GNU Linux-libre 5.19-rc6-gnu
[releases.git] / drivers / gpu / drm / nouveau / nouveau_svm.c
1 /*
2  * Copyright 2018 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 #include "nouveau_svm.h"
23 #include "nouveau_drv.h"
24 #include "nouveau_chan.h"
25 #include "nouveau_dmem.h"
26
27 #include <nvif/notify.h>
28 #include <nvif/object.h>
29 #include <nvif/vmm.h>
30
31 #include <nvif/class.h>
32 #include <nvif/clb069.h>
33 #include <nvif/ifc00d.h>
34
35 #include <linux/sched/mm.h>
36 #include <linux/sort.h>
37 #include <linux/hmm.h>
38 #include <linux/memremap.h>
39 #include <linux/rmap.h>
40
41 struct nouveau_svm {
42         struct nouveau_drm *drm;
43         struct mutex mutex;
44         struct list_head inst;
45
46         struct nouveau_svm_fault_buffer {
47                 int id;
48                 struct nvif_object object;
49                 u32 entries;
50                 u32 getaddr;
51                 u32 putaddr;
52                 u32 get;
53                 u32 put;
54                 struct nvif_notify notify;
55
56                 struct nouveau_svm_fault {
57                         u64 inst;
58                         u64 addr;
59                         u64 time;
60                         u32 engine;
61                         u8  gpc;
62                         u8  hub;
63                         u8  access;
64                         u8  client;
65                         u8  fault;
66                         struct nouveau_svmm *svmm;
67                 } **fault;
68                 int fault_nr;
69         } buffer[1];
70 };
71
72 #define FAULT_ACCESS_READ 0
73 #define FAULT_ACCESS_WRITE 1
74 #define FAULT_ACCESS_ATOMIC 2
75 #define FAULT_ACCESS_PREFETCH 3
76
77 #define SVM_DBG(s,f,a...) NV_DEBUG((s)->drm, "svm: "f"\n", ##a)
78 #define SVM_ERR(s,f,a...) NV_WARN((s)->drm, "svm: "f"\n", ##a)
79
80 struct nouveau_pfnmap_args {
81         struct nvif_ioctl_v0 i;
82         struct nvif_ioctl_mthd_v0 m;
83         struct nvif_vmm_pfnmap_v0 p;
84 };
85
86 struct nouveau_ivmm {
87         struct nouveau_svmm *svmm;
88         u64 inst;
89         struct list_head head;
90 };
91
92 static struct nouveau_ivmm *
93 nouveau_ivmm_find(struct nouveau_svm *svm, u64 inst)
94 {
95         struct nouveau_ivmm *ivmm;
96         list_for_each_entry(ivmm, &svm->inst, head) {
97                 if (ivmm->inst == inst)
98                         return ivmm;
99         }
100         return NULL;
101 }
102
103 #define SVMM_DBG(s,f,a...)                                                     \
104         NV_DEBUG((s)->vmm->cli->drm, "svm-%p: "f"\n", (s), ##a)
105 #define SVMM_ERR(s,f,a...)                                                     \
106         NV_WARN((s)->vmm->cli->drm, "svm-%p: "f"\n", (s), ##a)
107
108 int
109 nouveau_svmm_bind(struct drm_device *dev, void *data,
110                   struct drm_file *file_priv)
111 {
112         struct nouveau_cli *cli = nouveau_cli(file_priv);
113         struct drm_nouveau_svm_bind *args = data;
114         unsigned target, cmd, priority;
115         unsigned long addr, end;
116         struct mm_struct *mm;
117
118         args->va_start &= PAGE_MASK;
119         args->va_end = ALIGN(args->va_end, PAGE_SIZE);
120
121         /* Sanity check arguments */
122         if (args->reserved0 || args->reserved1)
123                 return -EINVAL;
124         if (args->header & (~NOUVEAU_SVM_BIND_VALID_MASK))
125                 return -EINVAL;
126         if (args->va_start >= args->va_end)
127                 return -EINVAL;
128
129         cmd = args->header >> NOUVEAU_SVM_BIND_COMMAND_SHIFT;
130         cmd &= NOUVEAU_SVM_BIND_COMMAND_MASK;
131         switch (cmd) {
132         case NOUVEAU_SVM_BIND_COMMAND__MIGRATE:
133                 break;
134         default:
135                 return -EINVAL;
136         }
137
138         priority = args->header >> NOUVEAU_SVM_BIND_PRIORITY_SHIFT;
139         priority &= NOUVEAU_SVM_BIND_PRIORITY_MASK;
140
141         /* FIXME support CPU target ie all target value < GPU_VRAM */
142         target = args->header >> NOUVEAU_SVM_BIND_TARGET_SHIFT;
143         target &= NOUVEAU_SVM_BIND_TARGET_MASK;
144         switch (target) {
145         case NOUVEAU_SVM_BIND_TARGET__GPU_VRAM:
146                 break;
147         default:
148                 return -EINVAL;
149         }
150
151         /*
152          * FIXME: For now refuse non 0 stride, we need to change the migrate
153          * kernel function to handle stride to avoid to create a mess within
154          * each device driver.
