GNU Linux-libre 5.10.153-gnu1
[releases.git] / drivers / gpu / drm / rcar-du / rcar_du_crtc.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * rcar_du_crtc.c  --  R-Car Display Unit CRTCs
4  *
5  * Copyright (C) 2013-2015 Renesas Electronics Corporation
6  *
7  * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
8  */
9
10 #include <linux/clk.h>
11 #include <linux/mutex.h>
12 #include <linux/platform_device.h>
13 #include <linux/sys_soc.h>
14
15 #include <drm/drm_atomic.h>
16 #include <drm/drm_atomic_helper.h>
17 #include <drm/drm_bridge.h>
18 #include <drm/drm_crtc.h>
19 #include <drm/drm_device.h>
20 #include <drm/drm_fb_cma_helper.h>
21 #include <drm/drm_gem_cma_helper.h>
22 #include <drm/drm_plane_helper.h>
23 #include <drm/drm_vblank.h>
24
25 #include "rcar_cmm.h"
26 #include "rcar_du_crtc.h"
27 #include "rcar_du_drv.h"
28 #include "rcar_du_encoder.h"
29 #include "rcar_du_kms.h"
30 #include "rcar_du_plane.h"
31 #include "rcar_du_regs.h"
32 #include "rcar_du_vsp.h"
33 #include "rcar_lvds.h"
34
35 static u32 rcar_du_crtc_read(struct rcar_du_crtc *rcrtc, u32 reg)
36 {
37         struct rcar_du_device *rcdu = rcrtc->dev;
38
39         return rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
40 }
41
42 static void rcar_du_crtc_write(struct rcar_du_crtc *rcrtc, u32 reg, u32 data)
43 {
44         struct rcar_du_device *rcdu = rcrtc->dev;
45
46         rcar_du_write(rcdu, rcrtc->mmio_offset + reg, data);
47 }
48
49 static void rcar_du_crtc_clr(struct rcar_du_crtc *rcrtc, u32 reg, u32 clr)
50 {
51         struct rcar_du_device *rcdu = rcrtc->dev;
52
53         rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
54                       rcar_du_read(rcdu, rcrtc->mmio_offset + reg) & ~clr);
55 }
56
57 static void rcar_du_crtc_set(struct rcar_du_crtc *rcrtc, u32 reg, u32 set)
58 {
59         struct rcar_du_device *rcdu = rcrtc->dev;
60
61         rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
62                       rcar_du_read(rcdu, rcrtc->mmio_offset + reg) | set);
63 }
64
65 void rcar_du_crtc_dsysr_clr_set(struct rcar_du_crtc *rcrtc, u32 clr, u32 set)
66 {
67         struct rcar_du_device *rcdu = rcrtc->dev;
68
69         rcrtc->dsysr = (rcrtc->dsysr & ~clr) | set;
70         rcar_du_write(rcdu, rcrtc->mmio_offset + DSYSR, rcrtc->dsysr);
71 }
72
73 /* -----------------------------------------------------------------------------
74  * Hardware Setup
75  */
76
77 struct dpll_info {
78         unsigned int output;
79         unsigned int fdpll;
80         unsigned int n;
81         unsigned int m;
82 };
83
84 static void rcar_du_dpll_divider(struct rcar_du_crtc *rcrtc,
85                                  struct dpll_info *dpll,
86                                  unsigned long input,
87                                  unsigned long target)
88 {
89         unsigned long best_diff = (unsigned long)-1;
90         unsigned long diff;
91         unsigned int fdpll;
92         unsigned int m;
93         unsigned int n;
94
95         /*
96          *   fin                                 fvco        fout       fclkout
97          * in --> [1/M] --> |PD| -> [LPF] -> [VCO] -> [1/P] -+-> [1/FDPLL] -> out
98          *              +-> |  |                             |
99          *              |                                    |
100          *              +---------------- [1/N] <------------+
101          *
102          *      fclkout = fvco / P / FDPLL -- (1)
103          *
104          * fin/M = fvco/P/N
105          *
106          *      fvco = fin * P *  N / M -- (2)
107          *
108          * (1) + (2) indicates
109          *
110          *      fclkout = fin * N / M / FDPLL
111          *
112          * NOTES
113          *      N       : (n + 1)
114          *      M       : (m + 1)
115          *      FDPLL   : (fdpll + 1)
116          *      P       : 2
117          *      2kHz < fvco < 4096MHz
118          *
119          * To minimize the jitter,
120          * N : as large as possible
121          * M : as small as possible
122          */
123         for (m = 0; m < 4; m++) {
124                 for (n = 119; n > 38; n--) {
125                         /*
126                          * This code only runs on 64-bit architectures, the
127                          * unsigned long type can thus be used for 64-bit
128                          * computation. It will still compile without any
129                          * warning on 32-bit architectures.
130                          *
131                          * To optimize calculations, use fout instead of fvco
132                          * to verify the VCO frequency constraint.
133                          */
134                         unsigned long fout = input * (n + 1) / (m + 1);
135
136                         if (fout < 1000 || fout > 2048 * 1000 * 1000U)
137                                 continue;
138
139                         for (fdpll = 1; fdpll < 32; fdpll++) {
140                                 unsigned long output;
141
142                                 output = fout / (fdpll + 1);
143                                 if (output >= 400 * 1000 * 1000)
144                                         continue;
145
146                                 diff = abs((long)output - (long)target);
147                                 if (best_diff > diff) {
148                                         best_diff = diff;
149                                         dpll->n = n;
150                                         dpll->m = m;
151                                         dpll->fdpll = fdpll;
152                                         dpll->output = output;
153                                 }
154
155                                 if (diff == 0)
156                                         goto done;
157                         }
158                 }
159         }
160
161 done:
162         dev_dbg(rcrtc->dev->dev,
163                 "output:%u, fdpll:%u, n:%u, m:%u, diff:%lu\n",
164                  dpll->output, dpll->fdpll, dpll->n, dpll->m, best_diff);
165 }
166
167 struct du_clk_params {
168         struct clk *clk;
169         unsigned long rate;
170         unsigned long diff;
171         u32 escr;
172 };
173
174 static void rcar_du_escr_divider(struct clk *clk, unsigned long target,
175                                  u32 escr, struct du_clk_params *params)
176 {
177         unsigned long rate;
178         unsigned long diff;
179         u32 div;
180
181         /*
182          * If the target rate has already been achieved perfectly we can't do
183          * better.
