GNU Linux-libre 4.14.257-gnu1
[releases.git] / drivers / gpu / drm / rcar-du / rcar_du_crtc.c
1 /*
2  * rcar_du_crtc.c  --  R-Car Display Unit CRTCs
3  *
4  * Copyright (C) 2013-2015 Renesas Electronics Corporation
5  *
6  * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  */
13
14 #include <linux/clk.h>
15 #include <linux/mutex.h>
16 #include <linux/sys_soc.h>
17
18 #include <drm/drmP.h>
19 #include <drm/drm_atomic.h>
20 #include <drm/drm_atomic_helper.h>
21 #include <drm/drm_crtc.h>
22 #include <drm/drm_crtc_helper.h>
23 #include <drm/drm_fb_cma_helper.h>
24 #include <drm/drm_gem_cma_helper.h>
25 #include <drm/drm_plane_helper.h>
26
27 #include "rcar_du_crtc.h"
28 #include "rcar_du_drv.h"
29 #include "rcar_du_kms.h"
30 #include "rcar_du_plane.h"
31 #include "rcar_du_regs.h"
32 #include "rcar_du_vsp.h"
33
34 static u32 rcar_du_crtc_read(struct rcar_du_crtc *rcrtc, u32 reg)
35 {
36         struct rcar_du_device *rcdu = rcrtc->group->dev;
37
38         return rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
39 }
40
41 static void rcar_du_crtc_write(struct rcar_du_crtc *rcrtc, u32 reg, u32 data)
42 {
43         struct rcar_du_device *rcdu = rcrtc->group->dev;
44
45         rcar_du_write(rcdu, rcrtc->mmio_offset + reg, data);
46 }
47
48 static void rcar_du_crtc_clr(struct rcar_du_crtc *rcrtc, u32 reg, u32 clr)
49 {
50         struct rcar_du_device *rcdu = rcrtc->group->dev;
51
52         rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
53                       rcar_du_read(rcdu, rcrtc->mmio_offset + reg) & ~clr);
54 }
55
56 static void rcar_du_crtc_set(struct rcar_du_crtc *rcrtc, u32 reg, u32 set)
57 {
58         struct rcar_du_device *rcdu = rcrtc->group->dev;
59
60         rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
61                       rcar_du_read(rcdu, rcrtc->mmio_offset + reg) | set);
62 }
63
64 static void rcar_du_crtc_clr_set(struct rcar_du_crtc *rcrtc, u32 reg,
65                                  u32 clr, u32 set)
66 {
67         struct rcar_du_device *rcdu = rcrtc->group->dev;
68         u32 value = rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
69
70         rcar_du_write(rcdu, rcrtc->mmio_offset + reg, (value & ~clr) | set);
71 }
72
73 static int rcar_du_crtc_get(struct rcar_du_crtc *rcrtc)
74 {
75         int ret;
76
77         ret = clk_prepare_enable(rcrtc->clock);
78         if (ret < 0)
79                 return ret;
80
81         ret = clk_prepare_enable(rcrtc->extclock);
82         if (ret < 0)
83                 goto error_clock;
84
85         ret = rcar_du_group_get(rcrtc->group);
86         if (ret < 0)
87                 goto error_group;
88
89         return 0;
90
91 error_group:
92         clk_disable_unprepare(rcrtc->extclock);
93 error_clock:
94         clk_disable_unprepare(rcrtc->clock);
95         return ret;
96 }
97
98 static void rcar_du_crtc_put(struct rcar_du_crtc *rcrtc)
99 {
100         rcar_du_group_put(rcrtc->group);
101
102         clk_disable_unprepare(rcrtc->extclock);
103         clk_disable_unprepare(rcrtc->clock);
104 }
105
106 /* -----------------------------------------------------------------------------
107  * Hardware Setup
108  */
109
110 struct dpll_info {
111         unsigned int output;
112         unsigned int fdpll;
113         unsigned int n;
114         unsigned int m;
115 };
116
117 static void rcar_du_dpll_divider(struct rcar_du_crtc *rcrtc,
118                                  struct dpll_info *dpll,
119                                  unsigned long input,
