GNU Linux-libre 4.14.332-gnu1
[releases.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <linux/log2.h>
31 #include <drm/drmP.h>
32 #include "i915_drv.h"
33 #include <drm/i915_drm.h>
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36
37 /* Rough estimate of the typical request size, performing a flush,
38  * set-context and then emitting the batch.
39  */
40 #define LEGACY_REQUEST_SIZE 200
41
42 static unsigned int __intel_ring_space(unsigned int head,
43                                        unsigned int tail,
44                                        unsigned int size)
45 {
46         /*
47          * "If the Ring Buffer Head Pointer and the Tail Pointer are on the
48          * same cacheline, the Head Pointer must not be greater than the Tail
49          * Pointer."
50          */
51         GEM_BUG_ON(!is_power_of_2(size));
52         return (head - tail - CACHELINE_BYTES) & (size - 1);
53 }
54
55 unsigned int intel_ring_update_space(struct intel_ring *ring)
56 {
57         unsigned int space;
58
59         space = __intel_ring_space(ring->head, ring->emit, ring->size);
60
61         ring->space = space;
62         return space;
63 }
64
65 static int
66 gen2_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
67 {
68         u32 cmd, *cs;
69
70         cmd = MI_FLUSH;
71
72         if (mode & EMIT_INVALIDATE)
73                 cmd |= MI_READ_FLUSH;
74
75         cs = intel_ring_begin(req, 2);
76         if (IS_ERR(cs))
77                 return PTR_ERR(cs);
78
79         *cs++ = cmd;
80         *cs++ = MI_NOOP;
81         intel_ring_advance(req, cs);
82
83         return 0;
84 }
85
86 static int
87 gen4_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
88 {
89         u32 cmd, *cs;
90
91         /*
92          * read/write caches:
93          *
94          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
95          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
96          * also flushed at 2d versus 3d pipeline switches.
97          *
98          * read-only caches:
99          *
100          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
101          * MI_READ_FLUSH is set, and is always flushed on 965.
102          *
103          * I915_GEM_DOMAIN_COMMAND may not exist?
104          *
105          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
106          * invalidated when MI_EXE_FLUSH is set.
107          *
108          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
109          * invalidated with every MI_FLUSH.
110          *
111          * TLBs:
112          *
113          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
114          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
115          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
116          * are flushed at any MI_FLUSH.
117          */
118
119         cmd = MI_FLUSH;
120         if (mode & EMIT_INVALIDATE) {
121                 cmd |= MI_EXE_FLUSH;
122                 if (IS_G4X(req->i915) || IS_GEN5(req->i915))
123                         cmd |= MI_INVALIDATE_ISP;
124         }
125
126         cs = intel_ring_begin(req, 2);
127         if (IS_ERR(cs))
128                 return PTR_ERR(cs);
129
130         *cs++ = cmd;
131         *cs++ = MI_NOOP;
132         intel_ring_advance(req, cs);
133
134         return 0;
135 }
136
137 /**
138  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
139  * implementing two workarounds on gen6.  From section 1.4.7.1
140  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
141  *
142  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
143  * produced by non-pipelined state commands), software needs to first
144  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
145  * 0.
146  *
147  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
148  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
149  *
150  * And the workaround for these two requires this workaround first:
151  *
152  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
153  * BEFORE the pipe-control with a post-sync op and no write-cache
154  * flushes.
155  *
156  * And this last workaround is tricky because of the requirements on
157  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
158  * volume 2 part 1:
159  *
160  *     "1 of the following must also be set:
161  *      - Render Target Cache Flush Enable ([12] of DW1)
162  *      - Depth Cache Flush Enable ([0] of DW1)
163  *      - Stall at Pixel Scoreboard ([1] of DW1)
164  *      - Depth Stall ([13] of DW1)
165  *      - Post-Sync Operation ([13] of DW1)
166  *      - Notify Enable ([8] of DW1)"
167  *
168  * The cache flushes require the workaround flush that triggered this
169  * one, so we can't use it.  Depth stall would trigger the same.
170  * Post-sync nonzero is what triggered this second workaround, so we
171  * can't use that one either.  Notify enable is IRQs, which aren't
172  * really our business.  That leaves only stall at scoreboard.
173  */
174 static int
175 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
176 {
177         u32 scratch_addr =
178                 i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
179         u32 *cs;
180
181         cs = intel_ring_begin(req, 6);
182         if (IS_ERR(cs))
183                 return PTR_ERR(cs);
184
185         *cs++ = GFX_OP_PIPE_CONTROL(5);
186         *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
187         *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
188         *cs++ = 0; /* low dword */
189         *cs++ = 0; /* high dword */
190         *cs++ = MI_NOOP;
191         intel_ring_advance(req, cs);
192
193         cs = intel_ring_begin(req, 6);
194         if (IS_ERR(cs))
195                 return PTR_ERR(cs);
196
197         *cs++ = GFX_OP_PIPE_CONTROL(5);
198         *cs++ = PIPE_CONTROL_QW_WRITE;
199         *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
200         *cs++ = 0;
201         *cs++ = 0;
202         *cs++ = MI_NOOP;
203         intel_ring_advance(req, cs);
204
205         return 0;
206 }
207
208 static int
209 gen6_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
210 {
211         u32 scratch_addr =
212                 i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
213         u32 *cs, flags = 0;
214         int ret;
215
216         /* Force SNB workarounds for PIPE_CONTROL flushes */
217         ret = intel_emit_post_sync_nonzero_flush(req);
218         if (ret)
219                 return ret;
220
221         /* Just flush everything.  Experiments have shown that reducing the
222          * number of bits based on the write domains has little performance
223          * impact.
224          */
225         if (mode & EMIT_FLUSH) {
226                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
227                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
228                 /*
229                  * Ensure that any following seqno writes only happen
230                  * when the render cache is indeed flushed.
231                  */
232                 flags |= PIPE_CONTROL_CS_STALL;
233         }
234         if (mode & EMIT_INVALIDATE) {
235                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
236                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
237                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
238                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
239                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
240                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
241                 /*
242                  * TLB invalidate requires a post-sync write.
243                  */
244                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
245         }
246
247         cs = intel_ring_begin(req, 4);
248         if (IS_ERR(cs))
249                 return PTR_ERR(cs);
250
251         *cs++ = GFX_OP_PIPE_CONTROL(4);
252         *cs++ = flags;
253         *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
254         *cs++ = 0;
255         intel_ring_advance(req, cs);
256
257         return 0;
258 }
259
260 static int
261 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
262 {
263         u32 *cs;
264
265         cs = intel_ring_begin(req, 4);
266         if (IS_ERR(cs))
267                 return PTR_ERR(cs);
268
269         *cs++ = GFX_OP_PIPE_CONTROL(4);
270         *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
271         *cs++ = 0;
272         *cs++ = 0;
273         intel_ring_advance(req, cs);
274
275         return 0;
276 }
277
278 static int
279 gen7_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
280 {
281         u32 scratch_addr =
282                 i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
283         u32 *cs, flags = 0;
284
285         /*
286          * Ensure that any following seqno writes only happen when the render
287          * cache is indeed flushed.
288          *
289          * Workaround: 4th PIPE_CONTROL command (except the ones with only
290          * read-cache invalidate bits set) must have the CS_STALL bit set. We
291          * don't try to be clever and just set it unconditionally.
292          */
293         flags |= PIPE_CONTROL_CS_STALL;
294
295         /* Just flush everything.  Experiments have shown that reducing the
296          * number of bits based on the write domains has little performance
297          * impact.
298          */
299         if (mode & EMIT_FLUSH) {
300                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
301                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
302                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
303                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
304         }
305         if (mode & EMIT_INVALIDATE) {
306                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
307                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
308                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
309                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
310                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
311                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
312                 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
313                 /*
314                  * TLB invalidate requires a post-sync write.
315                  */
316                 flags |= PIPE_CONTROL_QW_WRITE;
317                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
318
319                 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
320
321                 /* Workaround: we must issue a pipe_control with CS-stall bit
322                  * set before a pipe_control command that has the state cache
323                  * invalidate bit set. */
324                 gen7_render_ring_cs_stall_wa(req);
325         }
326
327         cs = intel_ring_begin(req, 4);
328         if (IS_ERR(cs))
329                 return PTR_ERR(cs);
330
331         *cs++ = GFX_OP_PIPE_CONTROL(4);
332         *cs++ = flags;
333         *cs++ = scratch_addr;
334         *cs++ = 0;
335         intel_ring_advance(req, cs);
336
337         return 0;
338 }
339
340 static int
341 gen8_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
342 {
343         u32 flags;
344         u32 *cs;
345
346         cs = intel_ring_begin(req, mode & EMIT_INVALIDATE ? 12 : 6);
347         if (IS_ERR(cs))
348                 return PTR_ERR(cs);
349
350         flags = PIPE_CONTROL_CS_STALL;
351
352         if (mode & EMIT_FLUSH) {
353                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
354                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
355                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
356                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
357         }
358         if (mode & EMIT_INVALIDATE) {
359                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
360                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
361                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
362                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
363                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
364                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
365                 flags |= PIPE_CONTROL_QW_WRITE;
366                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
367
368                 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
369                 cs = gen8_emit_pipe_control(cs,
370                                             PIPE_CONTROL_CS_STALL |
371                                             PIPE_CONTROL_STALL_AT_SCOREBOARD,
372                                             0);
373         }
374
375         cs = gen8_emit_pipe_control(cs, flags,
376                                     i915_ggtt_offset(req->engine->scratch) +
377                                     2 * CACHELINE_BYTES);
378
379         intel_ring_advance(req, cs);
380
381         return 0;
382 }
383
384 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
385 {
386         struct drm_i915_private *dev_priv = engine->i915;
387         u32 addr;
388
389         addr = dev_priv->status_page_dmah->busaddr;
390         if (INTEL_GEN(dev_priv) >= 4)
391                 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
392         I915_WRITE(HWS_PGA, addr);
393 }
394
395 static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
396 {
397         struct drm_i915_private *dev_priv = engine->i915;
398         i915_reg_t mmio;
399
400         /* The ring status page addresses are no longer next to the rest of
401          * the ring registers as of gen7.
