GNU Linux-libre 4.9.309-gnu1
[releases.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
140
141 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
145 #define RING_EXECLIST_QFULL             (1 << 0x2)
146 #define RING_EXECLIST1_VALID            (1 << 0x3)
147 #define RING_EXECLIST0_VALID            (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
151
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
158
159 #define GEN8_CTX_STATUS_COMPLETED_MASK \
160          (GEN8_CTX_STATUS_ACTIVE_IDLE | \
161           GEN8_CTX_STATUS_PREEMPTED | \
162           GEN8_CTX_STATUS_ELEMENT_SWITCH)
163
164 #define CTX_LRI_HEADER_0                0x01
165 #define CTX_CONTEXT_CONTROL             0x02
166 #define CTX_RING_HEAD                   0x04
167 #define CTX_RING_TAIL                   0x06
168 #define CTX_RING_BUFFER_START           0x08
169 #define CTX_RING_BUFFER_CONTROL         0x0a
170 #define CTX_BB_HEAD_U                   0x0c
171 #define CTX_BB_HEAD_L                   0x0e
172 #define CTX_BB_STATE                    0x10
173 #define CTX_SECOND_BB_HEAD_U            0x12
174 #define CTX_SECOND_BB_HEAD_L            0x14
175 #define CTX_SECOND_BB_STATE             0x16
176 #define CTX_BB_PER_CTX_PTR              0x18
177 #define CTX_RCS_INDIRECT_CTX            0x1a
178 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
179 #define CTX_LRI_HEADER_1                0x21
180 #define CTX_CTX_TIMESTAMP               0x22
181 #define CTX_PDP3_UDW                    0x24
182 #define CTX_PDP3_LDW                    0x26
183 #define CTX_PDP2_UDW                    0x28
184 #define CTX_PDP2_LDW                    0x2a
185 #define CTX_PDP1_UDW                    0x2c
186 #define CTX_PDP1_LDW                    0x2e
187 #define CTX_PDP0_UDW                    0x30
188 #define CTX_PDP0_LDW                    0x32
189 #define CTX_LRI_HEADER_2                0x41
190 #define CTX_R_PWR_CLK_STATE             0x42
191 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
192
193 #define GEN8_CTX_VALID (1<<0)
194 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
195 #define GEN8_CTX_FORCE_RESTORE (1<<2)
196 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
197 #define GEN8_CTX_PRIVILEGE (1<<8)
198
199 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
200         (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
201         (reg_state)[(pos)+1] = (val); \
202 } while (0)
203
204 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {                \
205         const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
206         reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
207         reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
208 } while (0)
209
210 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
211         reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
212         reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
213 } while (0)
214
215 enum {
216         FAULT_AND_HANG = 0,
217         FAULT_AND_HALT, /* Debug only */
218         FAULT_AND_STREAM,
219         FAULT_AND_CONTINUE /* Unsupported */
220 };
221 #define GEN8_CTX_ID_SHIFT 32
222 #define GEN8_CTX_ID_WIDTH 21
223 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x17
224 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x26
225
226 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
227 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
228
229 #define WA_TAIL_DWORDS 2
230
231 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
232                                             struct intel_engine_cs *engine);
233 static int intel_lr_context_pin(struct i915_gem_context *ctx,
234                                 struct intel_engine_cs *engine);
235 static void execlists_init_reg_state(u32 *reg_state,
236                                      struct i915_gem_context *ctx,
237                                      struct intel_engine_cs *engine,
238                                      struct intel_ring *ring);
239
240 /**
241  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
242  * @dev_priv: i915 device private
243  * @enable_execlists: value of i915.enable_execlists module parameter.
244  *
245  * Only certain platforms support Execlists (the prerequisites being
246  * support for Logical Ring Contexts and Aliasing PPGTT or better).
247  *
248  * Return: 1 if Execlists is supported and has to be enabled.
249  */
250 int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
251 {
252         /* On platforms with execlist available, vGPU will only
253          * support execlist mode, no ring buffer mode.
254          */
255         if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
256                 return 1;
257
258         if (INTEL_GEN(dev_priv) >= 9)
259                 return 1;
260
261         if (enable_execlists == 0)
262                 return 0;
263
264         if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
265             USES_PPGTT(dev_priv) &&
266             i915.use_mmio_flip >= 0)
267                 return 1;
268
269         return 0;
270 }
271
272 static void
273 logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
274 {
275         struct drm_i915_private *dev_priv = engine->i915;
276
277         engine->disable_lite_restore_wa =
278                 (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
279                  IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) &&
280                 (engine->id == VCS || engine->id == VCS2);
281
282         engine->ctx_desc_template = GEN8_CTX_VALID;
283         if (IS_GEN8(dev_priv))
284                 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
285         engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
286
287         /* TODO: WaDisableLiteRestore when we start using semaphore
288          * signalling between Command Streamers */
289         /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
290
291         /* WaEnableForceRestoreInCtxtDescForVCS:skl */
292         /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
293         if (engine->disable_lite_restore_wa)
294                 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
295 }
296
297 /**
298  * intel_lr_context_descriptor_update() - calculate & cache the descriptor
299  *                                        descriptor for a pinned context
300  * @ctx: Context to work on
301  * @engine: Engine the descriptor will be used with
302  *
303  * The context descriptor encodes various attributes of a context,
304  * including its GTT address and some flags. Because it's fairly
305  * expensive to calculate, we'll just do it once and cache the result,
306  * which remains valid until the context is unpinned.
307  *
308  * This is what a descriptor looks like, from LSB to MSB::
309  *
310  *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
311  *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
312  *      bits 32-52:    ctx ID, a globally unique tag
313  *      bits 53-54:    mbz, reserved for use by hardware
314  *      bits 55-63:    group ID, currently unused and set to 0
315  */
316 static void
317 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
318                                    struct intel_engine_cs *engine)
319 {
320         struct intel_context *ce = &ctx->engine[engine->id];
321         u64 desc;
322
323         BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
324
325         desc = ctx->desc_template;                              /* bits  3-4  */
326         desc |= engine->ctx_desc_template;                      /* bits  0-11 */
327         desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
328                                                                 /* bits 12-31 */
329         desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;           /* bits 32-52 */
330
331         ce->lrc_desc = desc;
332 }
333
334 uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
335                                      struct intel_engine_cs *engine)
336 {
337         return ctx->engine[engine->id].lrc_desc;
338 }
339
340 static inline void
341 execlists_context_status_change(struct drm_i915_gem_request *rq,
342                                 unsigned long status)
343 {
344         /*
345          * Only used when GVT-g is enabled now. When GVT-g is disabled,
346          * The compiler should eliminate this function as dead-code.
347          */
348         if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
349                 return;
350
351         atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
352 }
353
354 static void
355 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
356 {
357         ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
358         ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
359         ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
360         ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
361 }
362
363 static u64 execlists_update_context(struct drm_i915_gem_request *rq)
364 {
365         struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
366         struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
367         u32 *reg_state = ce->lrc_reg_state;
368
369         reg_state[CTX_RING_TAIL+1] = intel_ring_offset(rq->ring, rq->tail);
370
371         /*
372          * True 32b PPGTT with dynamic page allocation: update PDP
373          * registers and point the unallocated PDPs to scratch page.
374          * PML4 is allocated during ppgtt init, so this is not needed
375          * in 48-bit mode.
376          */
377         if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
378                 execlists_update_context_pdps(ppgtt, reg_state);
379
380         /*
381          * Make sure the context image is complete before we submit it to HW.
382          *
383          * Ostensibly, writes (including the WCB) should be flushed prior to
384          * an uncached write such as our mmio register access, the empirical
385          * evidence (esp. on Braswell) suggests that the WC write into memory
386          * may not be visible to the HW prior to the completion of the UC
387          * register write and that we may begin execution from the context
388          * before its image is complete leading to invalid PD chasing.
