GNU Linux-libre 4.19.304-gnu1
[releases.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "i915_gem_render_state.h"
140 #include "i915_vgpu.h"
141 #include "intel_lrc_reg.h"
142 #include "intel_mocs.h"
143 #include "intel_workarounds.h"
144
145 #define RING_EXECLIST_QFULL             (1 << 0x2)
146 #define RING_EXECLIST1_VALID            (1 << 0x3)
147 #define RING_EXECLIST0_VALID            (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
151
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
158
159 #define GEN8_CTX_STATUS_COMPLETED_MASK \
160          (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
161
162 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
163 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
164 #define WA_TAIL_DWORDS 2
165 #define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
166
167 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
168                                             struct intel_engine_cs *engine,
169                                             struct intel_context *ce);
170 static void execlists_init_reg_state(u32 *reg_state,
171                                      struct i915_gem_context *ctx,
172                                      struct intel_engine_cs *engine,
173                                      struct intel_ring *ring);
174
175 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
176 {
177         return rb_entry(rb, struct i915_priolist, node);
178 }
179
180 static inline int rq_prio(const struct i915_request *rq)
181 {
182         return rq->sched.attr.priority;
183 }
184
185 static inline bool need_preempt(const struct intel_engine_cs *engine,
186                                 const struct i915_request *last,
187                                 int prio)
188 {
189         return (intel_engine_has_preemption(engine) &&
190                 __execlists_need_preempt(prio, rq_prio(last)) &&
191                 !i915_request_completed(last));
192 }
193
194 /*
195  * The context descriptor encodes various attributes of a context,
196  * including its GTT address and some flags. Because it's fairly
197  * expensive to calculate, we'll just do it once and cache the result,
198  * which remains valid until the context is unpinned.
199  *
200  * This is what a descriptor looks like, from LSB to MSB::
201  *
202  *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
203  *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
204  *      bits 32-52:    ctx ID, a globally unique tag (highest bit used by GuC)
205  *      bits 53-54:    mbz, reserved for use by hardware
206  *      bits 55-63:    group ID, currently unused and set to 0
207  *
208  * Starting from Gen11, the upper dword of the descriptor has a new format:
209  *
210  *      bits 32-36:    reserved
211  *      bits 37-47:    SW context ID
212  *      bits 48:53:    engine instance
213  *      bit 54:        mbz, reserved for use by hardware
214  *      bits 55-60:    SW counter
215  *      bits 61-63:    engine class
216  *
217  * engine info, SW context ID and SW counter need to form a unique number
218  * (Context ID) per lrc.
219  */
220 static void
221 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
222                                    struct intel_engine_cs *engine,
223                                    struct intel_context *ce)
224 {
225         u64 desc;
226
227         BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
228         BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
229
230         desc = ctx->desc_template;                              /* bits  0-11 */
231         GEM_BUG_ON(desc & GENMASK_ULL(63, 12));
232
233         desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
234                                                                 /* bits 12-31 */
235         GEM_BUG_ON(desc & GENMASK_ULL(63, 32));
236
237         /*
238          * The following 32bits are copied into the OA reports (dword 2).
239          * Consider updating oa_get_render_ctx_id in i915_perf.c when changing
240          * anything below.
241          */
242         if (INTEL_GEN(ctx->i915) >= 11) {
243                 GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
244                 desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
245                                                                 /* bits 37-47 */
246
247                 desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
248                                                                 /* bits 48-53 */
249
250                 /* TODO: decide what to do with SW counter (bits 55-60) */
251
252                 desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
253                                                                 /* bits 61-63 */
254         } else {
255                 GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
256                 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;   /* bits 32-52 */
257         }
258
259         ce->lrc_desc = desc;
260 }
261
262 static struct i915_priolist *
263 lookup_priolist(struct intel_engine_cs *engine, int prio)
264 {
265         struct intel_engine_execlists * const execlists = &engine->execlists;
266         struct i915_priolist *p;
267         struct rb_node **parent, *rb;
268         bool first = true;
269
270         if (unlikely(execlists->no_priolist))
271                 prio = I915_PRIORITY_NORMAL;
272
273 find_priolist:
274         /* most positive priority is scheduled first, equal priorities fifo */
275         rb = NULL;
276         parent = &execlists->queue.rb_root.rb_node;
277         while (*parent) {
278                 rb = *parent;
279                 p = to_priolist(rb);
280                 if (prio > p->priority) {
281                         parent = &rb->rb_left;
282                 } else if (prio < p->priority) {
283                         parent = &rb->rb_right;
284                         first = false;
285                 } else {
286                         return p;
287                 }
288         }
289
290         if (prio == I915_PRIORITY_NORMAL) {
291                 p = &execlists->default_priolist;
292         } else {
293                 p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
294                 /* Convert an allocation failure to a priority bump */
295                 if (unlikely(!p)) {
296                         prio = I915_PRIORITY_NORMAL; /* recurses just once */
297
298                         /* To maintain ordering with all rendering, after an
299                          * allocation failure we have to disable all scheduling.
300                          * Requests will then be executed in fifo, and schedule
301                          * will ensure that dependencies are emitted in fifo.
302                          * There will be still some reordering with existing
303                          * requests, so if userspace lied about their
304                          * dependencies that reordering may be visible.
305                          */
306                         execlists->no_priolist = true;
307                         goto find_priolist;
308                 }
309         }
310
311         p->priority = prio;
312         INIT_LIST_HEAD(&p->requests);
313         rb_link_node(&p->node, rb, parent);
314         rb_insert_color_cached(&p->node, &execlists->queue, first);
315
316         return p;
317 }
318
319 static void unwind_wa_tail(struct i915_request *rq)
320 {
321         rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
322         assert_ring_tail_valid(rq->ring, rq->tail);
323 }
324
325 static void __unwind_incomplete_requests(struct intel_engine_cs *engine)
326 {
327         struct i915_request *rq, *rn;
328         struct i915_priolist *uninitialized_var(p);
329         int last_prio = I915_PRIORITY_INVALID;
330
331         lockdep_assert_held(&engine->timeline.lock);
332
333         list_for_each_entry_safe_reverse(rq, rn,
334                                          &engine->timeline.requests,
335                                          link) {
336                 if (i915_request_completed(rq))
337                         return;
338
339                 __i915_request_unsubmit(rq);
340                 unwind_wa_tail(rq);
341
342                 GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
343                 if (rq_prio(rq) != last_prio) {
344                         last_prio = rq_prio(rq);
345                         p = lookup_priolist(engine, last_prio);
346                 }
347
348                 GEM_BUG_ON(p->priority != rq_prio(rq));
349                 list_add(&rq->sched.link, &p->requests);
350         }
351 }
352
353 void
354 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
355 {
356         struct intel_engine_cs *engine =
357                 container_of(execlists, typeof(*engine), execlists);
358         unsigned long flags;
359
360         spin_lock_irqsave(&engine->timeline.lock, flags);
361
362         __unwind_incomplete_requests(engine);
363
364         spin_unlock_irqrestore(&engine->timeline.lock, flags);
365 }
366
367 static inline void
368 execlists_context_status_change(struct i915_request *rq, unsigned long status)
369 {
370         /*
371          * Only used when GVT-g is enabled now. When GVT-g is disabled,
372          * The compiler should eliminate this function as dead-code.
373          */
374         if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
375                 return;
376
377         atomic_notifier_call_chain(&rq->engine->context_status_notifier,
378                                    status, rq);
379 }
380
381 inline void
382 execlists_user_begin(struct intel_engine_execlists *execlists,
383                      const struct execlist_port *port)
384 {
385         execlists_set_active_once(execlists, EXECLISTS_ACTIVE_USER);
386 }
387
388 inline void
389 execlists_user_end(struct intel_engine_execlists *execlists)
390 {
391         execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER);
392 }
393
394 static inline void
395 execlists_context_schedule_in(struct i915_request *rq)
396 {
397         execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
398         intel_engine_context_in(rq->engine);
399 }
400
401 static inline void
402 execlists_context_schedule_out(struct i915_request *rq, unsigned long status)
403 {
404         intel_engine_context_out(rq->engine);
405         execlists_context_status_change(rq, status);
406         trace_i915_request_out(rq);
407 }
408
409 static void
410 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
411 {
412         ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
413         ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
414         ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
415         ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
416 }
417
418 static u64 execlists_update_context(struct i915_request *rq)
419 {
420         struct intel_context *ce = rq->hw_context;
421         struct i915_hw_ppgtt *ppgtt =
422                 rq->gem_context->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
423         u32 *reg_state = ce->lrc_reg_state;
424
425         reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
426
427         /*
428          * True 32b PPGTT with dynamic page allocation: update PDP
429          * registers and point the unallocated PDPs to scratch page.
430          * PML4 is allocated during ppgtt init, so this is not needed
431          * in 48-bit mode.
432          */
433         if (ppgtt && !i915_vm_is_48bit(&ppgtt->vm))
434                 execlists_update_context_pdps(ppgtt, reg_state);
435
436         /*
437          * Make sure the context image is complete before we submit it to HW.
438          *
439          * Ostensibly, writes (including the WCB) should be flushed prior to
440          * an uncached write such as our mmio register access, the empirical
441          * evidence (esp. on Braswell) suggests that the WC write into memory
442          * may not be visible to the HW prior to the completion of the UC
443          * register write and that we may begin execution from the context
444          * before its image is complete leading to invalid PD chasing.
445          *
446          * Furthermore, Braswell, at least, wants a full mb to be sure that
447          * the writes are coherent in memory (visible to the GPU) prior to
448          * execution, and not just visible to other CPUs (as is the result of
449          * wmb).
450          */
451         mb();
452         return ce->lrc_desc;
453 }
454
455 static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
456 {
457         if (execlists->ctrl_reg) {
458                 writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
459                 writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
460         } else {
461                 writel(upper_32_bits(desc), execlists->submit_reg);
462                 writel(lower_32_bits(desc), execlists->submit_reg);
463         }
464 }
465
466 static void execlists_submit_ports(struct intel_engine_cs *engine)
467 {
468         struct intel_engine_execlists *execlists = &engine->execlists;
469         struct execlist_port *port = execlists->port;
470         unsigned int n;
471
472         /*
473          * We can skip acquiring intel_runtime_pm_get() here as it was taken
474          * on our behalf by the request (see i915_gem_mark_busy()) and it will
475          * not be relinquished until the device is idle (see
476          * i915_gem_idle_work_handler()). As a precaution, we make sure
477          * that all ELSP are drained i.e. we have processed the CSB,
478          * before allowing ourselves to idle and calling intel_runtime_pm_put().
479          */
480         GEM_BUG_ON(!engine->i915->gt.awake);
481
482         /*
483          * ELSQ note: the submit queue is not cleared after being submitted
484          * to the HW so we need to make sure we always clean it up. This is
485          * currently ensured by the fact that we always write the same number
486          * of elsq entries, keep this in mind before changing the loop below.