402          */
403         if (IS_GEN7(dev_priv)) {
404                 switch (engine->id) {
405                 case RCS:
406                         mmio = RENDER_HWS_PGA_GEN7;
407                         break;
408                 case BCS:
409                         mmio = BLT_HWS_PGA_GEN7;
410                         break;
411                 /*
412                  * VCS2 actually doesn't exist on Gen7. Only shut up
413                  * gcc switch check warning
414                  */
415                 case VCS2:
416                 case VCS:
417                         mmio = BSD_HWS_PGA_GEN7;
418                         break;
419                 case VECS:
420                         mmio = VEBOX_HWS_PGA_GEN7;
421                         break;
422                 }
423         } else if (IS_GEN6(dev_priv)) {
424                 mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
425         } else {
426                 /* XXX: gen8 returns to sanity */
427                 mmio = RING_HWS_PGA(engine->mmio_base);
428         }
429
430         I915_WRITE(mmio, engine->status_page.ggtt_offset);
431         POSTING_READ(mmio);
432
433         /*
434          * Flush the TLB for this page
435          *
436          * FIXME: These two bits have disappeared on gen8, so a question
437          * arises: do we still need this and if so how should we go about
438          * invalidating the TLB?
439          */
440         if (IS_GEN(dev_priv, 6, 7)) {
441                 i915_reg_t reg = RING_INSTPM(engine->mmio_base);
442
443                 /* ring should be idle before issuing a sync flush*/
444                 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
445
446                 I915_WRITE(reg,
447                            _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
448                                               INSTPM_SYNC_FLUSH));
449                 if (intel_wait_for_register(dev_priv,
450                                             reg, INSTPM_SYNC_FLUSH, 0,
451                                             1000))
452                         DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
453                                   engine->name);
454         }
455 }
456
457 static bool stop_ring(struct intel_engine_cs *engine)
458 {
459         struct drm_i915_private *dev_priv = engine->i915;
460
461         if (INTEL_GEN(dev_priv) > 2) {
462                 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
463                 if (intel_wait_for_register(dev_priv,
464                                             RING_MI_MODE(engine->mmio_base),
465                                             MODE_IDLE,
466                                             MODE_IDLE,
467                                             1000)) {
468                         DRM_ERROR("%s : timed out trying to stop ring\n",
469                                   engine->name);
470                         /* Sometimes we observe that the idle flag is not
471                          * set even though the ring is empty. So double
472                          * check before giving up.
473                          */
474                         if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
475                                 return false;
476                 }
477         }
478
479         I915_WRITE_CTL(engine, 0);
480         I915_WRITE_HEAD(engine, 0);
481         I915_WRITE_TAIL(engine, 0);
482
483         if (INTEL_GEN(dev_priv) > 2) {
484                 (void)I915_READ_CTL(engine);
485                 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
486         }
487
488         return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
489 }
490
491 static int init_ring_common(struct intel_engine_cs *engine)
492 {
493         struct drm_i915_private *dev_priv = engine->i915;
494         struct intel_ring *ring = engine->buffer;
495         int ret = 0;
496
497         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
498
499         if (!stop_ring(engine)) {
500                 /* G45 ring initialization often fails to reset head to zero */
501                 DRM_DEBUG_KMS("%s head not reset to zero "
502                               "ctl %08x head %08x tail %08x start %08x\n",
503                               engine->name,
504                               I915_READ_CTL(engine),
505                               I915_READ_HEAD(engine),
506                               I915_READ_TAIL(engine),
507                               I915_READ_START(engine));
508
509                 if (!stop_ring(engine)) {
510                         DRM_ERROR("failed to set %s head to zero "
511                                   "ctl %08x head %08x tail %08x start %08x\n",
512                                   engine->name,
513                                   I915_READ_CTL(engine),
514                                   I915_READ_HEAD(engine),
515                                   I915_READ_TAIL(engine),
516                                   I915_READ_START(engine));
517                         ret = -EIO;
518                         goto out;
519                 }
520         }
521
522         if (HWS_NEEDS_PHYSICAL(dev_priv))
523                 ring_setup_phys_status_page(engine);
524         else
525                 intel_ring_setup_status_page(engine);
526
527         intel_engine_reset_breadcrumbs(engine);
528
529         /* Enforce ordering by reading HEAD register back */
530         I915_READ_HEAD(engine);
531
532         /* Initialize the ring. This must happen _after_ we've cleared the ring
533          * registers with the above sequence (the readback of the HEAD registers
534          * also enforces ordering), otherwise the hw might lose the new ring
535          * register values. */
536         I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
537
538         /* WaClearRingBufHeadRegAtInit:ctg,elk */
539         if (I915_READ_HEAD(engine))
540                 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
541                           engine->name, I915_READ_HEAD(engine));
542
543         intel_ring_update_space(ring);
544         I915_WRITE_HEAD(engine, ring->head);
545         I915_WRITE_TAIL(engine, ring->tail);
546         (void)I915_READ_TAIL(engine);
547
548         I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
549
550         /* If the head is still not zero, the ring is dead */
551         if (intel_wait_for_register(dev_priv, RING_CTL(engine->mmio_base),
552                                     RING_VALID, RING_VALID,
553                                     50)) {
554                 DRM_ERROR("%s initialization failed "
555                           "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
556                           engine->name,
557                           I915_READ_CTL(engine),
558                           I915_READ_CTL(engine) & RING_VALID,
559                           I915_READ_HEAD(engine), ring->head,
560                           I915_READ_TAIL(engine), ring->tail,
561                           I915_READ_START(engine),
562                           i915_ggtt_offset(ring->vma));
563                 ret = -EIO;
564                 goto out;
565         }
566
567         intel_engine_init_hangcheck(engine);
568
569 out:
570         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
571
572         return ret;
573 }
574
575 static void reset_ring_common(struct intel_engine_cs *engine,
576                               struct drm_i915_gem_request *request)
577 {
578         /* Try to restore the logical GPU state to match the continuation
579          * of the request queue. If we skip the context/PD restore, then
580          * the next request may try to execute assuming that its context
581          * is valid and loaded on the GPU and so may try to access invalid
582          * memory, prompting repeated GPU hangs.
583          *
584          * If the request was guilty, we still restore the logical state
585          * in case the next request requires it (e.g. the aliasing ppgtt),
586          * but skip over the hung batch.
587          *
588          * If the request was innocent, we try to replay the request with
589          * the restored context.
590          */
591         if (request) {
592                 struct drm_i915_private *dev_priv = request->i915;
593                 struct intel_context *ce = &request->ctx->engine[engine->id];
594                 struct i915_hw_ppgtt *ppgtt;
595
596                 /* FIXME consider gen8 reset */
597
598                 if (ce->state) {
599                         I915_WRITE(CCID,
600                                    i915_ggtt_offset(ce->state) |
601                                    BIT(8) /* must be set! */ |
602                                    CCID_EXTENDED_STATE_SAVE |
603                                    CCID_EXTENDED_STATE_RESTORE |
604                                    CCID_EN);
605                 }
606
607                 ppgtt = request->ctx->ppgtt ?: engine->i915->mm.aliasing_ppgtt;
608                 if (ppgtt) {
609                         u32 pd_offset = ppgtt->pd.base.ggtt_offset << 10;
610
611                         I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
612                         I915_WRITE(RING_PP_DIR_BASE(engine), pd_offset);
613
614                         /* Wait for the PD reload to complete */
615                         if (intel_wait_for_register(dev_priv,
616                                                     RING_PP_DIR_BASE(engine),
617                                                     BIT(0), 0,
618                                                     10))
619                                 DRM_ERROR("Wait for reload of ppgtt page-directory timed out\n");
620
621                         ppgtt->pd_dirty_rings &= ~intel_engine_flag(engine);
622                 }
623
624                 /* If the rq hung, jump to its breadcrumb and skip the batch */
625                 if (request->fence.error == -EIO)
626                         request->ring->head = request->postfix;
627         } else {
628                 engine->legacy_active_context = NULL;
629         }
630 }
631
632 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
633 {
634         int ret;
635
636         ret = intel_ring_workarounds_emit(req);
637         if (ret != 0)
638                 return ret;
639
640         ret = i915_gem_render_state_emit(req);
641         if (ret)
642                 return ret;
643
644         return 0;
645 }
646
647 static int init_render_ring(struct intel_engine_cs *engine)
648 {
649         struct drm_i915_private *dev_priv = engine->i915;
650         int ret = init_ring_common(engine);
651         if (ret)
652                 return ret;
653
654         /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
655         if (IS_GEN(dev_priv, 4, 6))
656                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
657
658         /* We need to disable the AsyncFlip performance optimisations in order
659          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
660          * programmed to '1' on all products.