389          *
390          * Furthermore, Braswell, at least, wants a full mb to be sure that
391          * the writes are coherent in memory (visible to the GPU) prior to
392          * execution, and not just visible to other CPUs (as is the result of
393          * wmb).
394          */
395         mb();
396         return ce->lrc_desc;
397 }
398
399 static void execlists_submit_ports(struct intel_engine_cs *engine)
400 {
401         struct drm_i915_private *dev_priv = engine->i915;
402         struct execlist_port *port = engine->execlist_port;
403         u32 __iomem *elsp =
404                 dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
405         u64 desc[2];
406
407         if (!port[0].count)
408                 execlists_context_status_change(port[0].request,
409                                                 INTEL_CONTEXT_SCHEDULE_IN);
410         desc[0] = execlists_update_context(port[0].request);
411         engine->preempt_wa = port[0].count++; /* bdw only? fixed on skl? */
412
413         if (port[1].request) {
414                 GEM_BUG_ON(port[1].count);
415                 execlists_context_status_change(port[1].request,
416                                                 INTEL_CONTEXT_SCHEDULE_IN);
417                 desc[1] = execlists_update_context(port[1].request);
418                 port[1].count = 1;
419         } else {
420                 desc[1] = 0;
421         }
422         GEM_BUG_ON(desc[0] == desc[1]);
423
424         /* You must always write both descriptors in the order below. */
425         writel(upper_32_bits(desc[1]), elsp);
426         writel(lower_32_bits(desc[1]), elsp);
427
428         writel(upper_32_bits(desc[0]), elsp);
429         /* The context is automatically loaded after the following */
430         writel(lower_32_bits(desc[0]), elsp);
431 }
432
433 static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
434 {
435         return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
436                 ctx->execlists_force_single_submission);
437 }
438
439 static bool can_merge_ctx(const struct i915_gem_context *prev,
440                           const struct i915_gem_context *next)
441 {
442         if (prev != next)
443                 return false;
444
445         if (ctx_single_port_submission(prev))
446                 return false;
447
448         return true;
449 }
450
451 static void execlists_dequeue(struct intel_engine_cs *engine)
452 {
453         struct drm_i915_gem_request *cursor, *last;
454         struct execlist_port *port = engine->execlist_port;
455         bool submit = false;
456
457         last = port->request;
458         if (last)
459                 /* WaIdleLiteRestore:bdw,skl
460                  * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
461                  * as we resubmit the request. See gen8_emit_request()
462                  * for where we prepare the padding after the end of the
463                  * request.
464                  */
465                 last->tail = last->wa_tail;
466
467         GEM_BUG_ON(port[1].request);
468
469         /* Hardware submission is through 2 ports. Conceptually each port
470          * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
471          * static for a context, and unique to each, so we only execute
472          * requests belonging to a single context from each ring. RING_HEAD
473          * is maintained by the CS in the context image, it marks the place
474          * where it got up to last time, and through RING_TAIL we tell the CS
475          * where we want to execute up to this time.
476          *
477          * In this list the requests are in order of execution. Consecutive
478          * requests from the same context are adjacent in the ringbuffer. We
479          * can combine these requests into a single RING_TAIL update:
480          *
481          *              RING_HEAD...req1...req2
482          *                                    ^- RING_TAIL
483          * since to execute req2 the CS must first execute req1.
484          *
485          * Our goal then is to point each port to the end of a consecutive
486          * sequence of requests as being the most optimal (fewest wake ups
487          * and context switches) submission.
488          */
489
490         spin_lock(&engine->execlist_lock);
491         list_for_each_entry(cursor, &engine->execlist_queue, execlist_link) {
492                 /* Can we combine this request with the current port? It has to
493                  * be the same context/ringbuffer and not have any exceptions
494                  * (e.g. GVT saying never to combine contexts).
495                  *
496                  * If we can combine the requests, we can execute both by
497                  * updating the RING_TAIL to point to the end of the second
498                  * request, and so we never need to tell the hardware about
499                  * the first.
500                  */
501                 if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
502                         /* If we are on the second port and cannot combine
503                          * this request with the last, then we are done.
504                          */
505                         if (port != engine->execlist_port)
506                                 break;
507
508                         /* If GVT overrides us we only ever submit port[0],
509                          * leaving port[1] empty. Note that we also have
510                          * to be careful that we don't queue the same
511                          * context (even though a different request) to
512                          * the second port.
513                          */
514                         if (ctx_single_port_submission(cursor->ctx))
515                                 break;
516
517                         GEM_BUG_ON(last->ctx == cursor->ctx);
518
519                         i915_gem_request_assign(&port->request, last);
520                         port++;
521                 }
522                 last = cursor;
523                 submit = true;
524         }
525         if (submit) {
526                 /* Decouple all the requests submitted from the queue */
527                 engine->execlist_queue.next = &cursor->execlist_link;
528                 cursor->execlist_link.prev = &engine->execlist_queue;
529
530                 i915_gem_request_assign(&port->request, last);
531         }
532         spin_unlock(&engine->execlist_lock);
533
534         if (submit)
535                 execlists_submit_ports(engine);
536 }
537
538 static bool execlists_elsp_idle(struct intel_engine_cs *engine)
539 {
540         return !engine->execlist_port[0].request;
541 }
542
543 static bool execlists_elsp_ready(struct intel_engine_cs *engine)
544 {
545         int port;
546
547         port = 1; /* wait for a free slot */
548         if (engine->disable_lite_restore_wa || engine->preempt_wa)
549                 port = 0; /* wait for GPU to be idle before continuing */
550
551         return !engine->execlist_port[port].request;
552 }
553
554 /*
555  * Check the unread Context Status Buffers and manage the submission of new
556  * contexts to the ELSP accordingly.
557  */
558 static void intel_lrc_irq_handler(unsigned long data)
559 {
560         struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
561         struct execlist_port *port = engine->execlist_port;
562         struct drm_i915_private *dev_priv = engine->i915;
563
564         intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
565
566         if (!execlists_elsp_idle(engine)) {
567                 u32 __iomem *csb_mmio =
568                         dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
569                 u32 __iomem *buf =
570                         dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
571                 unsigned int csb, head, tail;
572
573                 csb = readl(csb_mmio);
574                 head = GEN8_CSB_READ_PTR(csb);
575                 tail = GEN8_CSB_WRITE_PTR(csb);
576                 if (tail < head)
577                         tail += GEN8_CSB_ENTRIES;
578                 while (head < tail) {
579                         unsigned int idx = ++head % GEN8_CSB_ENTRIES;
580                         unsigned int status = readl(buf + 2 * idx);
581
582                         if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
583                                 continue;
584
585                         GEM_BUG_ON(port[0].count == 0);
586                         if (--port[0].count == 0) {
587                                 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
588                                 execlists_context_status_change(port[0].request,
589                                                                 INTEL_CONTEXT_SCHEDULE_OUT);
590
591                                 i915_gem_request_put(port[0].request);
592                                 port[0] = port[1];
593                                 memset(&port[1], 0, sizeof(port[1]));
594
595                                 engine->preempt_wa = false;
596                         }
597
598                         GEM_BUG_ON(port[0].count == 0 &&
599                                    !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
600                 }
601
602                 writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
603                                      GEN8_CSB_WRITE_PTR(csb) << 8),
604                        csb_mmio);
605         }
606
607         if (execlists_elsp_ready(engine))
608                 execlists_dequeue(engine);
609
610         intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
611 }
612
613 static void execlists_submit_request(struct drm_i915_gem_request *request)
614 {
615         struct intel_engine_cs *engine = request->engine;
616         unsigned long flags;
617
618         spin_lock_irqsave(&engine->execlist_lock, flags);
619
620         list_add_tail(&request->execlist_link, &engine->execlist_queue);
621         if (execlists_elsp_idle(engine))
622                 tasklet_hi_schedule(&engine->irq_tasklet);
623
624         spin_unlock_irqrestore(&engine->execlist_lock, flags);
625 }
626
627 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
628 {
629         struct intel_engine_cs *engine = request->engine;
630         struct intel_context *ce = &request->ctx->engine[engine->id];
631         int ret;
632
633         /* Flush enough space to reduce the likelihood of waiting after
634          * we start building the request - in which case we will just
635          * have to repeat work.