155          */
156         if (args->stride)
157                 return -EINVAL;
158
159         /*
160          * Ok we are ask to do something sane, for now we only support migrate
161          * commands but we will add things like memory policy (what to do on
162          * page fault) and maybe some other commands.
163          */
164
165         mm = get_task_mm(current);
166         if (!mm) {
167                 return -EINVAL;
168         }
169         mmap_read_lock(mm);
170
171         if (!cli->svm.svmm) {
172                 mmap_read_unlock(mm);
173                 mmput(mm);
174                 return -EINVAL;
175         }
176
177         for (addr = args->va_start, end = args->va_end; addr < end;) {
178                 struct vm_area_struct *vma;
179                 unsigned long next;
180
181                 vma = find_vma_intersection(mm, addr, end);
182                 if (!vma)
183                         break;
184
185                 addr = max(addr, vma->vm_start);
186                 next = min(vma->vm_end, end);
187                 /* This is a best effort so we ignore errors */
188                 nouveau_dmem_migrate_vma(cli->drm, cli->svm.svmm, vma, addr,
189                                          next);
190                 addr = next;
191         }
192
193         /*
194          * FIXME Return the number of page we have migrated, again we need to
195          * update the migrate API to return that information so that we can
196          * report it to user space.
197          */
198         args->result = 0;
199
200         mmap_read_unlock(mm);
201         mmput(mm);
202
203         return 0;
204 }
205
206 /* Unlink channel instance from SVMM. */
207 void
208 nouveau_svmm_part(struct nouveau_svmm *svmm, u64 inst)
209 {
210         struct nouveau_ivmm *ivmm;
211         if (svmm) {
212                 mutex_lock(&svmm->vmm->cli->drm->svm->mutex);
213                 ivmm = nouveau_ivmm_find(svmm->vmm->cli->drm->svm, inst);
214                 if (ivmm) {
215                         list_del(&ivmm->head);
216                         kfree(ivmm);
217                 }
218                 mutex_unlock(&svmm->vmm->cli->drm->svm->mutex);
219         }
220 }
221
222 /* Link channel instance to SVMM. */
223 int
224 nouveau_svmm_join(struct nouveau_svmm *svmm, u64 inst)
225 {
226         struct nouveau_ivmm *ivmm;
227         if (svmm) {
228                 if (!(ivmm = kmalloc(sizeof(*ivmm), GFP_KERNEL)))
229                         return -ENOMEM;
230                 ivmm->svmm = svmm;
231                 ivmm->inst = inst;
232
233                 mutex_lock(&svmm->vmm->cli->drm->svm->mutex);
234                 list_add(&ivmm->head, &svmm->vmm->cli->drm->svm->inst);
235                 mutex_unlock(&svmm->vmm->cli->drm->svm->mutex);
236         }
237         return 0;
238 }
239
240 /* Invalidate SVMM address-range on GPU. */
241 void
242 nouveau_svmm_invalidate(struct nouveau_svmm *svmm, u64 start, u64 limit)
243 {
244         if (limit > start) {
245                 nvif_object_mthd(&svmm->vmm->vmm.object, NVIF_VMM_V0_PFNCLR,
246                                  &(struct nvif_vmm_pfnclr_v0) {
247                                         .addr = start,
248                                         .size = limit - start,
249                                  }, sizeof(struct nvif_vmm_pfnclr_v0));
250         }
251 }
252
253 static int
254 nouveau_svmm_invalidate_range_start(struct mmu_notifier *mn,
255                                     const struct mmu_notifier_range *update)
256 {
257         struct nouveau_svmm *svmm =
258                 container_of(mn, struct nouveau_svmm, notifier);
259         unsigned long start = update->start;
260         unsigned long limit = update->end;
261
262         if (!mmu_notifier_range_blockable(update))
263                 return -EAGAIN;
264
265         SVMM_DBG(svmm, "invalidate %016lx-%016lx", start, limit);
266
267         mutex_lock(&svmm->mutex);
268         if (unlikely(!svmm->vmm))
269                 goto out;
270
271         /*
272          * Ignore invalidation callbacks for device private pages since
273          * the invalidation is handled as part of the migration process.