487          */
488         for (n = execlists_num_ports(execlists); n--; ) {
489                 struct i915_request *rq;
490                 unsigned int count;
491                 u64 desc;
492
493                 rq = port_unpack(&port[n], &count);
494                 if (rq) {
495                         GEM_BUG_ON(count > !n);
496                         if (!count++)
497                                 execlists_context_schedule_in(rq);
498                         port_set(&port[n], port_pack(rq, count));
499                         desc = execlists_update_context(rq);
500                         GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
501
502                         GEM_TRACE("%s in[%d]:  ctx=%d.%d, global=%d (fence %llx:%d) (current %d), prio=%d\n",
503                                   engine->name, n,
504                                   port[n].context_id, count,
505                                   rq->global_seqno,
506                                   rq->fence.context, rq->fence.seqno,
507                                   intel_engine_get_seqno(engine),
508                                   rq_prio(rq));
509                 } else {
510                         GEM_BUG_ON(!n);
511                         desc = 0;
512                 }
513
514                 write_desc(execlists, desc, n);
515         }
516
517         /* we need to manually load the submit queue */
518         if (execlists->ctrl_reg)
519                 writel(EL_CTRL_LOAD, execlists->ctrl_reg);
520
521         execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
522 }
523
524 static bool ctx_single_port_submission(const struct intel_context *ce)
525 {
526         return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
527                 i915_gem_context_force_single_submission(ce->gem_context));
528 }
529
530 static bool can_merge_ctx(const struct intel_context *prev,
531                           const struct intel_context *next)
532 {
533         if (prev != next)
534                 return false;
535
536         if (ctx_single_port_submission(prev))
537                 return false;
538
539         return true;
540 }
541
542 static void port_assign(struct execlist_port *port, struct i915_request *rq)
543 {
544         GEM_BUG_ON(rq == port_request(port));
545
546         if (port_isset(port))
547                 i915_request_put(port_request(port));
548
549         port_set(port, port_pack(i915_request_get(rq), port_count(port)));
550 }
551
552 static void inject_preempt_context(struct intel_engine_cs *engine)
553 {
554         struct intel_engine_execlists *execlists = &engine->execlists;
555         struct intel_context *ce =
556                 to_intel_context(engine->i915->preempt_context, engine);
557         unsigned int n;
558
559         GEM_BUG_ON(execlists->preempt_complete_status !=
560                    upper_32_bits(ce->lrc_desc));
561         GEM_BUG_ON((ce->lrc_reg_state[CTX_CONTEXT_CONTROL + 1] &
562                     _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
563                                        CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT)) !=
564                    _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
565                                       CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT));
566
567         /*
568          * Switch to our empty preempt context so
569          * the state of the GPU is known (idle).
570          */
571         GEM_TRACE("%s\n", engine->name);
572         for (n = execlists_num_ports(execlists); --n; )
573                 write_desc(execlists, 0, n);
574
575         write_desc(execlists, ce->lrc_desc, n);
576
577         /* we need to manually load the submit queue */
578         if (execlists->ctrl_reg)
579                 writel(EL_CTRL_LOAD, execlists->ctrl_reg);
580
581         execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
582         execlists_set_active(execlists, EXECLISTS_ACTIVE_PREEMPT);
583 }
584
585 static void complete_preempt_context(struct intel_engine_execlists *execlists)
586 {
587         GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT));
588
589         if (inject_preempt_hang(execlists))
590                 return;
591
592         execlists_cancel_port_requests(execlists);
593         __unwind_incomplete_requests(container_of(execlists,
594                                                   struct intel_engine_cs,
595                                                   execlists));
596 }
597
598 static void execlists_dequeue(struct intel_engine_cs *engine)
599 {
600         struct intel_engine_execlists * const execlists = &engine->execlists;
601         struct execlist_port *port = execlists->port;
602         const struct execlist_port * const last_port =
603                 &execlists->port[execlists->port_mask];
604         struct i915_request *last = port_request(port);
605         struct rb_node *rb;
606         bool submit = false;
607
608         /*
609          * Hardware submission is through 2 ports. Conceptually each port
610          * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
611          * static for a context, and unique to each, so we only execute
612          * requests belonging to a single context from each ring. RING_HEAD
613          * is maintained by the CS in the context image, it marks the place
614          * where it got up to last time, and through RING_TAIL we tell the CS
615          * where we want to execute up to this time.
616          *
617          * In this list the requests are in order of execution. Consecutive
618          * requests from the same context are adjacent in the ringbuffer. We
619          * can combine these requests into a single RING_TAIL update:
620          *
621          *              RING_HEAD...req1...req2
622          *                                    ^- RING_TAIL
623          * since to execute req2 the CS must first execute req1.
624          *
625          * Our goal then is to point each port to the end of a consecutive
626          * sequence of requests as being the most optimal (fewest wake ups
627          * and context switches) submission.
628          */
629
630         if (last) {
631                 /*
632                  * Don't resubmit or switch until all outstanding
633                  * preemptions (lite-restore) are seen. Then we
634                  * know the next preemption status we see corresponds
635                  * to this ELSP update.
636                  */
637                 GEM_BUG_ON(!execlists_is_active(execlists,
638                                                 EXECLISTS_ACTIVE_USER));
639                 GEM_BUG_ON(!port_count(&port[0]));
640
641                 /*
642                  * If we write to ELSP a second time before the HW has had
643                  * a chance to respond to the previous write, we can confuse
644                  * the HW and hit "undefined behaviour". After writing to ELSP,
645                  * we must then wait until we see a context-switch event from
646                  * the HW to indicate that it has had a chance to respond.
647                  */
648                 if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
649                         return;
650
651                 if (need_preempt(engine, last, execlists->queue_priority)) {
652                         inject_preempt_context(engine);
653                         return;
654                 }
655
656                 /*
657                  * In theory, we could coalesce more requests onto
658                  * the second port (the first port is active, with
659                  * no preemptions pending). However, that means we
660                  * then have to deal with the possible lite-restore
661                  * of the second port (as we submit the ELSP, there
662                  * may be a context-switch) but also we may complete
663                  * the resubmission before the context-switch. Ergo,
664                  * coalescing onto the second port will cause a
665                  * preemption event, but we cannot predict whether
666                  * that will affect port[0] or port[1].
667                  *
668                  * If the second port is already active, we can wait
669                  * until the next context-switch before contemplating
670                  * new requests. The GPU will be busy and we should be
671                  * able to resubmit the new ELSP before it idles,
672                  * avoiding pipeline bubbles (momentary pauses where
673                  * the driver is unable to keep up the supply of new
674                  * work). However, we have to double check that the
675                  * priorities of the ports haven't been switch.
676                  */
677                 if (port_count(&port[1]))
678                         return;
679
680                 /*
681                  * WaIdleLiteRestore:bdw,skl
682                  * Apply the wa NOOPs to prevent
683                  * ring:HEAD == rq:TAIL as we resubmit the
684                  * request. See gen8_emit_breadcrumb() for
685                  * where we prepare the padding after the
686                  * end of the request.
687                  */
688                 last->tail = last->wa_tail;
689         }
690
691         while ((rb = rb_first_cached(&execlists->queue))) {
692                 struct i915_priolist *p = to_priolist(rb);
693                 struct i915_request *rq, *rn;
694
695                 list_for_each_entry_safe(rq, rn, &p->requests, sched.link) {
696                         /*
697                          * Can we combine this request with the current port?
698                          * It has to be the same context/ringbuffer and not
699                          * have any exceptions (e.g. GVT saying never to
700                          * combine contexts).
701                          *
702                          * If we can combine the requests, we can execute both
703                          * by updating the RING_TAIL to point to the end of the
704                          * second request, and so we never need to tell the
705                          * hardware about the first.
706                          */
707                         if (last &&
708                             !can_merge_ctx(rq->hw_context, last->hw_context)) {
709                                 /*
710                                  * If we are on the second port and cannot
711                                  * combine this request with the last, then we
712                                  * are done.
713                                  */
714                                 if (port == last_port) {
715                                         __list_del_many(&p->requests,
716                                                         &rq->sched.link);
717                                         goto done;
718                                 }
719
720                                 /*
721                                  * If GVT overrides us we only ever submit
722                                  * port[0], leaving port[1] empty. Note that we
723                                  * also have to be careful that we don't queue
724                                  * the same context (even though a different
725                                  * request) to the second port.
726                                  */
727                                 if (ctx_single_port_submission(last->hw_context) ||
728                                     ctx_single_port_submission(rq->hw_context)) {
729                                         __list_del_many(&p->requests,
730                                                         &rq->sched.link);
731                                         goto done;
732                                 }
733
734                                 GEM_BUG_ON(last->hw_context == rq->hw_context);
735
736                                 if (submit)
737                                         port_assign(port, last);
738                                 port++;
739
740                                 GEM_BUG_ON(port_isset(port));
741                         }
742
743                         INIT_LIST_HEAD(&rq->sched.link);
744                         __i915_request_submit(rq);
745                         trace_i915_request_in(rq, port_index(port, execlists));
746                         last = rq;
747                         submit = true;
748                 }
749
750                 rb_erase_cached(&p->node, &execlists->queue);
751                 INIT_LIST_HEAD(&p->requests);
752                 if (p->priority != I915_PRIORITY_NORMAL)
753                         kmem_cache_free(engine->i915->priorities, p);
754         }
755
756 done:
757         /*
758          * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
759          *
760          * We choose queue_priority such that if we add a request of greater
761          * priority than this, we kick the submission tasklet to decide on
762          * the right order of submitting the requests to hardware. We must
763          * also be prepared to reorder requests as they are in-flight on the
764          * HW. We derive the queue_priority then as the first "hole" in
765          * the HW submission ports and if there are no available slots,
766          * the priority of the lowest executing request, i.e. last.
767          *
768          * When we do receive a higher priority request ready to run from the
769          * user, see queue_request(), the queue_priority is bumped to that
770          * request triggering preemption on the next dequeue (or subsequent
771          * interrupt for secondary ports).
772          */
773         execlists->queue_priority =
774                 port != execlists->port ? rq_prio(last) : INT_MIN;
775
776         if (submit) {
777                 port_assign(port, last);
778                 execlists_submit_ports(engine);
779         }
780
781         /* We must always keep the beast fed if we have work piled up */
782         GEM_BUG_ON(rb_first_cached(&execlists->queue) &&
783                    !port_isset(execlists->port));
784
785         /* Re-evaluate the executing context setup after each preemptive kick */
786         if (last)
787                 execlists_user_begin(execlists, execlists->port);
788
789         /* If the engine is now idle, so should be the flag; and vice versa. */
790         GEM_BUG_ON(execlists_is_active(&engine->execlists,
791                                        EXECLISTS_ACTIVE_USER) ==
792                    !port_isset(engine->execlists.port));
793 }
794
795 void
796 execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
797 {
798         struct execlist_port *port = execlists->port;
799         unsigned int num_ports = execlists_num_ports(execlists);
800
801         while (num_ports-- && port_isset(port)) {
802                 struct i915_request *rq = port_request(port);
803
804                 GEM_TRACE("%s:port%u global=%d (fence %llx:%d), (current %d)\n",
805                           rq->engine->name,
806                           (unsigned int)(port - execlists->port),
807                           rq->global_seqno,
808                           rq->fence.context, rq->fence.seqno,
809                           intel_engine_get_seqno(rq->engine));
810
811                 GEM_BUG_ON(!execlists->active);
812                 execlists_context_schedule_out(rq,
813                                                i915_request_completed(rq) ?