636          */
637         request->reserved_space += EXECLISTS_REQUEST_SIZE;
638
639         if (!ce->state) {
640                 ret = execlists_context_deferred_alloc(request->ctx, engine);
641                 if (ret)
642                         return ret;
643         }
644
645         request->ring = ce->ring;
646
647         ret = intel_lr_context_pin(request->ctx, engine);
648         if (ret)
649                 return ret;
650
651         if (i915.enable_guc_submission) {
652                 /*
653                  * Check that the GuC has space for the request before
654                  * going any further, as the i915_add_request() call
655                  * later on mustn't fail ...
656                  */
657                 ret = i915_guc_wq_reserve(request);
658                 if (ret)
659                         goto err_unpin;
660         }
661
662         ret = intel_ring_begin(request, 0);
663         if (ret)
664                 goto err_unreserve;
665
666         if (!ce->initialised) {
667                 ret = engine->init_context(request);
668                 if (ret)
669                         goto err_unreserve;
670
671                 ce->initialised = true;
672         }
673
674         /* Note that after this point, we have committed to using
675          * this request as it is being used to both track the
676          * state of engine initialisation and liveness of the
677          * golden renderstate above. Think twice before you try
678          * to cancel/unwind this request now.
679          */
680
681         request->reserved_space -= EXECLISTS_REQUEST_SIZE;
682         return 0;
683
684 err_unreserve:
685         if (i915.enable_guc_submission)
686                 i915_guc_wq_unreserve(request);
687 err_unpin:
688         intel_lr_context_unpin(request->ctx, engine);
689         return ret;
690 }
691
692 /*
693  * intel_logical_ring_advance() - advance the tail and prepare for submission
694  * @request: Request to advance the logical ringbuffer of.
695  *
696  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
697  * really happens during submission is that the context and current tail will be placed
698  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
699  * point, the tail *inside* the context is updated and the ELSP written to.
700  */
701 static int
702 intel_logical_ring_advance(struct drm_i915_gem_request *request)
703 {
704         struct intel_ring *ring = request->ring;
705         struct intel_engine_cs *engine = request->engine;
706
707         intel_ring_advance(ring);
708         request->tail = ring->tail;
709
710         /*
711          * Here we add two extra NOOPs as padding to avoid
712          * lite restore of a context with HEAD==TAIL.
713          *
714          * Caller must reserve WA_TAIL_DWORDS for us!
715          */
716         intel_ring_emit(ring, MI_NOOP);
717         intel_ring_emit(ring, MI_NOOP);
718         intel_ring_advance(ring);
719         request->wa_tail = ring->tail;
720
721         /* We keep the previous context alive until we retire the following
722          * request. This ensures that any the context object is still pinned
723          * for any residual writes the HW makes into it on the context switch
724          * into the next object following the breadcrumb. Otherwise, we may
725          * retire the context too early.
726          */
727         request->previous_context = engine->last_context;
728         engine->last_context = request->ctx;
729         return 0;
730 }
731
732 static int intel_lr_context_pin(struct i915_gem_context *ctx,
733                                 struct intel_engine_cs *engine)
734 {
735         struct intel_context *ce = &ctx->engine[engine->id];
736         void *vaddr;
737         int ret;
738
739         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
740
741         if (ce->pin_count++)
742                 return 0;
743
744         ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN,
745                            PIN_OFFSET_BIAS | GUC_WOPCM_TOP | PIN_GLOBAL);
746         if (ret)
747                 goto err;
748
749         vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
750         if (IS_ERR(vaddr)) {
751                 ret = PTR_ERR(vaddr);
752                 goto unpin_vma;
753         }
754
755         ret = intel_ring_pin(ce->ring);
756         if (ret)
757                 goto unpin_map;
758
759         intel_lr_context_descriptor_update(ctx, engine);
760
761         ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
762         ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
763                 i915_ggtt_offset(ce->ring->vma);
764
765         ce->state->obj->dirty = true;
766
767         /* Invalidate GuC TLB. */
768         if (i915.enable_guc_submission) {
769                 struct drm_i915_private *dev_priv = ctx->i915;
770                 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
771         }
772
773         i915_gem_context_get(ctx);
774         return 0;
775
776 unpin_map:
777         i915_gem_object_unpin_map(ce->state->obj);
778 unpin_vma:
779         __i915_vma_unpin(ce->state);
780 err:
781         ce->pin_count = 0;
782         return ret;
783 }
784
785 void intel_lr_context_unpin(struct i915_gem_context *ctx,
786                             struct intel_engine_cs *engine)
787 {
788         struct intel_context *ce = &ctx->engine[engine->id];
789
790         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
791         GEM_BUG_ON(ce->pin_count == 0);
792
793         if (--ce->pin_count)
794                 return;
795
796         intel_ring_unpin(ce->ring);
797
798         i915_gem_object_unpin_map(ce->state->obj);
799         i915_vma_unpin(ce->state);
800
801         i915_gem_context_put(ctx);
802 }
803
804 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
805 {
806         int ret, i;
807         struct intel_ring *ring = req->ring;
808         struct i915_workarounds *w = &req->i915->workarounds;
809
810         if (w->count == 0)
811                 return 0;
812
813         ret = req->engine->emit_flush(req, EMIT_BARRIER);
814         if (ret)
815                 return ret;
816
817         ret = intel_ring_begin(req, w->count * 2 + 2);
818         if (ret)
819                 return ret;
820
821         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
822         for (i = 0; i < w->count; i++) {
823                 intel_ring_emit_reg(ring, w->reg[i].addr);
824                 intel_ring_emit(ring, w->reg[i].value);
825         }
826         intel_ring_emit(ring, MI_NOOP);
827
828         intel_ring_advance(ring);
829
830         ret = req->engine->emit_flush(req, EMIT_BARRIER);
831         if (ret)
832                 return ret;
833
834         return 0;
835 }
836
837 #define wa_ctx_emit(batch, index, cmd)                                  \
838         do {                                                            \
839                 int __index = (index)++;                                \
840                 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
841                         return -ENOSPC;                                 \
842                 }                                                       \
843                 batch[__index] = (cmd);                                 \
844         } while (0)
845
846 #define wa_ctx_emit_reg(batch, index, reg) \
847         wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
848
849 /*
850  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
851  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
852  * but there is a slight complication as this is applied in WA batch where the
853  * values are only initialized once so we cannot take register value at the
854  * beginning and reuse it further; hence we save its value to memory, upload a
855  * constant value with bit21 set and then we restore it back with the saved value.
856  * To simplify the WA, a constant value is formed by using the default value
857  * of this register. This shouldn't be a problem because we are only modifying
858  * it for a short period and this batch in non-premptible. We can ofcourse
859  * use additional instructions that read the actual value of the register
860  * at that time and set our bit of interest but it makes the WA complicated.
861  *
862  * This WA is also required for Gen9 so extracting as a function avoids
863  * code duplication.
864  */
865 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
866                                                 uint32_t *batch,
867                                                 uint32_t index)
868 {
869         struct drm_i915_private *dev_priv = engine->i915;
870         uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
871
872         /*
873          * WaDisableLSQCROPERFforOCL:skl,kbl
874          * This WA is implemented in skl_init_clock_gating() but since
875          * this batch updates GEN8_L3SQCREG4 with default value we need to
876          * set this bit here to retain the WA during flush.