120                                  unsigned long target)
121 {
122         unsigned long best_diff = (unsigned long)-1;
123         unsigned long diff;
124         unsigned int fdpll;
125         unsigned int m;
126         unsigned int n;
127
128         for (n = 39; n < 120; n++) {
129                 for (m = 0; m < 4; m++) {
130                         for (fdpll = 1; fdpll < 32; fdpll++) {
131                                 unsigned long output;
132
133                                 output = input * (n + 1) / (m + 1)
134                                        / (fdpll + 1);
135                                 if (output >= 400000000)
136                                         continue;
137
138                                 diff = abs((long)output - (long)target);
139                                 if (best_diff > diff) {
140                                         best_diff = diff;
141                                         dpll->n = n;
142                                         dpll->m = m;
143                                         dpll->fdpll = fdpll;
144                                         dpll->output = output;
145                                 }
146
147                                 if (diff == 0)
148                                         goto done;
149                         }
150                 }
151         }
152
153 done:
154         dev_dbg(rcrtc->group->dev->dev,
155                 "output:%u, fdpll:%u, n:%u, m:%u, diff:%lu\n",
156                  dpll->output, dpll->fdpll, dpll->n, dpll->m,
157                  best_diff);
158 }
159
160 static const struct soc_device_attribute rcar_du_r8a7795_es1[] = {
161         { .soc_id = "r8a7795", .revision = "ES1.*" },
162         { /* sentinel */ }
163 };
164
165 static void rcar_du_crtc_set_display_timing(struct rcar_du_crtc *rcrtc)
166 {
167         const struct drm_display_mode *mode = &rcrtc->crtc.state->adjusted_mode;
168         struct rcar_du_device *rcdu = rcrtc->group->dev;
169         unsigned long mode_clock = mode->clock * 1000;
170         unsigned long clk;
171         u32 value;
172         u32 escr;
173         u32 div;
174
175         /*
176          * Compute the clock divisor and select the internal or external dot
177          * clock based on the requested frequency.
178          */
179         clk = clk_get_rate(rcrtc->clock);
180         div = DIV_ROUND_CLOSEST(clk, mode_clock);
181         div = clamp(div, 1U, 64U) - 1;
182         escr = div | ESCR_DCLKSEL_CLKS;
183
184         if (rcrtc->extclock) {
185                 struct dpll_info dpll = { 0 };
186                 unsigned long extclk;
187                 unsigned long extrate;
188                 unsigned long rate;
189                 u32 extdiv;
190
191                 extclk = clk_get_rate(rcrtc->extclock);
192                 if (rcdu->info->dpll_ch & (1 << rcrtc->index)) {
193                         unsigned long target = mode_clock;
194
195                         /*
196                          * The H3 ES1.x exhibits dot clock duty cycle stability
197                          * issues. We can work around them by configuring the
198                          * DPLL to twice the desired frequency, coupled with a
199                          * /2 post-divider. This isn't needed on other SoCs and
200                          * breaks HDMI output on M3-W for a currently unknown
201                          * reason, so restrict the workaround to H3 ES1.x.
