GNU Linux-libre 4.9.288-gnu1
[releases.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_crtc_helper.h>
37 #include <drm/drm_edid.h>
38 #include "intel_drv.h"
39 #include <drm/i915_drm.h>
40 #include "i915_drv.h"
41
42 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
43
44 /* Compliance test status bits  */
45 #define INTEL_DP_RESOLUTION_SHIFT_MASK  0
46 #define INTEL_DP_RESOLUTION_PREFERRED   (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
47 #define INTEL_DP_RESOLUTION_STANDARD    (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
48 #define INTEL_DP_RESOLUTION_FAILSAFE    (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
49
50 struct dp_link_dpll {
51         int clock;
52         struct dpll dpll;
53 };
54
55 static const struct dp_link_dpll gen4_dpll[] = {
56         { 162000,
57                 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
58         { 270000,
59                 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
60 };
61
62 static const struct dp_link_dpll pch_dpll[] = {
63         { 162000,
64                 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
65         { 270000,
66                 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
67 };
68
69 static const struct dp_link_dpll vlv_dpll[] = {
70         { 162000,
71                 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
72         { 270000,
73                 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
74 };
75
76 /*
77  * CHV supports eDP 1.4 that have  more link rates.
78  * Below only provides the fixed rate but exclude variable rate.
79  */
80 static const struct dp_link_dpll chv_dpll[] = {
81         /*
82          * CHV requires to program fractional division for m2.
83          * m2 is stored in fixed point format using formula below
84          * (m2_int << 22) | m2_fraction
85          */
86         { 162000,       /* m2_int = 32, m2_fraction = 1677722 */
87                 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
88         { 270000,       /* m2_int = 27, m2_fraction = 0 */
89                 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
90         { 540000,       /* m2_int = 27, m2_fraction = 0 */
91                 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
92 };
93
94 static const int bxt_rates[] = { 162000, 216000, 243000, 270000,
95                                   324000, 432000, 540000 };
96 static const int skl_rates[] = { 162000, 216000, 270000,
97                                   324000, 432000, 540000 };
98 static const int default_rates[] = { 162000, 270000, 540000 };
99
100 /**
101  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
102  * @intel_dp: DP struct
103  *
104  * If a CPU or PCH DP output is attached to an eDP panel, this function
105  * will return true, and false otherwise.
106  */
107 static bool is_edp(struct intel_dp *intel_dp)
108 {
109         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
110
111         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
112 }
113
114 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
115 {
116         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
117
118         return intel_dig_port->base.base.dev;
119 }
120
121 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
122 {
123         return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
124 }
125
126 static void intel_dp_link_down(struct intel_dp *intel_dp);
127 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
128 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
129 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
130 static void vlv_steal_power_sequencer(struct drm_device *dev,
131                                       enum pipe pipe);
132 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
133
134 static int
135 intel_dp_max_link_bw(struct intel_dp  *intel_dp)
136 {
137         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
138
139         switch (max_link_bw) {
140         case DP_LINK_BW_1_62:
141         case DP_LINK_BW_2_7:
142         case DP_LINK_BW_5_4:
143                 break;
144         default:
145                 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
146                      max_link_bw);
147                 max_link_bw = DP_LINK_BW_1_62;
148                 break;
149         }
150         return max_link_bw;
151 }
152
153 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
154 {
155         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
156         u8 source_max, sink_max;
157
158         source_max = intel_dig_port->max_lanes;
159         sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
160
161         return min(source_max, sink_max);
162 }
163
164 /*
165  * The units on the numbers in the next two are... bizarre.  Examples will
166  * make it clearer; this one parallels an example in the eDP spec.
167  *
168  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
169  *
170  *     270000 * 1 * 8 / 10 == 216000
171  *
172  * The actual data capacity of that configuration is 2.16Gbit/s, so the
173  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
174  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
175  * 119000.  At 18bpp that's 2142000 kilobits per second.
176  *
177  * Thus the strange-looking division by 10 in intel_dp_link_required, to
178  * get the result in decakilobits instead of kilobits.
179  */
180
181 static int
182 intel_dp_link_required(int pixel_clock, int bpp)
183 {
184         return (pixel_clock * bpp + 9) / 10;
185 }
186
187 static int
188 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
189 {
190         return (max_link_clock * max_lanes * 8) / 10;
191 }
192
193 static int
194 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
195 {
196         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
197         struct intel_encoder *encoder = &intel_dig_port->base;
198         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
199         int max_dotclk = dev_priv->max_dotclk_freq;
200         int ds_max_dotclk;
201
202         int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
203
204         if (type != DP_DS_PORT_TYPE_VGA)
205                 return max_dotclk;
206
207         ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
208                                                     intel_dp->downstream_ports);
209
210         if (ds_max_dotclk != 0)
211                 max_dotclk = min(max_dotclk, ds_max_dotclk);
212
213         return max_dotclk;
214 }
215
216 static enum drm_mode_status
217 intel_dp_mode_valid(struct drm_connector *connector,
218                     struct drm_display_mode *mode)
219 {
220         struct intel_dp *intel_dp = intel_attached_dp(connector);
221         struct intel_connector *intel_connector = to_intel_connector(connector);
222         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
223         int target_clock = mode->clock;
224         int max_rate, mode_rate, max_lanes, max_link_clock;
225         int max_dotclk;
226
227         max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
228
229         if (is_edp(intel_dp) && fixed_mode) {
230                 if (mode->hdisplay > fixed_mode->hdisplay)
231                         return MODE_PANEL;
232
233                 if (mode->vdisplay > fixed_mode->vdisplay)
234                         return MODE_PANEL;
235
236                 target_clock = fixed_mode->clock;
237         }
238
239         max_link_clock = intel_dp_max_link_rate(intel_dp);
240         max_lanes = intel_dp_max_lane_count(intel_dp);
241
242         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
243         mode_rate = intel_dp_link_required(target_clock, 18);
244
245         if (mode_rate > max_rate || target_clock > max_dotclk)
246                 return MODE_CLOCK_HIGH;
247
248         if (mode->clock < 10000)
249                 return MODE_CLOCK_LOW;
250
251         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
252                 return MODE_H_ILLEGAL;
253
254         return MODE_OK;
255 }
256
257 uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
258 {
259         int     i;
260         uint32_t v = 0;
261
262         if (src_bytes > 4)
263                 src_bytes = 4;
264         for (i = 0; i < src_bytes; i++)
265                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
266         return v;
267 }
268
269 static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
270 {
271         int i;
272         if (dst_bytes > 4)
273                 dst_bytes = 4;
274         for (i = 0; i < dst_bytes; i++)
275                 dst[i] = src >> ((3-i) * 8);
276 }
277
278 static void
279 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
280                                     struct intel_dp *intel_dp);
281 static void
282 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
283                                               struct intel_dp *intel_dp,
284                                               bool force_disable_vdd);
285 static void
286 intel_dp_pps_init(struct drm_device *dev, struct intel_dp *intel_dp);
287
288 static void pps_lock(struct intel_dp *intel_dp)
289 {
290         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
291         struct intel_encoder *encoder = &intel_dig_port->base;
292         struct drm_device *dev = encoder->base.dev;
293         struct drm_i915_private *dev_priv = to_i915(dev);
294         enum intel_display_power_domain power_domain;
295
296         /*
297          * See vlv_power_sequencer_reset() why we need
298          * a power domain reference here.
