GNU Linux-libre 4.9.333-gnu1
[releases.git] / drivers / gpu / drm / nouveau / nvkm / subdev / clk / gf100.c
1 /*
2  * Copyright 2012 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #define gf100_clk(p) container_of((p), struct gf100_clk, base)
25 #include "priv.h"
26 #include "pll.h"
27
28 #include <subdev/bios.h>
29 #include <subdev/bios/pll.h>
30 #include <subdev/timer.h>
31
32 struct gf100_clk_info {
33         u32 freq;
34         u32 ssel;
35         u32 mdiv;
36         u32 dsrc;
37         u32 ddiv;
38         u32 coef;
39 };
40
41 struct gf100_clk {
42         struct nvkm_clk base;
43         struct gf100_clk_info eng[16];
44 };
45
46 static u32 read_div(struct gf100_clk *, int, u32, u32);
47
48 static u32
49 read_vco(struct gf100_clk *clk, u32 dsrc)
50 {
51         struct nvkm_device *device = clk->base.subdev.device;
52         u32 ssrc = nvkm_rd32(device, dsrc);
53         if (!(ssrc & 0x00000100))
54                 return nvkm_clk_read(&clk->base, nv_clk_src_sppll0);
55         return nvkm_clk_read(&clk->base, nv_clk_src_sppll1);
56 }
57
58 static u32
59 read_pll(struct gf100_clk *clk, u32 pll)
60 {
61         struct nvkm_device *device = clk->base.subdev.device;
62         u32 ctrl = nvkm_rd32(device, pll + 0x00);
63         u32 coef = nvkm_rd32(device, pll + 0x04);
64         u32 P = (coef & 0x003f0000) >> 16;
65         u32 N = (coef & 0x0000ff00) >> 8;
66         u32 M = (coef & 0x000000ff) >> 0;
67         u32 sclk;
68
69         if (!(ctrl & 0x00000001))
70                 return 0;
71
72         switch (pll) {
73         case 0x00e800:
74         case 0x00e820:
75                 sclk = device->crystal;
76                 P = 1;
77                 break;
78         case 0x132000:
79                 sclk = nvkm_clk_read(&clk->base, nv_clk_src_mpllsrc);
80                 break;
81         case 0x132020:
82                 sclk = nvkm_clk_read(&clk->base, nv_clk_src_mpllsrcref);
83                 break;
84         case 0x137000:
85         case 0x137020:
86         case 0x137040:
87         case 0x1370e0:
88                 sclk = read_div(clk, (pll & 0xff) / 0x20, 0x137120, 0x137140);
89                 break;
90         default:
91                 return 0;
92         }
93
94         return sclk * N / M / P;
95 }
96
97 static u32
98 read_div(struct gf100_clk *clk, int doff, u32 dsrc, u32 dctl)
99 {
100         struct nvkm_device *device = clk->base.subdev.device;
101         u32 ssrc = nvkm_rd32(device, dsrc + (doff * 4));
102         u32 sclk, sctl, sdiv = 2;
103
104         switch (ssrc & 0x00000003) {
105         case 0:
106                 if ((ssrc & 0x00030000) != 0x00030000)
107                         return device->crystal;
108                 return 108000;
109         case 2:
110                 return 100000;
111         case 3:
112                 sclk = read_vco(clk, dsrc + (doff * 4));
113
114                 /* Memclk has doff of 0 despite its alt. location */
115                 if (doff <= 2) {
116                         sctl = nvkm_rd32(device, dctl + (doff * 4));
117
118                         if (sctl & 0x80000000) {
119                                 if (ssrc & 0x100)
120                                         sctl >>= 8;
121
122                                 sdiv = (sctl & 0x3f) + 2;
123                         }
124                 }
125
126                 return (sclk * 2) / sdiv;
127         default:
128                 return 0;
129         }
130 }
131
132 static u32
133 read_clk(struct gf100_clk *clk, int idx)
134 {
135         struct nvkm_device *device = clk->base.subdev.device;
136         u32 sctl = nvkm_rd32(device, 0x137250 + (idx * 4));
137         u32 ssel = nvkm_rd32(device, 0x137100);
138         u32 sclk, sdiv;
139
140         if (ssel & (1 << idx)) {
141                 if (idx < 7)
142                         sclk = read_pll(clk, 0x137000 + (idx * 0x20));
143                 else
144                         sclk = read_pll(clk, 0x1370e0);
145                 sdiv = ((sctl & 0x00003f00) >> 8) + 2;
146         } else {