877          */
878         if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0))
879                 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
880
881         wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
882                                    MI_SRM_LRM_GLOBAL_GTT));
883         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
884         wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
885         wa_ctx_emit(batch, index, 0);
886
887         wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
888         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
889         wa_ctx_emit(batch, index, l3sqc4_flush);
890
891         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
892         wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
893                                    PIPE_CONTROL_DC_FLUSH_ENABLE));
894         wa_ctx_emit(batch, index, 0);
895         wa_ctx_emit(batch, index, 0);
896         wa_ctx_emit(batch, index, 0);
897         wa_ctx_emit(batch, index, 0);
898
899         wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
900                                    MI_SRM_LRM_GLOBAL_GTT));
901         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
902         wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
903         wa_ctx_emit(batch, index, 0);
904
905         return index;
906 }
907
908 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
909                                     uint32_t offset,
910                                     uint32_t start_alignment)
911 {
912         return wa_ctx->offset = ALIGN(offset, start_alignment);
913 }
914
915 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
916                              uint32_t offset,
917                              uint32_t size_alignment)
918 {
919         wa_ctx->size = offset - wa_ctx->offset;
920
921         WARN(wa_ctx->size % size_alignment,
922              "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
923              wa_ctx->size, size_alignment);
924         return 0;
925 }
926
927 /*
928  * Typically we only have one indirect_ctx and per_ctx batch buffer which are
929  * initialized at the beginning and shared across all contexts but this field
930  * helps us to have multiple batches at different offsets and select them based
931  * on a criteria. At the moment this batch always start at the beginning of the page
932  * and at this point we don't have multiple wa_ctx batch buffers.
933  *
934  * The number of WA applied are not known at the beginning; we use this field
935  * to return the no of DWORDS written.
936  *
937  * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
938  * so it adds NOOPs as padding to make it cacheline aligned.
939  * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
940  * makes a complete batch buffer.
941  */
942 static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
943                                     struct i915_wa_ctx_bb *wa_ctx,
944                                     uint32_t *batch,
945                                     uint32_t *offset)
946 {
947         uint32_t scratch_addr;
948         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
949
950         /* WaDisableCtxRestoreArbitration:bdw,chv */
951         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
952
953         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
954         if (IS_BROADWELL(engine->i915)) {
955                 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
956                 if (rc < 0)
957                         return rc;
958                 index = rc;
959         }
960
961         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
962         /* Actual scratch location is at 128 bytes offset */
963         scratch_addr = i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
964
965         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
966         wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
967                                    PIPE_CONTROL_GLOBAL_GTT_IVB |
968                                    PIPE_CONTROL_CS_STALL |
969                                    PIPE_CONTROL_QW_WRITE));
970         wa_ctx_emit(batch, index, scratch_addr);
971         wa_ctx_emit(batch, index, 0);
972         wa_ctx_emit(batch, index, 0);
973         wa_ctx_emit(batch, index, 0);
974
975         /* Pad to end of cacheline */
976         while (index % CACHELINE_DWORDS)
977                 wa_ctx_emit(batch, index, MI_NOOP);
978
979         /*
980          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
981          * execution depends on the length specified in terms of cache lines
982          * in the register CTX_RCS_INDIRECT_CTX
983          */
984
985         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
986 }
987
988 /*
989  *  This batch is started immediately after indirect_ctx batch. Since we ensure
990  *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
991  *
992  *  The number of DWORDS written are returned using this field.
993  *
994  *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
995  *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
996  */
997 static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
998                                struct i915_wa_ctx_bb *wa_ctx,
999                                uint32_t *batch,
1000                                uint32_t *offset)
1001 {
1002         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1003
1004         /* WaDisableCtxRestoreArbitration:bdw,chv */
1005         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1006
1007         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1008
1009         return wa_ctx_end(wa_ctx, *offset = index, 1);
1010 }
1011
1012 static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1013                                     struct i915_wa_ctx_bb *wa_ctx,
1014                                     uint32_t *batch,
1015                                     uint32_t *offset)
1016 {
1017         int ret;
1018         struct drm_i915_private *dev_priv = engine->i915;
1019         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1020         u32 scratch_addr =
1021                         i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1022
1023         /* WaDisableCtxRestoreArbitration:skl,bxt */
1024         if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_D0) ||
1025             IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1026                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1027
1028         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1029         ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1030         if (ret < 0)
1031                 return ret;
1032         index = ret;
1033
1034         /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl */
1035         wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1036         wa_ctx_emit_reg(batch, index, COMMON_SLICE_CHICKEN2);
1037         wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(
1038                             GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE));
1039         wa_ctx_emit(batch, index, MI_NOOP);
1040
1041         /* WaClearSlmSpaceAtContextSwitch:skl,bxt,kbl,glk,cfl */
1042         /* Actual scratch location is at 128 bytes offset */
1043         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1044         wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1045                                    PIPE_CONTROL_GLOBAL_GTT_IVB |
1046                                    PIPE_CONTROL_CS_STALL |
1047                                    PIPE_CONTROL_QW_WRITE));
1048         wa_ctx_emit(batch, index, scratch_addr);
1049         wa_ctx_emit(batch, index, 0);
1050         wa_ctx_emit(batch, index, 0);
1051         wa_ctx_emit(batch, index, 0);
1052
1053         /* WaMediaPoolStateCmdInWABB:bxt */
1054         if (HAS_POOLED_EU(engine->i915)) {
1055                 /*
1056                  * EU pool configuration is setup along with golden context
1057                  * during context initialization. This value depends on
1058                  * device type (2x6 or 3x6) and needs to be updated based
1059                  * on which subslice is disabled especially for 2x6
1060                  * devices, however it is safe to load default
1061                  * configuration of 3x6 device instead of masking off
1062                  * corresponding bits because HW ignores bits of a disabled
1063                  * subslice and drops down to appropriate config. Please
1064                  * see render_state_setup() in i915_gem_render_state.c for
1065                  * possible configurations, to avoid duplication they are
1066                  * not shown here again.