299          */
300         power_domain = intel_display_port_aux_power_domain(encoder);
301         intel_display_power_get(dev_priv, power_domain);
302
303         mutex_lock(&dev_priv->pps_mutex);
304 }
305
306 static void pps_unlock(struct intel_dp *intel_dp)
307 {
308         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
309         struct intel_encoder *encoder = &intel_dig_port->base;
310         struct drm_device *dev = encoder->base.dev;
311         struct drm_i915_private *dev_priv = to_i915(dev);
312         enum intel_display_power_domain power_domain;
313
314         mutex_unlock(&dev_priv->pps_mutex);
315
316         power_domain = intel_display_port_aux_power_domain(encoder);
317         intel_display_power_put(dev_priv, power_domain);
318 }
319
320 static void
321 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
322 {
323         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
324         struct drm_device *dev = intel_dig_port->base.base.dev;
325         struct drm_i915_private *dev_priv = to_i915(dev);
326         enum pipe pipe = intel_dp->pps_pipe;
327         bool pll_enabled, release_cl_override = false;
328         enum dpio_phy phy = DPIO_PHY(pipe);
329         enum dpio_channel ch = vlv_pipe_to_channel(pipe);
330         uint32_t DP;
331
332         if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
333                  "skipping pipe %c power seqeuncer kick due to port %c being active\n",
334                  pipe_name(pipe), port_name(intel_dig_port->port)))
335                 return;
336
337         DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
338                       pipe_name(pipe), port_name(intel_dig_port->port));
339
340         /* Preserve the BIOS-computed detected bit. This is
341          * supposed to be read-only.
342          */
343         DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
344         DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
345         DP |= DP_PORT_WIDTH(1);
346         DP |= DP_LINK_TRAIN_PAT_1;
347
348         if (IS_CHERRYVIEW(dev))
349                 DP |= DP_PIPE_SELECT_CHV(pipe);
350         else if (pipe == PIPE_B)
351                 DP |= DP_PIPEB_SELECT;
352
353         pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
354
355         /*
356          * The DPLL for the pipe must be enabled for this to work.
357          * So enable temporarily it if it's not already enabled.
358          */
359         if (!pll_enabled) {
360                 release_cl_override = IS_CHERRYVIEW(dev) &&
361                         !chv_phy_powergate_ch(dev_priv, phy, ch, true);
362
363                 if (vlv_force_pll_on(dev, pipe, IS_CHERRYVIEW(dev) ?
364                                      &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
365                         DRM_ERROR("Failed to force on pll for pipe %c!\n",
366                                   pipe_name(pipe));
367                         return;
368                 }
369         }
370
371         /*
372          * Similar magic as in intel_dp_enable_port().
373          * We _must_ do this port enable + disable trick
374          * to make this power seqeuencer lock onto the port.
375          * Otherwise even VDD force bit won't work.
376          */
377         I915_WRITE(intel_dp->output_reg, DP);
378         POSTING_READ(intel_dp->output_reg);
379
380         I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
381         POSTING_READ(intel_dp->output_reg);
382
383         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
384         POSTING_READ(intel_dp->output_reg);
385
386         if (!pll_enabled) {
387                 vlv_force_pll_off(dev, pipe);
388
389                 if (release_cl_override)
390                         chv_phy_powergate_ch(dev_priv, phy, ch, false);
391         }
392 }
393
394 static enum pipe
395 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
396 {
397         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
398         struct drm_device *dev = intel_dig_port->base.base.dev;
399         struct drm_i915_private *dev_priv = to_i915(dev);
400         struct intel_encoder *encoder;
401         unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
402         enum pipe pipe;
403
404         lockdep_assert_held(&dev_priv->pps_mutex);
405
406         /* We should never land here with regular DP ports */
407         WARN_ON(!is_edp(intel_dp));
408
409         if (intel_dp->pps_pipe != INVALID_PIPE)
410                 return intel_dp->pps_pipe;
411
412         /*
413          * We don't have power sequencer currently.
414          * Pick one that's not used by other ports.