147                 sclk = read_div(clk, idx, 0x137160, 0x1371d0);
148                 sdiv = ((sctl & 0x0000003f) >> 0) + 2;
149         }
150
151         if (sctl & 0x80000000)
152                 return (sclk * 2) / sdiv;
153
154         return sclk;
155 }
156
157 static int
158 gf100_clk_read(struct nvkm_clk *base, enum nv_clk_src src)
159 {
160         struct gf100_clk *clk = gf100_clk(base);
161         struct nvkm_subdev *subdev = &clk->base.subdev;
162         struct nvkm_device *device = subdev->device;
163
164         switch (src) {
165         case nv_clk_src_crystal:
166                 return device->crystal;
167         case nv_clk_src_href:
168                 return 100000;
169         case nv_clk_src_sppll0:
170                 return read_pll(clk, 0x00e800);
171         case nv_clk_src_sppll1:
172                 return read_pll(clk, 0x00e820);
173
174         case nv_clk_src_mpllsrcref:
175                 return read_div(clk, 0, 0x137320, 0x137330);
176         case nv_clk_src_mpllsrc:
177                 return read_pll(clk, 0x132020);
178         case nv_clk_src_mpll:
179                 return read_pll(clk, 0x132000);
180         case nv_clk_src_mdiv:
181                 return read_div(clk, 0, 0x137300, 0x137310);
182         case nv_clk_src_mem:
183                 if (nvkm_rd32(device, 0x1373f0) & 0x00000002)
184                         return nvkm_clk_read(&clk->base, nv_clk_src_mpll);
185                 return nvkm_clk_read(&clk->base, nv_clk_src_mdiv);
186
187         case nv_clk_src_gpc:
188                 return read_clk(clk, 0x00);
189         case nv_clk_src_rop:
190                 return read_clk(clk, 0x01);
191         case nv_clk_src_hubk07:
192                 return read_clk(clk, 0x02);
193         case nv_clk_src_hubk06:
194                 return read_clk(clk, 0x07);
195         case nv_clk_src_hubk01:
196                 return read_clk(clk, 0x08);
197         case nv_clk_src_copy:
198                 return read_clk(clk, 0x09);
199         case nv_clk_src_pmu:
200                 return read_clk(clk, 0x0c);
201         case nv_clk_src_vdec:
202                 return read_clk(clk, 0x0e);
203         default:
204                 nvkm_error(subdev, "invalid clock source %d\n", src);
205                 return -EINVAL;
206         }
207 }
208
209 static u32
210 calc_div(struct gf100_clk *clk, int idx, u32 ref, u32 freq, u32 *ddiv)
211 {
212         u32 div = min((ref * 2) / freq, (u32)65);
213         if (div < 2)
214                 div = 2;
215
216         *ddiv = div - 2;
217         return (ref * 2) / div;
218 }
219
220 static u32
221 calc_src(struct gf100_clk *clk, int idx, u32 freq, u32 *dsrc, u32 *ddiv)
222 {
223         u32 sclk;
224
225         /* use one of the fixed frequencies if possible */
226         *ddiv = 0x00000000;
227         switch (freq) {
228         case  27000:
229         case 108000:
230                 *dsrc = 0x00000000;
231                 if (freq == 108000)
232                         *dsrc |= 0x00030000;
233                 return freq;
234         case 100000:
235                 *dsrc = 0x00000002;
236                 return freq;
237         default:
238                 *dsrc = 0x00000003;
239                 break;
240         }
241
242         /* otherwise, calculate the closest divider */
243         sclk = read_vco(clk, 0x137160 + (idx * 4));
244         if (idx < 7)
245                 sclk = calc_div(clk, idx, sclk, freq, ddiv);
246         return sclk;
247 }
248
249 static u32
250 calc_pll(struct gf100_clk *clk, int idx, u32 freq, u32 *coef)
251 {
252         struct nvkm_subdev *subdev = &clk->base.subdev;
253         struct nvkm_bios *bios = subdev->device->bios;
254         struct nvbios_pll limits;
255         int N, M, P, ret;
256
257         ret = nvbios_pll_parse(bios, 0x137000 + (idx * 0x20), &limits);
258         if (ret)
259                 return 0;
260
261         limits.refclk = read_div(clk, idx, 0x137120, 0x137140);
262         if (!limits.refclk)
263                 return 0;
264