184          */
185         if (params->diff == 0)
186                 return;
187
188         /*
189          * Compute the input clock rate and internal divisor values to obtain
190          * the clock rate closest to the target frequency.
191          */
192         rate = clk_round_rate(clk, target);
193         div = clamp(DIV_ROUND_CLOSEST(rate, target), 1UL, 64UL) - 1;
194         diff = abs(rate / (div + 1) - target);
195
196         /*
197          * Store the parameters if the resulting frequency is better than any
198          * previously calculated value.
199          */
200         if (diff < params->diff) {
201                 params->clk = clk;
202                 params->rate = rate;
203                 params->diff = diff;
204                 params->escr = escr | div;
205         }
206 }
207
208 static const struct soc_device_attribute rcar_du_r8a7795_es1[] = {
209         { .soc_id = "r8a7795", .revision = "ES1.*" },
210         { /* sentinel */ }
211 };
212
213 static void rcar_du_crtc_set_display_timing(struct rcar_du_crtc *rcrtc)
214 {
215         const struct drm_display_mode *mode = &rcrtc->crtc.state->adjusted_mode;
216         struct rcar_du_device *rcdu = rcrtc->dev;
217         unsigned long mode_clock = mode->clock * 1000;
218         unsigned int hdse_offset;
219         u32 dsmr;
220         u32 escr;
221
222         if (rcdu->info->dpll_mask & (1 << rcrtc->index)) {
223                 unsigned long target = mode_clock;
224                 struct dpll_info dpll = { 0 };
225                 unsigned long extclk;
226                 u32 dpllcr;
227                 u32 div = 0;
228
229                 /*
230                  * DU channels that have a display PLL can't use the internal
231                  * system clock, and have no internal clock divider.
232                  */
233
234                 /*
235                  * The H3 ES1.x exhibits dot clock duty cycle stability issues.
236                  * We can work around them by configuring the DPLL to twice the
237                  * desired frequency, coupled with a /2 post-divider. Restrict
238                  * the workaround to H3 ES1.x as ES2.0 and all other SoCs have
239                  * no post-divider when a display PLL is present (as shown by
240                  * the workaround breaking HDMI output on M3-W during testing).
241                  */
242                 if (soc_device_match(rcar_du_r8a7795_es1)) {
243                         target *= 2;
244                         div = 1;
245                 }
246
247                 extclk = clk_get_rate(rcrtc->extclock);
248                 rcar_du_dpll_divider(rcrtc, &dpll, extclk, target);
249
250                 dpllcr = DPLLCR_CODE | DPLLCR_CLKE
251                        | DPLLCR_FDPLL(dpll.fdpll)
252                        | DPLLCR_N(dpll.n) | DPLLCR_M(dpll.m)
253                        | DPLLCR_STBY;
254
255                 if (rcrtc->index == 1)
256                         dpllcr |= DPLLCR_PLCS1
257                                |  DPLLCR_INCS_DOTCLKIN1;
258                 else
259                         dpllcr |= DPLLCR_PLCS0
260                                |  DPLLCR_INCS_DOTCLKIN0;
261
262                 rcar_du_group_write(rcrtc->group, DPLLCR, dpllcr);
263
264                 escr = ESCR_DCLKSEL_DCLKIN | div;
265         } else if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index)) {
266                 /*
267                  * Use the LVDS PLL output as the dot clock when outputting to
268                  * the LVDS encoder on an SoC that supports this clock routing
269                  * option. We use the clock directly in that case, without any
270                  * additional divider.
271                  */
272                 escr = ESCR_DCLKSEL_DCLKIN;
273         } else {
274                 struct du_clk_params params = { .diff = (unsigned long)-1 };
275
276                 rcar_du_escr_divider(rcrtc->clock, mode_clock,
277                                      ESCR_DCLKSEL_CLKS, &params);
278                 if (rcrtc->extclock)
279                         rcar_du_escr_divider(rcrtc->extclock, mode_clock,
280                                              ESCR_DCLKSEL_DCLKIN, &params);
281
282                 dev_dbg(rcrtc->dev->dev, "mode clock %lu %s rate %lu\n",
283                         mode_clock, params.clk == rcrtc->clock ? "cpg" : "ext",
284                         params.rate);
285
286                 clk_set_rate(params.clk, params.rate);
287                 escr = params.escr;
288         }
289
290         dev_dbg(rcrtc->dev->dev, "%s: ESCR 0x%08x\n", __func__, escr);
291
292         rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? ESCR13 : ESCR02, escr);
293         rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? OTAR13 : OTAR02, 0);
294
295         /* Signal polarities */
296         dsmr = ((mode->flags & DRM_MODE_FLAG_PVSYNC) ? DSMR_VSL : 0)
297              | ((mode->flags & DRM_MODE_FLAG_PHSYNC) ? DSMR_HSL : 0)
298              | ((mode->flags & DRM_MODE_FLAG_INTERLACE) ? DSMR_ODEV : 0)
299              | DSMR_DIPM_DISP | DSMR_CSPM;
300         rcar_du_crtc_write(rcrtc, DSMR, dsmr);
301
302         hdse_offset = 19;
303         if (rcrtc->group->cmms_mask & BIT(rcrtc->index % 2))
304                 hdse_offset += 25;
305
306         /* Display timings */
307         rcar_du_crtc_write(rcrtc, HDSR, mode->htotal - mode->hsync_start -
308                                         hdse_offset);
309         rcar_du_crtc_write(rcrtc, HDER, mode->htotal - mode->hsync_start +
310                                         mode->hdisplay - hdse_offset);
311         rcar_du_crtc_write(rcrtc, HSWR, mode->hsync_end -
312                                         mode->hsync_start - 1);
313         rcar_du_crtc_write(rcrtc, HCR,  mode->htotal - 1);
314
315         rcar_du_crtc_write(rcrtc, VDSR, mode->crtc_vtotal -
316                                         mode->crtc_vsync_end - 2);
317         rcar_du_crtc_write(rcrtc, VDER, mode->crtc_vtotal -
318                                         mode->crtc_vsync_end +
319                                         mode->crtc_vdisplay - 2);