415          */
416         for_each_intel_encoder(dev, encoder) {
417                 struct intel_dp *tmp;
418
419                 if (encoder->type != INTEL_OUTPUT_EDP)
420                         continue;
421
422                 tmp = enc_to_intel_dp(&encoder->base);
423
424                 if (tmp->pps_pipe != INVALID_PIPE)
425                         pipes &= ~(1 << tmp->pps_pipe);
426         }
427
428         /*
429          * Didn't find one. This should not happen since there
430          * are two power sequencers and up to two eDP ports.
431          */
432         if (WARN_ON(pipes == 0))
433                 pipe = PIPE_A;
434         else
435                 pipe = ffs(pipes) - 1;
436
437         vlv_steal_power_sequencer(dev, pipe);
438         intel_dp->pps_pipe = pipe;
439
440         DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
441                       pipe_name(intel_dp->pps_pipe),
442                       port_name(intel_dig_port->port));
443
444         /* init power sequencer on this pipe and port */
445         intel_dp_init_panel_power_sequencer(dev, intel_dp);
446         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, true);
447
448         /*
449          * Even vdd force doesn't work until we've made
450          * the power sequencer lock in on the port.
451          */
452         vlv_power_sequencer_kick(intel_dp);
453
454         return intel_dp->pps_pipe;
455 }
456
457 static int
458 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
459 {
460         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
461         struct drm_device *dev = intel_dig_port->base.base.dev;
462         struct drm_i915_private *dev_priv = to_i915(dev);
463
464         lockdep_assert_held(&dev_priv->pps_mutex);
465
466         /* We should never land here with regular DP ports */
467         WARN_ON(!is_edp(intel_dp));
468
469         /*
470          * TODO: BXT has 2 PPS instances. The correct port->PPS instance
471          * mapping needs to be retrieved from VBT, for now just hard-code to
472          * use instance #0 always.
473          */
474         if (!intel_dp->pps_reset)
475                 return 0;
476
477         intel_dp->pps_reset = false;
478
479         /*
480          * Only the HW needs to be reprogrammed, the SW state is fixed and
481          * has been setup during connector init.
482          */
483         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, false);
484
485         return 0;
486 }
487
488 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
489                                enum pipe pipe);
490
491 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
492                                enum pipe pipe)
493 {
494         return I915_READ(PP_STATUS(pipe)) & PP_ON;
495 }
496
497 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
498                                 enum pipe pipe)
499 {
500         return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
501 }
502
503 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
504                          enum pipe pipe)
505 {
506         return true;
507 }
508
509 static enum pipe
510 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
511                      enum port port,
512                      vlv_pipe_check pipe_check)
513 {
514         enum pipe pipe;
515
516         for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
517                 u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
518                         PANEL_PORT_SELECT_MASK;
519
520                 if (port_sel != PANEL_PORT_SELECT_VLV(port))
521                         continue;
522
523                 if (!pipe_check(dev_priv, pipe))
524                         continue;
525
526                 return pipe;
527         }
528
529         return INVALID_PIPE;
530 }
531
532 static void
533 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
534 {
535         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
536         struct drm_device *dev = intel_dig_port->base.base.dev;
537         struct drm_i915_private *dev_priv = to_i915(dev);
538         enum port port = intel_dig_port->port;
539
540         lockdep_assert_held(&dev_priv->pps_mutex);
541
542         /* try to find a pipe with this port selected */
543         /* first pick one where the panel is on */
544         intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
545                                                   vlv_pipe_has_pp_on);
546         /* didn't find one? pick one where vdd is on */
547         if (intel_dp->pps_pipe == INVALID_PIPE)
548                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
549                                                           vlv_pipe_has_vdd_on);
550         /* didn't find one? pick one with just the correct port */
551         if (intel_dp->pps_pipe == INVALID_PIPE)
552                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
553                                                           vlv_pipe_any);
554
555         /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
556         if (intel_dp->pps_pipe == INVALID_PIPE) {
557                 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
558                               port_name(port));
559                 return;
560         }
561
562         DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
563                       port_name(port), pipe_name(intel_dp->pps_pipe));
564
565         intel_dp_init_panel_power_sequencer(dev, intel_dp);
566         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, false);
567 }
568
569 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
570 {
571         struct drm_device *dev = &dev_priv->drm;
572         struct intel_encoder *encoder;
573
574         if (WARN_ON(!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
575                     !IS_BROXTON(dev)))
576                 return;
577
578         /*
579          * We can't grab pps_mutex here due to deadlock with power_domain
580          * mutex when power_domain functions are called while holding pps_mutex.
581          * That also means that in order to use pps_pipe the code needs to
582          * hold both a power domain reference and pps_mutex, and the power domain
583          * reference get/put must be done while _not_ holding pps_mutex.
584          * pps_{lock,unlock}() do these steps in the correct order, so one
585          * should use them always.