274          */
275         if (update->event == MMU_NOTIFY_MIGRATE &&
276             update->owner == svmm->vmm->cli->drm->dev)
277                 goto out;
278
279         if (limit > svmm->unmanaged.start && start < svmm->unmanaged.limit) {
280                 if (start < svmm->unmanaged.start) {
281                         nouveau_svmm_invalidate(svmm, start,
282                                                 svmm->unmanaged.limit);
283                 }
284                 start = svmm->unmanaged.limit;
285         }
286
287         nouveau_svmm_invalidate(svmm, start, limit);
288
289 out:
290         mutex_unlock(&svmm->mutex);
291         return 0;
292 }
293
294 static void nouveau_svmm_free_notifier(struct mmu_notifier *mn)
295 {
296         kfree(container_of(mn, struct nouveau_svmm, notifier));
297 }
298
299 static const struct mmu_notifier_ops nouveau_mn_ops = {
300         .invalidate_range_start = nouveau_svmm_invalidate_range_start,
301         .free_notifier = nouveau_svmm_free_notifier,
302 };
303
304 void
305 nouveau_svmm_fini(struct nouveau_svmm **psvmm)
306 {
307         struct nouveau_svmm *svmm = *psvmm;
308         if (svmm) {
309                 mutex_lock(&svmm->mutex);
310                 svmm->vmm = NULL;
311                 mutex_unlock(&svmm->mutex);
312                 mmu_notifier_put(&svmm->notifier);
313                 *psvmm = NULL;
314         }
315 }
316
317 int
318 nouveau_svmm_init(struct drm_device *dev, void *data,
319                   struct drm_file *file_priv)
320 {
321         struct nouveau_cli *cli = nouveau_cli(file_priv);
322         struct nouveau_svmm *svmm;
323         struct drm_nouveau_svm_init *args = data;
324         int ret;
325
326         /* We need to fail if svm is disabled */
327         if (!cli->drm->svm)
328                 return -ENOSYS;
329
330         /* Allocate tracking for SVM-enabled VMM. */
331         if (!(svmm = kzalloc(sizeof(*svmm), GFP_KERNEL)))
332                 return -ENOMEM;
333         svmm->vmm = &cli->svm;
334         svmm->unmanaged.start = args->unmanaged_addr;
335         svmm->unmanaged.limit = args->unmanaged_addr + args->unmanaged_size;
336         mutex_init(&svmm->mutex);
337
338         /* Check that SVM isn't already enabled for the client. */
339         mutex_lock(&cli->mutex);
340         if (cli->svm.cli) {
341                 ret = -EBUSY;
342                 goto out_free;
343         }
344
345         /* Allocate a new GPU VMM that can support SVM (managed by the
346          * client, with replayable faults enabled).
347          *
348          * All future channel/memory allocations will make use of this
349          * VMM instead of the standard one.
350          */
351         ret = nvif_vmm_ctor(&cli->mmu, "svmVmm",
352                             cli->vmm.vmm.object.oclass, true,
353                             args->unmanaged_addr, args->unmanaged_size,
354                             &(struct gp100_vmm_v0) {
355                                 .fault_replay = true,
356                             }, sizeof(struct gp100_vmm_v0), &cli->svm.vmm);
357         if (ret)
358                 goto out_free;
359
360         mmap_write_lock(current->mm);
361         svmm->notifier.ops = &nouveau_mn_ops;
362         ret = __mmu_notifier_register(&svmm->notifier, current->mm);
363         if (ret)
364                 goto out_mm_unlock;
365         /* Note, ownership of svmm transfers to mmu_notifier */
366
367         cli->svm.svmm = svmm;
368         cli->svm.cli = cli;
369         mmap_write_unlock(current->mm);
370         mutex_unlock(&cli->mutex);
371         return 0;
372
373 out_mm_unlock:
374         mmap_write_unlock(current->mm);
375 out_free:
376         mutex_unlock(&cli->mutex);
377         kfree(svmm);
378         return ret;
379 }
380
381 /* Issue fault replay for GPU to retry accesses that faulted previously. */
382 static void
383 nouveau_svm_fault_replay(struct nouveau_svm *svm)
384 {
385         SVM_DBG(svm, "replay");
386         WARN_ON(nvif_object_mthd(&svm->drm->client.vmm.vmm.object,
387                                  GP100_VMM_VN_FAULT_REPLAY,
388                                  &(struct gp100_vmm_fault_replay_vn) {},
389                                  sizeof(struct gp100_vmm_fault_replay_vn)));
390 }
391
392 /* Cancel a replayable fault that could not be handled.
393  *
394  * Cancelling the fault will trigger recovery to reset the engine
395  * and kill the offending channel (ie. GPU SIGSEGV).