814                                                INTEL_CONTEXT_SCHEDULE_OUT :
815                                                INTEL_CONTEXT_SCHEDULE_PREEMPTED);
816
817                 i915_request_put(rq);
818
819                 memset(port, 0, sizeof(*port));
820                 port++;
821         }
822
823         execlists_clear_all_active(execlists);
824 }
825
826 static void reset_csb_pointers(struct intel_engine_execlists *execlists)
827 {
828         /*
829          * After a reset, the HW starts writing into CSB entry [0]. We
830          * therefore have to set our HEAD pointer back one entry so that
831          * the *first* entry we check is entry 0. To complicate this further,
832          * as we don't wait for the first interrupt after reset, we have to
833          * fake the HW write to point back to the last entry so that our
834          * inline comparison of our cached head position against the last HW
835          * write works even before the first interrupt.
836          */
837         execlists->csb_head = execlists->csb_write_reset;
838         WRITE_ONCE(*execlists->csb_write, execlists->csb_write_reset);
839 }
840
841 static void nop_submission_tasklet(unsigned long data)
842 {
843         /* The driver is wedged; don't process any more events. */
844 }
845
846 static void execlists_cancel_requests(struct intel_engine_cs *engine)
847 {
848         struct intel_engine_execlists * const execlists = &engine->execlists;
849         struct i915_request *rq, *rn;
850         struct rb_node *rb;
851         unsigned long flags;
852
853         GEM_TRACE("%s current %d\n",
854                   engine->name, intel_engine_get_seqno(engine));
855
856         /*
857          * Before we call engine->cancel_requests(), we should have exclusive
858          * access to the submission state. This is arranged for us by the
859          * caller disabling the interrupt generation, the tasklet and other
860          * threads that may then access the same state, giving us a free hand
861          * to reset state. However, we still need to let lockdep be aware that
862          * we know this state may be accessed in hardirq context, so we
863          * disable the irq around this manipulation and we want to keep
864          * the spinlock focused on its duties and not accidentally conflate
865          * coverage to the submission's irq state. (Similarly, although we
866          * shouldn't need to disable irq around the manipulation of the
867          * submission's irq state, we also wish to remind ourselves that
868          * it is irq state.)
869          */
870         spin_lock_irqsave(&engine->timeline.lock, flags);
871
872         /* Cancel the requests on the HW and clear the ELSP tracker. */
873         execlists_cancel_port_requests(execlists);
874         execlists_user_end(execlists);
875
876         /* Mark all executing requests as skipped. */
877         list_for_each_entry(rq, &engine->timeline.requests, link) {
878                 GEM_BUG_ON(!rq->global_seqno);
879                 if (!i915_request_completed(rq))
880                         dma_fence_set_error(&rq->fence, -EIO);
881         }
882
883         /* Flush the queued requests to the timeline list (for retiring). */
884         while ((rb = rb_first_cached(&execlists->queue))) {
885                 struct i915_priolist *p = to_priolist(rb);
886
887                 list_for_each_entry_safe(rq, rn, &p->requests, sched.link) {
888                         INIT_LIST_HEAD(&rq->sched.link);
889
890                         dma_fence_set_error(&rq->fence, -EIO);
891                         __i915_request_submit(rq);
892                 }
893
894                 rb_erase_cached(&p->node, &execlists->queue);
895                 INIT_LIST_HEAD(&p->requests);
896                 if (p->priority != I915_PRIORITY_NORMAL)
897                         kmem_cache_free(engine->i915->priorities, p);
898         }
899
900         /* Remaining _unready_ requests will be nop'ed when submitted */
901
902         execlists->queue_priority = INT_MIN;
903         execlists->queue = RB_ROOT_CACHED;
904         GEM_BUG_ON(port_isset(execlists->port));
905
906         GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet));
907         execlists->tasklet.func = nop_submission_tasklet;
908
909         spin_unlock_irqrestore(&engine->timeline.lock, flags);
910 }
911
912 static inline bool
913 reset_in_progress(const struct intel_engine_execlists *execlists)
914 {
915         return unlikely(!__tasklet_is_enabled(&execlists->tasklet));
916 }
917
918 static void process_csb(struct intel_engine_cs *engine)
919 {
920         struct intel_engine_execlists * const execlists = &engine->execlists;
921         struct execlist_port *port = execlists->port;
922         const u32 * const buf = execlists->csb_status;
923         u8 head, tail;
924
925         /*
926          * Note that csb_write, csb_status may be either in HWSP or mmio.
927          * When reading from the csb_write mmio register, we have to be
928          * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
929          * the low 4bits. As it happens we know the next 4bits are always
930          * zero and so we can simply masked off the low u8 of the register
931          * and treat it identically to reading from the HWSP (without having
932          * to use explicit shifting and masking, and probably bifurcating
933          * the code to handle the legacy mmio read).
934          */
935         head = execlists->csb_head;
936         tail = READ_ONCE(*execlists->csb_write);
937         GEM_TRACE("%s cs-irq head=%d, tail=%d\n", engine->name, head, tail);
938         if (unlikely(head == tail))
939                 return;
940
941         /*
942          * Hopefully paired with a wmb() in HW!
943          *
944          * We must complete the read of the write pointer before any reads
945          * from the CSB, so that we do not see stale values. Without an rmb
946          * (lfence) the HW may speculatively perform the CSB[] reads *before*
947          * we perform the READ_ONCE(*csb_write).
948          */
949         rmb();
950
951         do {
952                 struct i915_request *rq;
953                 unsigned int status;
954                 unsigned int count;
955
956                 if (++head == GEN8_CSB_ENTRIES)
957                         head = 0;
958
959                 /*
960                  * We are flying near dragons again.
961                  *
962                  * We hold a reference to the request in execlist_port[]
963                  * but no more than that. We are operating in softirq
964                  * context and so cannot hold any mutex or sleep. That
965                  * prevents us stopping the requests we are processing
966                  * in port[] from being retired simultaneously (the
967                  * breadcrumb will be complete before we see the
968                  * context-switch). As we only hold the reference to the
969                  * request, any pointer chasing underneath the request
970                  * is subject to a potential use-after-free. Thus we
971                  * store all of the bookkeeping within port[] as
972                  * required, and avoid using unguarded pointers beneath
973                  * request itself. The same applies to the atomic
974                  * status notifier.
975                  */
976
977                 GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
978                           engine->name, head,
979                           buf[2 * head + 0], buf[2 * head + 1],
980                           execlists->active);
981
982                 status = buf[2 * head];
983                 if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
984                               GEN8_CTX_STATUS_PREEMPTED))
985                         execlists_set_active(execlists,
986                                              EXECLISTS_ACTIVE_HWACK);
987                 if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
988                         execlists_clear_active(execlists,
989                                                EXECLISTS_ACTIVE_HWACK);
990
991                 if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
992                         continue;
993
994                 /* We should never get a COMPLETED | IDLE_ACTIVE! */
995                 GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);
996
997                 if (status & GEN8_CTX_STATUS_COMPLETE &&
998                     buf[2*head + 1] == execlists->preempt_complete_status) {
999                         GEM_TRACE("%s preempt-idle\n", engine->name);
1000                         complete_preempt_context(execlists);
1001                         continue;
1002                 }
1003
1004                 if (status & GEN8_CTX_STATUS_PREEMPTED &&
1005                     execlists_is_active(execlists,
1006                                         EXECLISTS_ACTIVE_PREEMPT))
1007                         continue;
1008
1009                 GEM_BUG_ON(!execlists_is_active(execlists,
1010                                                 EXECLISTS_ACTIVE_USER));
1011
1012                 rq = port_unpack(port, &count);
1013                 GEM_TRACE("%s out[0]: ctx=%d.%d, global=%d (fence %llx:%d) (current %d), prio=%d\n",
1014                           engine->name,
1015                           port->context_id, count,
1016                           rq ? rq->global_seqno : 0,
1017                           rq ? rq->fence.context : 0,
1018                           rq ? rq->fence.seqno : 0,
1019                           intel_engine_get_seqno(engine),
1020                           rq ? rq_prio(rq) : 0);
1021
1022                 /* Check the context/desc id for this event matches */
1023                 GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
1024
1025                 GEM_BUG_ON(count == 0);
1026                 if (--count == 0) {
1027                         /*
1028                          * On the final event corresponding to the
1029                          * submission of this context, we expect either
1030                          * an element-switch event or a completion
1031                          * event (and on completion, the active-idle
1032                          * marker). No more preemptions, lite-restore
1033                          * or otherwise.
1034                          */
1035                         GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
1036                         GEM_BUG_ON(port_isset(&port[1]) &&
1037                                    !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
1038                         GEM_BUG_ON(!port_isset(&port[1]) &&
1039                                    !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
1040
1041                         /*
1042                          * We rely on the hardware being strongly
1043                          * ordered, that the breadcrumb write is
1044                          * coherent (visible from the CPU) before the
1045                          * user interrupt and CSB is processed.
1046                          */
1047                         GEM_BUG_ON(!i915_request_completed(rq));
1048
1049                         execlists_context_schedule_out(rq,
1050                                                        INTEL_CONTEXT_SCHEDULE_OUT);
1051                         i915_request_put(rq);
1052
1053                         GEM_TRACE("%s completed ctx=%d\n",
1054                                   engine->name, port->context_id);
1055
1056                         port = execlists_port_complete(execlists, port);
1057                         if (port_isset(port))
1058                                 execlists_user_begin(execlists, port);
1059                         else
1060                                 execlists_user_end(execlists);
1061                 } else {
1062                         port_set(port, port_pack(rq, count));
1063                 }
1064         } while (head != tail);
1065
1066         execlists->csb_head = head;
1067 }
1068
1069 static void __execlists_submission_tasklet(struct intel_engine_cs *const engine)
1070 {
1071         lockdep_assert_held(&engine->timeline.lock);
1072
1073         process_csb(engine);
1074         if (!execlists_is_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT))
1075                 execlists_dequeue(engine);
1076 }
1077
1078 /*
1079  * Check the unread Context Status Buffers and manage the submission of new
1080  * contexts to the ELSP accordingly.