1067                  */
1068                 u32 eu_pool_config = 0x00777000;
1069                 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
1070                 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
1071                 wa_ctx_emit(batch, index, eu_pool_config);
1072                 wa_ctx_emit(batch, index, 0);
1073                 wa_ctx_emit(batch, index, 0);
1074                 wa_ctx_emit(batch, index, 0);
1075         }
1076
1077         /* Pad to end of cacheline */
1078         while (index % CACHELINE_DWORDS)
1079                 wa_ctx_emit(batch, index, MI_NOOP);
1080
1081         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1082 }
1083
1084 static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1085                                struct i915_wa_ctx_bb *wa_ctx,
1086                                uint32_t *batch,
1087                                uint32_t *offset)
1088 {
1089         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1090
1091         /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1092         if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_B0) ||
1093             IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1094                 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1095                 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1096                 wa_ctx_emit(batch, index,
1097                             _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1098                 wa_ctx_emit(batch, index, MI_NOOP);
1099         }
1100
1101         /* WaClearTdlStateAckDirtyBits:bxt */
1102         if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1103                 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1104
1105                 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1106                 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1107
1108                 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1109                 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1110
1111                 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1112                 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1113
1114                 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1115                 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1116                 wa_ctx_emit(batch, index, 0x0);
1117                 wa_ctx_emit(batch, index, MI_NOOP);
1118         }
1119
1120         /* WaDisableCtxRestoreArbitration:skl,bxt */
1121         if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
1122             IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1123                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1124
1125         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1126
1127         return wa_ctx_end(wa_ctx, *offset = index, 1);
1128 }
1129
1130 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1131 {
1132         struct drm_i915_gem_object *obj;
1133         struct i915_vma *vma;
1134         int err;
1135
1136         obj = i915_gem_object_create(&engine->i915->drm, PAGE_ALIGN(size));
1137         if (IS_ERR(obj))
1138                 return PTR_ERR(obj);
1139
1140         vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
1141         if (IS_ERR(vma)) {
1142                 err = PTR_ERR(vma);
1143                 goto err;
1144         }
1145
1146         err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1147         if (err)
1148                 goto err;
1149
1150         engine->wa_ctx.vma = vma;
1151         return 0;
1152
1153 err:
1154         i915_gem_object_put(obj);
1155         return err;
1156 }
1157
1158 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1159 {
1160         i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1161 }
1162
1163 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1164 {
1165         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1166         uint32_t *batch;
1167         uint32_t offset;
1168         struct page *page;
1169         int ret;
1170
1171         WARN_ON(engine->id != RCS);
1172
1173         /* update this when WA for higher Gen are added */
1174         if (INTEL_GEN(engine->i915) > 9) {
1175                 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1176                           INTEL_GEN(engine->i915));
1177                 return 0;
1178         }
1179
1180         /* some WA perform writes to scratch page, ensure it is valid */
1181         if (!engine->scratch) {
1182                 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1183                 return -EINVAL;
1184         }
1185
1186         ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1187         if (ret) {
1188                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1189                 return ret;
1190         }
1191
1192         page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1193         batch = kmap_atomic(page);
1194         offset = 0;
1195
1196         if (IS_GEN8(engine->i915)) {
1197                 ret = gen8_init_indirectctx_bb(engine,
1198                                                &wa_ctx->indirect_ctx,
1199                                                batch,
1200                                                &offset);
1201                 if (ret)
1202                         goto out;
1203
1204                 ret = gen8_init_perctx_bb(engine,
1205                                           &wa_ctx->per_ctx,
1206                                           batch,
1207                                           &offset);
1208                 if (ret)
1209                         goto out;
1210         } else if (IS_GEN9(engine->i915)) {
1211                 ret = gen9_init_indirectctx_bb(engine,
1212                                                &wa_ctx->indirect_ctx,
1213                                                batch,
1214                                                &offset);
1215                 if (ret)
1216                         goto out;
1217
1218                 ret = gen9_init_perctx_bb(engine,
1219                                           &wa_ctx->per_ctx,
1220                                           batch,
1221                                           &offset);
1222                 if (ret)
1223                         goto out;
1224         }
1225
1226 out:
1227         kunmap_atomic(batch);
1228         if (ret)
1229                 lrc_destroy_wa_ctx_obj(engine);
1230
1231         return ret;
1232 }
1233
1234 static void lrc_init_hws(struct intel_engine_cs *engine)
1235 {
1236         struct drm_i915_private *dev_priv = engine->i915;
1237
1238         I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1239                    engine->status_page.ggtt_offset);
1240         POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1241 }
1242
1243 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1244 {
1245         struct drm_i915_private *dev_priv = engine->i915;
1246         int ret;
1247
1248         ret = intel_mocs_init_engine(engine);
1249         if (ret)
1250                 return ret;
1251
1252         lrc_init_hws(engine);
1253
1254         intel_engine_reset_breadcrumbs(engine);
1255
1256         I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1257
1258         I915_WRITE(RING_MODE_GEN7(engine),
1259                    _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1260                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1261
1262         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1263
1264         intel_engine_init_hangcheck(engine);
1265
1266         if (!execlists_elsp_idle(engine))
1267                 execlists_submit_ports(engine);
1268
1269         return 0;
1270 }
1271
1272 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1273 {
1274         struct drm_i915_private *dev_priv = engine->i915;
1275         int ret;
1276
1277         ret = gen8_init_common_ring(engine);
1278         if (ret)
1279                 return ret;
1280
1281         /* We need to disable the AsyncFlip performance optimisations in order
1282          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1283          * programmed to '1' on all products.
1284          *
1285          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1286          */
1287         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1288
1289         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1290
1291         return init_workarounds_ring(engine);
1292 }
1293
1294 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1295 {
1296         int ret;
1297
1298         ret = gen8_init_common_ring(engine);
1299         if (ret)
1300                 return ret;
1301
1302         return init_workarounds_ring(engine);
1303 }
1304
1305 static void reset_common_ring(struct intel_engine_cs *engine,
1306                               struct drm_i915_gem_request *request)
1307 {
1308         struct drm_i915_private *dev_priv = engine->i915;
1309         struct execlist_port *port = engine->execlist_port;
1310         struct intel_context *ce = &request->ctx->engine[engine->id];
1311
1312         /* We want a simple context + ring to execute the breadcrumb update.
1313          * We cannot rely on the context being intact across the GPU hang,
1314          * so clear it and rebuild just what we need for the breadcrumb.
1315          * All pending requests for this context will be zapped, and any
1316          * future request will be after userspace has had the opportunity
1317          * to recreate its own state.
1318          */
1319         execlists_init_reg_state(ce->lrc_reg_state,
1320                                  request->ctx, engine, ce->ring);
1321
1322         /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1323         ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1324                 i915_ggtt_offset(ce->ring->vma);
1325         ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1326
1327         request->ring->head = request->postfix;
1328         request->ring->last_retired_head = -1;
1329         intel_ring_update_space(request->ring);
1330
1331         if (i915.enable_guc_submission)
1332                 return;
1333
1334         /* Catch up with any missed context-switch interrupts */
1335         I915_WRITE(RING_CONTEXT_STATUS_PTR(engine), _MASKED_FIELD(0xffff, 0));
1336         if (request->ctx != port[0].request->ctx) {
1337                 i915_gem_request_put(port[0].request);
1338                 port[0] = port[1];
1339                 memset(&port[1], 0, sizeof(port[1]));
1340         }
1341
1342         /* CS is stopped, and we will resubmit both ports on resume */
1343         GEM_BUG_ON(request->ctx != port[0].request->ctx);
1344         port[0].count = 0;
1345         port[1].count = 0;
1346
1347         /* Reset WaIdleLiteRestore:bdw,skl as well */
1348         request->tail = request->wa_tail - WA_TAIL_DWORDS * sizeof(u32);
1349 }
1350
1351 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1352 {
1353         struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1354         struct intel_ring *ring = req->ring;
1355         struct intel_engine_cs *engine = req->engine;
1356         const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1357         int i, ret;
1358
1359         ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1360         if (ret)
1361                 return ret;
1362
1363         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1364         for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1365                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1366
1367                 intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, i));
1368                 intel_ring_emit(ring, upper_32_bits(pd_daddr));
1369                 intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, i));
1370                 intel_ring_emit(ring, lower_32_bits(pd_daddr));
1371         }
1372
1373         intel_ring_emit(ring, MI_NOOP);
1374         intel_ring_advance(ring);
1375
1376         return 0;
1377 }
1378
1379 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1380                               u64 offset, u32 len,
1381                               unsigned int dispatch_flags)
1382 {
1383         struct intel_ring *ring = req->ring;
1384         bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1385         int ret;
1386
1387         /* Don't rely in hw updating PDPs, specially in lite-restore.
1388          * Ideally, we should set Force PD Restore in ctx descriptor,
1389          * but we can't. Force Restore would be a second option, but
1390          * it is unsafe in case of lite-restore (because the ctx is
1391          * not idle). PML4 is allocated during ppgtt init so this is
1392          * not needed in 48-bit.*/
1393         if (req->ctx->ppgtt &&
1394             (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1395                 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1396                     !intel_vgpu_active(req->i915)) {
1397                         ret = intel_logical_ring_emit_pdps(req);
1398                         if (ret)
1399                                 return ret;
1400                 }
1401
1402                 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1403         }
1404
1405         ret = intel_ring_begin(req, 4);
1406         if (ret)
1407                 return ret;
1408
1409         /* FIXME(BDW): Address space and security selectors. */
1410         intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 |
1411                         (ppgtt<<8) |
1412                         (dispatch_flags & I915_DISPATCH_RS ?