320         rcar_du_crtc_write(rcrtc, VSPR, mode->crtc_vtotal -
321                                         mode->crtc_vsync_end +
322                                         mode->crtc_vsync_start - 1);
323         rcar_du_crtc_write(rcrtc, VCR,  mode->crtc_vtotal - 1);
324
325         rcar_du_crtc_write(rcrtc, DESR,  mode->htotal - mode->hsync_start - 1);
326         rcar_du_crtc_write(rcrtc, DEWR,  mode->hdisplay);
327 }
328
329 static unsigned int plane_zpos(struct rcar_du_plane *plane)
330 {
331         return plane->plane.state->normalized_zpos;
332 }
333
334 static const struct rcar_du_format_info *
335 plane_format(struct rcar_du_plane *plane)
336 {
337         return to_rcar_plane_state(plane->plane.state)->format;
338 }
339
340 static void rcar_du_crtc_update_planes(struct rcar_du_crtc *rcrtc)
341 {
342         struct rcar_du_plane *planes[RCAR_DU_NUM_HW_PLANES];
343         struct rcar_du_device *rcdu = rcrtc->dev;
344         unsigned int num_planes = 0;
345         unsigned int dptsr_planes;
346         unsigned int hwplanes = 0;
347         unsigned int prio = 0;
348         unsigned int i;
349         u32 dspr = 0;
350
351         for (i = 0; i < rcrtc->group->num_planes; ++i) {
352                 struct rcar_du_plane *plane = &rcrtc->group->planes[i];
353                 unsigned int j;
354
355                 if (plane->plane.state->crtc != &rcrtc->crtc ||
356                     !plane->plane.state->visible)
357                         continue;
358
359                 /* Insert the plane in the sorted planes array. */
360                 for (j = num_planes++; j > 0; --j) {
361                         if (plane_zpos(planes[j-1]) <= plane_zpos(plane))
362                                 break;
363                         planes[j] = planes[j-1];
364                 }
365
366                 planes[j] = plane;
367                 prio += plane_format(plane)->planes * 4;
368         }
369
370         for (i = 0; i < num_planes; ++i) {
371                 struct rcar_du_plane *plane = planes[i];
372                 struct drm_plane_state *state = plane->plane.state;
373                 unsigned int index = to_rcar_plane_state(state)->hwindex;
374
375                 prio -= 4;
376                 dspr |= (index + 1) << prio;
377                 hwplanes |= 1 << index;
378
379                 if (plane_format(plane)->planes == 2) {
380                         index = (index + 1) % 8;
381
382                         prio -= 4;
383                         dspr |= (index + 1) << prio;
384                         hwplanes |= 1 << index;
385                 }
386         }
387
388         /* If VSP+DU integration is enabled the plane assignment is fixed. */
389         if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE)) {
390                 if (rcdu->info->gen < 3) {
391                         dspr = (rcrtc->index % 2) + 1;
392                         hwplanes = 1 << (rcrtc->index % 2);
393                 } else {
394                         dspr = (rcrtc->index % 2) ? 3 : 1;
395                         hwplanes = 1 << ((rcrtc->index % 2) ? 2 : 0);
396                 }
397         }
398
399         /*
400          * Update the planes to display timing and dot clock generator
401          * associations.
402          *
403          * Updating the DPTSR register requires restarting the CRTC group,
404          * resulting in visible flicker. To mitigate the issue only update the
405          * association if needed by enabled planes. Planes being disabled will
406          * keep their current association.
407          */
408         mutex_lock(&rcrtc->group->lock);
409
410         dptsr_planes = rcrtc->index % 2 ? rcrtc->group->dptsr_planes | hwplanes
411                      : rcrtc->group->dptsr_planes & ~hwplanes;
412
413         if (dptsr_planes != rcrtc->group->dptsr_planes) {
414                 rcar_du_group_write(rcrtc->group, DPTSR,
415                                     (dptsr_planes << 16) | dptsr_planes);
416                 rcrtc->group->dptsr_planes = dptsr_planes;
417
418                 if (rcrtc->group->used_crtcs)
419                         rcar_du_group_restart(rcrtc->group);
420         }
421
422         /* Restart the group if plane sources have changed. */
423         if (rcrtc->group->need_restart)
424                 rcar_du_group_restart(rcrtc->group);
425
426         mutex_unlock(&rcrtc->group->lock);
427
428         rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR,
429                             dspr);
430 }
431
432 /* -----------------------------------------------------------------------------
433  * Page Flip
434  */
435
436 void rcar_du_crtc_finish_page_flip(struct rcar_du_crtc *rcrtc)
437 {
438         struct drm_pending_vblank_event *event;
439         struct drm_device *dev = rcrtc->crtc.dev;
440         unsigned long flags;
441
442         spin_lock_irqsave(&dev->event_lock, flags);
443         event = rcrtc->event;
444         rcrtc->event = NULL;
445         spin_unlock_irqrestore(&dev->event_lock, flags);
446
447         if (event == NULL)
448                 return;
449
450         spin_lock_irqsave(&dev->event_lock, flags);
451         drm_crtc_send_vblank_event(&rcrtc->crtc, event);
452         wake_up(&rcrtc->flip_wait);
453         spin_unlock_irqrestore(&dev->event_lock, flags);
454
455         drm_crtc_vblank_put(&rcrtc->crtc);
456 }
457
458 static bool rcar_du_crtc_page_flip_pending(struct rcar_du_crtc *rcrtc)
459 {
460         struct drm_device *dev = rcrtc->crtc.dev;
461         unsigned long flags;
462         bool pending;
463
464         spin_lock_irqsave(&dev->event_lock, flags);
465         pending = rcrtc->event != NULL;
466         spin_unlock_irqrestore(&dev->event_lock, flags);
467
468         return pending;
469 }
470
471 static void rcar_du_crtc_wait_page_flip(struct rcar_du_crtc *rcrtc)
472 {
473         struct rcar_du_device *rcdu = rcrtc->dev;
474
475         if (wait_event_timeout(rcrtc->flip_wait,
476                                !rcar_du_crtc_page_flip_pending(rcrtc),
477                                msecs_to_jiffies(50)))
478                 return;