1081  */
1082 static void execlists_submission_tasklet(unsigned long data)
1083 {
1084         struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
1085         unsigned long flags;
1086
1087         GEM_TRACE("%s awake?=%d, active=%x\n",
1088                   engine->name,
1089                   engine->i915->gt.awake,
1090                   engine->execlists.active);
1091
1092         spin_lock_irqsave(&engine->timeline.lock, flags);
1093         __execlists_submission_tasklet(engine);
1094         spin_unlock_irqrestore(&engine->timeline.lock, flags);
1095 }
1096
1097 static void queue_request(struct intel_engine_cs *engine,
1098                           struct i915_sched_node *node,
1099                           int prio)
1100 {
1101         list_add_tail(&node->link,
1102                       &lookup_priolist(engine, prio)->requests);
1103 }
1104
1105 static void __update_queue(struct intel_engine_cs *engine, int prio)
1106 {
1107         engine->execlists.queue_priority = prio;
1108 }
1109
1110 static void __submit_queue_imm(struct intel_engine_cs *engine)
1111 {
1112         struct intel_engine_execlists * const execlists = &engine->execlists;
1113
1114         if (reset_in_progress(execlists))
1115                 return; /* defer until we restart the engine following reset */
1116
1117         if (execlists->tasklet.func == execlists_submission_tasklet)
1118                 __execlists_submission_tasklet(engine);
1119         else
1120                 tasklet_hi_schedule(&execlists->tasklet);
1121 }
1122
1123 static void submit_queue(struct intel_engine_cs *engine, int prio)
1124 {
1125         if (prio > engine->execlists.queue_priority) {
1126                 __update_queue(engine, prio);
1127                 __submit_queue_imm(engine);
1128         }
1129 }
1130
1131 static void execlists_submit_request(struct i915_request *request)
1132 {
1133         struct intel_engine_cs *engine = request->engine;
1134         unsigned long flags;
1135
1136         /* Will be called from irq-context when using foreign fences. */
1137         spin_lock_irqsave(&engine->timeline.lock, flags);
1138
1139         queue_request(engine, &request->sched, rq_prio(request));
1140
1141         GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
1142         GEM_BUG_ON(list_empty(&request->sched.link));
1143
1144         submit_queue(engine, rq_prio(request));
1145
1146         spin_unlock_irqrestore(&engine->timeline.lock, flags);
1147 }
1148
1149 static struct i915_request *sched_to_request(struct i915_sched_node *node)
1150 {
1151         return container_of(node, struct i915_request, sched);
1152 }
1153
1154 static struct intel_engine_cs *
1155 sched_lock_engine(struct i915_sched_node *node, struct intel_engine_cs *locked)
1156 {
1157         struct intel_engine_cs *engine = sched_to_request(node)->engine;
1158
1159         GEM_BUG_ON(!locked);
1160
1161         if (engine != locked) {
1162                 spin_unlock(&locked->timeline.lock);
1163                 spin_lock(&engine->timeline.lock);
1164         }
1165
1166         return engine;
1167 }
1168
1169 static void execlists_schedule(struct i915_request *request,
1170                                const struct i915_sched_attr *attr)
1171 {
1172         struct i915_priolist *uninitialized_var(pl);
1173         struct intel_engine_cs *engine, *last;
1174         struct i915_dependency *dep, *p;
1175         struct i915_dependency stack;
1176         const int prio = attr->priority;
1177         LIST_HEAD(dfs);
1178
1179         GEM_BUG_ON(prio == I915_PRIORITY_INVALID);
1180
1181         if (i915_request_completed(request))
1182                 return;
1183
1184         if (prio <= READ_ONCE(request->sched.attr.priority))
1185                 return;
1186
1187         /* Need BKL in order to use the temporary link inside i915_dependency */
1188         lockdep_assert_held(&request->i915->drm.struct_mutex);
1189
1190         stack.signaler = &request->sched;
1191         list_add(&stack.dfs_link, &dfs);
1192
1193         /*
1194          * Recursively bump all dependent priorities to match the new request.
1195          *
1196          * A naive approach would be to use recursion:
1197          * static void update_priorities(struct i915_sched_node *node, prio) {
1198          *      list_for_each_entry(dep, &node->signalers_list, signal_link)
1199          *              update_priorities(dep->signal, prio)
1200          *      queue_request(node);
1201          * }
1202          * but that may have unlimited recursion depth and so runs a very
1203          * real risk of overunning the kernel stack. Instead, we build
1204          * a flat list of all dependencies starting with the current request.
1205          * As we walk the list of dependencies, we add all of its dependencies
1206          * to the end of the list (this may include an already visited
1207          * request) and continue to walk onwards onto the new dependencies. The
1208          * end result is a topological list of requests in reverse order, the
1209          * last element in the list is the request we must execute first.
1210          */
1211         list_for_each_entry(dep, &dfs, dfs_link) {
1212                 struct i915_sched_node *node = dep->signaler;
1213
1214                 /*
1215                  * Within an engine, there can be no cycle, but we may
1216                  * refer to the same dependency chain multiple times
1217                  * (redundant dependencies are not eliminated) and across
1218                  * engines.
1219                  */
1220                 list_for_each_entry(p, &node->signalers_list, signal_link) {
1221                         GEM_BUG_ON(p == dep); /* no cycles! */
1222
1223                         if (i915_sched_node_signaled(p->signaler))
1224                                 continue;
1225
1226                         GEM_BUG_ON(p->signaler->attr.priority < node->attr.priority);
1227                         if (prio > READ_ONCE(p->signaler->attr.priority))
1228                                 list_move_tail(&p->dfs_link, &dfs);
1229                 }
1230         }
1231
1232         /*
1233          * If we didn't need to bump any existing priorities, and we haven't
1234          * yet submitted this request (i.e. there is no potential race with
1235          * execlists_submit_request()), we can set our own priority and skip
1236          * acquiring the engine locks.
1237          */
1238         if (request->sched.attr.priority == I915_PRIORITY_INVALID) {
1239                 GEM_BUG_ON(!list_empty(&request->sched.link));
1240                 request->sched.attr = *attr;
1241                 if (stack.dfs_link.next == stack.dfs_link.prev)
1242                         return;
1243                 __list_del_entry(&stack.dfs_link);
1244         }
1245
1246         last = NULL;
1247         engine = request->engine;
1248         spin_lock_irq(&engine->timeline.lock);
1249
1250         /* Fifo and depth-first replacement ensure our deps execute before us */
1251         list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
1252                 struct i915_sched_node *node = dep->signaler;
1253
1254                 INIT_LIST_HEAD(&dep->dfs_link);
1255
1256                 engine = sched_lock_engine(node, engine);
1257
1258                 if (prio <= node->attr.priority)
1259                         continue;
1260
1261                 node->attr.priority = prio;
1262                 if (!list_empty(&node->link)) {
1263                         if (last != engine) {
1264                                 pl = lookup_priolist(engine, prio);
1265                                 last = engine;
1266                         }
1267                         GEM_BUG_ON(pl->priority != prio);
1268                         list_move_tail(&node->link, &pl->requests);
1269                 }
1270
1271                 if (prio > engine->execlists.queue_priority &&
1272                     i915_sw_fence_done(&sched_to_request(node)->submit)) {
1273                         /* defer submission until after all of our updates */
1274                         __update_queue(engine, prio);
1275                         tasklet_hi_schedule(&engine->execlists.tasklet);
1276                 }
1277         }
1278
1279         spin_unlock_irq(&engine->timeline.lock);
1280 }
1281
1282 static void execlists_context_destroy(struct intel_context *ce)
1283 {
1284         GEM_BUG_ON(ce->pin_count);
1285
1286         if (!ce->state)
1287                 return;
1288
1289         intel_ring_free(ce->ring);
1290
1291         GEM_BUG_ON(i915_gem_object_is_active(ce->state->obj));
1292         i915_gem_object_put(ce->state->obj);
1293 }
1294
1295 static void execlists_context_unpin(struct intel_context *ce)
1296 {
1297         intel_ring_unpin(ce->ring);
1298
1299         ce->state->obj->pin_global--;
1300         i915_gem_object_unpin_map(ce->state->obj);
1301         i915_vma_unpin(ce->state);
1302
1303         i915_gem_context_put(ce->gem_context);
1304 }
1305
1306 static int __context_pin(struct i915_gem_context *ctx, struct i915_vma *vma)
1307 {
1308         unsigned int flags;
1309         int err;
1310
1311         /*
1312          * Clear this page out of any CPU caches for coherent swap-in/out.
1313          * We only want to do this on the first bind so that we do not stall
1314          * on an active context (which by nature is already on the GPU).
1315          */
1316         if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1317                 err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1318                 if (err)
1319                         return err;
1320         }
1321
1322         flags = PIN_GLOBAL | PIN_HIGH;
1323         if (ctx->ggtt_offset_bias)
1324                 flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
1325
1326         return i915_vma_pin(vma, 0, GEN8_LR_CONTEXT_ALIGN, flags);
1327 }
1328
1329 static struct intel_context *
1330 __execlists_context_pin(struct intel_engine_cs *engine,
1331                         struct i915_gem_context *ctx,
1332                         struct intel_context *ce)
1333 {
1334         void *vaddr;
1335         int ret;
1336
1337         ret = execlists_context_deferred_alloc(ctx, engine, ce);
1338         if (ret)
1339                 goto err;
1340         GEM_BUG_ON(!ce->state);
1341
1342         ret = __context_pin(ctx, ce->state);
1343         if (ret)
1344                 goto err;
1345
1346         vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1347         if (IS_ERR(vaddr)) {
1348                 ret = PTR_ERR(vaddr);
1349                 goto unpin_vma;
1350         }
1351
1352         ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
1353         if (ret)
1354                 goto unpin_map;
1355
1356         intel_lr_context_descriptor_update(ctx, engine, ce);
1357
1358         ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1359         ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1360                 i915_ggtt_offset(ce->ring->vma);
1361         GEM_BUG_ON(!intel_ring_offset_valid(ce->ring, ce->ring->head));
1362         ce->lrc_reg_state[CTX_RING_HEAD+1] = ce->ring->head;
1363
1364         ce->state->obj->pin_global++;
1365         i915_gem_context_get(ctx);
1366         return ce;
1367
1368 unpin_map:
1369         i915_gem_object_unpin_map(ce->state->obj);
1370 unpin_vma:
1371         __i915_vma_unpin(ce->state);
1372 err:
1373         ce->pin_count = 0;
1374         return ERR_PTR(ret);
1375 }
1376
1377 static const struct intel_context_ops execlists_context_ops = {
1378         .unpin = execlists_context_unpin,
1379         .destroy = execlists_context_destroy,
1380 };
1381
1382 static struct intel_context *
1383 execlists_context_pin(struct intel_engine_cs *engine,
1384                       struct i915_gem_context *ctx)
1385 {
1386         struct intel_context *ce = to_intel_context(ctx, engine);
1387
1388         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1389
1390         if (likely(ce->pin_count++))
1391                 return ce;
1392         GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1393
1394         ce->ops = &execlists_context_ops;
1395
1396         return __execlists_context_pin(engine, ctx, ce);
1397 }
1398
1399 static int execlists_request_alloc(struct i915_request *request)
1400 {
1401         int ret;
1402
1403         GEM_BUG_ON(!request->hw_context->pin_count);
1404
1405         /* Flush enough space to reduce the likelihood of waiting after
1406          * we start building the request - in which case we will just
1407          * have to repeat work.
1408          */
1409         request->reserved_space += EXECLISTS_REQUEST_SIZE;
1410
1411         ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
1412         if (ret)
1413                 return ret;
1414
1415         /* Note that after this point, we have committed to using
1416          * this request as it is being used to both track the
1417          * state of engine initialisation and liveness of the
1418          * golden renderstate above. Think twice before you try
1419          * to cancel/unwind this request now.
1420          */
1421
1422         request->reserved_space -= EXECLISTS_REQUEST_SIZE;
1423         return 0;
1424 }
1425
1426 /*
1427  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1428  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1429  * but there is a slight complication as this is applied in WA batch where the
1430  * values are only initialized once so we cannot take register value at the
1431  * beginning and reuse it further; hence we save its value to memory, upload a
1432  * constant value with bit21 set and then we restore it back with the saved value.
1433  * To simplify the WA, a constant value is formed by using the default value
1434  * of this register. This shouldn't be a problem because we are only modifying
1435  * it for a short period and this batch in non-premptible. We can ofcourse
1436  * use additional instructions that read the actual value of the register
1437  * at that time and set our bit of interest but it makes the WA complicated.
1438  *
1439  * This WA is also required for Gen9 so extracting as a function avoids
1440  * code duplication.