661          *
662          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
663          */
664         if (IS_GEN(dev_priv, 6, 7))
665                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
666
667         /* Required for the hardware to program scanline values for waiting */
668         /* WaEnableFlushTlbInvalidationMode:snb */
669         if (IS_GEN6(dev_priv))
670                 I915_WRITE(GFX_MODE,
671                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
672
673         /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
674         if (IS_GEN7(dev_priv))
675                 I915_WRITE(GFX_MODE_GEN7,
676                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
677                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
678
679         if (IS_GEN6(dev_priv)) {
680                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
681                  * "If this bit is set, STCunit will have LRA as replacement
682                  *  policy. [...] This bit must be reset.  LRA replacement
683                  *  policy is not supported."
684                  */
685                 I915_WRITE(CACHE_MODE_0,
686                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
687         }
688
689         if (IS_GEN(dev_priv, 6, 7))
690                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
691
692         if (INTEL_INFO(dev_priv)->gen >= 6)
693                 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
694
695         return init_workarounds_ring(engine);
696 }
697
698 static void render_ring_cleanup(struct intel_engine_cs *engine)
699 {
700         struct drm_i915_private *dev_priv = engine->i915;
701
702         i915_vma_unpin_and_release(&dev_priv->semaphore);
703 }
704
705 static u32 *gen8_rcs_signal(struct drm_i915_gem_request *req, u32 *cs)
706 {
707         struct drm_i915_private *dev_priv = req->i915;
708         struct intel_engine_cs *waiter;
709         enum intel_engine_id id;
710
711         for_each_engine(waiter, dev_priv, id) {
712                 u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
713                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
714                         continue;
715
716                 *cs++ = GFX_OP_PIPE_CONTROL(6);
717                 *cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_QW_WRITE |
718                         PIPE_CONTROL_CS_STALL;
719                 *cs++ = lower_32_bits(gtt_offset);
720                 *cs++ = upper_32_bits(gtt_offset);
721                 *cs++ = req->global_seqno;
722                 *cs++ = 0;
723                 *cs++ = MI_SEMAPHORE_SIGNAL |
724                         MI_SEMAPHORE_TARGET(waiter->hw_id);
725                 *cs++ = 0;
726         }
727
728         return cs;
729 }
730
731 static u32 *gen8_xcs_signal(struct drm_i915_gem_request *req, u32 *cs)
732 {
733         struct drm_i915_private *dev_priv = req->i915;
734         struct intel_engine_cs *waiter;
735         enum intel_engine_id id;
736
737         for_each_engine(waiter, dev_priv, id) {
738                 u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
739                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
740                         continue;
741
742                 *cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
743                 *cs++ = lower_32_bits(gtt_offset) | MI_FLUSH_DW_USE_GTT;
744                 *cs++ = upper_32_bits(gtt_offset);
745                 *cs++ = req->global_seqno;
746                 *cs++ = MI_SEMAPHORE_SIGNAL |
747                         MI_SEMAPHORE_TARGET(waiter->hw_id);
748                 *cs++ = 0;
749         }
750
751         return cs;
752 }
753
754 static u32 *gen6_signal(struct drm_i915_gem_request *req, u32 *cs)
755 {
756         struct drm_i915_private *dev_priv = req->i915;
757         struct intel_engine_cs *engine;
758         enum intel_engine_id id;
759         int num_rings = 0;
760
761         for_each_engine(engine, dev_priv, id) {
762                 i915_reg_t mbox_reg;
763
764                 if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
765                         continue;
766
767                 mbox_reg = req->engine->semaphore.mbox.signal[engine->hw_id];
768                 if (i915_mmio_reg_valid(mbox_reg)) {
769                         *cs++ = MI_LOAD_REGISTER_IMM(1);
770                         *cs++ = i915_mmio_reg_offset(mbox_reg);
771                         *cs++ = req->global_seqno;
772                         num_rings++;
773                 }
774         }
775         if (num_rings & 1)
776                 *cs++ = MI_NOOP;
777
778         return cs;
779 }
780
781 static void i9xx_submit_request(struct drm_i915_gem_request *request)
782 {
783         struct drm_i915_private *dev_priv = request->i915;
784
785         i915_gem_request_submit(request);
786
787         I915_WRITE_TAIL(request->engine,
788                         intel_ring_set_tail(request->ring, request->tail));
789 }
790
791 static void i9xx_emit_breadcrumb(struct drm_i915_gem_request *req, u32 *cs)
792 {
793         *cs++ = MI_STORE_DWORD_INDEX;
794         *cs++ = I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT;
795         *cs++ = req->global_seqno;
796         *cs++ = MI_USER_INTERRUPT;
797
798         req->tail = intel_ring_offset(req, cs);
799         assert_ring_tail_valid(req->ring, req->tail);
800 }
801
802 static const int i9xx_emit_breadcrumb_sz = 4;
803
804 /**
805  * gen6_sema_emit_breadcrumb - Update the semaphore mailbox registers
806  *
807  * @request - request to write to the ring
808  *
809  * Update the mailbox registers in the *other* rings with the current seqno.
810  * This acts like a signal in the canonical semaphore.
811  */
812 static void gen6_sema_emit_breadcrumb(struct drm_i915_gem_request *req, u32 *cs)
813 {
814         return i9xx_emit_breadcrumb(req,
815                                     req->engine->semaphore.signal(req, cs));
816 }
817
818 static void gen8_render_emit_breadcrumb(struct drm_i915_gem_request *req,
819                                         u32 *cs)
820 {
821         struct intel_engine_cs *engine = req->engine;
822
823         if (engine->semaphore.signal)
824                 cs = engine->semaphore.signal(req, cs);
825
826         *cs++ = GFX_OP_PIPE_CONTROL(6);
827         *cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
828                 PIPE_CONTROL_QW_WRITE;
829         *cs++ = intel_hws_seqno_address(engine);
830         *cs++ = 0;
831         *cs++ = req->global_seqno;
832         /* We're thrashing one dword of HWS. */
833         *cs++ = 0;
834         *cs++ = MI_USER_INTERRUPT;
835         *cs++ = MI_NOOP;
836
837         req->tail = intel_ring_offset(req, cs);
838         assert_ring_tail_valid(req->ring, req->tail);
839 }
840
841 static const int gen8_render_emit_breadcrumb_sz = 8;
842
843 /**
844  * intel_ring_sync - sync the waiter to the signaller on seqno
845  *
846  * @waiter - ring that is waiting
847  * @signaller - ring which has, or will signal
848  * @seqno - seqno which the waiter will block on
849  */
850
851 static int
852 gen8_ring_sync_to(struct drm_i915_gem_request *req,
853                   struct drm_i915_gem_request *signal)
854 {
855         struct drm_i915_private *dev_priv = req->i915;
856         u64 offset = GEN8_WAIT_OFFSET(req->engine, signal->engine->id);
857         struct i915_hw_ppgtt *ppgtt;
858         u32 *cs;
859
860         cs = intel_ring_begin(req, 4);
861         if (IS_ERR(cs))
862                 return PTR_ERR(cs);
863
864         *cs++ = MI_SEMAPHORE_WAIT | MI_SEMAPHORE_GLOBAL_GTT |
865                 MI_SEMAPHORE_SAD_GTE_SDD;
866         *cs++ = signal->global_seqno;
867         *cs++ = lower_32_bits(offset);
868         *cs++ = upper_32_bits(offset);
869         intel_ring_advance(req, cs);
870
871         /* When the !RCS engines idle waiting upon a semaphore, they lose their
872          * pagetables and we must reload them before executing the batch.
873          * We do this on the i915_switch_context() following the wait and
874          * before the dispatch.
875          */
876         ppgtt = req->ctx->ppgtt;
877         if (ppgtt && req->engine->id != RCS)
878                 ppgtt->pd_dirty_rings |= intel_engine_flag(req->engine);
879         return 0;
880 }
881
882 static int
883 gen6_ring_sync_to(struct drm_i915_gem_request *req,
884                   struct drm_i915_gem_request *signal)
885 {
886         u32 dw1 = MI_SEMAPHORE_MBOX |
887                   MI_SEMAPHORE_COMPARE |
888                   MI_SEMAPHORE_REGISTER;
889         u32 wait_mbox = signal->engine->semaphore.mbox.wait[req->engine->hw_id];
890         u32 *cs;
891
892         WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
893
894         cs = intel_ring_begin(req, 4);
895         if (IS_ERR(cs))
896                 return PTR_ERR(cs);
897
898         *cs++ = dw1 | wait_mbox;
899         /* Throughout all of the GEM code, seqno passed implies our current
900          * seqno is >= the last seqno executed. However for hardware the
901          * comparison is strictly greater than.
902          */
903         *cs++ = signal->global_seqno - 1;
904         *cs++ = 0;
905         *cs++ = MI_NOOP;
906         intel_ring_advance(req, cs);
907
908         return 0;
909 }
910
911 static void
912 gen5_seqno_barrier(struct intel_engine_cs *engine)
913 {
914         /* MI_STORE are internally buffered by the GPU and not flushed
915          * either by MI_FLUSH or SyncFlush or any other combination of
916          * MI commands.
917          *
918          * "Only the submission of the store operation is guaranteed.
919          * The write result will be complete (coherent) some time later
920          * (this is practically a finite period but there is no guaranteed
921          * latency)."