586          */
587
588         for_each_intel_encoder(dev, encoder) {
589                 struct intel_dp *intel_dp;
590
591                 if (encoder->type != INTEL_OUTPUT_EDP)
592                         continue;
593
594                 intel_dp = enc_to_intel_dp(&encoder->base);
595                 if (IS_BROXTON(dev))
596                         intel_dp->pps_reset = true;
597                 else
598                         intel_dp->pps_pipe = INVALID_PIPE;
599         }
600 }
601
602 struct pps_registers {
603         i915_reg_t pp_ctrl;
604         i915_reg_t pp_stat;
605         i915_reg_t pp_on;
606         i915_reg_t pp_off;
607         i915_reg_t pp_div;
608 };
609
610 static void intel_pps_get_registers(struct drm_i915_private *dev_priv,
611                                     struct intel_dp *intel_dp,
612                                     struct pps_registers *regs)
613 {
614         int pps_idx = 0;
615
616         memset(regs, 0, sizeof(*regs));
617
618         if (IS_BROXTON(dev_priv))
619                 pps_idx = bxt_power_sequencer_idx(intel_dp);
620         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
621                 pps_idx = vlv_power_sequencer_pipe(intel_dp);
622
623         regs->pp_ctrl = PP_CONTROL(pps_idx);
624         regs->pp_stat = PP_STATUS(pps_idx);
625         regs->pp_on = PP_ON_DELAYS(pps_idx);
626         regs->pp_off = PP_OFF_DELAYS(pps_idx);
627         if (!IS_BROXTON(dev_priv))
628                 regs->pp_div = PP_DIVISOR(pps_idx);
629 }
630
631 static i915_reg_t
632 _pp_ctrl_reg(struct intel_dp *intel_dp)
633 {
634         struct pps_registers regs;
635
636         intel_pps_get_registers(to_i915(intel_dp_to_dev(intel_dp)), intel_dp,
637                                 &regs);
638
639         return regs.pp_ctrl;
640 }
641
642 static i915_reg_t
643 _pp_stat_reg(struct intel_dp *intel_dp)
644 {
645         struct pps_registers regs;
646
647         intel_pps_get_registers(to_i915(intel_dp_to_dev(intel_dp)), intel_dp,
648                                 &regs);
649
650         return regs.pp_stat;
651 }
652
653 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
654    This function only applicable when panel PM state is not to be tracked */
655 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
656                               void *unused)
657 {
658         struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
659                                                  edp_notifier);
660         struct drm_device *dev = intel_dp_to_dev(intel_dp);
661         struct drm_i915_private *dev_priv = to_i915(dev);
662
663         if (!is_edp(intel_dp) || code != SYS_RESTART)
664                 return 0;
665
666         pps_lock(intel_dp);
667
668         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
669                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
670                 i915_reg_t pp_ctrl_reg, pp_div_reg;
671                 u32 pp_div;
672
673                 pp_ctrl_reg = PP_CONTROL(pipe);
674                 pp_div_reg  = PP_DIVISOR(pipe);
675                 pp_div = I915_READ(pp_div_reg);
676                 pp_div &= PP_REFERENCE_DIVIDER_MASK;
677
678                 /* 0x1F write to PP_DIV_REG sets max cycle delay */
679                 I915_WRITE(pp_div_reg, pp_div | 0x1F);
680                 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
681                 msleep(intel_dp->panel_power_cycle_delay);
682         }
683
684         pps_unlock(intel_dp);
685
686         return 0;
687 }
688
689 static bool edp_have_panel_power(struct intel_dp *intel_dp)
690 {
691         struct drm_device *dev = intel_dp_to_dev(intel_dp);
692         struct drm_i915_private *dev_priv = to_i915(dev);
693
694         lockdep_assert_held(&dev_priv->pps_mutex);
695
696         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
697             intel_dp->pps_pipe == INVALID_PIPE)
698                 return false;
699
700         return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
701 }
702
703 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
704 {
705         struct drm_device *dev = intel_dp_to_dev(intel_dp);
706         struct drm_i915_private *dev_priv = to_i915(dev);
707
708         lockdep_assert_held(&dev_priv->pps_mutex);
709
710         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
711             intel_dp->pps_pipe == INVALID_PIPE)
712                 return false;
713
714         return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
715 }
716
717 static void
718 intel_dp_check_edp(struct intel_dp *intel_dp)
719 {
720         struct drm_device *dev = intel_dp_to_dev(intel_dp);
721         struct drm_i915_private *dev_priv = to_i915(dev);
722
723         if (!is_edp(intel_dp))
724                 return;
725
726         if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
727                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
728                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
729                               I915_READ(_pp_stat_reg(intel_dp)),
730                               I915_READ(_pp_ctrl_reg(intel_dp)));
731         }
732 }
733
734 static uint32_t
735 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
736 {
737         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
738         struct drm_device *dev = intel_dig_port->base.base.dev;
739         struct drm_i915_private *dev_priv = to_i915(dev);
740         i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
741         uint32_t status;
742         bool done;
743
744 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
745         if (has_aux_irq)
746                 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
747                                           msecs_to_jiffies_timeout(10));
748         else
749                 done = wait_for(C, 10) == 0;
750         if (!done)
751                 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
752                           has_aux_irq);
753 #undef C
754
755         return status;
756 }
757
758 static uint32_t g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
759 {
760         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
761         struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
762
763         if (index)
764                 return 0;
765
766         /*
767          * The clock divider is based off the hrawclk, and would like to run at
768          * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
769          */
770         return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
771 }
772
773 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
774 {
775         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
776         struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
777
778         if (index)
779                 return 0;
780
781         /*
782          * The clock divider is based off the cdclk or PCH rawclk, and would
783          * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
784          * divide by 2000 and use that
785          */
786         if (intel_dig_port->port == PORT_A)
787                 return DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 2000);
788         else
789                 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
790 }
791
792 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
793 {
794         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
795         struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
796
797         if (intel_dig_port->port != PORT_A && HAS_PCH_LPT_H(dev_priv)) {
798                 /* Workaround for non-ULT HSW */
799                 switch (index) {
800                 case 0: return 63;
801                 case 1: return 72;
802                 default: return 0;
803                 }
804         }
805
806         return ilk_get_aux_clock_divider(intel_dp, index);
807 }
808
809 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
810 {
811         /*
812          * SKL doesn't need us to program the AUX clock divider (Hardware will
813          * derive the clock from CDCLK automatically). We still implement the
814          * get_aux_clock_divider vfunc to plug-in into the existing code.