202                          */
203                         if (soc_device_match(rcar_du_r8a7795_es1))
204                                 target *= 2;
205
206                         rcar_du_dpll_divider(rcrtc, &dpll, extclk, target);
207                         extclk = dpll.output;
208                 }
209
210                 extdiv = DIV_ROUND_CLOSEST(extclk, mode_clock);
211                 extdiv = clamp(extdiv, 1U, 64U) - 1;
212
213                 rate = clk / (div + 1);
214                 extrate = extclk / (extdiv + 1);
215
216                 if (abs((long)extrate - (long)mode_clock) <
217                     abs((long)rate - (long)mode_clock)) {
218
219                         if (rcdu->info->dpll_ch & (1 << rcrtc->index)) {
220                                 u32 dpllcr = DPLLCR_CODE | DPLLCR_CLKE
221                                            | DPLLCR_FDPLL(dpll.fdpll)
222                                            | DPLLCR_N(dpll.n) | DPLLCR_M(dpll.m)
223                                            | DPLLCR_STBY;
224
225                                 if (rcrtc->index == 1)
226                                         dpllcr |= DPLLCR_PLCS1
227                                                |  DPLLCR_INCS_DOTCLKIN1;
228                                 else
229                                         dpllcr |= DPLLCR_PLCS0
230                                                |  DPLLCR_INCS_DOTCLKIN0;
231
232                                 rcar_du_group_write(rcrtc->group, DPLLCR,
233                                                     dpllcr);
234                         }
235
236                         escr = ESCR_DCLKSEL_DCLKIN | extdiv;
237                 }
238
239                 dev_dbg(rcrtc->group->dev->dev,
240                         "mode clock %lu extrate %lu rate %lu ESCR 0x%08x\n",
241                         mode_clock, extrate, rate, escr);
242         }
243
244         rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? ESCR2 : ESCR,
245                             escr);
246         rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? OTAR2 : OTAR, 0);
247
248         /* Signal polarities */
249         value = ((mode->flags & DRM_MODE_FLAG_PVSYNC) ? DSMR_VSL : 0)
250               | ((mode->flags & DRM_MODE_FLAG_PHSYNC) ? DSMR_HSL : 0)
251               | DSMR_DIPM_DISP | DSMR_CSPM;
252         rcar_du_crtc_write(rcrtc, DSMR, value);
253
254         /* Display timings */
255         rcar_du_crtc_write(rcrtc, HDSR, mode->htotal - mode->hsync_start - 19);
256         rcar_du_crtc_write(rcrtc, HDER, mode->htotal - mode->hsync_start +
257                                         mode->hdisplay - 19);
258         rcar_du_crtc_write(rcrtc, HSWR, mode->hsync_end -
259                                         mode->hsync_start - 1);
260         rcar_du_crtc_write(rcrtc, HCR,  mode->htotal - 1);
261
262         rcar_du_crtc_write(rcrtc, VDSR, mode->crtc_vtotal -
263                                         mode->crtc_vsync_end - 2);
264         rcar_du_crtc_write(rcrtc, VDER, mode->crtc_vtotal -
265                                         mode->crtc_vsync_end +
266                                         mode->crtc_vdisplay - 2);
267         rcar_du_crtc_write(rcrtc, VSPR, mode->crtc_vtotal -
268                                         mode->crtc_vsync_end +
269                                         mode->crtc_vsync_start - 1);
270         rcar_du_crtc_write(rcrtc, VCR,  mode->crtc_vtotal - 1);
271
272         rcar_du_crtc_write(rcrtc, DESR,  mode->htotal - mode->hsync_start - 1);
273         rcar_du_crtc_write(rcrtc, DEWR,  mode->hdisplay);
274 }
275
276 void rcar_du_crtc_route_output(struct drm_crtc *crtc,
277                                enum rcar_du_output output)
278 {
279         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
280         struct rcar_du_device *rcdu = rcrtc->group->dev;
281
282         /*
283          * Store the route from the CRTC output to the DU output. The DU will be
284          * configured when starting the CRTC.
285          */
286         rcrtc->outputs |= BIT(output);
287
288         /*
289          * Store RGB routing to DPAD0, the hardware will be configured when
290          * starting the CRTC.