922          *
923          * Empirically, we observe that we need a delay of at least 75us to
924          * be sure that the seqno write is visible by the CPU.
925          */
926         usleep_range(125, 250);
927 }
928
929 static void
930 gen6_seqno_barrier(struct intel_engine_cs *engine)
931 {
932         struct drm_i915_private *dev_priv = engine->i915;
933
934         /* Workaround to force correct ordering between irq and seqno writes on
935          * ivb (and maybe also on snb) by reading from a CS register (like
936          * ACTHD) before reading the status page.
937          *
938          * Note that this effectively stalls the read by the time it takes to
939          * do a memory transaction, which more or less ensures that the write
940          * from the GPU has sufficient time to invalidate the CPU cacheline.
941          * Alternatively we could delay the interrupt from the CS ring to give
942          * the write time to land, but that would incur a delay after every
943          * batch i.e. much more frequent than a delay when waiting for the
944          * interrupt (with the same net latency).
945          *
946          * Also note that to prevent whole machine hangs on gen7, we have to
947          * take the spinlock to guard against concurrent cacheline access.
948          */
949         spin_lock_irq(&dev_priv->uncore.lock);
950         POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
951         spin_unlock_irq(&dev_priv->uncore.lock);
952 }
953
954 static void
955 gen5_irq_enable(struct intel_engine_cs *engine)
956 {
957         gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
958 }
959
960 static void
961 gen5_irq_disable(struct intel_engine_cs *engine)
962 {
963         gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
964 }
965
966 static void
967 i9xx_irq_enable(struct intel_engine_cs *engine)
968 {
969         struct drm_i915_private *dev_priv = engine->i915;
970
971         dev_priv->irq_mask &= ~engine->irq_enable_mask;
972         I915_WRITE(IMR, dev_priv->irq_mask);
973         POSTING_READ_FW(RING_IMR(engine->mmio_base));
974 }
975
976 static void
977 i9xx_irq_disable(struct intel_engine_cs *engine)
978 {
979         struct drm_i915_private *dev_priv = engine->i915;
980
981         dev_priv->irq_mask |= engine->irq_enable_mask;
982         I915_WRITE(IMR, dev_priv->irq_mask);
983 }
984
985 static void
986 i8xx_irq_enable(struct intel_engine_cs *engine)
987 {
988         struct drm_i915_private *dev_priv = engine->i915;
989
990         dev_priv->irq_mask &= ~engine->irq_enable_mask;
991         I915_WRITE16(IMR, dev_priv->irq_mask);
992         POSTING_READ16(RING_IMR(engine->mmio_base));
993 }
994
995 static void
996 i8xx_irq_disable(struct intel_engine_cs *engine)
997 {
998         struct drm_i915_private *dev_priv = engine->i915;
999
1000         dev_priv->irq_mask |= engine->irq_enable_mask;
1001         I915_WRITE16(IMR, dev_priv->irq_mask);
1002 }
1003
1004 static int
1005 bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1006 {
1007         u32 *cs;
1008
1009         cs = intel_ring_begin(req, 2);
1010         if (IS_ERR(cs))
1011                 return PTR_ERR(cs);
1012
1013         *cs++ = MI_FLUSH;
1014         *cs++ = MI_NOOP;
1015         intel_ring_advance(req, cs);
1016         return 0;
1017 }
1018
1019 static void
1020 gen6_irq_enable(struct intel_engine_cs *engine)
1021 {
1022         struct drm_i915_private *dev_priv = engine->i915;
1023
1024         I915_WRITE_IMR(engine,
1025                        ~(engine->irq_enable_mask |
1026                          engine->irq_keep_mask));
1027         gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1028 }
1029
1030 static void
1031 gen6_irq_disable(struct intel_engine_cs *engine)
1032 {
1033         struct drm_i915_private *dev_priv = engine->i915;
1034
1035         I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1036         gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1037 }
1038
1039 static void
1040 hsw_vebox_irq_enable(struct intel_engine_cs *engine)
1041 {
1042         struct drm_i915_private *dev_priv = engine->i915;
1043
1044         I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1045         gen6_unmask_pm_irq(dev_priv, engine->irq_enable_mask);
1046 }
1047
1048 static void
1049 hsw_vebox_irq_disable(struct intel_engine_cs *engine)
1050 {
1051         struct drm_i915_private *dev_priv = engine->i915;
1052
1053         I915_WRITE_IMR(engine, ~0);
1054         gen6_mask_pm_irq(dev_priv, engine->irq_enable_mask);
1055 }
1056
1057 static void
1058 gen8_irq_enable(struct intel_engine_cs *engine)
1059 {
1060         struct drm_i915_private *dev_priv = engine->i915;
1061
1062         I915_WRITE_IMR(engine,
1063                        ~(engine->irq_enable_mask |
1064                          engine->irq_keep_mask));
1065         POSTING_READ_FW(RING_IMR(engine->mmio_base));
1066 }
1067
1068 static void
1069 gen8_irq_disable(struct intel_engine_cs *engine)
1070 {
1071         struct drm_i915_private *dev_priv = engine->i915;
1072
1073         I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1074 }
1075
1076 static int
1077 i965_emit_bb_start(struct drm_i915_gem_request *req,
1078                    u64 offset, u32 length,
1079                    unsigned int dispatch_flags)
1080 {
1081         u32 *cs;
1082
1083         cs = intel_ring_begin(req, 2);
1084         if (IS_ERR(cs))
1085                 return PTR_ERR(cs);
1086
1087         *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags &
1088                 I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965);
1089         *cs++ = offset;
1090         intel_ring_advance(req, cs);
1091
1092         return 0;
1093 }
1094
1095 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1096 #define I830_BATCH_LIMIT (256*1024)
1097 #define I830_TLB_ENTRIES (2)
1098 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1099 static int
1100 i830_emit_bb_start(struct drm_i915_gem_request *req,
1101                    u64 offset, u32 len,
1102                    unsigned int dispatch_flags)
1103 {
1104         u32 *cs, cs_offset = i915_ggtt_offset(req->engine->scratch);
1105
1106         cs = intel_ring_begin(req, 6);
1107         if (IS_ERR(cs))
1108                 return PTR_ERR(cs);
1109
1110         /* Evict the invalid PTE TLBs */
1111         *cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA;
1112         *cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096;
1113         *cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */
1114         *cs++ = cs_offset;
1115         *cs++ = 0xdeadbeef;
1116         *cs++ = MI_NOOP;
1117         intel_ring_advance(req, cs);
1118
1119         if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1120                 if (len > I830_BATCH_LIMIT)
1121                         return -ENOSPC;
1122
1123                 cs = intel_ring_begin(req, 6 + 2);
1124                 if (IS_ERR(cs))
1125                         return PTR_ERR(cs);
1126
1127                 /* Blit the batch (which has now all relocs applied) to the
1128                  * stable batch scratch bo area (so that the CS never
1129                  * stumbles over its tlb invalidation bug) ...
1130                  */
1131                 *cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA;
1132                 *cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096;
1133                 *cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096;
1134                 *cs++ = cs_offset;
1135                 *cs++ = 4096;
1136                 *cs++ = offset;
1137
1138                 *cs++ = MI_FLUSH;
1139                 *cs++ = MI_NOOP;
1140                 intel_ring_advance(req, cs);
1141
1142                 /* ... and execute it. */
1143                 offset = cs_offset;
1144         }
1145
1146         cs = intel_ring_begin(req, 2);
1147         if (IS_ERR(cs))
1148                 return PTR_ERR(cs);
1149
1150         *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1151         *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1152                 MI_BATCH_NON_SECURE);
1153         intel_ring_advance(req, cs);
1154
1155         return 0;
1156 }
1157
1158 static int
1159 i915_emit_bb_start(struct drm_i915_gem_request *req,
1160                    u64 offset, u32 len,
1161                    unsigned int dispatch_flags)
1162 {
1163         u32 *cs;
1164
1165         cs = intel_ring_begin(req, 2);
1166         if (IS_ERR(cs))
1167                 return PTR_ERR(cs);
1168
1169         *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1170         *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1171                 MI_BATCH_NON_SECURE);
1172         intel_ring_advance(req, cs);
1173
1174         return 0;
1175 }
1176
1177 static void cleanup_phys_status_page(struct intel_engine_cs *engine)
1178 {
1179         struct drm_i915_private *dev_priv = engine->i915;
1180
1181         if (!dev_priv->status_page_dmah)
1182                 return;
1183
1184         drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
1185         engine->status_page.page_addr = NULL;
1186 }
1187
1188 static void cleanup_status_page(struct intel_engine_cs *engine)
1189 {
1190         struct i915_vma *vma;
1191         struct drm_i915_gem_object *obj;
1192
1193         vma = fetch_and_zero(&engine->status_page.vma);
1194         if (!vma)
1195                 return;
1196
1197         obj = vma->obj;
1198
1199         i915_vma_unpin(vma);
1200         i915_vma_close(vma);
1201
1202         i915_gem_object_unpin_map(obj);
1203         __i915_gem_object_release_unless_active(obj);
1204 }
1205
1206 static int init_status_page(struct intel_engine_cs *engine)
1207 {
1208         struct drm_i915_gem_object *obj;
1209         struct i915_vma *vma;
1210         unsigned int flags;
1211         void *vaddr;
1212         int ret;
1213
1214         obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
1215         if (IS_ERR(obj)) {
1216                 DRM_ERROR("Failed to allocate status page\n");
1217                 return PTR_ERR(obj);
1218         }
1219
1220         ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1221         if (ret)
1222                 goto err;
1223
1224         vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1225         if (IS_ERR(vma)) {
1226                 ret = PTR_ERR(vma);
1227                 goto err;
1228         }
1229
1230         flags = PIN_GLOBAL;
1231         if (!HAS_LLC(engine->i915))
1232                 /* On g33, we cannot place HWS above 256MiB, so
1233                  * restrict its pinning to the low mappable arena.