815          */
816         return index ? 0 : 1;
817 }
818
819 static uint32_t g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
820                                      bool has_aux_irq,
821                                      int send_bytes,
822                                      uint32_t aux_clock_divider)
823 {
824         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
825         struct drm_device *dev = intel_dig_port->base.base.dev;
826         uint32_t precharge, timeout;
827
828         if (IS_GEN6(dev))
829                 precharge = 3;
830         else
831                 precharge = 5;
832
833         if (IS_BROADWELL(dev) && intel_dig_port->port == PORT_A)
834                 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
835         else
836                 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
837
838         return DP_AUX_CH_CTL_SEND_BUSY |
839                DP_AUX_CH_CTL_DONE |
840                (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
841                DP_AUX_CH_CTL_TIME_OUT_ERROR |
842                timeout |
843                DP_AUX_CH_CTL_RECEIVE_ERROR |
844                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
845                (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
846                (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
847 }
848
849 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
850                                       bool has_aux_irq,
851                                       int send_bytes,
852                                       uint32_t unused)
853 {
854         return DP_AUX_CH_CTL_SEND_BUSY |
855                DP_AUX_CH_CTL_DONE |
856                (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
857                DP_AUX_CH_CTL_TIME_OUT_ERROR |
858                DP_AUX_CH_CTL_TIME_OUT_1600us |
859                DP_AUX_CH_CTL_RECEIVE_ERROR |
860                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
861                DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
862                DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
863 }
864
865 static int
866 intel_dp_aux_ch(struct intel_dp *intel_dp,
867                 const uint8_t *send, int send_bytes,
868                 uint8_t *recv, int recv_size)
869 {
870         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
871         struct drm_device *dev = intel_dig_port->base.base.dev;
872         struct drm_i915_private *dev_priv = to_i915(dev);
873         i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
874         uint32_t aux_clock_divider;
875         int i, ret, recv_bytes;
876         uint32_t status;
877         int try, clock = 0;
878         bool has_aux_irq = HAS_AUX_IRQ(dev);
879         bool vdd;
880
881         pps_lock(intel_dp);
882
883         /*
884          * We will be called with VDD already enabled for dpcd/edid/oui reads.
885          * In such cases we want to leave VDD enabled and it's up to upper layers
886          * to turn it off. But for eg. i2c-dev access we need to turn it on/off
887          * ourselves.
888          */
889         vdd = edp_panel_vdd_on(intel_dp);
890
891         /* dp aux is extremely sensitive to irq latency, hence request the
892          * lowest possible wakeup latency and so prevent the cpu from going into
893          * deep sleep states.
894          */
895         pm_qos_update_request(&dev_priv->pm_qos, 0);
896
897         intel_dp_check_edp(intel_dp);
898
899         /* Try to wait for any previous AUX channel activity */
900         for (try = 0; try < 3; try++) {
901                 status = I915_READ_NOTRACE(ch_ctl);
902                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
903                         break;
904                 msleep(1);
905         }
906
907         if (try == 3) {
908                 static u32 last_status = -1;
909                 const u32 status = I915_READ(ch_ctl);
910
911                 if (status != last_status) {
912                         WARN(1, "dp_aux_ch not started status 0x%08x\n",
913                              status);
914                         last_status = status;
915                 }
916
917                 ret = -EBUSY;
918                 goto out;
919         }
920
921         /* Only 5 data registers! */
922         if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
923                 ret = -E2BIG;
924                 goto out;
925         }
926
927         while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
928                 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
929                                                           has_aux_irq,
930                                                           send_bytes,
931                                                           aux_clock_divider);
932
933                 /* Must try at least 3 times according to DP spec */
934                 for (try = 0; try < 5; try++) {
935                         /* Load the send data into the aux channel data registers */
936                         for (i = 0; i < send_bytes; i += 4)
937                                 I915_WRITE(intel_dp->aux_ch_data_reg[i >> 2],
938                                            intel_dp_pack_aux(send + i,
939                                                              send_bytes - i));
940
941                         /* Send the command and wait for it to complete */
942                         I915_WRITE(ch_ctl, send_ctl);
943
944                         status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
945
946                         /* Clear done status and any errors */
947                         I915_WRITE(ch_ctl,
948                                    status |
949                                    DP_AUX_CH_CTL_DONE |
950                                    DP_AUX_CH_CTL_TIME_OUT_ERROR |
951                                    DP_AUX_CH_CTL_RECEIVE_ERROR);
952
953                         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
954                                 continue;
955
956                         /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
957                          *   400us delay required for errors and timeouts
958                          *   Timeout errors from the HW already meet this
959                          *   requirement so skip to next iteration
960                          */
961                         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
962                                 usleep_range(400, 500);
963                                 continue;
964                         }
965                         if (status & DP_AUX_CH_CTL_DONE)
966                                 goto done;
967                 }
968         }
969
970         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
971                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
972                 ret = -EBUSY;
973                 goto out;
974         }
975
976 done:
977         /* Check for timeout or receive error.
978          * Timeouts occur when the sink is not connected
979          */
980         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
981                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
982                 ret = -EIO;
983                 goto out;
984         }
985
986         /* Timeouts occur when the device isn't connected, so they're
987          * "normal" -- don't fill the kernel log with these */
988         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
989                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
990                 ret = -ETIMEDOUT;
991                 goto out;
992         }
993
994         /* Unload any bytes sent back from the other side */
995         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
996                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
997
998         /*
999          * By BSpec: "Message sizes of 0 or >20 are not allowed."
1000          * We have no idea of what happened so we return -EBUSY so
1001          * drm layer takes care for the necessary retries.
1002          */
1003         if (recv_bytes == 0 || recv_bytes > 20) {
1004                 DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
1005                               recv_bytes);
1006                 /*
1007                  * FIXME: This patch was created on top of a series that
1008                  * organize the retries at drm level. There EBUSY should
1009                  * also take care for 1ms wait before retrying.