1441  */
1442 static u32 *
1443 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1444 {
1445         *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1446         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1447         *batch++ = i915_ggtt_offset(engine->scratch) + 256;
1448         *batch++ = 0;
1449
1450         *batch++ = MI_LOAD_REGISTER_IMM(1);
1451         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1452         *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
1453
1454         batch = gen8_emit_pipe_control(batch,
1455                                        PIPE_CONTROL_CS_STALL |
1456                                        PIPE_CONTROL_DC_FLUSH_ENABLE,
1457                                        0);
1458
1459         *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1460         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1461         *batch++ = i915_ggtt_offset(engine->scratch) + 256;
1462         *batch++ = 0;
1463
1464         return batch;
1465 }
1466
1467 /*
1468  * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1469  * initialized at the beginning and shared across all contexts but this field
1470  * helps us to have multiple batches at different offsets and select them based
1471  * on a criteria. At the moment this batch always start at the beginning of the page
1472  * and at this point we don't have multiple wa_ctx batch buffers.
1473  *
1474  * The number of WA applied are not known at the beginning; we use this field
1475  * to return the no of DWORDS written.
1476  *
1477  * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1478  * so it adds NOOPs as padding to make it cacheline aligned.
1479  * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1480  * makes a complete batch buffer.
1481  */
1482 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1483 {
1484         /* WaDisableCtxRestoreArbitration:bdw,chv */
1485         *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1486
1487         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1488         if (IS_BROADWELL(engine->i915))
1489                 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1490
1491         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1492         /* Actual scratch location is at 128 bytes offset */
1493         batch = gen8_emit_pipe_control(batch,
1494                                        PIPE_CONTROL_FLUSH_L3 |
1495                                        PIPE_CONTROL_GLOBAL_GTT_IVB |
1496                                        PIPE_CONTROL_CS_STALL |
1497                                        PIPE_CONTROL_QW_WRITE,
1498                                        i915_ggtt_offset(engine->scratch) +
1499                                        2 * CACHELINE_BYTES);
1500
1501         *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1502
1503         /* Pad to end of cacheline */
1504         while ((unsigned long)batch % CACHELINE_BYTES)
1505                 *batch++ = MI_NOOP;
1506
1507         /*
1508          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1509          * execution depends on the length specified in terms of cache lines
1510          * in the register CTX_RCS_INDIRECT_CTX
1511          */
1512
1513         return batch;
1514 }
1515
1516 struct lri {
1517         i915_reg_t reg;
1518         u32 value;
1519 };
1520
1521 static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
1522 {
1523         GEM_BUG_ON(!count || count > 63);
1524
1525         *batch++ = MI_LOAD_REGISTER_IMM(count);
1526         do {
1527                 *batch++ = i915_mmio_reg_offset(lri->reg);
1528                 *batch++ = lri->value;
1529         } while (lri++, --count);
1530         *batch++ = MI_NOOP;
1531
1532         return batch;
1533 }
1534
1535 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1536 {
1537         static const struct lri lri[] = {
1538                 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1539                 {
1540                         COMMON_SLICE_CHICKEN2,
1541                         __MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
1542                                        0),
1543                 },
1544
1545                 /* BSpec: 11391 */
1546                 {
1547                         FF_SLICE_CHICKEN,
1548                         __MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
1549                                        FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
1550                 },
1551
1552                 /* BSpec: 11299 */
1553                 {
1554                         _3D_CHICKEN3,
1555                         __MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
1556                                        _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
1557                 }
1558         };
1559
1560         *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1561
1562         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1563         batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1564
1565         /* WaClearSlmSpaceAtContextSwitch:skl,bxt,kbl,glk,cfl */
1566         batch = gen8_emit_pipe_control(batch,
1567                                        PIPE_CONTROL_FLUSH_L3 |
1568                                        PIPE_CONTROL_GLOBAL_GTT_IVB |
1569                                        PIPE_CONTROL_CS_STALL |
1570                                        PIPE_CONTROL_QW_WRITE,
1571                                        i915_ggtt_offset(engine->scratch) +
1572                                        2 * CACHELINE_BYTES);
1573
1574         batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
1575
1576         /* WaClearSlmSpaceAtContextSwitch:kbl */
1577         /* Actual scratch location is at 128 bytes offset */
1578         if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1579                 batch = gen8_emit_pipe_control(batch,
1580                                                PIPE_CONTROL_FLUSH_L3 |
1581                                                PIPE_CONTROL_GLOBAL_GTT_IVB |
1582                                                PIPE_CONTROL_CS_STALL |
1583                                                PIPE_CONTROL_QW_WRITE,
1584                                                i915_ggtt_offset(engine->scratch)
1585                                                + 2 * CACHELINE_BYTES);
1586         }
1587
1588         /* WaMediaPoolStateCmdInWABB:bxt,glk */
1589         if (HAS_POOLED_EU(engine->i915)) {
1590                 /*
1591                  * EU pool configuration is setup along with golden context
1592                  * during context initialization. This value depends on
1593                  * device type (2x6 or 3x6) and needs to be updated based
1594                  * on which subslice is disabled especially for 2x6
1595                  * devices, however it is safe to load default
1596                  * configuration of 3x6 device instead of masking off
1597                  * corresponding bits because HW ignores bits of a disabled
1598                  * subslice and drops down to appropriate config. Please
1599                  * see render_state_setup() in i915_gem_render_state.c for
1600                  * possible configurations, to avoid duplication they are
1601                  * not shown here again.
1602                  */
1603                 *batch++ = GEN9_MEDIA_POOL_STATE;
1604                 *batch++ = GEN9_MEDIA_POOL_ENABLE;
1605                 *batch++ = 0x00777000;
1606                 *batch++ = 0;
1607                 *batch++ = 0;
1608                 *batch++ = 0;
1609         }
1610
1611         *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1612
1613         /* Pad to end of cacheline */
1614         while ((unsigned long)batch % CACHELINE_BYTES)
1615                 *batch++ = MI_NOOP;
1616
1617         return batch;
1618 }
1619
1620 static u32 *
1621 gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1622 {
1623         int i;
1624
1625         /*
1626          * WaPipeControlBefore3DStateSamplePattern: cnl
1627          *
1628          * Ensure the engine is idle prior to programming a
1629          * 3DSTATE_SAMPLE_PATTERN during a context restore.
1630          */
1631         batch = gen8_emit_pipe_control(batch,
1632                                        PIPE_CONTROL_CS_STALL,
1633                                        0);
1634         /*
1635          * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
1636          * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
1637          * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
1638          * confusing. Since gen8_emit_pipe_control() already advances the
1639          * batch by 6 dwords, we advance the other 10 here, completing a
1640          * cacheline. It's not clear if the workaround requires this padding
1641          * before other commands, or if it's just the regular padding we would
1642          * already have for the workaround bb, so leave it here for now.
1643          */
1644         for (i = 0; i < 10; i++)
1645                 *batch++ = MI_NOOP;
1646
1647         /* Pad to end of cacheline */
1648         while ((unsigned long)batch % CACHELINE_BYTES)
1649                 *batch++ = MI_NOOP;
1650
1651         return batch;
1652 }
1653
1654 #define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1655
1656 static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1657 {
1658         struct drm_i915_gem_object *obj;
1659         struct i915_vma *vma;
1660         int err;
1661
1662         obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1663         if (IS_ERR(obj))
1664                 return PTR_ERR(obj);
1665
1666         vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL);
1667         if (IS_ERR(vma)) {
1668                 err = PTR_ERR(vma);
1669                 goto err;
1670         }
1671
1672         err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1673         if (err)
1674                 goto err;
1675
1676         engine->wa_ctx.vma = vma;
1677         return 0;
1678
1679 err:
1680         i915_gem_object_put(obj);
1681         return err;
1682 }
1683
1684 static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1685 {
1686         i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1687 }
1688
1689 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1690
1691 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1692 {
1693         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1694         struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1695                                             &wa_ctx->per_ctx };
1696         wa_bb_func_t wa_bb_fn[2];
1697         struct page *page;
1698         void *batch, *batch_ptr;
1699         unsigned int i;
1700         int ret;
1701
1702         if (GEM_WARN_ON(engine->id != RCS))
1703                 return -EINVAL;
1704
1705         switch (INTEL_GEN(engine->i915)) {
1706         case 11:
1707                 return 0;
1708         case 10:
1709                 wa_bb_fn[0] = gen10_init_indirectctx_bb;
1710                 wa_bb_fn[1] = NULL;
1711                 break;
1712         case 9:
1713                 wa_bb_fn[0] = gen9_init_indirectctx_bb;
1714                 wa_bb_fn[1] = NULL;
1715                 break;
1716         case 8:
1717                 wa_bb_fn[0] = gen8_init_indirectctx_bb;
1718                 wa_bb_fn[1] = NULL;
1719                 break;
1720         default:
1721                 MISSING_CASE(INTEL_GEN(engine->i915));
1722                 return 0;
1723         }
1724
1725         ret = lrc_setup_wa_ctx(engine);
1726         if (ret) {
1727                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1728                 return ret;
1729         }
1730
1731         page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1732         batch = batch_ptr = kmap_atomic(page);
1733
1734         /*
1735          * Emit the two workaround batch buffers, recording the offset from the
1736          * start of the workaround batch buffer object for each and their
1737          * respective sizes.
1738          */
1739         for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1740                 wa_bb[i]->offset = batch_ptr - batch;
1741                 if (GEM_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
1742                                             CACHELINE_BYTES))) {
1743                         ret = -EINVAL;
1744                         break;
1745                 }
1746                 if (wa_bb_fn[i])
1747                         batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1748                 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1749         }
1750
1751         BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
1752
1753         kunmap_atomic(batch);
1754         if (ret)
1755                 lrc_destroy_wa_ctx(engine);
1756
1757         return ret;
1758 }
1759
1760 static void enable_execlists(struct intel_engine_cs *engine)
1761 {
1762         struct drm_i915_private *dev_priv = engine->i915;
1763
1764         I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1765
1766         /*
1767          * Make sure we're not enabling the new 12-deep CSB
1768          * FIFO as that requires a slightly updated handling
1769          * in the ctx switch irq. Since we're currently only
1770          * using only 2 elements of the enhanced execlists the
1771          * deeper FIFO it's not needed and it's not worth adding
1772          * more statements to the irq handler to support it.
1773          */
1774         if (INTEL_GEN(dev_priv) >= 11)
1775                 I915_WRITE(RING_MODE_GEN7(engine),
1776                            _MASKED_BIT_DISABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
1777         else
1778                 I915_WRITE(RING_MODE_GEN7(engine),
1779                            _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1780
1781         I915_WRITE(RING_MI_MODE(engine->mmio_base),
1782                    _MASKED_BIT_DISABLE(STOP_RING));
1783
1784         I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1785                    engine->status_page.ggtt_offset);
1786         POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1787 }
1788
1789 static bool unexpected_starting_state(struct intel_engine_cs *engine)
1790 {
1791         struct drm_i915_private *dev_priv = engine->i915;
1792         bool unexpected = false;
1793
1794         if (I915_READ(RING_MI_MODE(engine->mmio_base)) & STOP_RING) {
1795                 DRM_DEBUG_DRIVER("STOP_RING still set in RING_MI_MODE\n");
1796                 unexpected = true;
1797         }
1798
1799         return unexpected;
1800 }
1801
1802 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1803 {
1804         int ret;
1805
1806         ret = intel_mocs_init_engine(engine);
1807         if (ret)
1808                 return ret;
1809
1810         intel_engine_reset_breadcrumbs(engine);
1811
1812         if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) {
1813                 struct drm_printer p = drm_debug_printer(__func__);
1814
1815                 intel_engine_dump(engine, &p, NULL);
1816         }
1817
1818         enable_execlists(engine);
1819
1820         return 0;
1821 }
1822
1823 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1824 {
1825         struct drm_i915_private *dev_priv = engine->i915;
1826         int ret;
1827
1828         ret = gen8_init_common_ring(engine);
1829         if (ret)
1830                 return ret;
1831
1832         intel_whitelist_workarounds_apply(engine);
1833
1834         /* We need to disable the AsyncFlip performance optimisations in order
1835          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1836          * programmed to '1' on all products.