1234                  * Though this restriction is not documented for
1235                  * gen4, gen5, or byt, they also behave similarly
1236                  * and hang if the HWS is placed at the top of the
1237                  * GTT. To generalise, it appears that all !llc
1238                  * platforms have issues with us placing the HWS
1239                  * above the mappable region (even though we never
1240                  * actualy map it).
1241                  */
1242                 flags |= PIN_MAPPABLE;
1243         ret = i915_vma_pin(vma, 0, 4096, flags);
1244         if (ret)
1245                 goto err;
1246
1247         vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1248         if (IS_ERR(vaddr)) {
1249                 ret = PTR_ERR(vaddr);
1250                 goto err_unpin;
1251         }
1252
1253         engine->status_page.vma = vma;
1254         engine->status_page.ggtt_offset = i915_ggtt_offset(vma);
1255         engine->status_page.page_addr = memset(vaddr, 0, PAGE_SIZE);
1256
1257         DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1258                          engine->name, i915_ggtt_offset(vma));
1259         return 0;
1260
1261 err_unpin:
1262         i915_vma_unpin(vma);
1263 err:
1264         i915_gem_object_put(obj);
1265         return ret;
1266 }
1267
1268 static int init_phys_status_page(struct intel_engine_cs *engine)
1269 {
1270         struct drm_i915_private *dev_priv = engine->i915;
1271
1272         GEM_BUG_ON(engine->id != RCS);
1273
1274         dev_priv->status_page_dmah =
1275                 drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
1276         if (!dev_priv->status_page_dmah)
1277                 return -ENOMEM;
1278
1279         engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1280         memset(engine->status_page.page_addr, 0, PAGE_SIZE);
1281
1282         return 0;
1283 }
1284
1285 int intel_ring_pin(struct intel_ring *ring,
1286                    struct drm_i915_private *i915,
1287                    unsigned int offset_bias)
1288 {
1289         enum i915_map_type map = HAS_LLC(i915) ? I915_MAP_WB : I915_MAP_WC;
1290         struct i915_vma *vma = ring->vma;
1291         unsigned int flags;
1292         void *addr;
1293         int ret;
1294
1295         GEM_BUG_ON(ring->vaddr);
1296
1297
1298         flags = PIN_GLOBAL;
1299         if (offset_bias)
1300                 flags |= PIN_OFFSET_BIAS | offset_bias;
1301         if (vma->obj->stolen)
1302                 flags |= PIN_MAPPABLE;
1303
1304         if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1305                 if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
1306                         ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1307                 else
1308                         ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
1309                 if (unlikely(ret))
1310                         return ret;
1311         }
1312
1313         ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
1314         if (unlikely(ret))
1315                 return ret;
1316
1317         if (i915_vma_is_map_and_fenceable(vma) && !HAS_LLC(vma->vm->i915))
1318                 addr = (void __force *)i915_vma_pin_iomap(vma);
1319         else
1320                 addr = i915_gem_object_pin_map(vma->obj, map);
1321         if (IS_ERR(addr))
1322                 goto err;
1323
1324         ring->vaddr = addr;
1325         return 0;
1326
1327 err:
1328         i915_vma_unpin(vma);
1329         return PTR_ERR(addr);
1330 }
1331
1332 void intel_ring_reset(struct intel_ring *ring, u32 tail)
1333 {
1334         GEM_BUG_ON(!list_empty(&ring->request_list));
1335         ring->tail = tail;
1336         ring->head = tail;
1337         ring->emit = tail;
1338         intel_ring_update_space(ring);
1339 }
1340
1341 void intel_ring_unpin(struct intel_ring *ring)
1342 {
1343         GEM_BUG_ON(!ring->vma);
1344         GEM_BUG_ON(!ring->vaddr);
1345
1346         /* Discard any unused bytes beyond that submitted to hw. */
1347         intel_ring_reset(ring, ring->tail);
1348
1349         if (i915_vma_is_map_and_fenceable(ring->vma) && !HAS_LLC(ring->vma->vm->i915))
1350                 i915_vma_unpin_iomap(ring->vma);
1351         else
1352                 i915_gem_object_unpin_map(ring->vma->obj);
1353         ring->vaddr = NULL;
1354
1355         i915_vma_unpin(ring->vma);
1356 }
1357
1358 static struct i915_vma *
1359 intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1360 {
1361         struct i915_address_space *vm = &dev_priv->ggtt.base;
1362         struct drm_i915_gem_object *obj = NULL;
1363         struct i915_vma *vma;
1364
1365         if (!HAS_LLC(dev_priv))
1366                 obj = i915_gem_object_create_stolen(dev_priv, size);
1367         if (!obj)
1368                 obj = i915_gem_object_create_internal(dev_priv, size);
1369         if (IS_ERR(obj))
1370                 return ERR_CAST(obj);
1371
1372         /*
1373          * Mark ring buffers as read-only from GPU side (so no stray overwrites)
1374          * if supported by the platform's GGTT.
1375          */
1376         if (vm->has_read_only)
1377                 i915_gem_object_set_readonly(obj);
1378
1379         vma = i915_vma_instance(obj, vm, NULL);
1380         if (IS_ERR(vma))
1381                 goto err;
1382
1383         return vma;
1384
1385 err:
1386         i915_gem_object_put(obj);
1387         return vma;
1388 }
1389
1390 struct intel_ring *
1391 intel_engine_create_ring(struct intel_engine_cs *engine, int size)
1392 {
1393         struct intel_ring *ring;
1394         struct i915_vma *vma;
1395
1396         GEM_BUG_ON(!is_power_of_2(size));
1397         GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
1398
1399         ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1400         if (!ring)
1401                 return ERR_PTR(-ENOMEM);
1402
1403         INIT_LIST_HEAD(&ring->request_list);
1404
1405         ring->size = size;
1406         /* Workaround an erratum on the i830 which causes a hang if
1407          * the TAIL pointer points to within the last 2 cachelines
1408          * of the buffer.
1409          */
1410         ring->effective_size = size;
1411         if (IS_I830(engine->i915) || IS_I845G(engine->i915))
1412                 ring->effective_size -= 2 * CACHELINE_BYTES;
1413
1414         intel_ring_update_space(ring);
1415
1416         vma = intel_ring_create_vma(engine->i915, size);
1417         if (IS_ERR(vma)) {
1418                 kfree(ring);
1419                 return ERR_CAST(vma);
1420         }
1421         ring->vma = vma;
1422
1423         return ring;
1424 }
1425
1426 void
1427 intel_ring_free(struct intel_ring *ring)
1428 {
1429         struct drm_i915_gem_object *obj = ring->vma->obj;
1430
1431         i915_vma_close(ring->vma);
1432         __i915_gem_object_release_unless_active(obj);
1433
1434         kfree(ring);
1435 }
1436
1437 static int context_pin(struct i915_gem_context *ctx)
1438 {
1439         struct i915_vma *vma = ctx->engine[RCS].state;
1440         int ret;
1441
1442         /* Clear this page out of any CPU caches for coherent swap-in/out.
1443          * We only want to do this on the first bind so that we do not stall
1444          * on an active context (which by nature is already on the GPU).
1445          */
1446         if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1447                 ret = i915_gem_object_set_to_gtt_domain(vma->obj, false);
1448                 if (ret)
1449                         return ret;
1450         }
1451
1452         return i915_vma_pin(vma, 0, I915_GTT_MIN_ALIGNMENT,
1453                             PIN_GLOBAL | PIN_HIGH);
1454 }
1455
1456 static struct i915_vma *
1457 alloc_context_vma(struct intel_engine_cs *engine)
1458 {
1459         struct drm_i915_private *i915 = engine->i915;
1460         struct drm_i915_gem_object *obj;
1461         struct i915_vma *vma;
1462
1463         obj = i915_gem_object_create(i915, engine->context_size);
1464         if (IS_ERR(obj))
1465                 return ERR_CAST(obj);
1466
1467         /*
1468          * Try to make the context utilize L3 as well as LLC.
1469          *
1470          * On VLV we don't have L3 controls in the PTEs so we
1471          * shouldn't touch the cache level, especially as that
1472          * would make the object snooped which might have a
1473          * negative performance impact.
1474          *
1475          * Snooping is required on non-llc platforms in execlist
1476          * mode, but since all GGTT accesses use PAT entry 0 we
1477          * get snooping anyway regardless of cache_level.
1478          *
1479          * This is only applicable for Ivy Bridge devices since
1480          * later platforms don't have L3 control bits in the PTE.