1413                          MI_BATCH_RESOURCE_STREAMER : 0));
1414         intel_ring_emit(ring, lower_32_bits(offset));
1415         intel_ring_emit(ring, upper_32_bits(offset));
1416         intel_ring_emit(ring, MI_NOOP);
1417         intel_ring_advance(ring);
1418
1419         return 0;
1420 }
1421
1422 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1423 {
1424         struct drm_i915_private *dev_priv = engine->i915;
1425         I915_WRITE_IMR(engine,
1426                        ~(engine->irq_enable_mask | engine->irq_keep_mask));
1427         POSTING_READ_FW(RING_IMR(engine->mmio_base));
1428 }
1429
1430 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1431 {
1432         struct drm_i915_private *dev_priv = engine->i915;
1433         I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1434 }
1435
1436 static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1437 {
1438         struct intel_ring *ring = request->ring;
1439         u32 cmd;
1440         int ret;
1441
1442         ret = intel_ring_begin(request, 4);
1443         if (ret)
1444                 return ret;
1445
1446         cmd = MI_FLUSH_DW + 1;
1447
1448         /* We always require a command barrier so that subsequent
1449          * commands, such as breadcrumb interrupts, are strictly ordered
1450          * wrt the contents of the write cache being flushed to memory
1451          * (and thus being coherent from the CPU).
1452          */
1453         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1454
1455         if (mode & EMIT_INVALIDATE) {
1456                 cmd |= MI_INVALIDATE_TLB;
1457                 if (request->engine->id == VCS)
1458                         cmd |= MI_INVALIDATE_BSD;
1459         }
1460
1461         intel_ring_emit(ring, cmd);
1462         intel_ring_emit(ring,
1463                         I915_GEM_HWS_SCRATCH_ADDR |
1464                         MI_FLUSH_DW_USE_GTT);
1465         intel_ring_emit(ring, 0); /* upper addr */
1466         intel_ring_emit(ring, 0); /* value */
1467         intel_ring_advance(ring);
1468
1469         return 0;
1470 }
1471
1472 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1473                                   u32 mode)
1474 {
1475         struct intel_ring *ring = request->ring;
1476         struct intel_engine_cs *engine = request->engine;
1477         u32 scratch_addr =
1478                 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1479         bool vf_flush_wa = false, dc_flush_wa = false;
1480         u32 flags = 0;
1481         int ret;
1482         int len;
1483
1484         flags |= PIPE_CONTROL_CS_STALL;
1485
1486         if (mode & EMIT_FLUSH) {
1487                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1488                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1489                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1490                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1491         }
1492
1493         if (mode & EMIT_INVALIDATE) {
1494                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1495                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1496                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1497                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1498                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1499                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1500                 flags |= PIPE_CONTROL_QW_WRITE;
1501                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1502
1503                 /*
1504                  * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1505                  * pipe control.
1506                  */
1507                 if (IS_GEN9(request->i915))
1508                         vf_flush_wa = true;
1509
1510                 /* WaForGAMHang:kbl */
1511                 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1512                         dc_flush_wa = true;
1513         }
1514
1515         len = 6;
1516
1517         if (vf_flush_wa)
1518                 len += 6;
1519
1520         if (dc_flush_wa)
1521                 len += 12;
1522
1523         ret = intel_ring_begin(request, len);
1524         if (ret)
1525                 return ret;
1526
1527         if (vf_flush_wa) {
1528                 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1529                 intel_ring_emit(ring, 0);
1530                 intel_ring_emit(ring, 0);
1531                 intel_ring_emit(ring, 0);
1532                 intel_ring_emit(ring, 0);
1533                 intel_ring_emit(ring, 0);
1534         }
1535
1536         if (dc_flush_wa) {
1537                 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1538                 intel_ring_emit(ring, PIPE_CONTROL_DC_FLUSH_ENABLE);
1539                 intel_ring_emit(ring, 0);
1540                 intel_ring_emit(ring, 0);
1541                 intel_ring_emit(ring, 0);
1542                 intel_ring_emit(ring, 0);
1543         }
1544
1545         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1546         intel_ring_emit(ring, flags);
1547         intel_ring_emit(ring, scratch_addr);
1548         intel_ring_emit(ring, 0);
1549         intel_ring_emit(ring, 0);
1550         intel_ring_emit(ring, 0);
1551
1552         if (dc_flush_wa) {
1553                 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1554                 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL);
1555                 intel_ring_emit(ring, 0);
1556                 intel_ring_emit(ring, 0);
1557                 intel_ring_emit(ring, 0);
1558                 intel_ring_emit(ring, 0);
1559         }
1560
1561         intel_ring_advance(ring);
1562
1563         return 0;
1564 }
1565
1566 static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1567 {
1568         /*
1569          * On BXT A steppings there is a HW coherency issue whereby the
1570          * MI_STORE_DATA_IMM storing the completed request's seqno
1571          * occasionally doesn't invalidate the CPU cache. Work around this by
1572          * clflushing the corresponding cacheline whenever the caller wants
1573          * the coherency to be guaranteed. Note that this cacheline is known
1574          * to be clean at this point, since we only write it in
1575          * bxt_a_set_seqno(), where we also do a clflush after the write. So
1576          * this clflush in practice becomes an invalidate operation.
1577          */
1578         intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1579 }
1580
1581 /*
1582  * Reserve space for 2 NOOPs at the end of each request to be
1583  * used as a workaround for not being allowed to do lite
1584  * restore with HEAD==TAIL (WaIdleLiteRestore).
1585  */
1586
1587 static int gen8_emit_request(struct drm_i915_gem_request *request)
1588 {
1589         struct intel_ring *ring = request->ring;
1590         int ret;
1591
1592         ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1593         if (ret)
1594                 return ret;
1595
1596         /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1597         BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1598
1599         intel_ring_emit(ring, (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1600         intel_ring_emit(ring,
1601                         intel_hws_seqno_address(request->engine) |
1602                         MI_FLUSH_DW_USE_GTT);
1603         intel_ring_emit(ring, 0);
1604         intel_ring_emit(ring, request->fence.seqno);
1605         intel_ring_emit(ring, MI_USER_INTERRUPT);
1606         intel_ring_emit(ring, MI_NOOP);
1607         return intel_logical_ring_advance(request);
1608 }
1609
1610 static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1611 {
1612         struct intel_ring *ring = request->ring;
1613         int ret;
1614
1615         ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1616         if (ret)
1617                 return ret;
1618
1619         /* We're using qword write, seqno should be aligned to 8 bytes. */
1620         BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1621
1622         /* w/a for post sync ops following a GPGPU operation we
1623          * need a prior CS_STALL, which is emitted by the flush
1624          * following the batch.
1625          */
1626         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1627         intel_ring_emit(ring,
1628                         (PIPE_CONTROL_GLOBAL_GTT_IVB |
1629                          PIPE_CONTROL_CS_STALL |
1630                          PIPE_CONTROL_QW_WRITE));
1631         intel_ring_emit(ring, intel_hws_seqno_address(request->engine));
1632         intel_ring_emit(ring, 0);
1633         intel_ring_emit(ring, i915_gem_request_get_seqno(request));
1634         /* We're thrashing one dword of HWS. */
1635         intel_ring_emit(ring, 0);
1636         intel_ring_emit(ring, MI_USER_INTERRUPT);
1637         intel_ring_emit(ring, MI_NOOP);
1638         return intel_logical_ring_advance(request);
1639 }
1640
1641 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1642 {
1643         int ret;
1644
1645         ret = intel_logical_ring_workarounds_emit(req);
1646         if (ret)
1647                 return ret;
1648
1649         ret = intel_rcs_context_init_mocs(req);
1650         /*
1651          * Failing to program the MOCS is non-fatal.The system will not
1652          * run at peak performance. So generate an error and carry on.
1653          */
1654         if (ret)
1655                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1656
1657         return i915_gem_render_state_init(req);
1658 }
1659
1660 /**
1661  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1662  * @engine: Engine Command Streamer.