265         ret = gt215_pll_calc(subdev, &limits, freq, &N, NULL, &M, &P);
266         if (ret <= 0)
267                 return 0;
268
269         *coef = (P << 16) | (N << 8) | M;
270         return ret;
271 }
272
273 static int
274 calc_clk(struct gf100_clk *clk, struct nvkm_cstate *cstate, int idx, int dom)
275 {
276         struct gf100_clk_info *info = &clk->eng[idx];
277         u32 freq = cstate->domain[dom];
278         u32 src0, div0, div1D, div1P = 0;
279         u32 clk0, clk1 = 0;
280
281         /* invalid clock domain */
282         if (!freq)
283                 return 0;
284
285         /* first possible path, using only dividers */
286         clk0 = calc_src(clk, idx, freq, &src0, &div0);
287         clk0 = calc_div(clk, idx, clk0, freq, &div1D);
288
289         /* see if we can get any closer using PLLs */
290         if (clk0 != freq && (0x00004387 & (1 << idx))) {
291                 if (idx <= 7)
292                         clk1 = calc_pll(clk, idx, freq, &info->coef);
293                 else
294                         clk1 = cstate->domain[nv_clk_src_hubk06];
295                 clk1 = calc_div(clk, idx, clk1, freq, &div1P);
296         }
297
298         /* select the method which gets closest to target freq */
299         if (abs((int)freq - clk0) <= abs((int)freq - clk1)) {
300                 info->dsrc = src0;
301                 if (div0) {
302                         info->ddiv |= 0x80000000;
303                         info->ddiv |= div0 << 8;
304                         info->ddiv |= div0;
305                 }
306                 if (div1D) {
307                         info->mdiv |= 0x80000000;
308                         info->mdiv |= div1D;
309                 }
310                 info->ssel = info->coef = 0;
311                 info->freq = clk0;
312         } else {
313                 if (div1P) {
314                         info->mdiv |= 0x80000000;
315                         info->mdiv |= div1P << 8;
316                 }
317                 info->ssel = (1 << idx);
318                 info->freq = clk1;
319         }
320
321         return 0;
322 }
323
324 static int
325 gf100_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate)
326 {
327         struct gf100_clk *clk = gf100_clk(base);
328         int ret;
329
330         if ((ret = calc_clk(clk, cstate, 0x00, nv_clk_src_gpc)) ||
331             (ret = calc_clk(clk, cstate, 0x01, nv_clk_src_rop)) ||
332             (ret = calc_clk(clk, cstate, 0x02, nv_clk_src_hubk07)) ||
333             (ret = calc_clk(clk, cstate, 0x07, nv_clk_src_hubk06)) ||
334             (ret = calc_clk(clk, cstate, 0x08, nv_clk_src_hubk01)) ||
335             (ret = calc_clk(clk, cstate, 0x09, nv_clk_src_copy)) ||
336             (ret = calc_clk(clk, cstate, 0x0c, nv_clk_src_pmu)) ||
337             (ret = calc_clk(clk, cstate, 0x0e, nv_clk_src_vdec)))
338                 return ret;
339
340         return 0;
341 }
342
343 static void
344 gf100_clk_prog_0(struct gf100_clk *clk, int idx)
345 {
346         struct gf100_clk_info *info = &clk->eng[idx];
347         struct nvkm_device *device = clk->base.subdev.device;
348         if (idx < 7 && !info->ssel) {
349                 nvkm_mask(device, 0x1371d0 + (idx * 0x04), 0x80003f3f, info->ddiv);
350                 nvkm_wr32(device, 0x137160 + (idx * 0x04), info->dsrc);
351         }
352 }
353
354 static void
355 gf100_clk_prog_1(struct gf100_clk *clk, int idx)
356 {
357         struct nvkm_device *device = clk->base.subdev.device;
358         nvkm_mask(device, 0x137100, (1 << idx), 0x00000000);
359         nvkm_msec(device, 2000,
360                 if (!(nvkm_rd32(device, 0x137100) & (1 << idx)))
361                         break;
362         );
363 }
364
365 static void
366 gf100_clk_prog_2(struct gf100_clk *clk, int idx)
367 {
368         struct gf100_clk_info *info = &clk->eng[idx];
369         struct nvkm_device *device = clk->base.subdev.device;
370         const u32 addr = 0x137000 + (idx * 0x20);
371         if (idx <= 7) {
372                 nvkm_mask(device, addr + 0x00, 0x00000004, 0x00000000);