1010                  * That aux retries re-org is still needed and after that is
1011                  * merged we remove this sleep from here.
1012                  */
1013                 usleep_range(1000, 1500);
1014                 ret = -EBUSY;
1015                 goto out;
1016         }
1017
1018         if (recv_bytes > recv_size)
1019                 recv_bytes = recv_size;
1020
1021         for (i = 0; i < recv_bytes; i += 4)
1022                 intel_dp_unpack_aux(I915_READ(intel_dp->aux_ch_data_reg[i >> 2]),
1023                                     recv + i, recv_bytes - i);
1024
1025         ret = recv_bytes;
1026 out:
1027         pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
1028
1029         if (vdd)
1030                 edp_panel_vdd_off(intel_dp, false);
1031
1032         pps_unlock(intel_dp);
1033
1034         return ret;
1035 }
1036
1037 #define BARE_ADDRESS_SIZE       3
1038 #define HEADER_SIZE             (BARE_ADDRESS_SIZE + 1)
1039 static ssize_t
1040 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1041 {
1042         struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1043         uint8_t txbuf[20], rxbuf[20];
1044         size_t txsize, rxsize;
1045         int ret;
1046
1047         txbuf[0] = (msg->request << 4) |
1048                 ((msg->address >> 16) & 0xf);
1049         txbuf[1] = (msg->address >> 8) & 0xff;
1050         txbuf[2] = msg->address & 0xff;
1051         txbuf[3] = msg->size - 1;
1052
1053         switch (msg->request & ~DP_AUX_I2C_MOT) {
1054         case DP_AUX_NATIVE_WRITE:
1055         case DP_AUX_I2C_WRITE:
1056         case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1057                 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1058                 rxsize = 2; /* 0 or 1 data bytes */
1059
1060                 if (WARN_ON(txsize > 20))
1061                         return -E2BIG;
1062
1063                 WARN_ON(!msg->buffer != !msg->size);
1064
1065                 if (msg->buffer)
1066                         memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1067
1068                 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1069                 if (ret > 0) {
1070                         msg->reply = rxbuf[0] >> 4;
1071
1072                         if (ret > 1) {
1073                                 /* Number of bytes written in a short write. */
1074                                 ret = clamp_t(int, rxbuf[1], 0, msg->size);
1075                         } else {
1076                                 /* Return payload size. */
1077                                 ret = msg->size;
1078                         }
1079                 }
1080                 break;
1081
1082         case DP_AUX_NATIVE_READ:
1083         case DP_AUX_I2C_READ:
1084                 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1085                 rxsize = msg->size + 1;
1086
1087                 if (WARN_ON(rxsize > 20))
1088                         return -E2BIG;
1089
1090                 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1091                 if (ret > 0) {
1092                         msg->reply = rxbuf[0] >> 4;
1093                         /*
1094                          * Assume happy day, and copy the data. The caller is
1095                          * expected to check msg->reply before touching it.
1096                          *
1097                          * Return payload size.
1098                          */
1099                         ret--;
1100                         memcpy(msg->buffer, rxbuf + 1, ret);
1101                 }
1102                 break;
1103
1104         default:
1105                 ret = -EINVAL;
1106                 break;
1107         }
1108
1109         return ret;
1110 }
1111
1112 static enum port intel_aux_port(struct drm_i915_private *dev_priv,
1113                                 enum port port)
1114 {
1115         const struct ddi_vbt_port_info *info =
1116                 &dev_priv->vbt.ddi_port_info[port];
1117         enum port aux_port;
1118
1119         if (!info->alternate_aux_channel) {
1120                 DRM_DEBUG_KMS("using AUX %c for port %c (platform default)\n",
1121                               port_name(port), port_name(port));
1122                 return port;
1123         }
1124
1125         switch (info->alternate_aux_channel) {
1126         case DP_AUX_A:
1127                 aux_port = PORT_A;
1128                 break;
1129         case DP_AUX_B:
1130                 aux_port = PORT_B;
1131                 break;
1132         case DP_AUX_C:
1133                 aux_port = PORT_C;
1134                 break;
1135         case DP_AUX_D:
1136                 aux_port = PORT_D;
1137                 break;
1138         default:
1139                 MISSING_CASE(info->alternate_aux_channel);
1140                 aux_port = PORT_A;
1141                 break;
1142         }
1143
1144         DRM_DEBUG_KMS("using AUX %c for port %c (VBT)\n",
1145                       port_name(aux_port), port_name(port));
1146
1147         return aux_port;
1148 }
1149
1150 static i915_reg_t g4x_aux_ctl_reg(struct drm_i915_private *dev_priv,
1151                                        enum port port)
1152 {
1153         switch (port) {
1154         case PORT_B:
1155         case PORT_C:
1156         case PORT_D:
1157                 return DP_AUX_CH_CTL(port);
1158         default:
1159                 MISSING_CASE(port);
1160                 return DP_AUX_CH_CTL(PORT_B);
1161         }
1162 }
1163
1164 static i915_reg_t g4x_aux_data_reg(struct drm_i915_private *dev_priv,
1165                                         enum port port, int index)
1166 {
1167         switch (port) {
1168         case PORT_B:
1169         case PORT_C:
1170         case PORT_D:
1171                 return DP_AUX_CH_DATA(port, index);
1172         default:
1173                 MISSING_CASE(port);