479
480         dev_warn(rcdu->dev, "page flip timeout\n");
481
482         rcar_du_crtc_finish_page_flip(rcrtc);
483 }
484
485 /* -----------------------------------------------------------------------------
486  * Color Management Module (CMM)
487  */
488
489 static int rcar_du_cmm_check(struct drm_crtc *crtc,
490                              struct drm_crtc_state *state)
491 {
492         struct drm_property_blob *drm_lut = state->gamma_lut;
493         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
494         struct device *dev = rcrtc->dev->dev;
495
496         if (!drm_lut)
497                 return 0;
498
499         /* We only accept fully populated LUT tables. */
500         if (drm_color_lut_size(drm_lut) != CM2_LUT_SIZE) {
501                 dev_err(dev, "invalid gamma lut size: %zu bytes\n",
502                         drm_lut->length);
503                 return -EINVAL;
504         }
505
506         return 0;
507 }
508
509 static void rcar_du_cmm_setup(struct drm_crtc *crtc)
510 {
511         struct drm_property_blob *drm_lut = crtc->state->gamma_lut;
512         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
513         struct rcar_cmm_config cmm_config = {};
514
515         if (!rcrtc->cmm)
516                 return;
517
518         if (drm_lut)
519                 cmm_config.lut.table = (struct drm_color_lut *)drm_lut->data;
520
521         rcar_cmm_setup(rcrtc->cmm, &cmm_config);
522 }
523
524 /* -----------------------------------------------------------------------------
525  * Start/Stop and Suspend/Resume
526  */
527
528 static void rcar_du_crtc_setup(struct rcar_du_crtc *rcrtc)
529 {
530         /* Set display off and background to black */
531         rcar_du_crtc_write(rcrtc, DOOR, DOOR_RGB(0, 0, 0));
532         rcar_du_crtc_write(rcrtc, BPOR, BPOR_RGB(0, 0, 0));
533
534         /* Configure display timings and output routing */
535         rcar_du_crtc_set_display_timing(rcrtc);
536         rcar_du_group_set_routing(rcrtc->group);
537
538         /* Start with all planes disabled. */
539         rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
540
541         /* Enable the VSP compositor. */
542         if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
543                 rcar_du_vsp_enable(rcrtc);
544
545         /* Turn vertical blanking interrupt reporting on. */
546         drm_crtc_vblank_on(&rcrtc->crtc);
547 }
548
549 static int rcar_du_crtc_get(struct rcar_du_crtc *rcrtc)
550 {
551         int ret;
552
553         /*
554          * Guard against double-get, as the function is called from both the
555          * .atomic_enable() and .atomic_begin() handlers.
556          */
557         if (rcrtc->initialized)
558                 return 0;
559
560         ret = clk_prepare_enable(rcrtc->clock);
561         if (ret < 0)
562                 return ret;
563
564         ret = clk_prepare_enable(rcrtc->extclock);
565         if (ret < 0)
566                 goto error_clock;
567
568         ret = rcar_du_group_get(rcrtc->group);
569         if (ret < 0)
570                 goto error_group;
571
572         rcar_du_crtc_setup(rcrtc);
573         rcrtc->initialized = true;
574
575         return 0;
576
577 error_group:
578         clk_disable_unprepare(rcrtc->extclock);
579 error_clock:
580         clk_disable_unprepare(rcrtc->clock);
581         return ret;
582 }
583
584 static void rcar_du_crtc_put(struct rcar_du_crtc *rcrtc)
585 {
586         rcar_du_group_put(rcrtc->group);
587
588         clk_disable_unprepare(rcrtc->extclock);
589         clk_disable_unprepare(rcrtc->clock);
590
591         rcrtc->initialized = false;
592 }
593
594 static void rcar_du_crtc_start(struct rcar_du_crtc *rcrtc)
595 {
596         bool interlaced;
597
598         /*
599          * Select master sync mode. This enables display operation in master
600          * sync mode (with the HSYNC and VSYNC signals configured as outputs and
601          * actively driven).
602          */
603         interlaced = rcrtc->crtc.mode.flags & DRM_MODE_FLAG_INTERLACE;
604         rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK | DSYSR_SCM_MASK,
605                                    (interlaced ? DSYSR_SCM_INT_VIDEO : 0) |
606                                    DSYSR_TVM_MASTER);
607
608         rcar_du_group_start_stop(rcrtc->group, true);
609 }
610
611 static void rcar_du_crtc_disable_planes(struct rcar_du_crtc *rcrtc)
612 {
613         struct rcar_du_device *rcdu = rcrtc->dev;
614         struct drm_crtc *crtc = &rcrtc->crtc;
615         u32 status;
616
617         /* Make sure vblank interrupts are enabled. */
618         drm_crtc_vblank_get(crtc);
619
620         /*
621          * Disable planes and calculate how many vertical blanking interrupts we
622          * have to wait for. If a vertical blanking interrupt has been triggered
623          * but not processed yet, we don't know whether it occurred before or
624          * after the planes got disabled. We thus have to wait for two vblank
625          * interrupts in that case.
626          */
627         spin_lock_irq(&rcrtc->vblank_lock);
628         rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
629         status = rcar_du_crtc_read(rcrtc, DSSR);
630         rcrtc->vblank_count = status & DSSR_VBK ? 2 : 1;
631         spin_unlock_irq(&rcrtc->vblank_lock);
632
633         if (!wait_event_timeout(rcrtc->vblank_wait, rcrtc->vblank_count == 0,
634                                 msecs_to_jiffies(100)))
635                 dev_warn(rcdu->dev, "vertical blanking timeout\n");
636
637         drm_crtc_vblank_put(crtc);
638 }
639
640 static void rcar_du_crtc_stop(struct rcar_du_crtc *rcrtc)
641 {
642         struct drm_crtc *crtc = &rcrtc->crtc;
643
644         /*
645          * Disable all planes and wait for the change to take effect. This is
646          * required as the plane enable registers are updated on vblank, and no
647          * vblank will occur once the CRTC is stopped. Disabling planes when
648          * starting the CRTC thus wouldn't be enough as it would start scanning
649          * out immediately from old frame buffers until the next vblank.