1481          */
1482         if (IS_IVYBRIDGE(i915)) {
1483                 /* Ignore any error, regard it as a simple optimisation */
1484                 i915_gem_object_set_cache_level(obj, I915_CACHE_L3_LLC);
1485         }
1486
1487         vma = i915_vma_instance(obj, &i915->ggtt.base, NULL);
1488         if (IS_ERR(vma))
1489                 i915_gem_object_put(obj);
1490
1491         return vma;
1492 }
1493
1494 static struct intel_ring *
1495 intel_ring_context_pin(struct intel_engine_cs *engine,
1496                        struct i915_gem_context *ctx)
1497 {
1498         struct intel_context *ce = &ctx->engine[engine->id];
1499         int ret;
1500
1501         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1502
1503         if (likely(ce->pin_count++))
1504                 goto out;
1505         GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1506
1507         if (!ce->state && engine->context_size) {
1508                 struct i915_vma *vma;
1509
1510                 vma = alloc_context_vma(engine);
1511                 if (IS_ERR(vma)) {
1512                         ret = PTR_ERR(vma);
1513                         goto err;
1514                 }
1515
1516                 ce->state = vma;
1517         }
1518
1519         if (ce->state) {
1520                 ret = context_pin(ctx);
1521                 if (ret)
1522                         goto err;
1523
1524                 ce->state->obj->mm.dirty = true;
1525         }
1526
1527         /* The kernel context is only used as a placeholder for flushing the
1528          * active context. It is never used for submitting user rendering and
1529          * as such never requires the golden render context, and so we can skip
1530          * emitting it when we switch to the kernel context. This is required
1531          * as during eviction we cannot allocate and pin the renderstate in
1532          * order to initialise the context.
1533          */
1534         if (i915_gem_context_is_kernel(ctx))
1535                 ce->initialised = true;
1536
1537         i915_gem_context_get(ctx);
1538
1539 out:
1540         /* One ringbuffer to rule them all */
1541         return engine->buffer;
1542
1543 err:
1544         ce->pin_count = 0;
1545         return ERR_PTR(ret);
1546 }
1547
1548 static void intel_ring_context_unpin(struct intel_engine_cs *engine,
1549                                      struct i915_gem_context *ctx)
1550 {
1551         struct intel_context *ce = &ctx->engine[engine->id];
1552
1553         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1554         GEM_BUG_ON(ce->pin_count == 0);
1555
1556         if (--ce->pin_count)
1557                 return;
1558
1559         if (ce->state)
1560                 i915_vma_unpin(ce->state);
1561
1562         i915_gem_context_put(ctx);
1563 }
1564
1565 static int intel_init_ring_buffer(struct intel_engine_cs *engine)
1566 {
1567         struct intel_ring *ring;
1568         int err;
1569
1570         intel_engine_setup_common(engine);
1571
1572         err = intel_engine_init_common(engine);
1573         if (err)
1574                 goto err;
1575
1576         if (HWS_NEEDS_PHYSICAL(engine->i915))
1577                 err = init_phys_status_page(engine);
1578         else
1579                 err = init_status_page(engine);
1580         if (err)
1581                 goto err;
1582
1583         ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
1584         if (IS_ERR(ring)) {
1585                 err = PTR_ERR(ring);
1586                 goto err_hws;
1587         }
1588
1589         /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1590         err = intel_ring_pin(ring, engine->i915, I915_GTT_PAGE_SIZE);
1591         if (err)
1592                 goto err_ring;
1593
1594         GEM_BUG_ON(engine->buffer);
1595         engine->buffer = ring;
1596
1597         return 0;
1598
1599 err_ring:
1600         intel_ring_free(ring);
1601 err_hws:
1602         if (HWS_NEEDS_PHYSICAL(engine->i915))
1603                 cleanup_phys_status_page(engine);
1604         else
1605                 cleanup_status_page(engine);
1606 err:
1607         intel_engine_cleanup_common(engine);
1608         return err;
1609 }
1610
1611 void intel_engine_cleanup(struct intel_engine_cs *engine)
1612 {
1613         struct drm_i915_private *dev_priv = engine->i915;
1614
1615         WARN_ON(INTEL_GEN(dev_priv) > 2 &&
1616                 (I915_READ_MODE(engine) & MODE_IDLE) == 0);
1617
1618         intel_ring_unpin(engine->buffer);
1619         intel_ring_free(engine->buffer);
1620
1621         if (engine->cleanup)
1622                 engine->cleanup(engine);
1623
1624         if (HWS_NEEDS_PHYSICAL(dev_priv))
1625                 cleanup_phys_status_page(engine);
1626         else
1627                 cleanup_status_page(engine);
1628
1629         intel_engine_cleanup_common(engine);
1630
1631         dev_priv->engine[engine->id] = NULL;
1632         kfree(engine);
1633 }
1634
1635 void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
1636 {
1637         struct intel_engine_cs *engine;
1638         enum intel_engine_id id;
1639
1640         /* Restart from the beginning of the rings for convenience */
1641         for_each_engine(engine, dev_priv, id)
1642                 intel_ring_reset(engine->buffer, 0);
1643 }
1644
1645 static int ring_request_alloc(struct drm_i915_gem_request *request)
1646 {
1647         u32 *cs;
1648
1649         GEM_BUG_ON(!request->ctx->engine[request->engine->id].pin_count);
1650
1651         /* Flush enough space to reduce the likelihood of waiting after
1652          * we start building the request - in which case we will just
1653          * have to repeat work.
1654          */
1655         request->reserved_space += LEGACY_REQUEST_SIZE;
1656
1657         cs = intel_ring_begin(request, 0);
1658         if (IS_ERR(cs))
1659                 return PTR_ERR(cs);
1660
1661         request->reserved_space -= LEGACY_REQUEST_SIZE;
1662         return 0;
1663 }
1664
1665 static noinline int wait_for_space(struct drm_i915_gem_request *req,
1666                                    unsigned int bytes)
1667 {
1668         struct intel_ring *ring = req->ring;
1669         struct drm_i915_gem_request *target;
1670         long timeout;
1671
1672         lockdep_assert_held(&req->i915->drm.struct_mutex);
1673
1674         if (intel_ring_update_space(ring) >= bytes)
1675                 return 0;
1676
1677         /*
1678          * Space is reserved in the ringbuffer for finalising the request,
1679          * as that cannot be allowed to fail. During request finalisation,
1680          * reserved_space is set to 0 to stop the overallocation and the
1681          * assumption is that then we never need to wait (which has the
1682          * risk of failing with EINTR).
1683          *
1684          * See also i915_gem_request_alloc() and i915_add_request().
1685          */
1686         GEM_BUG_ON(!req->reserved_space);
1687
1688         list_for_each_entry(target, &ring->request_list, ring_link) {
1689                 /* Would completion of this request free enough space? */
1690                 if (bytes <= __intel_ring_space(target->postfix,
1691                                                 ring->emit, ring->size))
1692                         break;
1693         }
1694
1695         if (WARN_ON(&target->ring_link == &ring->request_list))
1696                 return -ENOSPC;
1697
1698         timeout = i915_wait_request(target,
1699                                     I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
1700                                     MAX_SCHEDULE_TIMEOUT);
1701         if (timeout < 0)
1702                 return timeout;
1703
1704         i915_gem_request_retire_upto(target);
1705
1706         intel_ring_update_space(ring);
1707         GEM_BUG_ON(ring->space < bytes);
1708         return 0;
1709 }
1710
1711 u32 *intel_ring_begin(struct drm_i915_gem_request *req,
1712                       unsigned int num_dwords)
1713 {
1714         struct intel_ring *ring = req->ring;
1715         const unsigned int remain_usable = ring->effective_size - ring->emit;
1716         const unsigned int bytes = num_dwords * sizeof(u32);
1717         unsigned int need_wrap = 0;
1718         unsigned int total_bytes;
1719         u32 *cs;
1720
1721         /* Packets must be qword aligned. */
1722         GEM_BUG_ON(num_dwords & 1);
1723
1724         total_bytes = bytes + req->reserved_space;
1725         GEM_BUG_ON(total_bytes > ring->effective_size);
1726
1727         if (unlikely(total_bytes > remain_usable)) {
1728                 const int remain_actual = ring->size - ring->emit;
1729
1730                 if (bytes > remain_usable) {
1731                         /*
1732                          * Not enough space for the basic request. So need to
1733                          * flush out the remainder and then wait for
1734                          * base + reserved.
1735                          */
1736                         total_bytes += remain_actual;
1737                         need_wrap = remain_actual | 1;
1738                 } else  {
1739                         /*
1740                          * The base request will fit but the reserved space
1741                          * falls off the end. So we don't need an immediate
1742                          * wrap and only need to effectively wait for the
1743                          * reserved size from the start of ringbuffer.