291          */
292         if (output == RCAR_DU_OUTPUT_DPAD0)
293                 rcdu->dpad0_source = rcrtc->index;
294 }
295
296 static unsigned int plane_zpos(struct rcar_du_plane *plane)
297 {
298         return plane->plane.state->normalized_zpos;
299 }
300
301 static const struct rcar_du_format_info *
302 plane_format(struct rcar_du_plane *plane)
303 {
304         return to_rcar_plane_state(plane->plane.state)->format;
305 }
306
307 static void rcar_du_crtc_update_planes(struct rcar_du_crtc *rcrtc)
308 {
309         struct rcar_du_plane *planes[RCAR_DU_NUM_HW_PLANES];
310         struct rcar_du_device *rcdu = rcrtc->group->dev;
311         unsigned int num_planes = 0;
312         unsigned int dptsr_planes;
313         unsigned int hwplanes = 0;
314         unsigned int prio = 0;
315         unsigned int i;
316         u32 dspr = 0;
317
318         for (i = 0; i < rcrtc->group->num_planes; ++i) {
319                 struct rcar_du_plane *plane = &rcrtc->group->planes[i];
320                 unsigned int j;
321
322                 if (plane->plane.state->crtc != &rcrtc->crtc)
323                         continue;
324
325                 /* Insert the plane in the sorted planes array. */
326                 for (j = num_planes++; j > 0; --j) {
327                         if (plane_zpos(planes[j-1]) <= plane_zpos(plane))
328                                 break;
329                         planes[j] = planes[j-1];
330                 }
331
332                 planes[j] = plane;
333                 prio += plane_format(plane)->planes * 4;
334         }
335
336         for (i = 0; i < num_planes; ++i) {
337                 struct rcar_du_plane *plane = planes[i];
338                 struct drm_plane_state *state = plane->plane.state;
339                 unsigned int index = to_rcar_plane_state(state)->hwindex;
340
341                 prio -= 4;
342                 dspr |= (index + 1) << prio;
343                 hwplanes |= 1 << index;
344
345                 if (plane_format(plane)->planes == 2) {
346                         index = (index + 1) % 8;
347
348                         prio -= 4;
349                         dspr |= (index + 1) << prio;
350                         hwplanes |= 1 << index;
351                 }
352         }
353
354         /* If VSP+DU integration is enabled the plane assignment is fixed. */
355         if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE)) {
356                 if (rcdu->info->gen < 3) {
357                         dspr = (rcrtc->index % 2) + 1;
358                         hwplanes = 1 << (rcrtc->index % 2);
359                 } else {
360                         dspr = (rcrtc->index % 2) ? 3 : 1;
361                         hwplanes = 1 << ((rcrtc->index % 2) ? 2 : 0);
362                 }
363         }
364
365         /*
366          * Update the planes to display timing and dot clock generator
367          * associations.
368          *
369          * Updating the DPTSR register requires restarting the CRTC group,
370          * resulting in visible flicker. To mitigate the issue only update the
371          * association if needed by enabled planes. Planes being disabled will
372          * keep their current association.
373          */
374         mutex_lock(&rcrtc->group->lock);
375
376         dptsr_planes = rcrtc->index % 2 ? rcrtc->group->dptsr_planes | hwplanes
377                      : rcrtc->group->dptsr_planes & ~hwplanes;
378
379         if (dptsr_planes != rcrtc->group->dptsr_planes) {
380                 rcar_du_group_write(rcrtc->group, DPTSR,
381                                     (dptsr_planes << 16) | dptsr_planes);
382                 rcrtc->group->dptsr_planes = dptsr_planes;
383
384                 if (rcrtc->group->used_crtcs)
385                         rcar_du_group_restart(rcrtc->group);
386         }
387
388         /* Restart the group if plane sources have changed. */
389         if (rcrtc->group->need_restart)
390                 rcar_du_group_restart(rcrtc->group);
391
392         mutex_unlock(&rcrtc->group->lock);
393
394         rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR,
395                             dspr);
396 }
397
398 /* -----------------------------------------------------------------------------
399  * Page Flip
400  */
401
402 void rcar_du_crtc_finish_page_flip(struct rcar_du_crtc *rcrtc)
403 {
404         struct drm_pending_vblank_event *event;
405         struct drm_device *dev = rcrtc->crtc.dev;
406         unsigned long flags;
407
408         spin_lock_irqsave(&dev->event_lock, flags);
409         event = rcrtc->event;
410         rcrtc->event = NULL;
411         spin_unlock_irqrestore(&dev->event_lock, flags);
412