1837          *
1838          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1839          */
1840         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1841
1842         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1843
1844         return 0;
1845 }
1846
1847 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1848 {
1849         int ret;
1850
1851         ret = gen8_init_common_ring(engine);
1852         if (ret)
1853                 return ret;
1854
1855         intel_whitelist_workarounds_apply(engine);
1856
1857         return 0;
1858 }
1859
1860 static struct i915_request *
1861 execlists_reset_prepare(struct intel_engine_cs *engine)
1862 {
1863         struct intel_engine_execlists * const execlists = &engine->execlists;
1864         struct i915_request *request, *active;
1865         unsigned long flags;
1866
1867         GEM_TRACE("%s\n", engine->name);
1868
1869         /*
1870          * Prevent request submission to the hardware until we have
1871          * completed the reset in i915_gem_reset_finish(). If a request
1872          * is completed by one engine, it may then queue a request
1873          * to a second via its execlists->tasklet *just* as we are
1874          * calling engine->init_hw() and also writing the ELSP.
1875          * Turning off the execlists->tasklet until the reset is over
1876          * prevents the race.
1877          */
1878         __tasklet_disable_sync_once(&execlists->tasklet);
1879
1880         spin_lock_irqsave(&engine->timeline.lock, flags);
1881
1882         /*
1883          * We want to flush the pending context switches, having disabled
1884          * the tasklet above, we can assume exclusive access to the execlists.
1885          * For this allows us to catch up with an inflight preemption event,
1886          * and avoid blaming an innocent request if the stall was due to the
1887          * preemption itself.
1888          */
1889         process_csb(engine);
1890
1891         /*
1892          * The last active request can then be no later than the last request
1893          * now in ELSP[0]. So search backwards from there, so that if the GPU
1894          * has advanced beyond the last CSB update, it will be pardoned.
1895          */
1896         active = NULL;
1897         request = port_request(execlists->port);
1898         if (request) {
1899                 /*
1900                  * Prevent the breadcrumb from advancing before we decide
1901                  * which request is currently active.
1902                  */
1903                 intel_engine_stop_cs(engine);
1904
1905                 list_for_each_entry_from_reverse(request,
1906                                                  &engine->timeline.requests,
1907                                                  link) {
1908                         if (__i915_request_completed(request,
1909                                                      request->global_seqno))
1910                                 break;
1911
1912                         active = request;
1913                 }
1914         }
1915
1916         spin_unlock_irqrestore(&engine->timeline.lock, flags);
1917
1918         return active;
1919 }
1920
1921 static void execlists_reset(struct intel_engine_cs *engine,
1922                             struct i915_request *request)
1923 {
1924         struct intel_engine_execlists * const execlists = &engine->execlists;
1925         unsigned long flags;
1926         u32 *regs;
1927
1928         GEM_TRACE("%s request global=%x, current=%d\n",
1929                   engine->name, request ? request->global_seqno : 0,
1930                   intel_engine_get_seqno(engine));
1931
1932         spin_lock_irqsave(&engine->timeline.lock, flags);
1933
1934         /*
1935          * Catch up with any missed context-switch interrupts.
1936          *
1937          * Ideally we would just read the remaining CSB entries now that we
1938          * know the gpu is idle. However, the CSB registers are sometimes^W
1939          * often trashed across a GPU reset! Instead we have to rely on
1940          * guessing the missed context-switch events by looking at what
1941          * requests were completed.
1942          */
1943         execlists_cancel_port_requests(execlists);
1944
1945         /* Push back any incomplete requests for replay after the reset. */
1946         __unwind_incomplete_requests(engine);
1947
1948         /* Following the reset, we need to reload the CSB read/write pointers */
1949         reset_csb_pointers(&engine->execlists);
1950
1951         spin_unlock_irqrestore(&engine->timeline.lock, flags);
1952
1953         /*
1954          * If the request was innocent, we leave the request in the ELSP
1955          * and will try to replay it on restarting. The context image may
1956          * have been corrupted by the reset, in which case we may have
1957          * to service a new GPU hang, but more likely we can continue on
1958          * without impact.
1959          *
1960          * If the request was guilty, we presume the context is corrupt
1961          * and have to at least restore the RING register in the context
1962          * image back to the expected values to skip over the guilty request.
1963          */
1964         if (!request || request->fence.error != -EIO)
1965                 return;
1966
1967         /*
1968          * We want a simple context + ring to execute the breadcrumb update.
1969          * We cannot rely on the context being intact across the GPU hang,
1970          * so clear it and rebuild just what we need for the breadcrumb.
1971          * All pending requests for this context will be zapped, and any
1972          * future request will be after userspace has had the opportunity
1973          * to recreate its own state.
1974          */
1975         regs = request->hw_context->lrc_reg_state;
1976         if (engine->pinned_default_state) {
1977                 memcpy(regs, /* skip restoring the vanilla PPHWSP */
1978                        engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
1979                        engine->context_size - PAGE_SIZE);
1980         }
1981         execlists_init_reg_state(regs,
1982                                  request->gem_context, engine, request->ring);
1983
1984         /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1985         regs[CTX_RING_BUFFER_START + 1] = i915_ggtt_offset(request->ring->vma);
1986
1987         request->ring->head = intel_ring_wrap(request->ring, request->postfix);
1988         regs[CTX_RING_HEAD + 1] = request->ring->head;
1989
1990         intel_ring_update_space(request->ring);
1991
1992         /* Reset WaIdleLiteRestore:bdw,skl as well */
1993         unwind_wa_tail(request);
1994 }
1995
1996 static void execlists_reset_finish(struct intel_engine_cs *engine)
1997 {
1998         struct intel_engine_execlists * const execlists = &engine->execlists;
1999
2000         /* After a GPU reset, we may have requests to replay */
2001         if (!RB_EMPTY_ROOT(&execlists->queue.rb_root))
2002                 tasklet_schedule(&execlists->tasklet);
2003
2004         /*
2005          * Flush the tasklet while we still have the forcewake to be sure
2006          * that it is not allowed to sleep before we restart and reload a
2007          * context.
2008          *
2009          * As before (with execlists_reset_prepare) we rely on the caller
2010          * serialising multiple attempts to reset so that we know that we
2011          * are the only one manipulating tasklet state.
2012          */
2013         __tasklet_enable_sync_once(&execlists->tasklet);
2014
2015         GEM_TRACE("%s\n", engine->name);
2016 }
2017
2018 static int intel_logical_ring_emit_pdps(struct i915_request *rq)
2019 {
2020         struct i915_hw_ppgtt *ppgtt = rq->gem_context->ppgtt;
2021         struct intel_engine_cs *engine = rq->engine;
2022         const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
2023         u32 *cs;
2024         int i;
2025
2026         cs = intel_ring_begin(rq, num_lri_cmds * 2 + 2);
2027         if (IS_ERR(cs))
2028                 return PTR_ERR(cs);
2029
2030         *cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
2031         for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
2032                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
2033
2034                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
2035                 *cs++ = upper_32_bits(pd_daddr);
2036                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
2037                 *cs++ = lower_32_bits(pd_daddr);
2038         }
2039
2040         *cs++ = MI_NOOP;
2041         intel_ring_advance(rq, cs);
2042
2043         return 0;
2044 }
2045
2046 static int gen8_emit_bb_start(struct i915_request *rq,
2047                               u64 offset, u32 len,
2048                               const unsigned int flags)
2049 {
2050         u32 *cs;
2051         int ret;
2052
2053         /* Don't rely in hw updating PDPs, specially in lite-restore.
2054          * Ideally, we should set Force PD Restore in ctx descriptor,
2055          * but we can't. Force Restore would be a second option, but
2056          * it is unsafe in case of lite-restore (because the ctx is
2057          * not idle). PML4 is allocated during ppgtt init so this is
2058          * not needed in 48-bit.*/
2059         if (rq->gem_context->ppgtt &&
2060             (intel_engine_flag(rq->engine) & rq->gem_context->ppgtt->pd_dirty_rings) &&
2061             !i915_vm_is_48bit(&rq->gem_context->ppgtt->vm) &&
2062             !intel_vgpu_active(rq->i915)) {
2063                 ret = intel_logical_ring_emit_pdps(rq);
2064                 if (ret)
2065                         return ret;
2066
2067                 rq->gem_context->ppgtt->pd_dirty_rings &= ~intel_engine_flag(rq->engine);
2068         }
2069
2070         cs = intel_ring_begin(rq, 6);
2071         if (IS_ERR(cs))
2072                 return PTR_ERR(cs);
2073
2074         /*
2075          * WaDisableCtxRestoreArbitration:bdw,chv
2076          *
2077          * We don't need to perform MI_ARB_ENABLE as often as we do (in
2078          * particular all the gen that do not need the w/a at all!), if we
2079          * took care to make sure that on every switch into this context
2080          * (both ordinary and for preemption) that arbitrartion was enabled
2081          * we would be fine. However, there doesn't seem to be a downside to
2082          * being paranoid and making sure it is set before each batch and
2083          * every context-switch.
2084          *
2085          * Note that if we fail to enable arbitration before the request
2086          * is complete, then we do not see the context-switch interrupt and
2087          * the engine hangs (with RING_HEAD == RING_TAIL).
2088          *
2089          * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
2090          */
2091         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2092
2093         /* FIXME(BDW): Address space and security selectors. */
2094         *cs++ = MI_BATCH_BUFFER_START_GEN8 |
2095                 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
2096                 (flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
2097         *cs++ = lower_32_bits(offset);
2098         *cs++ = upper_32_bits(offset);
2099
2100         *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2101         *cs++ = MI_NOOP;
2102         intel_ring_advance(rq, cs);
2103
2104         return 0;
2105 }
2106
2107 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
2108 {
2109         struct drm_i915_private *dev_priv = engine->i915;
2110         I915_WRITE_IMR(engine,
2111                        ~(engine->irq_enable_mask | engine->irq_keep_mask));
2112         POSTING_READ_FW(RING_IMR(engine->mmio_base));
2113 }
2114
2115 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
2116 {
2117         struct drm_i915_private *dev_priv = engine->i915;
2118         I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
2119 }
2120
2121 static int gen8_emit_flush(struct i915_request *request, u32 mode)
2122 {
2123         u32 cmd, *cs;
2124
2125         cs = intel_ring_begin(request, 4);
2126         if (IS_ERR(cs))
2127                 return PTR_ERR(cs);
2128
2129         cmd = MI_FLUSH_DW + 1;
2130
2131         /* We always require a command barrier so that subsequent
2132          * commands, such as breadcrumb interrupts, are strictly ordered
2133          * wrt the contents of the write cache being flushed to memory
2134          * (and thus being coherent from the CPU).
