                 unsigned nr_free;
1032
1033                 if (!p->dev)
1034                         continue;
1035                 if (shrink_pages == 0)
1036                         break;
1037                 /* Do it in round-robin fashion. */
1038                 if (++idx < pool_offset)
1039                         continue;
1040                 nr_free = shrink_pages;
1041                 /* OK to use static buffer since global mutex is held. */
1042                 shrink_pages = ttm_dma_page_pool_free(p->pool, nr_free, true);
1043                 freed += nr_free - shrink_pages;
1044
1045                 pr_debug("%s: (%s:%d) Asked to shrink %d, have %d more to go\n",
1046                          p->pool->dev_name, p->pool->name, current->pid,
1047                          nr_free, shrink_pages);
1048         }
1049 out:
1050         mutex_unlock(&_manager->lock);
1051         return freed;
1052 }
1053
1054 static unsigned long
1055 ttm_dma_pool_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1056 {
1057         struct device_pools *p;
1058         unsigned long count = 0;
1059
1060         if (!mutex_trylock(&_manager->lock))
1061                 return 0;
1062         list_for_each_entry(p, &_manager->pools, pools)
1063                 count += p->pool->npages_free;
1064         mutex_unlock(&_manager->lock);
1065         return count;
1066 }
1067
1068 static void ttm_dma_pool_mm_shrink_init(struct ttm_pool_manager *manager)
1069 {
1070         manager->mm_shrink.count_objects = ttm_dma_pool_shrink_count;
1071         manager->mm_shrink.scan_objects = &ttm_dma_pool_shrink_scan;
1072         manager->mm_shrink.seeks = 1;
1073         register_shrinker(&manager->mm_shrink);
1074 }
1075
1076 static void ttm_dma_pool_mm_shrink_fini(struct ttm_pool_manager *manager)
1077 {
1078         unregister_shrinker(&manager->mm_shrink);
1079 }
1080
1081 int ttm_dma_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages)
1082 {
1083         int ret = -ENOMEM;
1084
1085         WARN_ON(_manager);
1086
1087         pr_info("Initializing DMA pool allocator\n");
1088
1089         _manager = kzalloc(sizeof(*_manager), GFP_KERNEL);
1090         if (!_manager)
1091                 goto err;
1092
1093         mutex_init(&_manager->lock);
1094         INIT_LIST_HEAD(&_manager->pools);
1095
1096         _manager->options.max_size = max_pages;
1097         _manager->options.small = SMALL_ALLOCATION;
1098         _manager->options.alloc_size = NUM_PAGES_TO_ALLOC;
1099
1100         /* This takes care of auto-freeing the _manager */
1101         ret = kobject_init_and_add(&_manager->kobj, &ttm_pool_kobj_type,
1102                                    &glob->kobj, "dma_pool");
1103         if (unlikely(ret != 0)) {
1104                 kobject_put(&_manager->kobj);
1105                 goto err;
1106         }
1107         ttm_dma_pool_mm_shrink_init(_manager);
1108         return 0;
1109 err:
1110         return ret;
1111 }
1112
1113 void ttm_dma_page_alloc_fini(void)
1114 {
1115         struct device_pools *p, *t;
1116
1117         pr_info("Finalizing DMA pool allocator\n");
1118         ttm_dma_pool_mm_shrink_fini(_manager);
1119
1120         list_for_each_entry_safe_reverse(p, t, &_manager->pools, pools) {
1121                 dev_dbg(p->dev, "(%s:%d) Freeing.\n", p->pool->name,
1122                         current->pid);
1123                 WARN_ON(devres_destroy(p->dev, ttm_dma_pool_release,
1124                         ttm_dma_pool_match, p->pool));
1125                 ttm_dma_free_pool(p->dev, p->pool->type);
1126         }
1127         kobject_put(&_manager->kobj);
1128         _manager = NULL;
1129 }
1130
1131 int ttm_dma_page_alloc_debugfs(struct seq_file *m, void *data)
1132 {
1133         struct device_pools *p;
1134         struct dma_pool *pool = NULL;
1135         char *h[] = {"pool", "refills", "pages freed", "inuse", "available",
1136                      "name", "virt", "busaddr"};
1137
1138         if (!_manager) {
1139                 seq_printf(m, "No pool allocator running.\n");
1140                 return 0;
1141         }
1142         seq_printf(m, "%13s %12s %13s %8s %8s %8s\n",
1143                    h[0], h[1], h[2], h[3], h[4], h[5]);
1144         mutex_lock(&_manager->lock);
1145         list_for_each_entry(p, &_manager->pools, pools) {
1146                 struct device *dev = p->dev;
1147                 if (!dev)
1148                         continue;
1149                 pool = p->pool;
1150                 seq_printf(m, "%13s %12ld %13ld %8d %8d %8s\n",
1151                                 pool->name, pool->nrefills,
1152                                 pool->nfrees, pool->npages_in_use,
1153                                 pool->npages_free,
1154                                 pool->dev_name);
1155         }
1156         mutex_unlock(&_manager->lock);
1157         return 0;
1158 }
1159 EXPORT_SYMBOL_GPL(ttm_dma_page_alloc_debugfs);
1160
1161 #endif