373                 nvkm_mask(device, addr + 0x00, 0x00000001, 0x00000000);
374                 if (info->coef) {
375                         nvkm_wr32(device, addr + 0x04, info->coef);
376                         nvkm_mask(device, addr + 0x00, 0x00000001, 0x00000001);
377
378                         /* Test PLL lock */
379                         nvkm_mask(device, addr + 0x00, 0x00000010, 0x00000000);
380                         nvkm_msec(device, 2000,
381                                 if (nvkm_rd32(device, addr + 0x00) & 0x00020000)
382                                         break;
383                         );
384                         nvkm_mask(device, addr + 0x00, 0x00000010, 0x00000010);
385
386                         /* Enable sync mode */
387                         nvkm_mask(device, addr + 0x00, 0x00000004, 0x00000004);
388                 }
389         }
390 }
391
392 static void
393 gf100_clk_prog_3(struct gf100_clk *clk, int idx)
394 {
395         struct gf100_clk_info *info = &clk->eng[idx];
396         struct nvkm_device *device = clk->base.subdev.device;
397         if (info->ssel) {
398                 nvkm_mask(device, 0x137100, (1 << idx), info->ssel);
399                 nvkm_msec(device, 2000,
400                         u32 tmp = nvkm_rd32(device, 0x137100) & (1 << idx);
401                         if (tmp == info->ssel)
402                                 break;
403                 );
404         }
405 }
406
407 static void
408 gf100_clk_prog_4(struct gf100_clk *clk, int idx)
409 {
410         struct gf100_clk_info *info = &clk->eng[idx];
411         struct nvkm_device *device = clk->base.subdev.device;
412         nvkm_mask(device, 0x137250 + (idx * 0x04), 0x00003f3f, info->mdiv);
413 }
414
415 static int
416 gf100_clk_prog(struct nvkm_clk *base)
417 {
418         struct gf100_clk *clk = gf100_clk(base);
419         struct {
420                 void (*exec)(struct gf100_clk *, int);
421         } stage[] = {
422                 { gf100_clk_prog_0 }, /* div programming */
423                 { gf100_clk_prog_1 }, /* select div mode */
424                 { gf100_clk_prog_2 }, /* (maybe) program pll */
425                 { gf100_clk_prog_3 }, /* (maybe) select pll mode */
426                 { gf100_clk_prog_4 }, /* final divider */
427         };
428         int i, j;
429
430         for (i = 0; i < ARRAY_SIZE(stage); i++) {
431                 for (j = 0; j < ARRAY_SIZE(clk->eng); j++) {
432                         if (!clk->eng[j].freq)
433                                 continue;
434                         stage[i].exec(clk, j);
435                 }
436         }
437
438         return 0;
439 }
440
441 static void
442 gf100_clk_tidy(struct nvkm_clk *base)
443 {
444         struct gf100_clk *clk = gf100_clk(base);
445         memset(clk->eng, 0x00, sizeof(clk->eng));
446 }
447
448 static const struct nvkm_clk_func
449 gf100_clk = {
450         .read = gf100_clk_read,
451         .calc = gf100_clk_calc,
452         .prog = gf100_clk_prog,
453         .tidy = gf100_clk_tidy,
454         .domains = {
455                 { nv_clk_src_crystal, 0xff },
456                 { nv_clk_src_href   , 0xff },
457                 { nv_clk_src_hubk06 , 0x00 },
458                 { nv_clk_src_hubk01 , 0x01 },
459                 { nv_clk_src_copy   , 0x02 },
460                 { nv_clk_src_gpc    , 0x03, 0, "core", 2000 },
461                 { nv_clk_src_rop    , 0x04 },
462                 { nv_clk_src_mem    , 0x05, 0, "memory", 1000 },
463                 { nv_clk_src_vdec   , 0x06 },
464                 { nv_clk_src_pmu    , 0x0a },
465                 { nv_clk_src_hubk07 , 0x0b },
466                 { nv_clk_src_max }
467         }
468 };
469
470 int
471 gf100_clk_new(struct nvkm_device *device, int index, struct nvkm_clk **pclk)
472 {
473         struct gf100_clk *clk;
474
475         if (!(clk = kzalloc(sizeof(*clk), GFP_KERNEL)))
476                 return -ENOMEM;
477         *pclk = &clk->base;
478
479         return nvkm_clk_ctor(&gf100_clk, device, index, false, &clk->base);
480 }