1663  */
1664 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1665 {
1666         struct drm_i915_private *dev_priv;
1667
1668         if (!intel_engine_initialized(engine))
1669                 return;
1670
1671         /*
1672          * Tasklet cannot be active at this point due intel_mark_active/idle
1673          * so this is just for documentation.
1674          */
1675         if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1676                 tasklet_kill(&engine->irq_tasklet);
1677
1678         dev_priv = engine->i915;
1679
1680         if (engine->buffer) {
1681                 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1682         }
1683
1684         if (engine->cleanup)
1685                 engine->cleanup(engine);
1686
1687         intel_engine_cleanup_common(engine);
1688
1689         if (engine->status_page.vma) {
1690                 i915_gem_object_unpin_map(engine->status_page.vma->obj);
1691                 engine->status_page.vma = NULL;
1692         }
1693         intel_lr_context_unpin(dev_priv->kernel_context, engine);
1694
1695         lrc_destroy_wa_ctx_obj(engine);
1696         engine->i915 = NULL;
1697 }
1698
1699 void intel_execlists_enable_submission(struct drm_i915_private *dev_priv)
1700 {
1701         struct intel_engine_cs *engine;
1702
1703         for_each_engine(engine, dev_priv)
1704                 engine->submit_request = execlists_submit_request;
1705 }
1706
1707 static void
1708 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1709 {
1710         /* Default vfuncs which can be overriden by each engine. */
1711         engine->init_hw = gen8_init_common_ring;
1712         engine->reset_hw = reset_common_ring;
1713         engine->emit_flush = gen8_emit_flush;
1714         engine->emit_request = gen8_emit_request;
1715         engine->submit_request = execlists_submit_request;
1716
1717         engine->irq_enable = gen8_logical_ring_enable_irq;
1718         engine->irq_disable = gen8_logical_ring_disable_irq;
1719         engine->emit_bb_start = gen8_emit_bb_start;
1720         if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1721                 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1722 }
1723
1724 static inline void
1725 logical_ring_default_irqs(struct intel_engine_cs *engine)
1726 {
1727         unsigned shift = engine->irq_shift;
1728         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1729         engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1730 }
1731
1732 static int
1733 lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1734 {
1735         const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1736         void *hws;
1737
1738         /* The HWSP is part of the default context object in LRC mode. */
1739         hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1740         if (IS_ERR(hws))
1741                 return PTR_ERR(hws);
1742
1743         engine->status_page.page_addr = hws + hws_offset;
1744         engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1745         engine->status_page.vma = vma;
1746
1747         return 0;
1748 }
1749
1750 static void
1751 logical_ring_setup(struct intel_engine_cs *engine)
1752 {
1753         struct drm_i915_private *dev_priv = engine->i915;
1754         enum forcewake_domains fw_domains;
1755
1756         intel_engine_setup_common(engine);
1757
1758         /* Intentionally left blank. */
1759         engine->buffer = NULL;
1760
1761         fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1762                                                     RING_ELSP(engine),
1763                                                     FW_REG_WRITE);
1764
1765         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1766                                                      RING_CONTEXT_STATUS_PTR(engine),
1767                                                      FW_REG_READ | FW_REG_WRITE);
1768
1769         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1770                                                      RING_CONTEXT_STATUS_BUF_BASE(engine),
1771                                                      FW_REG_READ);
1772
1773         engine->fw_domains = fw_domains;
1774
1775         tasklet_init(&engine->irq_tasklet,
1776                      intel_lrc_irq_handler, (unsigned long)engine);
1777
1778         logical_ring_init_platform_invariants(engine);
1779         logical_ring_default_vfuncs(engine);
1780         logical_ring_default_irqs(engine);
1781 }
1782
1783 static int
1784 logical_ring_init(struct intel_engine_cs *engine)
1785 {
1786         struct i915_gem_context *dctx = engine->i915->kernel_context;
1787         int ret;
1788
1789         ret = intel_engine_init_common(engine);
1790         if (ret)
1791                 goto error;
1792
1793         ret = execlists_context_deferred_alloc(dctx, engine);
1794         if (ret)
1795                 goto error;
1796
1797         /* As this is the default context, always pin it */
1798         ret = intel_lr_context_pin(dctx, engine);
1799         if (ret) {
1800                 DRM_ERROR("Failed to pin context for %s: %d\n",
1801                           engine->name, ret);
1802                 goto error;
1803         }
1804
1805         /* And setup the hardware status page. */
1806         ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
1807         if (ret) {
1808                 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
1809                 goto error;
1810         }
1811
1812         return 0;
1813
1814 error:
1815         intel_logical_ring_cleanup(engine);
1816         return ret;
1817 }
1818
1819 int logical_render_ring_init(struct intel_engine_cs *engine)
1820 {
1821         struct drm_i915_private *dev_priv = engine->i915;
1822         int ret;
1823
1824         logical_ring_setup(engine);
1825
1826         if (HAS_L3_DPF(dev_priv))
1827                 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1828
1829         /* Override some for render ring. */
1830         if (INTEL_GEN(dev_priv) >= 9)
1831                 engine->init_hw = gen9_init_render_ring;
1832         else
1833                 engine->init_hw = gen8_init_render_ring;
1834         engine->init_context = gen8_init_rcs_context;
1835         engine->emit_flush = gen8_emit_flush_render;
1836         engine->emit_request = gen8_emit_request_render;
1837
1838         ret = intel_engine_create_scratch(engine, 4096);
1839         if (ret)
1840                 return ret;
1841
1842         ret = intel_init_workaround_bb(engine);
1843         if (ret) {
1844                 /*
1845                  * We continue even if we fail to initialize WA batch
1846                  * because we only expect rare glitches but nothing
1847                  * critical to prevent us from using GPU
1848                  */
1849                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1850                           ret);
1851         }
1852
1853         ret = logical_ring_init(engine);
1854         if (ret) {
1855                 lrc_destroy_wa_ctx_obj(engine);
1856         }
1857
1858         return ret;
1859 }
1860
1861 int logical_xcs_ring_init(struct intel_engine_cs *engine)
1862 {
1863         logical_ring_setup(engine);
1864
1865         return logical_ring_init(engine);
1866 }
1867
1868 static u32
1869 make_rpcs(struct drm_i915_private *dev_priv)
1870 {
1871         u32 rpcs = 0;
1872
1873         /*
1874          * No explicit RPCS request is needed to ensure full
1875          * slice/subslice/EU enablement prior to Gen9.
1876         */
1877         if (INTEL_GEN(dev_priv) < 9)
1878                 return 0;
1879
1880         /*
1881          * Starting in Gen9, render power gating can leave
1882          * slice/subslice/EU in a partially enabled state. We
1883          * must make an explicit request through RPCS for full
1884          * enablement.
1885         */
1886         if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1887                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1888                 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1889                         GEN8_RPCS_S_CNT_SHIFT;
1890                 rpcs |= GEN8_RPCS_ENABLE;
1891         }
1892
1893         if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1894                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1895                 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1896                         GEN8_RPCS_SS_CNT_SHIFT;
1897                 rpcs |= GEN8_RPCS_ENABLE;
1898         }
1899
1900         if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
1901                 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1902                         GEN8_RPCS_EU_MIN_SHIFT;
1903                 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1904                         GEN8_RPCS_EU_MAX_SHIFT;
1905                 rpcs |= GEN8_RPCS_ENABLE;
1906         }
1907
1908         return rpcs;
1909 }
1910
1911 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
1912 {
1913         u32 indirect_ctx_offset;
1914
1915         switch (INTEL_GEN(engine->i915)) {
1916         default:
1917                 MISSING_CASE(INTEL_GEN(engine->i915));
1918                 /* fall through */
1919         case 9:
1920                 indirect_ctx_offset =
1921                         GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1922                 break;
1923         case 8:
1924                 indirect_ctx_offset =
1925                         GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1926                 break;
1927         }
1928
1929         return indirect_ctx_offset;
1930 }
1931
1932 static void execlists_init_reg_state(u32 *reg_state,
1933                                      struct i915_gem_context *ctx,
1934                                      struct intel_engine_cs *engine,
1935                                      struct intel_ring *ring)
1936 {
1937         struct drm_i915_private *dev_priv = engine->i915;
1938         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
1939
1940         /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1941          * commands followed by (reg, value) pairs. The values we are setting here are
1942          * only for the first context restore: on a subsequent save, the GPU will
1943          * recreate this batchbuffer with new values (including all the missing
1944          * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1945         reg_state[CTX_LRI_HEADER_0] =
1946                 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
1947         ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
1948                        RING_CONTEXT_CONTROL(engine),
1949                        _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1950                                           CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
1951                                           (HAS_RESOURCE_STREAMER(dev_priv) ?