1744                          */
1745                         total_bytes = req->reserved_space + remain_actual;
1746                 }
1747         }
1748
1749         if (unlikely(total_bytes > ring->space)) {
1750                 int ret = wait_for_space(req, total_bytes);
1751                 if (unlikely(ret))
1752                         return ERR_PTR(ret);
1753         }
1754
1755         if (unlikely(need_wrap)) {
1756                 need_wrap &= ~1;
1757                 GEM_BUG_ON(need_wrap > ring->space);
1758                 GEM_BUG_ON(ring->emit + need_wrap > ring->size);
1759
1760                 /* Fill the tail with MI_NOOP */
1761                 memset(ring->vaddr + ring->emit, 0, need_wrap);
1762                 ring->emit = 0;
1763                 ring->space -= need_wrap;
1764         }
1765
1766         GEM_BUG_ON(ring->emit > ring->size - bytes);
1767         GEM_BUG_ON(ring->space < bytes);
1768         cs = ring->vaddr + ring->emit;
1769         GEM_DEBUG_EXEC(memset(cs, POISON_INUSE, bytes));
1770         ring->emit += bytes;
1771         ring->space -= bytes;
1772
1773         return cs;
1774 }
1775
1776 /* Align the ring tail to a cacheline boundary */
1777 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
1778 {
1779         int num_dwords =
1780                 (req->ring->emit & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
1781         u32 *cs;
1782
1783         if (num_dwords == 0)
1784                 return 0;
1785
1786         num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
1787         cs = intel_ring_begin(req, num_dwords);
1788         if (IS_ERR(cs))
1789                 return PTR_ERR(cs);
1790
1791         while (num_dwords--)
1792                 *cs++ = MI_NOOP;
1793
1794         intel_ring_advance(req, cs);
1795
1796         return 0;
1797 }
1798
1799 static void gen6_bsd_submit_request(struct drm_i915_gem_request *request)
1800 {
1801         struct drm_i915_private *dev_priv = request->i915;
1802
1803         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1804
1805        /* Every tail move must follow the sequence below */
1806
1807         /* Disable notification that the ring is IDLE. The GT
1808          * will then assume that it is busy and bring it out of rc6.
1809          */
1810         I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
1811                       _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1812
1813         /* Clear the context id. Here be magic! */
1814         I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
1815
1816         /* Wait for the ring not to be idle, i.e. for it to wake up. */
1817         if (__intel_wait_for_register_fw(dev_priv,
1818                                          GEN6_BSD_SLEEP_PSMI_CONTROL,
1819                                          GEN6_BSD_SLEEP_INDICATOR,
1820                                          0,
1821                                          1000, 0, NULL))
1822                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1823
1824         /* Now that the ring is fully powered up, update the tail */
1825         i9xx_submit_request(request);
1826
1827         /* Let the ring send IDLE messages to the GT again,
1828          * and so let it sleep to conserve power when idle.
1829          */
1830         I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
1831                       _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1832
1833         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1834 }
1835
1836 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1837 {
1838         u32 cmd, *cs;
1839
1840         cs = intel_ring_begin(req, 4);
1841         if (IS_ERR(cs))
1842                 return PTR_ERR(cs);
1843
1844         cmd = MI_FLUSH_DW;
1845         if (INTEL_GEN(req->i915) >= 8)
1846                 cmd += 1;
1847
1848         /* We always require a command barrier so that subsequent
1849          * commands, such as breadcrumb interrupts, are strictly ordered
1850          * wrt the contents of the write cache being flushed to memory
1851          * (and thus being coherent from the CPU).
1852          */
1853         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1854
1855         /*
1856          * Bspec vol 1c.5 - video engine command streamer:
1857          * "If ENABLED, all TLBs will be invalidated once the flush
1858          * operation is complete. This bit is only valid when the
1859          * Post-Sync Operation field is a value of 1h or 3h."
1860          */
1861         if (mode & EMIT_INVALIDATE)
1862                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
1863
1864         *cs++ = cmd;
1865         *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1866         if (INTEL_GEN(req->i915) >= 8) {
1867                 *cs++ = 0; /* upper addr */
1868                 *cs++ = 0; /* value */
1869         } else  {
1870                 *cs++ = 0;
1871                 *cs++ = MI_NOOP;
1872         }
1873         intel_ring_advance(req, cs);
1874         return 0;
1875 }
1876
1877 static int
1878 gen8_emit_bb_start(struct drm_i915_gem_request *req,
1879                    u64 offset, u32 len,
1880                    unsigned int dispatch_flags)
1881 {
1882         bool ppgtt = USES_PPGTT(req->i915) &&
1883                         !(dispatch_flags & I915_DISPATCH_SECURE);
1884         u32 *cs;
1885
1886         cs = intel_ring_begin(req, 4);
1887         if (IS_ERR(cs))
1888                 return PTR_ERR(cs);
1889
1890         /* FIXME(BDW): Address space and security selectors. */
1891         *cs++ = MI_BATCH_BUFFER_START_GEN8 | (ppgtt << 8) | (dispatch_flags &
1892                 I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1893         *cs++ = lower_32_bits(offset);
1894         *cs++ = upper_32_bits(offset);
1895         *cs++ = MI_NOOP;
1896         intel_ring_advance(req, cs);
1897
1898         return 0;
1899 }
1900
1901 static int
1902 hsw_emit_bb_start(struct drm_i915_gem_request *req,
1903                   u64 offset, u32 len,
1904                   unsigned int dispatch_flags)
1905 {
1906         u32 *cs;
1907
1908         cs = intel_ring_begin(req, 2);
1909         if (IS_ERR(cs))
1910                 return PTR_ERR(cs);
1911
1912         *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
1913                 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
1914                 (dispatch_flags & I915_DISPATCH_RS ?
1915                 MI_BATCH_RESOURCE_STREAMER : 0);
1916         /* bit0-7 is the length on GEN6+ */
1917         *cs++ = offset;
1918         intel_ring_advance(req, cs);
1919
1920         return 0;
1921 }
1922
1923 static int
1924 gen6_emit_bb_start(struct drm_i915_gem_request *req,
1925                    u64 offset, u32 len,
1926                    unsigned int dispatch_flags)
1927 {
1928         u32 *cs;
1929
1930         cs = intel_ring_begin(req, 2);
1931         if (IS_ERR(cs))
1932                 return PTR_ERR(cs);
1933
1934         *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
1935                 0 : MI_BATCH_NON_SECURE_I965);
1936         /* bit0-7 is the length on GEN6+ */
1937         *cs++ = offset;
1938         intel_ring_advance(req, cs);
1939
1940         return 0;
1941 }
1942
1943 /* Blitter support (SandyBridge+) */
1944
1945 static int gen6_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1946 {
1947         u32 cmd, *cs;
1948
1949         cs = intel_ring_begin(req, 4);
1950         if (IS_ERR(cs))
1951                 return PTR_ERR(cs);
1952
1953         cmd = MI_FLUSH_DW;
1954         if (INTEL_GEN(req->i915) >= 8)
1955                 cmd += 1;
1956
1957         /* We always require a command barrier so that subsequent
1958          * commands, such as breadcrumb interrupts, are strictly ordered
1959          * wrt the contents of the write cache being flushed to memory
1960          * (and thus being coherent from the CPU).
1961          */
1962         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1963
1964         /*
1965          * Bspec vol 1c.3 - blitter engine command streamer:
1966          * "If ENABLED, all TLBs will be invalidated once the flush
1967          * operation is complete. This bit is only valid when the
1968          * Post-Sync Operation field is a value of 1h or 3h."
1969          */
1970         if (mode & EMIT_INVALIDATE)
1971                 cmd |= MI_INVALIDATE_TLB;
1972         *cs++ = cmd;
1973         *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1974         if (INTEL_GEN(req->i915) >= 8) {
1975                 *cs++ = 0; /* upper addr */
1976                 *cs++ = 0; /* value */
1977         } else  {
1978                 *cs++ = 0;
1979                 *cs++ = MI_NOOP;
1980         }
1981         intel_ring_advance(req, cs);
1982
1983         return 0;
1984 }
1985
1986 static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
1987                                        struct intel_engine_cs *engine)
1988 {
1989         struct drm_i915_gem_object *obj;
1990         int ret, i;
1991
1992         if (!i915.semaphores)
1993                 return;
1994
1995         if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore) {
1996                 struct i915_vma *vma;
1997
1998                 obj = i915_gem_object_create(dev_priv, PAGE_SIZE);
1999                 if (IS_ERR(obj))
2000                         goto err;
2001
2002                 vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
2003                 if (IS_ERR(vma))
2004                         goto err_obj;
2005
2006                 ret = i915_gem_object_set_to_gtt_domain(obj, false);
2007                 if (ret)
2008                         goto err_obj;
2009
2010                 ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
2011                 if (ret)
2012                         goto err_obj;
2013
2014                 dev_priv->semaphore = vma;
2015         }
2016
2017         if (INTEL_GEN(dev_priv) >= 8) {
2018                 u32 offset = i915_ggtt_offset(dev_priv->semaphore);
2019
2020                 engine->semaphore.sync_to = gen8_ring_sync_to;
2021                 engine->semaphore.signal = gen8_xcs_signal;
2022
2023                 for (i = 0; i < I915_NUM_ENGINES; i++) {
2024                         u32 ring_offset;
2025
2026                         if (i != engine->id)
2027                                 ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
2028                         else
2029                                 ring_offset = MI_SEMAPHORE_SYNC_INVALID;
2030
2031                         engine->semaphore.signal_ggtt[i] = ring_offset;
2032                 }
2033         } else if (INTEL_GEN(dev_priv) >= 6) {
2034                 engine->semaphore.sync_to = gen6_ring_sync_to;
2035                 engine->semaphore.signal = gen6_signal;
2036
2037                 /*
2038                  * The current semaphore is only applied on pre-gen8
2039                  * platform.  And there is no VCS2 ring on the pre-gen8
2040                  * platform. So the semaphore between RCS and VCS2 is
2041                  * initialized as INVALID.  Gen8 will initialize the
2042                  * sema between VCS2 and RCS later.