1174                 return DP_AUX_CH_DATA(PORT_B, index);
1175         }
1176 }
1177
1178 static i915_reg_t ilk_aux_ctl_reg(struct drm_i915_private *dev_priv,
1179                                        enum port port)
1180 {
1181         switch (port) {
1182         case PORT_A:
1183                 return DP_AUX_CH_CTL(port);
1184         case PORT_B:
1185         case PORT_C:
1186         case PORT_D:
1187                 return PCH_DP_AUX_CH_CTL(port);
1188         default:
1189                 MISSING_CASE(port);
1190                 return DP_AUX_CH_CTL(PORT_A);
1191         }
1192 }
1193
1194 static i915_reg_t ilk_aux_data_reg(struct drm_i915_private *dev_priv,
1195                                         enum port port, int index)
1196 {
1197         switch (port) {
1198         case PORT_A:
1199                 return DP_AUX_CH_DATA(port, index);
1200         case PORT_B:
1201         case PORT_C:
1202         case PORT_D:
1203                 return PCH_DP_AUX_CH_DATA(port, index);
1204         default:
1205                 MISSING_CASE(port);
1206                 return DP_AUX_CH_DATA(PORT_A, index);
1207         }
1208 }
1209
1210 static i915_reg_t skl_aux_ctl_reg(struct drm_i915_private *dev_priv,
1211                                        enum port port)
1212 {
1213         switch (port) {
1214         case PORT_A:
1215         case PORT_B:
1216         case PORT_C:
1217         case PORT_D:
1218                 return DP_AUX_CH_CTL(port);
1219         default:
1220                 MISSING_CASE(port);
1221                 return DP_AUX_CH_CTL(PORT_A);
1222         }
1223 }
1224
1225 static i915_reg_t skl_aux_data_reg(struct drm_i915_private *dev_priv,
1226                                         enum port port, int index)
1227 {
1228         switch (port) {
1229         case PORT_A:
1230         case PORT_B:
1231         case PORT_C:
1232         case PORT_D:
1233                 return DP_AUX_CH_DATA(port, index);
1234         default:
1235                 MISSING_CASE(port);
1236                 return DP_AUX_CH_DATA(PORT_A, index);
1237         }
1238 }
1239
1240 static i915_reg_t intel_aux_ctl_reg(struct drm_i915_private *dev_priv,
1241                                          enum port port)
1242 {
1243         if (INTEL_INFO(dev_priv)->gen >= 9)
1244                 return skl_aux_ctl_reg(dev_priv, port);
1245         else if (HAS_PCH_SPLIT(dev_priv))
1246                 return ilk_aux_ctl_reg(dev_priv, port);
1247         else
1248                 return g4x_aux_ctl_reg(dev_priv, port);
1249 }
1250
1251 static i915_reg_t intel_aux_data_reg(struct drm_i915_private *dev_priv,
1252                                           enum port port, int index)
1253 {
1254         if (INTEL_INFO(dev_priv)->gen >= 9)
1255                 return skl_aux_data_reg(dev_priv, port, index);
1256         else if (HAS_PCH_SPLIT(dev_priv))
1257                 return ilk_aux_data_reg(dev_priv, port, index);
1258         else
1259                 return g4x_aux_data_reg(dev_priv, port, index);
1260 }
1261
1262 static void intel_aux_reg_init(struct intel_dp *intel_dp)
1263 {
1264         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1265         enum port port = intel_aux_port(dev_priv,
1266                                         dp_to_dig_port(intel_dp)->port);
1267         int i;
1268
1269         intel_dp->aux_ch_ctl_reg = intel_aux_ctl_reg(dev_priv, port);
1270         for (i = 0; i < ARRAY_SIZE(intel_dp->aux_ch_data_reg); i++)
1271                 intel_dp->aux_ch_data_reg[i] = intel_aux_data_reg(dev_priv, port, i);
1272 }
1273
1274 static void
1275 intel_dp_aux_fini(struct intel_dp *intel_dp)
1276 {
1277         kfree(intel_dp->aux.name);
1278 }
1279
1280 static void
1281 intel_dp_aux_init(struct intel_dp *intel_dp)
1282 {
1283         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1284         enum port port = intel_dig_port->port;
1285
1286         intel_aux_reg_init(intel_dp);
1287         drm_dp_aux_init(&intel_dp->aux);
1288
1289         /* Failure to allocate our preferred name is not critical */
1290         intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c", port_name(port));
1291         intel_dp->aux.transfer = intel_dp_aux_transfer;
1292 }
1293
1294 static int
1295 intel_dp_sink_rates(struct intel_dp *intel_dp, const int **sink_rates)
1296 {
1297         if (intel_dp->num_sink_rates) {
1298                 *sink_rates = intel_dp->sink_rates;
1299                 return intel_dp->num_sink_rates;
1300         }
1301
1302         *sink_rates = default_rates;
1303
1304         return (intel_dp_max_link_bw(intel_dp) >> 3) + 1;
1305 }
1306
1307 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1308 {
1309         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1310         struct drm_device *dev = dig_port->base.base.dev;
1311
1312         /* WaDisableHBR2:skl */
1313         if (IS_SKL_REVID(dev, 0, SKL_REVID_B0))
1314                 return false;
1315
1316         if ((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) || IS_BROADWELL(dev) ||
1317             (INTEL_INFO(dev)->gen >= 9))
1318                 return true;
1319         else
1320                 return false;
1321 }
1322
1323 static int
1324 intel_dp_source_rates(struct intel_dp *intel_dp, const int **source_rates)
1325 {
1326         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1327         struct drm_device *dev = dig_port->base.base.dev;
1328         int size;
1329
1330         if (IS_BROXTON(dev)) {
1331                 *source_rates = bxt_rates;
1332                 size = ARRAY_SIZE(bxt_rates);
1333         } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
1334                 *source_rates = skl_rates;
1335                 size = ARRAY_SIZE(skl_rates);
1336         } else {
1337                 *source_rates = default_rates;
1338                 size = ARRAY_SIZE(default_rates);
1339         }
1340
1341         /* This depends on the fact that 5.4 is last value in the array */