413         if (event == NULL)
414                 return;
415
416         spin_lock_irqsave(&dev->event_lock, flags);
417         drm_crtc_send_vblank_event(&rcrtc->crtc, event);
418         wake_up(&rcrtc->flip_wait);
419         spin_unlock_irqrestore(&dev->event_lock, flags);
420
421         drm_crtc_vblank_put(&rcrtc->crtc);
422 }
423
424 static bool rcar_du_crtc_page_flip_pending(struct rcar_du_crtc *rcrtc)
425 {
426         struct drm_device *dev = rcrtc->crtc.dev;
427         unsigned long flags;
428         bool pending;
429
430         spin_lock_irqsave(&dev->event_lock, flags);
431         pending = rcrtc->event != NULL;
432         spin_unlock_irqrestore(&dev->event_lock, flags);
433
434         return pending;
435 }
436
437 static void rcar_du_crtc_wait_page_flip(struct rcar_du_crtc *rcrtc)
438 {
439         struct rcar_du_device *rcdu = rcrtc->group->dev;
440
441         if (wait_event_timeout(rcrtc->flip_wait,
442                                !rcar_du_crtc_page_flip_pending(rcrtc),
443                                msecs_to_jiffies(50)))
444                 return;
445
446         dev_warn(rcdu->dev, "page flip timeout\n");
447
448         rcar_du_crtc_finish_page_flip(rcrtc);
449 }
450
451 /* -----------------------------------------------------------------------------
452  * Start/Stop and Suspend/Resume
453  */
454
455 static void rcar_du_crtc_setup(struct rcar_du_crtc *rcrtc)
456 {
457         /* Set display off and background to black */
458         rcar_du_crtc_write(rcrtc, DOOR, DOOR_RGB(0, 0, 0));
459         rcar_du_crtc_write(rcrtc, BPOR, BPOR_RGB(0, 0, 0));
460
461         /* Configure display timings and output routing */
462         rcar_du_crtc_set_display_timing(rcrtc);
463         rcar_du_group_set_routing(rcrtc->group);
464
465         /* Start with all planes disabled. */
466         rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
467
468         /* Enable the VSP compositor. */
469         if (rcar_du_has(rcrtc->group->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
470                 rcar_du_vsp_enable(rcrtc);
471
472         /* Turn vertical blanking interrupt reporting on. */
473         drm_crtc_vblank_on(&rcrtc->crtc);
474 }
475
476 static void rcar_du_crtc_start(struct rcar_du_crtc *rcrtc)
477 {
478         bool interlaced;
479
480         /*
481          * Select master sync mode. This enables display operation in master
482          * sync mode (with the HSYNC and VSYNC signals configured as outputs and
483          * actively driven).
484          */
485         interlaced = rcrtc->crtc.mode.flags & DRM_MODE_FLAG_INTERLACE;
486         rcar_du_crtc_clr_set(rcrtc, DSYSR, DSYSR_TVM_MASK | DSYSR_SCM_MASK,
487                              (interlaced ? DSYSR_SCM_INT_VIDEO : 0) |
488                              DSYSR_TVM_MASTER);
489
490         rcar_du_group_start_stop(rcrtc->group, true);
491 }
492
493 static void rcar_du_crtc_disable_planes(struct rcar_du_crtc *rcrtc)
494 {
495         struct rcar_du_device *rcdu = rcrtc->group->dev;
496         struct drm_crtc *crtc = &rcrtc->crtc;
497         u32 status;
498
499         /* Make sure vblank interrupts are enabled. */
500         drm_crtc_vblank_get(crtc);
501
502         /*
503          * Disable planes and calculate how many vertical blanking interrupts we
504          * have to wait for. If a vertical blanking interrupt has been triggered
505          * but not processed yet, we don't know whether it occurred before or
506          * after the planes got disabled. We thus have to wait for two vblank
507          * interrupts in that case.
508          */
509         spin_lock_irq(&rcrtc->vblank_lock);
510         rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
511         status = rcar_du_crtc_read(rcrtc, DSSR);
512         rcrtc->vblank_count = status & DSSR_VBK ? 2 : 1;
513         spin_unlock_irq(&rcrtc->vblank_lock);
514
515         if (!wait_event_timeout(rcrtc->vblank_wait, rcrtc->vblank_count == 0,
516                                 msecs_to_jiffies(100)))
517                 dev_warn(rcdu->dev, "vertical blanking timeout\n");
518
519         drm_crtc_vblank_put(crtc);
520 }
521
522 static void rcar_du_crtc_stop(struct rcar_du_crtc *rcrtc)
523 {
524         struct drm_crtc *crtc = &rcrtc->crtc;
525
526         /*
527          * Disable all planes and wait for the change to take effect. This is
528          * required as the plane enable registers are updated on vblank, and no
529          * vblank will occur once the CRTC is stopped. Disabling planes when
530          * starting the CRTC thus wouldn't be enough as it would start scanning
531          * out immediately from old frame buffers until the next vblank.