396  */
397 static void
398 nouveau_svm_fault_cancel(struct nouveau_svm *svm,
399                          u64 inst, u8 hub, u8 gpc, u8 client)
400 {
401         SVM_DBG(svm, "cancel %016llx %d %02x %02x", inst, hub, gpc, client);
402         WARN_ON(nvif_object_mthd(&svm->drm->client.vmm.vmm.object,
403                                  GP100_VMM_VN_FAULT_CANCEL,
404                                  &(struct gp100_vmm_fault_cancel_v0) {
405                                         .hub = hub,
406                                         .gpc = gpc,
407                                         .client = client,
408                                         .inst = inst,
409                                  }, sizeof(struct gp100_vmm_fault_cancel_v0)));
410 }
411
412 static void
413 nouveau_svm_fault_cancel_fault(struct nouveau_svm *svm,
414                                struct nouveau_svm_fault *fault)
415 {
416         nouveau_svm_fault_cancel(svm, fault->inst,
417                                       fault->hub,
418                                       fault->gpc,
419                                       fault->client);
420 }
421
422 static int
423 nouveau_svm_fault_priority(u8 fault)
424 {
425         switch (fault) {
426         case FAULT_ACCESS_PREFETCH:
427                 return 0;
428         case FAULT_ACCESS_READ:
429                 return 1;
430         case FAULT_ACCESS_WRITE:
431                 return 2;
432         case FAULT_ACCESS_ATOMIC:
433                 return 3;
434         default:
435                 WARN_ON_ONCE(1);
436                 return -1;
437         }
438 }
439
440 static int
441 nouveau_svm_fault_cmp(const void *a, const void *b)
442 {
443         const struct nouveau_svm_fault *fa = *(struct nouveau_svm_fault **)a;
444         const struct nouveau_svm_fault *fb = *(struct nouveau_svm_fault **)b;
445         int ret;
446         if ((ret = (s64)fa->inst - fb->inst))
447                 return ret;
448         if ((ret = (s64)fa->addr - fb->addr))
449                 return ret;
450         return nouveau_svm_fault_priority(fa->access) -
451                 nouveau_svm_fault_priority(fb->access);
452 }
453
454 static void
455 nouveau_svm_fault_cache(struct nouveau_svm *svm,
456                         struct nouveau_svm_fault_buffer *buffer, u32 offset)
457 {
458         struct nvif_object *memory = &buffer->object;
459         const u32 instlo = nvif_rd32(memory, offset + 0x00);
460         const u32 insthi = nvif_rd32(memory, offset + 0x04);
461         const u32 addrlo = nvif_rd32(memory, offset + 0x08);
462         const u32 addrhi = nvif_rd32(memory, offset + 0x0c);
463         const u32 timelo = nvif_rd32(memory, offset + 0x10);
464         const u32 timehi = nvif_rd32(memory, offset + 0x14);
465         const u32 engine = nvif_rd32(memory, offset + 0x18);
466         const u32   info = nvif_rd32(memory, offset + 0x1c);
467         const u64   inst = (u64)insthi << 32 | instlo;
468         const u8     gpc = (info & 0x1f000000) >> 24;
469         const u8     hub = (info & 0x00100000) >> 20;
470         const u8  client = (info & 0x00007f00) >> 8;
471         struct nouveau_svm_fault *fault;
472
473         //XXX: i think we're supposed to spin waiting */
474         if (WARN_ON(!(info & 0x80000000)))
475                 return;
476
477         nvif_mask(memory, offset + 0x1c, 0x80000000, 0x00000000);
478
479         if (!buffer->fault[buffer->fault_nr]) {
480                 fault = kmalloc(sizeof(*fault), GFP_KERNEL);
481                 if (WARN_ON(!fault)) {
482                         nouveau_svm_fault_cancel(svm, inst, hub, gpc, client);
483                         return;
484                 }
485                 buffer->fault[buffer->fault_nr] = fault;
486         }
487
488         fault = buffer->fault[buffer->fault_nr++];
489         fault->inst   = inst;
490         fault->addr   = (u64)addrhi << 32 | addrlo;
491         fault->time   = (u64)timehi << 32 | timelo;
492         fault->engine = engine;
493         fault->gpc    = gpc;
494         fault->hub    = hub;
495         fault->access = (info & 0x000f0000) >> 16;
496         fault->client = client;
497         fault->fault  = (info & 0x0000001f);
498
499         SVM_DBG(svm, "fault %016llx %016llx %02x",
500                 fault->inst, fault->addr, fault->access);
501 }
502
503 struct svm_notifier {
504         struct mmu_interval_notifier notifier;
505         struct nouveau_svmm *svmm;
506 };
507
508 static bool nouveau_svm_range_invalidate(struct mmu_interval_notifier *mni,
509                                          const struct mmu_notifier_range *range,
510                                          unsigned long cur_seq)
511 {
512         struct svm_notifier *sn =
513                 container_of(mni, struct svm_notifier, notifier);
514
515         if (range->event == MMU_NOTIFY_EXCLUSIVE &&
516             range->owner == sn->svmm->vmm->cli->drm->dev)
517                 return true;
518
519         /*
520          * serializes the update to mni->invalidate_seq done by caller and
521          * prevents invalidation of the PTE from progressing while HW is being
522          * programmed. This is very hacky and only works because the normal
523          * notifier that does invalidation is always called after the range
524          * notifier.
525          */
526         if (mmu_notifier_range_blockable(range))
527                 mutex_lock(&sn->svmm->mutex);
528         else if (!mutex_trylock(&sn->svmm->mutex))
529                 return false;
530         mmu_interval_set_seq(mni, cur_seq);
531         mutex_unlock(&sn->svmm->mutex);
532         return true;
533 }
534
535 static const struct mmu_interval_notifier_ops nouveau_svm_mni_ops = {
536         .invalidate = nouveau_svm_range_invalidate,
537 };
538
539 static void nouveau_hmm_convert_pfn(struct nouveau_drm *drm,
540                                     struct hmm_range *range,
541                                     struct nouveau_pfnmap_args *args)
542 {
543         struct page *page;
544
545         /*
546          * The address prepared here is passed through nvif_object_ioctl()
547          * to an eventual DMA map in something like gp100_vmm_pgt_pfn()
548          *
549          * This is all just encoding the internal hmm representation into a
550          * different nouveau internal representation.