1952                                            CTX_CTRL_RS_CTX_ENABLE : 0)));
1953         ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
1954                        0);
1955         ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
1956                        0);
1957         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
1958                        RING_START(engine->mmio_base), 0);
1959         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
1960                        RING_CTL(engine->mmio_base),
1961                        ((ring->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
1962         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
1963                        RING_BBADDR_UDW(engine->mmio_base), 0);
1964         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
1965                        RING_BBADDR(engine->mmio_base), 0);
1966         ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
1967                        RING_BBSTATE(engine->mmio_base),
1968                        RING_BB_PPGTT);
1969         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
1970                        RING_SBBADDR_UDW(engine->mmio_base), 0);
1971         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
1972                        RING_SBBADDR(engine->mmio_base), 0);
1973         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
1974                        RING_SBBSTATE(engine->mmio_base), 0);
1975         if (engine->id == RCS) {
1976                 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
1977                                RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
1978                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
1979                                RING_INDIRECT_CTX(engine->mmio_base), 0);
1980                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
1981                                RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
1982                 if (engine->wa_ctx.vma) {
1983                         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1984                         u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
1985
1986                         reg_state[CTX_RCS_INDIRECT_CTX+1] =
1987                                 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
1988                                 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
1989
1990                         reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
1991                                 intel_lr_indirect_ctx_offset(engine) << 6;
1992
1993                         reg_state[CTX_BB_PER_CTX_PTR+1] =
1994                                 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
1995                                 0x01;
1996                 }
1997         }
1998         reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
1999         ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2000                        RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2001         /* PDP values well be assigned later if needed */
2002         ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2003                        0);
2004         ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2005                        0);
2006         ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2007                        0);
2008         ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2009                        0);
2010         ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2011                        0);
2012         ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2013                        0);
2014         ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2015                        0);
2016         ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2017                        0);
2018
2019         if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2020                 /* 64b PPGTT (48bit canonical)
2021                  * PDP0_DESCRIPTOR contains the base address to PML4 and
2022                  * other PDP Descriptors are ignored.
2023                  */
2024                 ASSIGN_CTX_PML4(ppgtt, reg_state);
2025         } else {
2026                 /* 32b PPGTT
2027                  * PDP*_DESCRIPTOR contains the base address of space supported.
2028                  * With dynamic page allocation, PDPs may not be allocated at
2029                  * this point. Point the unallocated PDPs to the scratch page
2030                  */
2031                 execlists_update_context_pdps(ppgtt, reg_state);
2032         }
2033
2034         if (engine->id == RCS) {
2035                 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2036                 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2037                                make_rpcs(dev_priv));
2038         }
2039 }
2040
2041 static int
2042 populate_lr_context(struct i915_gem_context *ctx,
2043                     struct drm_i915_gem_object *ctx_obj,
2044                     struct intel_engine_cs *engine,
2045                     struct intel_ring *ring)
2046 {
2047         void *vaddr;
2048         int ret;
2049
2050         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2051         if (ret) {
2052                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2053                 return ret;
2054         }
2055
2056         vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2057         if (IS_ERR(vaddr)) {
2058                 ret = PTR_ERR(vaddr);
2059                 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2060                 return ret;
2061         }
2062         ctx_obj->dirty = true;
2063
2064         /* The second page of the context object contains some fields which must
2065          * be set up prior to the first execution. */
2066
2067         execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
2068                                  ctx, engine, ring);
2069
2070         i915_gem_object_unpin_map(ctx_obj);
2071
2072         return 0;
2073 }
2074
2075 /**
2076  * intel_lr_context_size() - return the size of the context for an engine
2077  * @engine: which engine to find the context size for
2078  *
2079  * Each engine may require a different amount of space for a context image,
2080  * so when allocating (or copying) an image, this function can be used to
2081  * find the right size for the specific engine.
2082  *
2083  * Return: size (in bytes) of an engine-specific context image
2084  *
2085  * Note: this size includes the HWSP, which is part of the context image
2086  * in LRC mode, but does not include the "shared data page" used with
2087  * GuC submission. The caller should account for this if using the GuC.
2088  */
2089 uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2090 {
2091         int ret = 0;
2092
2093         WARN_ON(INTEL_GEN(engine->i915) < 8);
2094
2095         switch (engine->id) {
2096         case RCS:
2097                 if (INTEL_GEN(engine->i915) >= 9)
2098                         ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2099                 else
2100                         ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2101                 break;
2102         case VCS:
2103         case BCS:
2104         case VECS:
2105         case VCS2:
2106                 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2107                 break;
2108         }
2109
2110         return ret;
2111 }
2112
2113 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2114                                             struct intel_engine_cs *engine)
2115 {
2116         struct drm_i915_gem_object *ctx_obj;
2117         struct intel_context *ce = &ctx->engine[engine->id];
2118         struct i915_vma *vma;
2119         uint32_t context_size;
2120         struct intel_ring *ring;
2121         int ret;
2122
2123         WARN_ON(ce->state);
2124
2125         context_size = round_up(intel_lr_context_size(engine), 4096);
2126
2127         /* One extra page as the sharing data between driver and GuC */
2128         context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2129
2130         ctx_obj = i915_gem_object_create(&ctx->i915->drm, context_size);
2131         if (IS_ERR(ctx_obj)) {
2132                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2133                 return PTR_ERR(ctx_obj);
2134         }
2135
2136         vma = i915_vma_create(ctx_obj, &ctx->i915->ggtt.base, NULL);
2137         if (IS_ERR(vma)) {
2138                 ret = PTR_ERR(vma);
2139                 goto error_deref_obj;
2140         }
2141
2142         ring = intel_engine_create_ring(engine, ctx->ring_size);
2143         if (IS_ERR(ring)) {
2144                 ret = PTR_ERR(ring);
2145                 goto error_deref_obj;
2146         }
2147
2148         ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2149         if (ret) {
2150                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2151                 goto error_ring_free;
2152         }
2153
2154         ce->ring = ring;
2155         ce->state = vma;
2156         ce->initialised = engine->init_context == NULL;
2157
2158         return 0;
2159
2160 error_ring_free:
2161         intel_ring_free(ring);
2162 error_deref_obj:
2163         i915_gem_object_put(ctx_obj);
2164         return ret;
2165 }
2166
2167 void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2168 {
2169         struct i915_gem_context *ctx = dev_priv->kernel_context;
2170         struct intel_engine_cs *engine;
2171
2172         for_each_engine(engine, dev_priv) {
2173                 struct intel_context *ce = &ctx->engine[engine->id];
2174                 void *vaddr;
2175                 uint32_t *reg_state;
2176
2177                 if (!ce->state)
2178                         continue;
2179
2180                 vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
2181                 if (WARN_ON(IS_ERR(vaddr)))
2182                         continue;
2183
2184                 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2185
2186                 reg_state[CTX_RING_HEAD+1] = 0;
2187                 reg_state[CTX_RING_TAIL+1] = 0;
2188
2189                 ce->state->obj->dirty = true;
2190                 i915_gem_object_unpin_map(ce->state->obj);
2191
2192                 ce->ring->head = 0;
2193                 ce->ring->tail = 0;
2194         }
2195 }