532          *
533          * This increases the CRTC stop delay, especially when multiple CRTCs
534          * are stopped in one operation as we now wait for one vblank per CRTC.
535          * Whether this can be improved needs to be researched.
536          */
537         rcar_du_crtc_disable_planes(rcrtc);
538
539         /*
540          * Disable vertical blanking interrupt reporting. We first need to wait
541          * for page flip completion before stopping the CRTC as userspace
542          * expects page flips to eventually complete.
543          */
544         rcar_du_crtc_wait_page_flip(rcrtc);
545         drm_crtc_vblank_off(crtc);
546
547         /* Disable the VSP compositor. */
548         if (rcar_du_has(rcrtc->group->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
549                 rcar_du_vsp_disable(rcrtc);
550
551         /*
552          * Select switch sync mode. This stops display operation and configures
553          * the HSYNC and VSYNC signals as inputs.
554          */
555         rcar_du_crtc_clr_set(rcrtc, DSYSR, DSYSR_TVM_MASK, DSYSR_TVM_SWITCH);
556
557         rcar_du_group_start_stop(rcrtc->group, false);
558 }
559
560 void rcar_du_crtc_suspend(struct rcar_du_crtc *rcrtc)
561 {
562         if (rcar_du_has(rcrtc->group->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
563                 rcar_du_vsp_disable(rcrtc);
564
565         rcar_du_crtc_stop(rcrtc);
566         rcar_du_crtc_put(rcrtc);
567 }
568
569 void rcar_du_crtc_resume(struct rcar_du_crtc *rcrtc)
570 {
571         unsigned int i;
572
573         if (!rcrtc->crtc.state->active)
574                 return;
575
576         rcar_du_crtc_get(rcrtc);
577         rcar_du_crtc_setup(rcrtc);
578
579         /* Commit the planes state. */
580         if (!rcar_du_has(rcrtc->group->dev, RCAR_DU_FEATURE_VSP1_SOURCE)) {
581                 for (i = 0; i < rcrtc->group->num_planes; ++i) {
582                         struct rcar_du_plane *plane = &rcrtc->group->planes[i];
583
584                         if (plane->plane.state->crtc != &rcrtc->crtc)
585                                 continue;
586
587                         rcar_du_plane_setup(plane);
588                 }
589         }
590
591         rcar_du_crtc_update_planes(rcrtc);
592         rcar_du_crtc_start(rcrtc);
593 }
594
595 /* -----------------------------------------------------------------------------
596  * CRTC Functions
597  */
598
599 static void rcar_du_crtc_atomic_enable(struct drm_crtc *crtc,
600                                        struct drm_crtc_state *old_state)
601 {
602         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
603
604         /*
605          * If the CRTC has already been setup by the .atomic_begin() handler we
606          * can skip the setup stage.
607          */
608         if (!rcrtc->initialized) {
609                 rcar_du_crtc_get(rcrtc);
610                 rcar_du_crtc_setup(rcrtc);
611                 rcrtc->initialized = true;
612         }
613
614         rcar_du_crtc_start(rcrtc);
615 }
616
617 static void rcar_du_crtc_atomic_disable(struct drm_crtc *crtc,
618                                         struct drm_crtc_state *old_state)
619 {
620         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
621
622         rcar_du_crtc_stop(rcrtc);
623         rcar_du_crtc_put(rcrtc);
624
625         spin_lock_irq(&crtc->dev->event_lock);
626         if (crtc->state->event) {
627                 drm_crtc_send_vblank_event(crtc, crtc->state->event);
628                 crtc->state->event = NULL;
629         }
630         spin_unlock_irq(&crtc->dev->event_lock);
631
632         rcrtc->initialized = false;
633         rcrtc->outputs = 0;
634 }
635
636 static void rcar_du_crtc_atomic_begin(struct drm_crtc *crtc,
637                                       struct drm_crtc_state *old_crtc_state)
638 {
639         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
640
641         WARN_ON(!crtc->state->enable);
642
643         /*
644          * If a mode set is in progress we can be called with the CRTC disabled.