551          */
552         if (!(range->hmm_pfns[0] & HMM_PFN_VALID)) {
553                 args->p.phys[0] = 0;
554                 return;
555         }
556
557         page = hmm_pfn_to_page(range->hmm_pfns[0]);
558         /*
559          * Only map compound pages to the GPU if the CPU is also mapping the
560          * page as a compound page. Otherwise, the PTE protections might not be
561          * consistent (e.g., CPU only maps part of a compound page).
562          * Note that the underlying page might still be larger than the
563          * CPU mapping (e.g., a PUD sized compound page partially mapped with
564          * a PMD sized page table entry).
565          */
566         if (hmm_pfn_to_map_order(range->hmm_pfns[0])) {
567                 unsigned long addr = args->p.addr;
568
569                 args->p.page = hmm_pfn_to_map_order(range->hmm_pfns[0]) +
570                                 PAGE_SHIFT;
571                 args->p.size = 1UL << args->p.page;
572                 args->p.addr &= ~(args->p.size - 1);
573                 page -= (addr - args->p.addr) >> PAGE_SHIFT;
574         }
575         if (is_device_private_page(page))
576                 args->p.phys[0] = nouveau_dmem_page_addr(page) |
577                                 NVIF_VMM_PFNMAP_V0_V |
578                                 NVIF_VMM_PFNMAP_V0_VRAM;
579         else
580                 args->p.phys[0] = page_to_phys(page) |
581                                 NVIF_VMM_PFNMAP_V0_V |
582                                 NVIF_VMM_PFNMAP_V0_HOST;
583         if (range->hmm_pfns[0] & HMM_PFN_WRITE)
584                 args->p.phys[0] |= NVIF_VMM_PFNMAP_V0_W;
585 }
586
587 static int nouveau_atomic_range_fault(struct nouveau_svmm *svmm,
588                                struct nouveau_drm *drm,
589                                struct nouveau_pfnmap_args *args, u32 size,
590                                struct svm_notifier *notifier)
591 {
592         unsigned long timeout =
593                 jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
594         struct mm_struct *mm = svmm->notifier.mm;
595         struct page *page;
596         unsigned long start = args->p.addr;
597         unsigned long notifier_seq;
598         int ret = 0;
599
600         ret = mmu_interval_notifier_insert(&notifier->notifier, mm,
601                                         args->p.addr, args->p.size,
602                                         &nouveau_svm_mni_ops);
603         if (ret)
604                 return ret;
605
606         while (true) {
607                 if (time_after(jiffies, timeout)) {
608                         ret = -EBUSY;
609                         goto out;
610                 }
611
612                 notifier_seq = mmu_interval_read_begin(&notifier->notifier);
613                 mmap_read_lock(mm);
614                 ret = make_device_exclusive_range(mm, start, start + PAGE_SIZE,
615                                             &page, drm->dev);
616                 mmap_read_unlock(mm);
617                 if (ret <= 0 || !page) {
618                         ret = -EINVAL;
619                         goto out;
620                 }
621
622                 mutex_lock(&svmm->mutex);
623                 if (!mmu_interval_read_retry(&notifier->notifier,
624                                              notifier_seq))
625                         break;
626                 mutex_unlock(&svmm->mutex);
627         }
628
629         /* Map the page on the GPU. */
630         args->p.page = 12;
631         args->p.size = PAGE_SIZE;
632         args->p.addr = start;
633         args->p.phys[0] = page_to_phys(page) |
634                 NVIF_VMM_PFNMAP_V0_V |
635                 NVIF_VMM_PFNMAP_V0_W |
636                 NVIF_VMM_PFNMAP_V0_A |
637                 NVIF_VMM_PFNMAP_V0_HOST;
638
639         ret = nvif_object_ioctl(&svmm->vmm->vmm.object, args, size, NULL);
640         mutex_unlock(&svmm->mutex);
641
642         unlock_page(page);
643         put_page(page);
644
645 out:
646         mmu_interval_notifier_remove(&notifier->notifier);
647         return ret;
648 }
649
650 static int nouveau_range_fault(struct nouveau_svmm *svmm,
651                                struct nouveau_drm *drm,
652                                struct nouveau_pfnmap_args *args, u32 size,
653                                unsigned long hmm_flags,
654                                struct svm_notifier *notifier)
655 {
656         unsigned long timeout =
657                 jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
658         /* Have HMM fault pages within the fault window to the GPU. */
659         unsigned long hmm_pfns[1];
660         struct hmm_range range = {
661                 .notifier = &notifier->notifier,
662                 .default_flags = hmm_flags,
663                 .hmm_pfns = hmm_pfns,
664                 .dev_private_owner = drm->dev,
665         };
666         struct mm_struct *mm = svmm->notifier.mm;
667         int ret;
668
669         ret = mmu_interval_notifier_insert(&notifier->notifier, mm,
670                                         args->p.addr, args->p.size,
671                                         &nouveau_svm_mni_ops);
672         if (ret)
673                 return ret;
674
675         range.start = notifier->notifier.interval_tree.start;
676         range.end = notifier->notifier.interval_tree.last + 1;