650          *
651          * This increases the CRTC stop delay, especially when multiple CRTCs
652          * are stopped in one operation as we now wait for one vblank per CRTC.
653          * Whether this can be improved needs to be researched.
654          */
655         rcar_du_crtc_disable_planes(rcrtc);
656
657         /*
658          * Disable vertical blanking interrupt reporting. We first need to wait
659          * for page flip completion before stopping the CRTC as userspace
660          * expects page flips to eventually complete.
661          */
662         rcar_du_crtc_wait_page_flip(rcrtc);
663         drm_crtc_vblank_off(crtc);
664
665         /* Disable the VSP compositor. */
666         if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
667                 rcar_du_vsp_disable(rcrtc);
668
669         if (rcrtc->cmm)
670                 rcar_cmm_disable(rcrtc->cmm);
671
672         /*
673          * Select switch sync mode. This stops display operation and configures
674          * the HSYNC and VSYNC signals as inputs.
675          *
676          * TODO: Find another way to stop the display for DUs that don't support
677          * TVM sync.
678          */
679         if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_TVM_SYNC))
680                 rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK,
681                                            DSYSR_TVM_SWITCH);
682
683         rcar_du_group_start_stop(rcrtc->group, false);
684 }
685
686 /* -----------------------------------------------------------------------------
687  * CRTC Functions
688  */
689
690 static int rcar_du_crtc_atomic_check(struct drm_crtc *crtc,
691                                      struct drm_crtc_state *state)
692 {
693         struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(state);
694         struct drm_encoder *encoder;
695         int ret;
696
697         ret = rcar_du_cmm_check(crtc, state);
698         if (ret)
699                 return ret;
700
701         /* Store the routes from the CRTC output to the DU outputs. */
702         rstate->outputs = 0;
703
704         drm_for_each_encoder_mask(encoder, crtc->dev, state->encoder_mask) {
705                 struct rcar_du_encoder *renc;
706
707                 /* Skip the writeback encoder. */
708                 if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
709                         continue;
710
711                 renc = to_rcar_encoder(encoder);
712                 rstate->outputs |= BIT(renc->output);
713         }
714
715         return 0;
716 }
717
718 static void rcar_du_crtc_atomic_enable(struct drm_crtc *crtc,
719                                        struct drm_crtc_state *old_state)
720 {
721         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
722         struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(crtc->state);
723         struct rcar_du_device *rcdu = rcrtc->dev;
724
725         if (rcrtc->cmm)
726                 rcar_cmm_enable(rcrtc->cmm);
727         rcar_du_crtc_get(rcrtc);
728
729         /*
730          * On D3/E3 the dot clock is provided by the LVDS encoder attached to
731          * the DU channel. We need to enable its clock output explicitly if
732          * the LVDS output is disabled.
733          */
734         if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) &&
735             rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0)) {
736                 struct drm_bridge *bridge = rcdu->lvds[rcrtc->index];
737                 const struct drm_display_mode *mode =
738                         &crtc->state->adjusted_mode;
739
740                 rcar_lvds_clk_enable(bridge, mode->clock * 1000);
741         }
742
743         rcar_du_crtc_start(rcrtc);
744
745         /*
746          * TODO: The chip manual indicates that CMM tables should be written
747          * after the DU channel has been activated. Investigate the impact
748          * of this restriction on the first displayed frame.
749          */
750         rcar_du_cmm_setup(crtc);
751 }
752
753 static void rcar_du_crtc_atomic_disable(struct drm_crtc *crtc,
754                                         struct drm_crtc_state *old_state)
755 {
756         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
757         struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(old_state);
758         struct rcar_du_device *rcdu = rcrtc->dev;
759
760         rcar_du_crtc_stop(rcrtc);
761         rcar_du_crtc_put(rcrtc);
762
763         if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) &&
764             rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0)) {
765                 struct drm_bridge *bridge = rcdu->lvds[rcrtc->index];
766
767                 /*
768                  * Disable the LVDS clock output, see
769                  * rcar_du_crtc_atomic_enable().
770                  */
771                 rcar_lvds_clk_disable(bridge);
772         }
773
774         spin_lock_irq(&crtc->dev->event_lock);
775         if (crtc->state->event) {
776                 drm_crtc_send_vblank_event(crtc, crtc->state->event);
777                 crtc->state->event = NULL;
778         }
779         spin_unlock_irq(&crtc->dev->event_lock);
780 }
781
782 static void rcar_du_crtc_atomic_begin(struct drm_crtc *crtc,
783                                       struct drm_crtc_state *old_crtc_state)
784 {
785         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
786
787         WARN_ON(!crtc->state->enable);
788
789         /*
790          * If a mode set is in progress we can be called with the CRTC disabled.
791          * We thus need to first get and setup the CRTC in order to configure
792          * planes. We must *not* put the CRTC in .atomic_flush(), as it must be
793          * kept awake until the .atomic_enable() call that will follow. The get
794          * operation in .atomic_enable() will in that case be a no-op, and the
795          * CRTC will be put later in .atomic_disable().
796          *
797          * If a mode set is not in progress the CRTC is enabled, and the
798          * following get call will be a no-op. There is thus no need to balance
799          * it in .atomic_flush() either.