645          * We then need to first setup the CRTC in order to configure planes.
646          * The .atomic_enable() handler will notice and skip the CRTC setup.
647          */
648         if (!rcrtc->initialized) {
649                 rcar_du_crtc_get(rcrtc);
650                 rcar_du_crtc_setup(rcrtc);
651                 rcrtc->initialized = true;
652         }
653
654         if (rcar_du_has(rcrtc->group->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
655                 rcar_du_vsp_atomic_begin(rcrtc);
656 }
657
658 static void rcar_du_crtc_atomic_flush(struct drm_crtc *crtc,
659                                       struct drm_crtc_state *old_crtc_state)
660 {
661         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
662         struct drm_device *dev = rcrtc->crtc.dev;
663         unsigned long flags;
664
665         rcar_du_crtc_update_planes(rcrtc);
666
667         if (crtc->state->event) {
668                 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
669
670                 spin_lock_irqsave(&dev->event_lock, flags);
671                 rcrtc->event = crtc->state->event;
672                 crtc->state->event = NULL;
673                 spin_unlock_irqrestore(&dev->event_lock, flags);
674         }
675
676         if (rcar_du_has(rcrtc->group->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
677                 rcar_du_vsp_atomic_flush(rcrtc);
678 }
679
680 static const struct drm_crtc_helper_funcs crtc_helper_funcs = {
681         .atomic_begin = rcar_du_crtc_atomic_begin,
682         .atomic_flush = rcar_du_crtc_atomic_flush,
683         .atomic_enable = rcar_du_crtc_atomic_enable,
684         .atomic_disable = rcar_du_crtc_atomic_disable,
685 };
686
687 static int rcar_du_crtc_enable_vblank(struct drm_crtc *crtc)
688 {
689         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
690
691         rcar_du_crtc_write(rcrtc, DSRCR, DSRCR_VBCL);
692         rcar_du_crtc_set(rcrtc, DIER, DIER_VBE);
693         rcrtc->vblank_enable = true;
694
695         return 0;
696 }
697
698 static void rcar_du_crtc_disable_vblank(struct drm_crtc *crtc)
699 {
700         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
701
702         rcar_du_crtc_clr(rcrtc, DIER, DIER_VBE);
703         rcrtc->vblank_enable = false;
704 }
705
706 static const struct drm_crtc_funcs crtc_funcs = {
707         .reset = drm_atomic_helper_crtc_reset,
708         .destroy = drm_crtc_cleanup,
709         .set_config = drm_atomic_helper_set_config,
710         .page_flip = drm_atomic_helper_page_flip,
711         .atomic_duplicate_state = drm_atomic_helper_crtc_duplicate_state,
712         .atomic_destroy_state = drm_atomic_helper_crtc_destroy_state,
713         .enable_vblank = rcar_du_crtc_enable_vblank,
714         .disable_vblank = rcar_du_crtc_disable_vblank,
715 };
716
717 /* -----------------------------------------------------------------------------
718  * Interrupt Handling
719  */
720
721 static irqreturn_t rcar_du_crtc_irq(int irq, void *arg)
722 {
723         struct rcar_du_crtc *rcrtc = arg;
724         struct rcar_du_device *rcdu = rcrtc->group->dev;
725         irqreturn_t ret = IRQ_NONE;
726         u32 status;
727
728         spin_lock(&rcrtc->vblank_lock);
729
730         status = rcar_du_crtc_read(rcrtc, DSSR);
731         rcar_du_crtc_write(rcrtc, DSRCR, status & DSRCR_MASK);
732
733         if (status & DSSR_VBK) {
734                 /*
735                  * Wake up the vblank wait if the counter reaches 0. This must
736                  * be protected by the vblank_lock to avoid races in
737                  * rcar_du_crtc_disable_planes().