677
678         while (true) {
679                 if (time_after(jiffies, timeout)) {
680                         ret = -EBUSY;
681                         goto out;
682                 }
683
684                 range.notifier_seq = mmu_interval_read_begin(range.notifier);
685                 mmap_read_lock(mm);
686                 ret = hmm_range_fault(&range);
687                 mmap_read_unlock(mm);
688                 if (ret) {
689                         if (ret == -EBUSY)
690                                 continue;
691                         goto out;
692                 }
693
694                 mutex_lock(&svmm->mutex);
695                 if (mmu_interval_read_retry(range.notifier,
696                                             range.notifier_seq)) {
697                         mutex_unlock(&svmm->mutex);
698                         continue;
699                 }
700                 break;
701         }
702
703         nouveau_hmm_convert_pfn(drm, &range, args);
704
705         ret = nvif_object_ioctl(&svmm->vmm->vmm.object, args, size, NULL);
706         mutex_unlock(&svmm->mutex);
707
708 out:
709         mmu_interval_notifier_remove(&notifier->notifier);
710
711         return ret;
712 }
713
714 static int
715 nouveau_svm_fault(struct nvif_notify *notify)
716 {
717         struct nouveau_svm_fault_buffer *buffer =
718                 container_of(notify, typeof(*buffer), notify);
719         struct nouveau_svm *svm =
720                 container_of(buffer, typeof(*svm), buffer[buffer->id]);
721         struct nvif_object *device = &svm->drm->client.device.object;
722         struct nouveau_svmm *svmm;
723         struct {
724                 struct nouveau_pfnmap_args i;
725                 u64 phys[1];
726         } args;
727         unsigned long hmm_flags;
728         u64 inst, start, limit;
729         int fi, fn;
730         int replay = 0, atomic = 0, ret;
731
732         /* Parse available fault buffer entries into a cache, and update
733          * the GET pointer so HW can reuse the entries.
734          */
735         SVM_DBG(svm, "fault handler");
736         if (buffer->get == buffer->put) {
737                 buffer->put = nvif_rd32(device, buffer->putaddr);
738                 buffer->get = nvif_rd32(device, buffer->getaddr);
739                 if (buffer->get == buffer->put)
740                         return NVIF_NOTIFY_KEEP;
741         }
742         buffer->fault_nr = 0;
743
744         SVM_DBG(svm, "get %08x put %08x", buffer->get, buffer->put);
745         while (buffer->get != buffer->put) {
746                 nouveau_svm_fault_cache(svm, buffer, buffer->get * 0x20);
747                 if (++buffer->get == buffer->entries)
748                         buffer->get = 0;
749         }
750         nvif_wr32(device, buffer->getaddr, buffer->get);
751         SVM_DBG(svm, "%d fault(s) pending", buffer->fault_nr);
752
753         /* Sort parsed faults by instance pointer to prevent unnecessary
754          * instance to SVMM translations, followed by address and access
755          * type to reduce the amount of work when handling the faults.
756          */
757         sort(buffer->fault, buffer->fault_nr, sizeof(*buffer->fault),
758              nouveau_svm_fault_cmp, NULL);
759
760         /* Lookup SVMM structure for each unique instance pointer. */
761         mutex_lock(&svm->mutex);
762         for (fi = 0, svmm = NULL; fi < buffer->fault_nr; fi++) {
763                 if (!svmm || buffer->fault[fi]->inst != inst) {
764                         struct nouveau_ivmm *ivmm =
765                                 nouveau_ivmm_find(svm, buffer->fault[fi]->inst);
766                         svmm = ivmm ? ivmm->svmm : NULL;
767                         inst = buffer->fault[fi]->inst;
768                         SVM_DBG(svm, "inst %016llx -> svm-%p", inst, svmm);
769                 }
770                 buffer->fault[fi]->svmm = svmm;
771         }
772         mutex_unlock(&svm->mutex);
773
774         /* Process list of faults. */
775         args.i.i.version = 0;
776         args.i.i.type = NVIF_IOCTL_V0_MTHD;
777         args.i.m.version = 0;
778         args.i.m.method = NVIF_VMM_V0_PFNMAP;
779         args.i.p.version = 0;
780
781         for (fi = 0; fn = fi + 1, fi < buffer->fault_nr; fi = fn) {
782                 struct svm_notifier notifier;
783                 struct mm_struct *mm;
784
785                 /* Cancel any faults from non-SVM channels. */
786                 if (!(svmm = buffer->fault[fi]->svmm)) {
787                         nouveau_svm_fault_cancel_fault(svm, buffer->fault[fi]);
788                         continue;
789                 }
790                 SVMM_DBG(svmm, "addr %016llx", buffer->fault[fi]->addr);
791
792                 /* We try and group handling of faults within a small
793                  * window into a single update.
794                  */
795                 start = buffer->fault[fi]->addr;
796                 limit = start + PAGE_SIZE;
797                 if (start < svmm->unmanaged.limit)
798                         limit = min_t(u64, limit, svmm->unmanaged.start);
799
800                 /*
801                  * Prepare the GPU-side update of all pages within the
802                  * fault window, determining required pages and access
803                  * permissions based on pending faults.