800          */
801         rcar_du_crtc_get(rcrtc);
802
803         /* If the active state changed, we let .atomic_enable handle CMM. */
804         if (crtc->state->color_mgmt_changed && !crtc->state->active_changed)
805                 rcar_du_cmm_setup(crtc);
806
807         if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
808                 rcar_du_vsp_atomic_begin(rcrtc);
809 }
810
811 static void rcar_du_crtc_atomic_flush(struct drm_crtc *crtc,
812                                       struct drm_crtc_state *old_crtc_state)
813 {
814         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
815         struct drm_device *dev = rcrtc->crtc.dev;
816         unsigned long flags;
817
818         rcar_du_crtc_update_planes(rcrtc);
819
820         if (crtc->state->event) {
821                 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
822
823                 spin_lock_irqsave(&dev->event_lock, flags);
824                 rcrtc->event = crtc->state->event;
825                 crtc->state->event = NULL;
826                 spin_unlock_irqrestore(&dev->event_lock, flags);
827         }
828
829         if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
830                 rcar_du_vsp_atomic_flush(rcrtc);
831 }
832
833 static enum drm_mode_status
834 rcar_du_crtc_mode_valid(struct drm_crtc *crtc,
835                         const struct drm_display_mode *mode)
836 {
837         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
838         struct rcar_du_device *rcdu = rcrtc->dev;
839         bool interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
840         unsigned int min_sync_porch;
841         unsigned int vbp;
842
843         if (interlaced && !rcar_du_has(rcdu, RCAR_DU_FEATURE_INTERLACED))
844                 return MODE_NO_INTERLACE;
845
846         /*
847          * The hardware requires a minimum combined horizontal sync and back
848          * porch of 20 pixels (when CMM isn't used) or 45 pixels (when CMM is
849          * used), and a minimum vertical back porch of 3 lines.
850          */
851         min_sync_porch = 20;
852         if (rcrtc->group->cmms_mask & BIT(rcrtc->index % 2))
853                 min_sync_porch += 25;
854
855         if (mode->htotal - mode->hsync_start < min_sync_porch)
856                 return MODE_HBLANK_NARROW;
857
858         vbp = (mode->vtotal - mode->vsync_end) / (interlaced ? 2 : 1);
859         if (vbp < 3)
860                 return MODE_VBLANK_NARROW;
861
862         return MODE_OK;
863 }
864
865 static const struct drm_crtc_helper_funcs crtc_helper_funcs = {
866         .atomic_check = rcar_du_crtc_atomic_check,
867         .atomic_begin = rcar_du_crtc_atomic_begin,
868         .atomic_flush = rcar_du_crtc_atomic_flush,
869         .atomic_enable = rcar_du_crtc_atomic_enable,
870         .atomic_disable = rcar_du_crtc_atomic_disable,
871         .mode_valid = rcar_du_crtc_mode_valid,
872 };
873
874 static void rcar_du_crtc_crc_init(struct rcar_du_crtc *rcrtc)
875 {
876         struct rcar_du_device *rcdu = rcrtc->dev;
877         const char **sources;
878         unsigned int count;
879         int i = -1;
880
881         /* CRC available only on Gen3 HW. */
882         if (rcdu->info->gen < 3)
883                 return;
884
885         /* Reserve 1 for "auto" source. */
886         count = rcrtc->vsp->num_planes + 1;
887
888         sources = kmalloc_array(count, sizeof(*sources), GFP_KERNEL);
889         if (!sources)
890                 return;
891
892         sources[0] = kstrdup("auto", GFP_KERNEL);
893         if (!sources[0])
894                 goto error;
895
896         for (i = 0; i < rcrtc->vsp->num_planes; ++i) {
897                 struct drm_plane *plane = &rcrtc->vsp->planes[i].plane;
898                 char name[16];
899
900                 sprintf(name, "plane%u", plane->base.id);
901                 sources[i + 1] = kstrdup(name, GFP_KERNEL);
902                 if (!sources[i + 1])
903                         goto error;
904         }
905
906         rcrtc->sources = sources;
907         rcrtc->sources_count = count;
908         return;
909
910 error:
911         while (i >= 0) {
912                 kfree(sources[i]);
913                 i--;
914         }
915         kfree(sources);
916 }
917
918 static void rcar_du_crtc_crc_cleanup(struct rcar_du_crtc *rcrtc)
919 {
920         unsigned int i;
921
922         if (!rcrtc->sources)
923                 return;
924
925         for (i = 0; i < rcrtc->sources_count; i++)
926                 kfree(rcrtc->sources[i]);
927         kfree(rcrtc->sources);
928
929         rcrtc->sources = NULL;
930         rcrtc->sources_count = 0;
931 }
932
933 static struct drm_crtc_state *
934 rcar_du_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
935 {
936         struct rcar_du_crtc_state *state;
937         struct rcar_du_crtc_state *copy;
938
939         if (WARN_ON(!crtc->state))
940                 return NULL;
941
942         state = to_rcar_crtc_state(crtc->state);
943         copy = kmemdup(state, sizeof(*state), GFP_KERNEL);
944         if (copy == NULL)
945                 return NULL;
946
947         __drm_atomic_helper_crtc_duplicate_state(crtc, &copy->state);
948
949         return &copy->state;
950 }
951
952 static void rcar_du_crtc_atomic_destroy_state(struct drm_crtc *crtc,
953                                               struct drm_crtc_state *state)
954 {
955         __drm_atomic_helper_crtc_destroy_state(state);
956         kfree(to_rcar_crtc_state(state));
957 }
958
959 static void rcar_du_crtc_cleanup(struct drm_crtc *crtc)
960 {
961         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
962
963         rcar_du_crtc_crc_cleanup(rcrtc);
964
965         return drm_crtc_cleanup(crtc);
966 }
967
968 static void rcar_du_crtc_reset(struct drm_crtc *crtc)
969 {
970         struct rcar_du_crtc_state *state;
971
972         if (crtc->state) {
973                 rcar_du_crtc_atomic_destroy_state(crtc, crtc->state);
974                 crtc->state = NULL;
975         }
976
977         state = kzalloc(sizeof(*state), GFP_KERNEL);
978         if (state == NULL)
979                 return;
980
981         state->crc.source = VSP1_DU_CRC_NONE;
982         state->crc.index = 0;
983
984         __drm_atomic_helper_crtc_reset(crtc, &state->state);
985 }
986
987 static int rcar_du_crtc_enable_vblank(struct drm_crtc *crtc)
988 {
989         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
990
991         rcar_du_crtc_write(rcrtc, DSRCR, DSRCR_VBCL);
992         rcar_du_crtc_set(rcrtc, DIER, DIER_VBE);
993         rcrtc->vblank_enable = true;
994
995         return 0;
996 }
997
998 static void rcar_du_crtc_disable_vblank(struct drm_crtc *crtc)
999 {
1000         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1001
1002         rcar_du_crtc_clr(rcrtc, DIER, DIER_VBE);
1003         rcrtc->vblank_enable = false;
1004 }
1005
1006 static int rcar_du_crtc_parse_crc_source(struct rcar_du_crtc *rcrtc,
1007                                          const char *source_name,
1008                                          enum vsp1_du_crc_source *source)
1009 {
1010         unsigned int index;
1011         int ret;
1012
1013         /*
1014          * Parse the source name. Supported values are "plane%u" to compute the
1015          * CRC on an input plane (%u is the plane ID), and "auto" to compute the
1016          * CRC on the composer (VSP) output.