2043                  */
2044                 for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
2045                         static const struct {
2046                                 u32 wait_mbox;
2047                                 i915_reg_t mbox_reg;
2048                         } sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
2049                                 [RCS_HW] = {
2050                                         [VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RV,  .mbox_reg = GEN6_VRSYNC },
2051                                         [BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RB,  .mbox_reg = GEN6_BRSYNC },
2052                                         [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
2053                                 },
2054                                 [VCS_HW] = {
2055                                         [RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VR,  .mbox_reg = GEN6_RVSYNC },
2056                                         [BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VB,  .mbox_reg = GEN6_BVSYNC },
2057                                         [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
2058                                 },
2059                                 [BCS_HW] = {
2060                                         [RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BR,  .mbox_reg = GEN6_RBSYNC },
2061                                         [VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BV,  .mbox_reg = GEN6_VBSYNC },
2062                                         [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
2063                                 },
2064                                 [VECS_HW] = {
2065                                         [RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
2066                                         [VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
2067                                         [BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
2068                                 },
2069                         };
2070                         u32 wait_mbox;
2071                         i915_reg_t mbox_reg;
2072
2073                         if (i == engine->hw_id) {
2074                                 wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
2075                                 mbox_reg = GEN6_NOSYNC;
2076                         } else {
2077                                 wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
2078                                 mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
2079                         }
2080
2081                         engine->semaphore.mbox.wait[i] = wait_mbox;
2082                         engine->semaphore.mbox.signal[i] = mbox_reg;
2083                 }
2084         }
2085
2086         return;
2087
2088 err_obj:
2089         i915_gem_object_put(obj);
2090 err:
2091         DRM_DEBUG_DRIVER("Failed to allocate space for semaphores, disabling\n");
2092         i915.semaphores = 0;
2093 }
2094
2095 static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
2096                                 struct intel_engine_cs *engine)
2097 {
2098         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;
2099
2100         if (INTEL_GEN(dev_priv) >= 8) {
2101                 engine->irq_enable = gen8_irq_enable;
2102                 engine->irq_disable = gen8_irq_disable;
2103                 engine->irq_seqno_barrier = gen6_seqno_barrier;
2104         } else if (INTEL_GEN(dev_priv) >= 6) {
2105                 engine->irq_enable = gen6_irq_enable;
2106                 engine->irq_disable = gen6_irq_disable;
2107                 engine->irq_seqno_barrier = gen6_seqno_barrier;
2108         } else if (INTEL_GEN(dev_priv) >= 5) {
2109                 engine->irq_enable = gen5_irq_enable;
2110                 engine->irq_disable = gen5_irq_disable;
2111                 engine->irq_seqno_barrier = gen5_seqno_barrier;
2112         } else if (INTEL_GEN(dev_priv) >= 3) {
2113                 engine->irq_enable = i9xx_irq_enable;
2114                 engine->irq_disable = i9xx_irq_disable;
2115         } else {
2116                 engine->irq_enable = i8xx_irq_enable;
2117                 engine->irq_disable = i8xx_irq_disable;
2118         }
2119 }
2120
2121 static void i9xx_set_default_submission(struct intel_engine_cs *engine)
2122 {
2123         engine->submit_request = i9xx_submit_request;
2124 }
2125
2126 static void gen6_bsd_set_default_submission(struct intel_engine_cs *engine)
2127 {
2128         engine->submit_request = gen6_bsd_submit_request;
2129 }
2130
2131 static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
2132                                       struct intel_engine_cs *engine)
2133 {
2134         intel_ring_init_irq(dev_priv, engine);
2135         intel_ring_init_semaphores(dev_priv, engine);
2136
2137         engine->init_hw = init_ring_common;
2138         engine->reset_hw = reset_ring_common;
2139
2140         engine->context_pin = intel_ring_context_pin;
2141         engine->context_unpin = intel_ring_context_unpin;
2142
2143         engine->request_alloc = ring_request_alloc;
2144
2145         engine->emit_breadcrumb = i9xx_emit_breadcrumb;
2146         engine->emit_breadcrumb_sz = i9xx_emit_breadcrumb_sz;
2147         if (i915.semaphores) {
2148                 int num_rings;
2149
2150                 engine->emit_breadcrumb = gen6_sema_emit_breadcrumb;
2151
2152                 num_rings = INTEL_INFO(dev_priv)->num_rings - 1;
2153                 if (INTEL_GEN(dev_priv) >= 8) {
2154                         engine->emit_breadcrumb_sz += num_rings * 6;
2155                 } else {
2156                         engine->emit_breadcrumb_sz += num_rings * 3;
2157                         if (num_rings & 1)
2158                                 engine->emit_breadcrumb_sz++;
2159                 }
2160         }
2161
2162         engine->set_default_submission = i9xx_set_default_submission;
2163
2164         if (INTEL_GEN(dev_priv) >= 8)
2165                 engine->emit_bb_start = gen8_emit_bb_start;
2166         else if (INTEL_GEN(dev_priv) >= 6)
2167                 engine->emit_bb_start = gen6_emit_bb_start;
2168         else if (INTEL_GEN(dev_priv) >= 4)
2169                 engine->emit_bb_start = i965_emit_bb_start;
2170         else if (IS_I830(dev_priv) || IS_I845G(dev_priv))
2171                 engine->emit_bb_start = i830_emit_bb_start;
2172         else
2173                 engine->emit_bb_start = i915_emit_bb_start;
2174 }
2175
2176 int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2177 {
2178         struct drm_i915_private *dev_priv = engine->i915;
2179         int ret;
2180
2181         intel_ring_default_vfuncs(dev_priv, engine);
2182
2183         if (HAS_L3_DPF(dev_priv))
2184                 engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2185
2186         if (INTEL_GEN(dev_priv) >= 8) {
2187                 engine->init_context = intel_rcs_ctx_init;
2188                 engine->emit_breadcrumb = gen8_render_emit_breadcrumb;
2189                 engine->emit_breadcrumb_sz = gen8_render_emit_breadcrumb_sz;
2190                 engine->emit_flush = gen8_render_ring_flush;
2191                 if (i915.semaphores) {
2192                         int num_rings;
2193
2194                         engine->semaphore.signal = gen8_rcs_signal;
2195
2196                         num_rings = INTEL_INFO(dev_priv)->num_rings - 1;
2197                         engine->emit_breadcrumb_sz += num_rings * 8;
2198                 }
2199         } else if (INTEL_GEN(dev_priv) >= 6) {
2200                 engine->init_context = intel_rcs_ctx_init;
2201                 engine->emit_flush = gen7_render_ring_flush;
2202                 if (IS_GEN6(dev_priv))
2203                         engine->emit_flush = gen6_render_ring_flush;
2204         } else if (IS_GEN5(dev_priv)) {
2205                 engine->emit_flush = gen4_render_ring_flush;
2206         } else {
2207                 if (INTEL_GEN(dev_priv) < 4)
2208                         engine->emit_flush = gen2_render_ring_flush;
2209                 else
2210                         engine->emit_flush = gen4_render_ring_flush;
2211                 engine->irq_enable_mask = I915_USER_INTERRUPT;
2212         }
2213
2214         if (IS_HASWELL(dev_priv))
2215                 engine->emit_bb_start = hsw_emit_bb_start;
2216
2217         engine->init_hw = init_render_ring;
2218         engine->cleanup = render_ring_cleanup;
2219
2220         ret = intel_init_ring_buffer(engine);
2221         if (ret)
2222                 return ret;
2223
2224         if (INTEL_GEN(dev_priv) >= 6) {
2225                 ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2226                 if (ret)
2227                         return ret;
2228         } else if (HAS_BROKEN_CS_TLB(dev_priv)) {
2229                 ret = intel_engine_create_scratch(engine, I830_WA_SIZE);
2230                 if (ret)
2231                         return ret;
2232         }
2233
2234         return 0;
2235 }
2236
2237 int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2238 {
2239         struct drm_i915_private *dev_priv = engine->i915;
2240
2241         intel_ring_default_vfuncs(dev_priv, engine);
2242
2243         if (INTEL_GEN(dev_priv) >= 6) {
2244                 /* gen6 bsd needs a special wa for tail updates */
2245                 if (IS_GEN6(dev_priv))
2246                         engine->set_default_submission = gen6_bsd_set_default_submission;
2247                 engine->emit_flush = gen6_bsd_ring_flush;
2248                 if (INTEL_GEN(dev_priv) < 8)
2249                         engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2250         } else {
2251                 engine->mmio_base = BSD_RING_BASE;
2252                 engine->emit_flush = bsd_ring_flush;
2253                 if (IS_GEN5(dev_priv))
2254                         engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2255                 else
2256                         engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2257         }
2258
2259         return intel_init_ring_buffer(engine);
2260 }
2261
2262 int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2263 {
2264         struct drm_i915_private *dev_priv = engine->i915;
2265
2266         intel_ring_default_vfuncs(dev_priv, engine);
2267
2268         engine->emit_flush = gen6_ring_flush;
2269         if (INTEL_GEN(dev_priv) < 8)
2270                 engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2271
2272         return intel_init_ring_buffer(engine);
2273 }
2274
2275 int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
2276 {
2277         struct drm_i915_private *dev_priv = engine->i915;
2278
2279         intel_ring_default_vfuncs(dev_priv, engine);
2280
2281         engine->emit_flush = gen6_ring_flush;
2282
2283         if (INTEL_GEN(dev_priv) < 8) {
2284                 engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2285                 engine->irq_enable = hsw_vebox_irq_enable;
2286                 engine->irq_disable = hsw_vebox_irq_disable;
2287         }
2288
2289         return intel_init_ring_buffer(engine);
2290 }