804                  */
805                 args.i.p.addr = start;
806                 args.i.p.page = PAGE_SHIFT;
807                 args.i.p.size = PAGE_SIZE;
808                 /*
809                  * Determine required permissions based on GPU fault
810                  * access flags.
811                  */
812                 switch (buffer->fault[fi]->access) {
813                 case 0: /* READ. */
814                         hmm_flags = HMM_PFN_REQ_FAULT;
815                         break;
816                 case 2: /* ATOMIC. */
817                         atomic = true;
818                         break;
819                 case 3: /* PREFETCH. */
820                         hmm_flags = 0;
821                         break;
822                 default:
823                         hmm_flags = HMM_PFN_REQ_FAULT | HMM_PFN_REQ_WRITE;
824                         break;
825                 }
826
827                 mm = svmm->notifier.mm;
828                 if (!mmget_not_zero(mm)) {
829                         nouveau_svm_fault_cancel_fault(svm, buffer->fault[fi]);
830                         continue;
831                 }
832
833                 notifier.svmm = svmm;
834                 if (atomic)
835                         ret = nouveau_atomic_range_fault(svmm, svm->drm,
836                                                          &args.i, sizeof(args),
837                                                          &notifier);
838                 else
839                         ret = nouveau_range_fault(svmm, svm->drm, &args.i,
840                                                   sizeof(args), hmm_flags,
841                                                   &notifier);
842                 mmput(mm);
843
844                 limit = args.i.p.addr + args.i.p.size;
845                 for (fn = fi; ++fn < buffer->fault_nr; ) {
846                         /* It's okay to skip over duplicate addresses from the
847                          * same SVMM as faults are ordered by access type such
848                          * that only the first one needs to be handled.
849                          *
850                          * ie. WRITE faults appear first, thus any handling of
851                          * pending READ faults will already be satisfied.
852                          * But if a large page is mapped, make sure subsequent
853                          * fault addresses have sufficient access permission.
854                          */
855                         if (buffer->fault[fn]->svmm != svmm ||
856                             buffer->fault[fn]->addr >= limit ||
857                             (buffer->fault[fi]->access == FAULT_ACCESS_READ &&
858                              !(args.phys[0] & NVIF_VMM_PFNMAP_V0_V)) ||
859                             (buffer->fault[fi]->access != FAULT_ACCESS_READ &&
860                              buffer->fault[fi]->access != FAULT_ACCESS_PREFETCH &&
861                              !(args.phys[0] & NVIF_VMM_PFNMAP_V0_W)) ||
862                             (buffer->fault[fi]->access != FAULT_ACCESS_READ &&
863                              buffer->fault[fi]->access != FAULT_ACCESS_WRITE &&
864                              buffer->fault[fi]->access != FAULT_ACCESS_PREFETCH &&
865                              !(args.phys[0] & NVIF_VMM_PFNMAP_V0_A)))
866                                 break;
867                 }
868
869                 /* If handling failed completely, cancel all faults. */
870                 if (ret) {
871                         while (fi < fn) {
872                                 struct nouveau_svm_fault *fault =
873                                         buffer->fault[fi++];
874
875                                 nouveau_svm_fault_cancel_fault(svm, fault);
876                         }
877                 } else
878                         replay++;
879         }
880
881         /* Issue fault replay to the GPU. */
882         if (replay)
883                 nouveau_svm_fault_replay(svm);
884         return NVIF_NOTIFY_KEEP;
885 }
886
887 static struct nouveau_pfnmap_args *
888 nouveau_pfns_to_args(void *pfns)
889 {
890         return container_of(pfns, struct nouveau_pfnmap_args, p.phys);
891 }
892
893 u64 *
894 nouveau_pfns_alloc(unsigned long npages)
895 {
896         struct nouveau_pfnmap_args *args;
897
898         args = kzalloc(struct_size(args, p.phys, npages), GFP_KERNEL);
899         if (!args)
900                 return NULL;
901
902         args->i.type = NVIF_IOCTL_V0_MTHD;
903         args->m.method = NVIF_VMM_V0_PFNMAP;
904         args->p.page = PAGE_SHIFT;
905
906         return args->p.phys;
907 }
908
909 void
910 nouveau_pfns_free(u64 *pfns)
911 {
912         struct nouveau_pfnmap_args *args = nouveau_pfns_to_args(pfns);
913
914         kfree(args);
915 }
916
917 void
918 nouveau_pfns_map(struct nouveau_svmm *svmm, struct mm_struct *mm,
919                  unsigned long addr, u64 *pfns, unsigned long npages)
920 {
921         struct nouveau_pfnmap_args *args = nouveau_pfns_to_args(pfns);
922         int ret;