1017          */
1018
1019         if (!source_name) {
1020                 *source = VSP1_DU_CRC_NONE;
1021                 return 0;
1022         } else if (!strcmp(source_name, "auto")) {
1023                 *source = VSP1_DU_CRC_OUTPUT;
1024                 return 0;
1025         } else if (strstarts(source_name, "plane")) {
1026                 unsigned int i;
1027
1028                 *source = VSP1_DU_CRC_PLANE;
1029
1030                 ret = kstrtouint(source_name + strlen("plane"), 10, &index);
1031                 if (ret < 0)
1032                         return ret;
1033
1034                 for (i = 0; i < rcrtc->vsp->num_planes; ++i) {
1035                         if (index == rcrtc->vsp->planes[i].plane.base.id)
1036                                 return i;
1037                 }
1038         }
1039
1040         return -EINVAL;
1041 }
1042
1043 static int rcar_du_crtc_verify_crc_source(struct drm_crtc *crtc,
1044                                           const char *source_name,
1045                                           size_t *values_cnt)
1046 {
1047         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1048         enum vsp1_du_crc_source source;
1049
1050         if (rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source) < 0) {
1051                 DRM_DEBUG_DRIVER("unknown source %s\n", source_name);
1052                 return -EINVAL;
1053         }
1054
1055         *values_cnt = 1;
1056         return 0;
1057 }
1058
1059 static const char *const *
1060 rcar_du_crtc_get_crc_sources(struct drm_crtc *crtc, size_t *count)
1061 {
1062         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1063
1064         *count = rcrtc->sources_count;
1065         return rcrtc->sources;
1066 }
1067
1068 static int rcar_du_crtc_set_crc_source(struct drm_crtc *crtc,
1069                                        const char *source_name)
1070 {
1071         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1072         struct drm_modeset_acquire_ctx ctx;
1073         struct drm_crtc_state *crtc_state;
1074         struct drm_atomic_state *state;
1075         enum vsp1_du_crc_source source;
1076         unsigned int index;
1077         int ret;
1078
1079         ret = rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source);
1080         if (ret < 0)
1081                 return ret;
1082
1083         index = ret;
1084
1085         /* Perform an atomic commit to set the CRC source. */
1086         drm_modeset_acquire_init(&ctx, 0);
1087
1088         state = drm_atomic_state_alloc(crtc->dev);
1089         if (!state) {
1090                 ret = -ENOMEM;
1091                 goto unlock;
1092         }
1093
1094         state->acquire_ctx = &ctx;
1095
1096 retry:
1097         crtc_state = drm_atomic_get_crtc_state(state, crtc);
1098         if (!IS_ERR(crtc_state)) {
1099                 struct rcar_du_crtc_state *rcrtc_state;
1100
1101                 rcrtc_state = to_rcar_crtc_state(crtc_state);
1102                 rcrtc_state->crc.source = source;
1103                 rcrtc_state->crc.index = index;
1104
1105                 ret = drm_atomic_commit(state);
1106         } else {
1107                 ret = PTR_ERR(crtc_state);
1108         }
1109
1110         if (ret == -EDEADLK) {
1111                 drm_atomic_state_clear(state);
1112                 drm_modeset_backoff(&ctx);
1113                 goto retry;
1114         }
1115
1116         drm_atomic_state_put(state);
1117
1118 unlock:
1119         drm_modeset_drop_locks(&ctx);
1120         drm_modeset_acquire_fini(&ctx);
1121
1122         return ret;
1123 }
1124
1125 static const struct drm_crtc_funcs crtc_funcs_gen2 = {
1126         .reset = rcar_du_crtc_reset,
1127         .destroy = drm_crtc_cleanup,
1128         .set_config = drm_atomic_helper_set_config,
1129         .page_flip = drm_atomic_helper_page_flip,
1130         .atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
1131         .atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
1132         .enable_vblank = rcar_du_crtc_enable_vblank,
1133         .disable_vblank = rcar_du_crtc_disable_vblank,
1134 };
1135
1136 static const struct drm_crtc_funcs crtc_funcs_gen3 = {
1137         .reset = rcar_du_crtc_reset,
1138         .destroy = rcar_du_crtc_cleanup,
1139         .set_config = drm_atomic_helper_set_config,
1140         .page_flip = drm_atomic_helper_page_flip,
1141         .atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
1142         .atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
1143         .enable_vblank = rcar_du_crtc_enable_vblank,
1144         .disable_vblank = rcar_du_crtc_disable_vblank,
1145         .set_crc_source = rcar_du_crtc_set_crc_source,
1146         .verify_crc_source = rcar_du_crtc_verify_crc_source,
1147         .get_crc_sources = rcar_du_crtc_get_crc_sources,
1148         .gamma_set = drm_atomic_helper_legacy_gamma_set,
1149 };
1150
1151 /* -----------------------------------------------------------------------------
1152  * Interrupt Handling
1153  */
1154
1155 static irqreturn_t rcar_du_crtc_irq(int irq, void *arg)
1156 {
1157         struct rcar_du_crtc *rcrtc = arg;
1158         struct rcar_du_device *rcdu = rcrtc->dev;
1159         irqreturn_t ret = IRQ_NONE;
1160         u32 status;
1161
1162         spin_lock(&rcrtc->vblank_lock);
1163
1164         status = rcar_du_crtc_read(rcrtc, DSSR);
1165         rcar_du_crtc_write(rcrtc, DSRCR, status & DSRCR_MASK);
1166
1167         if (status & DSSR_VBK) {
1168                 /*
1169                  * Wake up the vblank wait if the counter reaches 0. This must
1170                  * be protected by the vblank_lock to avoid races in
1171                  * rcar_du_crtc_disable_planes().