2135          */
2136         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2137
2138         if (mode & EMIT_INVALIDATE) {
2139                 cmd |= MI_INVALIDATE_TLB;
2140                 if (request->engine->id == VCS)
2141                         cmd |= MI_INVALIDATE_BSD;
2142         }
2143
2144         *cs++ = cmd;
2145         *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
2146         *cs++ = 0; /* upper addr */
2147         *cs++ = 0; /* value */
2148         intel_ring_advance(request, cs);
2149
2150         return 0;
2151 }
2152
2153 static int gen8_emit_flush_render(struct i915_request *request,
2154                                   u32 mode)
2155 {
2156         struct intel_engine_cs *engine = request->engine;
2157         u32 scratch_addr =
2158                 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
2159         bool vf_flush_wa = false, dc_flush_wa = false;
2160         u32 *cs, flags = 0;
2161         int len;
2162
2163         flags |= PIPE_CONTROL_CS_STALL;
2164
2165         if (mode & EMIT_FLUSH) {
2166                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
2167                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
2168                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
2169                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
2170         }
2171
2172         if (mode & EMIT_INVALIDATE) {
2173                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
2174                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
2175                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
2176                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
2177                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
2178                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
2179                 flags |= PIPE_CONTROL_QW_WRITE;
2180                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
2181
2182                 /*
2183                  * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
2184                  * pipe control.
2185                  */
2186                 if (IS_GEN9(request->i915))
2187                         vf_flush_wa = true;
2188
2189                 /* WaForGAMHang:kbl */
2190                 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
2191                         dc_flush_wa = true;
2192         }
2193
2194         len = 6;
2195
2196         if (vf_flush_wa)
2197                 len += 6;
2198
2199         if (dc_flush_wa)
2200                 len += 12;
2201
2202         cs = intel_ring_begin(request, len);
2203         if (IS_ERR(cs))
2204                 return PTR_ERR(cs);
2205
2206         if (vf_flush_wa)
2207                 cs = gen8_emit_pipe_control(cs, 0, 0);
2208
2209         if (dc_flush_wa)
2210                 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
2211                                             0);
2212
2213         cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
2214
2215         if (dc_flush_wa)
2216                 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
2217
2218         intel_ring_advance(request, cs);
2219
2220         return 0;
2221 }
2222
2223 /*
2224  * Reserve space for 2 NOOPs at the end of each request to be
2225  * used as a workaround for not being allowed to do lite
2226  * restore with HEAD==TAIL (WaIdleLiteRestore).
2227  */
2228 static void gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
2229 {
2230         /* Ensure there's always at least one preemption point per-request. */
2231         *cs++ = MI_ARB_CHECK;
2232         *cs++ = MI_NOOP;
2233         request->wa_tail = intel_ring_offset(request, cs);
2234 }
2235
2236 static void gen8_emit_breadcrumb(struct i915_request *request, u32 *cs)
2237 {
2238         /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
2239         BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
2240
2241         cs = gen8_emit_ggtt_write(cs, request->global_seqno,
2242                                   intel_hws_seqno_address(request->engine));
2243         *cs++ = MI_USER_INTERRUPT;
2244         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2245         request->tail = intel_ring_offset(request, cs);
2246         assert_ring_tail_valid(request->ring, request->tail);
2247
2248         gen8_emit_wa_tail(request, cs);
2249 }
2250 static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
2251
2252 static void gen8_emit_breadcrumb_rcs(struct i915_request *request, u32 *cs)
2253 {
2254         /* We're using qword write, seqno should be aligned to 8 bytes. */
2255         BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
2256
2257         cs = gen8_emit_ggtt_write_rcs(cs, request->global_seqno,
2258                                       intel_hws_seqno_address(request->engine));
2259         *cs++ = MI_USER_INTERRUPT;
2260         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2261         request->tail = intel_ring_offset(request, cs);
2262         assert_ring_tail_valid(request->ring, request->tail);
2263
2264         gen8_emit_wa_tail(request, cs);
2265 }
2266 static const int gen8_emit_breadcrumb_rcs_sz = 8 + WA_TAIL_DWORDS;
2267
2268 static int gen8_init_rcs_context(struct i915_request *rq)
2269 {
2270         int ret;
2271
2272         ret = intel_ctx_workarounds_emit(rq);
2273         if (ret)
2274                 return ret;
2275
2276         ret = intel_rcs_context_init_mocs(rq);
2277         /*
2278          * Failing to program the MOCS is non-fatal.The system will not
2279          * run at peak performance. So generate an error and carry on.
2280          */
2281         if (ret)
2282                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
2283
2284         return i915_gem_render_state_emit(rq);
2285 }
2286
2287 /**
2288  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
2289  * @engine: Engine Command Streamer.
2290  */
2291 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
2292 {
2293         struct drm_i915_private *dev_priv;
2294
2295         /*
2296          * Tasklet cannot be active at this point due intel_mark_active/idle
2297          * so this is just for documentation.
2298          */
2299         if (WARN_ON(test_bit(TASKLET_STATE_SCHED,
2300                              &engine->execlists.tasklet.state)))
2301                 tasklet_kill(&engine->execlists.tasklet);
2302
2303         dev_priv = engine->i915;
2304
2305         if (engine->buffer) {
2306                 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
2307         }
2308
2309         if (engine->cleanup)
2310                 engine->cleanup(engine);
2311
2312         intel_engine_cleanup_common(engine);
2313
2314         lrc_destroy_wa_ctx(engine);
2315
2316         engine->i915 = NULL;
2317         dev_priv->engine[engine->id] = NULL;
2318         kfree(engine);
2319 }
2320
2321 void intel_execlists_set_default_submission(struct intel_engine_cs *engine)
2322 {
2323         engine->submit_request = execlists_submit_request;
2324         engine->cancel_requests = execlists_cancel_requests;
2325         engine->schedule = execlists_schedule;
2326         engine->execlists.tasklet.func = execlists_submission_tasklet;
2327
2328         engine->reset.prepare = execlists_reset_prepare;
2329
2330         engine->park = NULL;
2331         engine->unpark = NULL;
2332
2333         engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2334         if (engine->i915->preempt_context)
2335                 engine->flags |= I915_ENGINE_HAS_PREEMPTION;
2336
2337         engine->i915->caps.scheduler =
2338                 I915_SCHEDULER_CAP_ENABLED |
2339                 I915_SCHEDULER_CAP_PRIORITY;
2340         if (intel_engine_has_preemption(engine))
2341                 engine->i915->caps.scheduler |= I915_SCHEDULER_CAP_PREEMPTION;
2342 }
2343
2344 static void
2345 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
2346 {
2347         /* Default vfuncs which can be overriden by each engine. */
2348         engine->init_hw = gen8_init_common_ring;
2349
2350         engine->reset.prepare = execlists_reset_prepare;
2351         engine->reset.reset = execlists_reset;
2352         engine->reset.finish = execlists_reset_finish;
2353
2354         engine->context_pin = execlists_context_pin;
2355         engine->request_alloc = execlists_request_alloc;
2356
2357         engine->emit_flush = gen8_emit_flush;
2358         engine->emit_breadcrumb = gen8_emit_breadcrumb;
2359         engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
2360
2361         engine->set_default_submission = intel_execlists_set_default_submission;
2362
2363         if (INTEL_GEN(engine->i915) < 11) {
2364                 engine->irq_enable = gen8_logical_ring_enable_irq;
2365                 engine->irq_disable = gen8_logical_ring_disable_irq;
2366         } else {
2367                 /*
2368                  * TODO: On Gen11 interrupt masks need to be clear
2369                  * to allow C6 entry. Keep interrupts enabled at
2370                  * and take the hit of generating extra interrupts
2371                  * until a more refined solution exists.
2372                  */
2373         }
2374         engine->emit_bb_start = gen8_emit_bb_start;
2375 }
2376
2377 static inline void
2378 logical_ring_default_irqs(struct intel_engine_cs *engine)
2379 {
2380         unsigned int shift = 0;
2381
2382         if (INTEL_GEN(engine->i915) < 11) {
2383                 const u8 irq_shifts[] = {
2384                         [RCS]  = GEN8_RCS_IRQ_SHIFT,
2385                         [BCS]  = GEN8_BCS_IRQ_SHIFT,
2386                         [VCS]  = GEN8_VCS1_IRQ_SHIFT,
2387                         [VCS2] = GEN8_VCS2_IRQ_SHIFT,
2388                         [VECS] = GEN8_VECS_IRQ_SHIFT,
2389                 };
2390
2391                 shift = irq_shifts[engine->id];
2392         }
2393
2394         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
2395         engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2396 }
2397
2398 static void
2399 logical_ring_setup(struct intel_engine_cs *engine)
2400 {
2401         intel_engine_setup_common(engine);
2402
2403         /* Intentionally left blank. */
2404         engine->buffer = NULL;
2405
2406         tasklet_init(&engine->execlists.tasklet,
2407                      execlists_submission_tasklet, (unsigned long)engine);
2408
2409         logical_ring_default_vfuncs(engine);
2410         logical_ring_default_irqs(engine);
2411 }
2412
2413 static bool csb_force_mmio(struct drm_i915_private *i915)
2414 {
2415         /* Older GVT emulation depends upon intercepting CSB mmio */
2416         return intel_vgpu_active(i915) && !intel_vgpu_has_hwsp_emulation(i915);
2417 }
2418
2419 static int logical_ring_init(struct intel_engine_cs *engine)
2420 {
2421         struct drm_i915_private *i915 = engine->i915;
2422         struct intel_engine_execlists * const execlists = &engine->execlists;
2423         int ret;
2424
2425         ret = intel_engine_init_common(engine);
2426         if (ret)
2427                 goto error;
2428
2429         if (HAS_LOGICAL_RING_ELSQ(i915)) {
2430                 execlists->submit_reg = i915->regs +
2431                         i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(engine));
2432                 execlists->ctrl_reg = i915->regs +
2433                         i915_mmio_reg_offset(RING_EXECLIST_CONTROL(engine));
2434         } else {
2435                 execlists->submit_reg = i915->regs +
2436                         i915_mmio_reg_offset(RING_ELSP(engine));
2437         }
2438
2439         execlists->preempt_complete_status = ~0u;
2440         if (i915->preempt_context) {
2441                 struct intel_context *ce =
2442                         to_intel_context(i915->preempt_context, engine);
2443
2444                 execlists->preempt_complete_status =
2445                         upper_32_bits(ce->lrc_desc);
2446         }
2447
2448         execlists->csb_read =
2449                 i915->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
2450         if (csb_force_mmio(i915)) {
2451                 execlists->csb_status = (u32 __force *)
2452                         (i915->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
2453
2454                 execlists->csb_write = (u32 __force *)execlists->csb_read;
2455                 execlists->csb_write_reset =
2456                         _MASKED_FIELD(GEN8_CSB_WRITE_PTR_MASK,
2457                                       GEN8_CSB_ENTRIES - 1);
2458         } else {
2459                 execlists->csb_status =
2460                         &engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
2461
2462                 execlists->csb_write =
2463                         &engine->status_page.page_addr[intel_hws_csb_write_index(i915)];
2464                 execlists->csb_write_reset = GEN8_CSB_ENTRIES - 1;
2465         }
2466         reset_csb_pointers(execlists);
2467
2468         return 0;
2469
2470 error:
2471         intel_logical_ring_cleanup(engine);
2472         return ret;
2473 }
2474
2475 int logical_render_ring_init(struct intel_engine_cs *engine)
2476 {
2477         struct drm_i915_private *dev_priv = engine->i915;
2478         int ret;
2479
2480         logical_ring_setup(engine);
2481
2482         if (HAS_L3_DPF(dev_priv))
2483                 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2484
2485         /* Override some for render ring. */
2486         if (INTEL_GEN(dev_priv) >= 9)
2487                 engine->init_hw = gen9_init_render_ring;
2488         else
2489                 engine->init_hw = gen8_init_render_ring;
2490         engine->init_context = gen8_init_rcs_context;
2491         engine->emit_flush = gen8_emit_flush_render;
2492         engine->emit_breadcrumb = gen8_emit_breadcrumb_rcs;
2493         engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_rcs_sz;
2494
2495         ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2496         if (ret)
2497                 return ret;
2498
2499         ret = intel_init_workaround_bb(engine);
2500         if (ret) {
2501                 /*
2502                  * We continue even if we fail to initialize WA batch
2503                  * because we only expect rare glitches but nothing
2504                  * critical to prevent us from using GPU
2505                  */
2506                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2507                           ret);
2508         }
2509
2510         return logical_ring_init(engine);
2511 }
2512
2513 int logical_xcs_ring_init(struct intel_engine_cs *engine)
2514 {
2515         logical_ring_setup(engine);
2516
2517         return logical_ring_init(engine);
2518 }
2519
2520 static u32
2521 make_rpcs(struct drm_i915_private *dev_priv)
2522 {
2523         u32 rpcs = 0;
2524
2525         /*
2526          * No explicit RPCS request is needed to ensure full
2527          * slice/subslice/EU enablement prior to Gen9.