923
924         args->p.addr = addr;
925         args->p.size = npages << PAGE_SHIFT;
926
927         mutex_lock(&svmm->mutex);
928
929         ret = nvif_object_ioctl(&svmm->vmm->vmm.object, args,
930                                 struct_size(args, p.phys, npages), NULL);
931
932         mutex_unlock(&svmm->mutex);
933 }
934
935 static void
936 nouveau_svm_fault_buffer_fini(struct nouveau_svm *svm, int id)
937 {
938         struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id];
939         nvif_notify_put(&buffer->notify);
940 }
941
942 static int
943 nouveau_svm_fault_buffer_init(struct nouveau_svm *svm, int id)
944 {
945         struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id];
946         struct nvif_object *device = &svm->drm->client.device.object;
947         buffer->get = nvif_rd32(device, buffer->getaddr);
948         buffer->put = nvif_rd32(device, buffer->putaddr);
949         SVM_DBG(svm, "get %08x put %08x (init)", buffer->get, buffer->put);
950         return nvif_notify_get(&buffer->notify);
951 }
952
953 static void
954 nouveau_svm_fault_buffer_dtor(struct nouveau_svm *svm, int id)
955 {
956         struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id];
957         int i;
958
959         if (buffer->fault) {
960                 for (i = 0; buffer->fault[i] && i < buffer->entries; i++)
961                         kfree(buffer->fault[i]);
962                 kvfree(buffer->fault);
963         }
964
965         nouveau_svm_fault_buffer_fini(svm, id);
966
967         nvif_notify_dtor(&buffer->notify);
968         nvif_object_dtor(&buffer->object);
969 }
970
971 static int
972 nouveau_svm_fault_buffer_ctor(struct nouveau_svm *svm, s32 oclass, int id)
973 {
974         struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id];
975         struct nouveau_drm *drm = svm->drm;
976         struct nvif_object *device = &drm->client.device.object;
977         struct nvif_clb069_v0 args = {};
978         int ret;
979
980         buffer->id = id;
981
982         ret = nvif_object_ctor(device, "svmFaultBuffer", 0, oclass, &args,
983                                sizeof(args), &buffer->object);
984         if (ret < 0) {
985                 SVM_ERR(svm, "Fault buffer allocation failed: %d", ret);
986                 return ret;
987         }
988
989         nvif_object_map(&buffer->object, NULL, 0);
990         buffer->entries = args.entries;
991         buffer->getaddr = args.get;
992         buffer->putaddr = args.put;
993
994         ret = nvif_notify_ctor(&buffer->object, "svmFault", nouveau_svm_fault,
995                                true, NVB069_V0_NTFY_FAULT, NULL, 0, 0,
996                                &buffer->notify);
997         if (ret)
998                 return ret;
999
1000         buffer->fault = kvcalloc(sizeof(*buffer->fault), buffer->entries, GFP_KERNEL);
1001         if (!buffer->fault)
1002                 return -ENOMEM;
1003
1004         return nouveau_svm_fault_buffer_init(svm, id);
1005 }
1006
1007 void
1008 nouveau_svm_resume(struct nouveau_drm *drm)
1009 {
1010         struct nouveau_svm *svm = drm->svm;
1011         if (svm)
1012                 nouveau_svm_fault_buffer_init(svm, 0);
1013 }
1014
1015 void
1016 nouveau_svm_suspend(struct nouveau_drm *drm)
1017 {
1018         struct nouveau_svm *svm = drm->svm;
1019         if (svm)
1020                 nouveau_svm_fault_buffer_fini(svm, 0);
1021 }
1022
1023 void
1024 nouveau_svm_fini(struct nouveau_drm *drm)
1025 {
1026         struct nouveau_svm *svm = drm->svm;
1027         if (svm) {
1028                 nouveau_svm_fault_buffer_dtor(svm, 0);
1029                 kfree(drm->svm);
1030                 drm->svm = NULL;
1031         }
1032 }
1033
1034 void
1035 nouveau_svm_init(struct nouveau_drm *drm)
1036 {
1037         static const struct nvif_mclass buffers[] = {
1038                 {   VOLTA_FAULT_BUFFER_A, 0 },
1039                 { MAXWELL_FAULT_BUFFER_A, 0 },
1040                 {}
1041         };
1042         struct nouveau_svm *svm;
1043         int ret;
1044
1045         /* Disable on Volta and newer until channel recovery is fixed,
1046          * otherwise clients will have a trivial way to trash the GPU
1047          * for everyone.
1048          */
1049         if (drm->client.device.info.family > NV_DEVICE_INFO_V0_PASCAL)
1050                 return;
1051
1052         if (!(drm->svm = svm = kzalloc(sizeof(*drm->svm), GFP_KERNEL)))
1053                 return;
1054
1055         drm->svm->drm = drm;
1056         mutex_init(&drm->svm->mutex);
1057         INIT_LIST_HEAD(&drm->svm->inst);
1058
1059         ret = nvif_mclass(&drm->client.device.object, buffers);
1060         if (ret < 0) {
1061                 SVM_DBG(svm, "No supported fault buffer class");
1062                 nouveau_svm_fini(drm);
1063                 return;
1064         }
1065
1066         ret = nouveau_svm_fault_buffer_ctor(svm, buffers[ret].oclass, 0);
1067         if (ret) {
1068                 nouveau_svm_fini(drm);
1069                 return;
1070         }
1071
1072         SVM_DBG(svm, "Initialised");
1073 }