738                  */
739                 if (rcrtc->vblank_count) {
740                         if (--rcrtc->vblank_count == 0)
741                                 wake_up(&rcrtc->vblank_wait);
742                 }
743         }
744
745         spin_unlock(&rcrtc->vblank_lock);
746
747         if (status & DSSR_VBK) {
748                 if (rcdu->info->gen < 3) {
749                         drm_crtc_handle_vblank(&rcrtc->crtc);
750                         rcar_du_crtc_finish_page_flip(rcrtc);
751                 }
752
753                 ret = IRQ_HANDLED;
754         }
755
756         return ret;
757 }
758
759 /* -----------------------------------------------------------------------------
760  * Initialization
761  */
762
763 int rcar_du_crtc_create(struct rcar_du_group *rgrp, unsigned int index)
764 {
765         static const unsigned int mmio_offsets[] = {
766                 DU0_REG_OFFSET, DU1_REG_OFFSET, DU2_REG_OFFSET, DU3_REG_OFFSET
767         };
768
769         struct rcar_du_device *rcdu = rgrp->dev;
770         struct platform_device *pdev = to_platform_device(rcdu->dev);
771         struct rcar_du_crtc *rcrtc = &rcdu->crtcs[index];
772         struct drm_crtc *crtc = &rcrtc->crtc;
773         struct drm_plane *primary;
774         unsigned int irqflags;
775         struct clk *clk;
776         char clk_name[9];
777         char *name;
778         int irq;
779         int ret;
780
781         /* Get the CRTC clock and the optional external clock. */
782         if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
783                 sprintf(clk_name, "du.%u", index);
784                 name = clk_name;
785         } else {
786                 name = NULL;
787         }
788
789         rcrtc->clock = devm_clk_get(rcdu->dev, name);
790         if (IS_ERR(rcrtc->clock)) {
791                 dev_err(rcdu->dev, "no clock for CRTC %u\n", index);
792                 return PTR_ERR(rcrtc->clock);
793         }
794
795         sprintf(clk_name, "dclkin.%u", index);
796         clk = devm_clk_get(rcdu->dev, clk_name);
797         if (!IS_ERR(clk)) {
798                 rcrtc->extclock = clk;
799         } else if (PTR_ERR(rcrtc->clock) == -EPROBE_DEFER) {
800                 dev_info(rcdu->dev, "can't get external clock %u\n", index);
801                 return -EPROBE_DEFER;
802         }
803
804         init_waitqueue_head(&rcrtc->flip_wait);
805         init_waitqueue_head(&rcrtc->vblank_wait);
806         spin_lock_init(&rcrtc->vblank_lock);
807
808         rcrtc->group = rgrp;
809         rcrtc->mmio_offset = mmio_offsets[index];
810         rcrtc->index = index;
811
812         if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE))
813                 primary = &rcrtc->vsp->planes[rcrtc->vsp_pipe].plane;
814         else
815                 primary = &rgrp->planes[index % 2].plane;
816
817         ret = drm_crtc_init_with_planes(rcdu->ddev, crtc, primary,
818                                         NULL, &crtc_funcs, NULL);
819         if (ret < 0)
820                 return ret;
821
822         drm_crtc_helper_add(crtc, &crtc_helper_funcs);
823
824         /* Start with vertical blanking interrupt reporting disabled. */
825         drm_crtc_vblank_off(crtc);
826
827         /* Register the interrupt handler. */
828         if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
829                 irq = platform_get_irq(pdev, index);
830                 irqflags = 0;
831         } else {
832                 irq = platform_get_irq(pdev, 0);
833                 irqflags = IRQF_SHARED;
834         }
835
836         if (irq < 0) {
837                 dev_err(rcdu->dev, "no IRQ for CRTC %u\n", index);
838                 return irq;
839         }
840
841         ret = devm_request_irq(rcdu->dev, irq, rcar_du_crtc_irq, irqflags,
842                                dev_name(rcdu->dev), rcrtc);
843         if (ret < 0) {
844                 dev_err(rcdu->dev,
845                         "failed to register IRQ for CRTC %u\n", index);
846                 return ret;
847         }
848
849         return 0;
850 }