1172                  */
1173                 if (rcrtc->vblank_count) {
1174                         if (--rcrtc->vblank_count == 0)
1175                                 wake_up(&rcrtc->vblank_wait);
1176                 }
1177         }
1178
1179         spin_unlock(&rcrtc->vblank_lock);
1180
1181         if (status & DSSR_VBK) {
1182                 if (rcdu->info->gen < 3) {
1183                         drm_crtc_handle_vblank(&rcrtc->crtc);
1184                         rcar_du_crtc_finish_page_flip(rcrtc);
1185                 }
1186
1187                 ret = IRQ_HANDLED;
1188         }
1189
1190         return ret;
1191 }
1192
1193 /* -----------------------------------------------------------------------------
1194  * Initialization
1195  */
1196
1197 int rcar_du_crtc_create(struct rcar_du_group *rgrp, unsigned int swindex,
1198                         unsigned int hwindex)
1199 {
1200         static const unsigned int mmio_offsets[] = {
1201                 DU0_REG_OFFSET, DU1_REG_OFFSET, DU2_REG_OFFSET, DU3_REG_OFFSET
1202         };
1203
1204         struct rcar_du_device *rcdu = rgrp->dev;
1205         struct platform_device *pdev = to_platform_device(rcdu->dev);
1206         struct rcar_du_crtc *rcrtc = &rcdu->crtcs[swindex];
1207         struct drm_crtc *crtc = &rcrtc->crtc;
1208         struct drm_plane *primary;
1209         unsigned int irqflags;
1210         struct clk *clk;
1211         char clk_name[9];
1212         char *name;
1213         int irq;
1214         int ret;
1215
1216         /* Get the CRTC clock and the optional external clock. */
1217         if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
1218                 sprintf(clk_name, "du.%u", hwindex);
1219                 name = clk_name;
1220         } else {
1221                 name = NULL;
1222         }
1223
1224         rcrtc->clock = devm_clk_get(rcdu->dev, name);
1225         if (IS_ERR(rcrtc->clock)) {
1226                 dev_err(rcdu->dev, "no clock for DU channel %u\n", hwindex);
1227                 return PTR_ERR(rcrtc->clock);
1228         }
1229
1230         sprintf(clk_name, "dclkin.%u", hwindex);
1231         clk = devm_clk_get(rcdu->dev, clk_name);
1232         if (!IS_ERR(clk)) {
1233                 rcrtc->extclock = clk;
1234         } else if (PTR_ERR(clk) == -EPROBE_DEFER) {
1235                 return -EPROBE_DEFER;
1236         } else if (rcdu->info->dpll_mask & BIT(hwindex)) {
1237                 /*
1238                  * DU channels that have a display PLL can't use the internal
1239                  * system clock and thus require an external clock.
1240                  */
1241                 ret = PTR_ERR(clk);
1242                 dev_err(rcdu->dev, "can't get dclkin.%u: %d\n", hwindex, ret);
1243                 return ret;
1244         }
1245
1246         init_waitqueue_head(&rcrtc->flip_wait);
1247         init_waitqueue_head(&rcrtc->vblank_wait);
1248         spin_lock_init(&rcrtc->vblank_lock);
1249
1250         rcrtc->dev = rcdu;
1251         rcrtc->group = rgrp;
1252         rcrtc->mmio_offset = mmio_offsets[hwindex];
1253         rcrtc->index = hwindex;
1254         rcrtc->dsysr = (rcrtc->index % 2 ? 0 : DSYSR_DRES) | DSYSR_TVM_TVSYNC;
1255
1256         if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE))
1257                 primary = &rcrtc->vsp->planes[rcrtc->vsp_pipe].plane;
1258         else
1259                 primary = &rgrp->planes[swindex % 2].plane;
1260
1261         ret = drm_crtc_init_with_planes(rcdu->ddev, crtc, primary, NULL,
1262                                         rcdu->info->gen <= 2 ?
1263                                         &crtc_funcs_gen2 : &crtc_funcs_gen3,
1264                                         NULL);
1265         if (ret < 0)
1266                 return ret;
1267
1268         /* CMM might be disabled for this CRTC. */
1269         if (rcdu->cmms[swindex]) {
1270                 rcrtc->cmm = rcdu->cmms[swindex];
1271                 rgrp->cmms_mask |= BIT(hwindex % 2);
1272
1273                 drm_mode_crtc_set_gamma_size(crtc, CM2_LUT_SIZE);
1274                 drm_crtc_enable_color_mgmt(crtc, 0, false, CM2_LUT_SIZE);
1275         }
1276
1277         drm_crtc_helper_add(crtc, &crtc_helper_funcs);
1278
1279         /* Register the interrupt handler. */
1280         if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
1281                 /* The IRQ's are associated with the CRTC (sw)index. */
1282                 irq = platform_get_irq(pdev, swindex);
1283                 irqflags = 0;
1284         } else {
1285                 irq = platform_get_irq(pdev, 0);
1286                 irqflags = IRQF_SHARED;
1287         }
1288
1289         if (irq < 0) {
1290                 dev_err(rcdu->dev, "no IRQ for CRTC %u\n", swindex);
1291                 return irq;
1292         }
1293
1294         ret = devm_request_irq(rcdu->dev, irq, rcar_du_crtc_irq, irqflags,
1295                                dev_name(rcdu->dev), rcrtc);
1296         if (ret < 0) {
1297                 dev_err(rcdu->dev,
1298                         "failed to register IRQ for CRTC %u\n", swindex);
1299                 return ret;
1300         }
1301
1302         rcar_du_crtc_crc_init(rcrtc);
1303
1304         return 0;
1305 }