2528         */
2529         if (INTEL_GEN(dev_priv) < 9)
2530                 return 0;
2531
2532         /*
2533          * Starting in Gen9, render power gating can leave
2534          * slice/subslice/EU in a partially enabled state. We
2535          * must make an explicit request through RPCS for full
2536          * enablement.
2537         */
2538         if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
2539                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2540                 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
2541                         GEN8_RPCS_S_CNT_SHIFT;
2542                 rpcs |= GEN8_RPCS_ENABLE;
2543         }
2544
2545         if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
2546                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2547                 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask[0]) <<
2548                         GEN8_RPCS_SS_CNT_SHIFT;
2549                 rpcs |= GEN8_RPCS_ENABLE;
2550         }
2551
2552         if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
2553                 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2554                         GEN8_RPCS_EU_MIN_SHIFT;
2555                 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2556                         GEN8_RPCS_EU_MAX_SHIFT;
2557                 rpcs |= GEN8_RPCS_ENABLE;
2558         }
2559
2560         return rpcs;
2561 }
2562
2563 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2564 {
2565         u32 indirect_ctx_offset;
2566
2567         switch (INTEL_GEN(engine->i915)) {
2568         default:
2569                 MISSING_CASE(INTEL_GEN(engine->i915));
2570                 /* fall through */
2571         case 11:
2572                 indirect_ctx_offset =
2573                         GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2574                 break;
2575         case 10:
2576                 indirect_ctx_offset =
2577                         GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2578                 break;
2579         case 9:
2580                 indirect_ctx_offset =
2581                         GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2582                 break;
2583         case 8:
2584                 indirect_ctx_offset =
2585                         GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2586                 break;
2587         }
2588
2589         return indirect_ctx_offset;
2590 }
2591
2592 static void execlists_init_reg_state(u32 *regs,
2593                                      struct i915_gem_context *ctx,
2594                                      struct intel_engine_cs *engine,
2595                                      struct intel_ring *ring)
2596 {
2597         struct drm_i915_private *dev_priv = engine->i915;
2598         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2599         u32 base = engine->mmio_base;
2600         bool rcs = engine->class == RENDER_CLASS;
2601
2602         /* A context is actually a big batch buffer with several
2603          * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
2604          * values we are setting here are only for the first context restore:
2605          * on a subsequent save, the GPU will recreate this batchbuffer with new
2606          * values (including all the missing MI_LOAD_REGISTER_IMM commands that
2607          * we are not initializing here).
2608          */
2609         regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
2610                                  MI_LRI_FORCE_POSTED;
2611
2612         CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
2613                 _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2614                                     CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT) |
2615                 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2616                                    (HAS_RESOURCE_STREAMER(dev_priv) ?
2617                                    CTX_CTRL_RS_CTX_ENABLE : 0)));
2618         CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
2619         CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
2620         CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
2621         CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
2622                 RING_CTL_SIZE(ring->size) | RING_VALID);
2623         CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
2624         CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
2625         CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
2626         CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
2627         CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
2628         CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
2629         if (rcs) {
2630                 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2631
2632                 CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
2633                 CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
2634                         RING_INDIRECT_CTX_OFFSET(base), 0);
2635                 if (wa_ctx->indirect_ctx.size) {
2636                         u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2637
2638                         regs[CTX_RCS_INDIRECT_CTX + 1] =
2639                                 (ggtt_offset + wa_ctx->indirect_ctx.offset) |
2640                                 (wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2641
2642                         regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2643                                 intel_lr_indirect_ctx_offset(engine) << 6;
2644                 }
2645
2646                 CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
2647                 if (wa_ctx->per_ctx.size) {
2648                         u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2649
2650                         regs[CTX_BB_PER_CTX_PTR + 1] =
2651                                 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2652                 }
2653         }
2654
2655         regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2656
2657         CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2658         /* PDP values well be assigned later if needed */
2659         CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
2660         CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
2661         CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
2662         CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
2663         CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
2664         CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
2665         CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
2666         CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2667
2668         if (ppgtt && i915_vm_is_48bit(&ppgtt->vm)) {
2669                 /* 64b PPGTT (48bit canonical)
2670                  * PDP0_DESCRIPTOR contains the base address to PML4 and
2671                  * other PDP Descriptors are ignored.
2672                  */
2673                 ASSIGN_CTX_PML4(ppgtt, regs);
2674         }
2675
2676         if (rcs) {
2677                 regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2678                 CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2679                         make_rpcs(dev_priv));
2680
2681                 i915_oa_init_reg_state(engine, ctx, regs);
2682         }
2683 }
2684
2685 static int
2686 populate_lr_context(struct i915_gem_context *ctx,
2687                     struct drm_i915_gem_object *ctx_obj,
2688                     struct intel_engine_cs *engine,
2689                     struct intel_ring *ring)
2690 {
2691         void *vaddr;
2692         u32 *regs;
2693         int ret;
2694
2695         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2696         if (ret) {
2697                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2698                 return ret;
2699         }
2700
2701         vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2702         if (IS_ERR(vaddr)) {
2703                 ret = PTR_ERR(vaddr);
2704                 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2705                 return ret;
2706         }
2707         ctx_obj->mm.dirty = true;
2708
2709         if (engine->default_state) {
2710                 /*
2711                  * We only want to copy over the template context state;
2712                  * skipping over the headers reserved for GuC communication,
2713                  * leaving those as zero.
2714                  */
2715                 const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
2716                 void *defaults;
2717
2718                 defaults = i915_gem_object_pin_map(engine->default_state,
2719                                                    I915_MAP_WB);
2720                 if (IS_ERR(defaults)) {
2721                         ret = PTR_ERR(defaults);
2722                         goto err_unpin_ctx;
2723                 }
2724
2725                 memcpy(vaddr + start, defaults + start, engine->context_size);
2726                 i915_gem_object_unpin_map(engine->default_state);
2727         }
2728
2729         /* The second page of the context object contains some fields which must
2730          * be set up prior to the first execution. */
2731         regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
2732         execlists_init_reg_state(regs, ctx, engine, ring);
2733         if (!engine->default_state)
2734                 regs[CTX_CONTEXT_CONTROL + 1] |=
2735                         _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2736         if (ctx == ctx->i915->preempt_context && INTEL_GEN(engine->i915) < 11)
2737                 regs[CTX_CONTEXT_CONTROL + 1] |=
2738                         _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2739                                            CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
2740
2741 err_unpin_ctx:
2742         i915_gem_object_unpin_map(ctx_obj);
2743         return ret;
2744 }
2745
2746 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2747                                             struct intel_engine_cs *engine,
2748                                             struct intel_context *ce)
2749 {
2750         struct drm_i915_gem_object *ctx_obj;
2751         struct i915_vma *vma;
2752         uint32_t context_size;
2753         struct intel_ring *ring;
2754         struct i915_timeline *timeline;
2755         int ret;
2756
2757         if (ce->state)
2758                 return 0;
2759
2760         context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2761
2762         /*
2763          * Before the actual start of the context image, we insert a few pages
2764          * for our own use and for sharing with the GuC.
2765          */
2766         context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2767
2768         ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2769         if (IS_ERR(ctx_obj))
2770                 return PTR_ERR(ctx_obj);
2771
2772         vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.vm, NULL);
2773         if (IS_ERR(vma)) {
2774                 ret = PTR_ERR(vma);
2775                 goto error_deref_obj;
2776         }
2777
2778         timeline = i915_timeline_create(ctx->i915, ctx->name);
2779         if (IS_ERR(timeline)) {
2780                 ret = PTR_ERR(timeline);
2781                 goto error_deref_obj;
2782         }
2783
2784         ring = intel_engine_create_ring(engine, timeline, ctx->ring_size);
2785         i915_timeline_put(timeline);
2786         if (IS_ERR(ring)) {
2787                 ret = PTR_ERR(ring);
2788                 goto error_deref_obj;
2789         }
2790
2791         ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2792         if (ret) {
2793                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2794                 goto error_ring_free;
2795         }
2796
2797         ce->ring = ring;
2798         ce->state = vma;
2799
2800         return 0;
2801
2802 error_ring_free:
2803         intel_ring_free(ring);
2804 error_deref_obj:
2805         i915_gem_object_put(ctx_obj);
2806         return ret;
2807 }
2808
2809 void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2810 {
2811         struct intel_engine_cs *engine;
2812         struct i915_gem_context *ctx;
2813         enum intel_engine_id id;
2814
2815         /* Because we emit WA_TAIL_DWORDS there may be a disparity
2816          * between our bookkeeping in ce->ring->head and ce->ring->tail and
2817          * that stored in context. As we only write new commands from
2818          * ce->ring->tail onwards, everything before that is junk. If the GPU
2819          * starts reading from its RING_HEAD from the context, it may try to
2820          * execute that junk and die.
2821          *
2822          * So to avoid that we reset the context images upon resume. For
2823          * simplicity, we just zero everything out.
2824          */
2825         list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
2826                 for_each_engine(engine, dev_priv, id) {
2827                         struct intel_context *ce =
2828                                 to_intel_context(ctx, engine);
2829                         u32 *reg;
2830
2831                         if (!ce->state)
2832                                 continue;
2833
2834                         reg = i915_gem_object_pin_map(ce->state->obj,
2835                                                       I915_MAP_WB);
2836                         if (WARN_ON(IS_ERR(reg)))
2837                                 continue;
2838
2839                         reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2840                         reg[CTX_RING_HEAD+1] = 0;
2841                         reg[CTX_RING_TAIL+1] = 0;
2842
2843                         ce->state->obj->mm.dirty = true;
2844                         i915_gem_object_unpin_map(ce->state->obj);
2845
2846                         intel_ring_reset(ce->ring, 0);
2847                 }
2848         }
2849 }
2850
2851 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2852 #include "selftests/intel_lrc.c"
2853 #endif