1342         if (!intel_dp_source_supports_hbr2(intel_dp))
1343                 size--;
1344
1345         return size;
1346 }
1347
1348 static void
1349 intel_dp_set_clock(struct intel_encoder *encoder,
1350                    struct intel_crtc_state *pipe_config)
1351 {
1352         struct drm_device *dev = encoder->base.dev;
1353         const struct dp_link_dpll *divisor = NULL;
1354         int i, count = 0;
1355
1356         if (IS_G4X(dev)) {
1357                 divisor = gen4_dpll;
1358                 count = ARRAY_SIZE(gen4_dpll);
1359         } else if (HAS_PCH_SPLIT(dev)) {
1360                 divisor = pch_dpll;
1361                 count = ARRAY_SIZE(pch_dpll);
1362         } else if (IS_CHERRYVIEW(dev)) {
1363                 divisor = chv_dpll;
1364                 count = ARRAY_SIZE(chv_dpll);
1365         } else if (IS_VALLEYVIEW(dev)) {
1366                 divisor = vlv_dpll;
1367                 count = ARRAY_SIZE(vlv_dpll);
1368         }
1369
1370         if (divisor && count) {
1371                 for (i = 0; i < count; i++) {
1372                         if (pipe_config->port_clock == divisor[i].clock) {
1373                                 pipe_config->dpll = divisor[i].dpll;
1374                                 pipe_config->clock_set = true;
1375                                 break;
1376                         }
1377                 }
1378         }
1379 }
1380
1381 static int intersect_rates(const int *source_rates, int source_len,
1382                            const int *sink_rates, int sink_len,
1383                            int *common_rates)
1384 {
1385         int i = 0, j = 0, k = 0;
1386
1387         while (i < source_len && j < sink_len) {
1388                 if (source_rates[i] == sink_rates[j]) {
1389                         if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
1390                                 return k;
1391                         common_rates[k] = source_rates[i];
1392                         ++k;
1393                         ++i;
1394                         ++j;
1395                 } else if (source_rates[i] < sink_rates[j]) {
1396                         ++i;
1397                 } else {
1398                         ++j;
1399                 }
1400         }
1401         return k;
1402 }
1403
1404 static int intel_dp_common_rates(struct intel_dp *intel_dp,
1405                                  int *common_rates)
1406 {
1407         const int *source_rates, *sink_rates;
1408         int source_len, sink_len;
1409
1410         sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1411         source_len = intel_dp_source_rates(intel_dp, &source_rates);
1412
1413         return intersect_rates(source_rates, source_len,
1414                                sink_rates, sink_len,
1415                                common_rates);
1416 }
1417
1418 static void snprintf_int_array(char *str, size_t len,
1419                                const int *array, int nelem)
1420 {
1421         int i;
1422
1423         str[0] = '\0';
1424
1425         for (i = 0; i < nelem; i++) {
1426                 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1427                 if (r >= len)
1428                         return;
1429                 str += r;
1430                 len -= r;
1431         }
1432 }
1433
1434 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1435 {
1436         const int *source_rates, *sink_rates;
1437         int source_len, sink_len, common_len;
1438         int common_rates[DP_MAX_SUPPORTED_RATES];
1439         char str[128]; /* FIXME: too big for stack? */
1440
1441         if ((drm_debug & DRM_UT_KMS) == 0)
1442                 return;
1443
1444         source_len = intel_dp_source_rates(intel_dp, &source_rates);
1445         snprintf_int_array(str, sizeof(str), source_rates, source_len);
1446         DRM_DEBUG_KMS("source rates: %s\n", str);
1447
1448         sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1449         snprintf_int_array(str, sizeof(str), sink_rates, sink_len);
1450         DRM_DEBUG_KMS("sink rates: %s\n", str);
1451
1452         common_len = intel_dp_common_rates(intel_dp, common_rates);
1453         snprintf_int_array(str, sizeof(str), common_rates, common_len);
1454         DRM_DEBUG_KMS("common rates: %s\n", str);
1455 }
1456
1457 static void intel_dp_print_hw_revision(struct intel_dp *intel_dp)
1458 {
1459         uint8_t rev;
1460         int len;
1461
1462         if ((drm_debug & DRM_UT_KMS) == 0)
1463                 return;
1464
1465         if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1466               DP_DWN_STRM_PORT_PRESENT))
1467                 return;
1468
1469         len = drm_dp_dpcd_read(&intel_dp->aux, DP_BRANCH_HW_REV, &rev, 1);
1470         if (len < 0)
1471                 return;
1472
1473         DRM_DEBUG_KMS("sink hw revision: %d.%d\n", (rev & 0xf0) >> 4, rev & 0xf);
1474 }
1475
1476 static void intel_dp_print_sw_revision(struct intel_dp *intel_dp)
1477 {
1478         uint8_t rev[2];
1479         int len;
1480
1481         if ((drm_debug & DRM_UT_KMS) == 0)
1482                 return;
1483
1484         if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1485               DP_DWN_STRM_PORT_PRESENT))
1486                 return;
1487
1488         len = drm_dp_dpcd_read(&intel_dp->aux, DP_BRANCH_SW_REV, &rev, 2);
1489         if (len < 0)
1490                 return;
1491
1492         DRM_DEBUG_KMS("sink sw revision: %d.%d\n", rev[0], rev[1]);
1493 }
1494
1495 static int rate_to_index(int find, const int *rates)
1496 {
1497         int i = 0;
1498
1499         for (i = 0; i < DP_MAX_SUPPORTED_RATES; ++i)
1500                 if (find == rates[i])
1501                         break;
1502
1503         return i;
1504 }
1505
1506 int
1507 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1508 {
1509         int rates[DP_MAX_SUPPORTED_RATES] = {};
1510         int len;
1511
1512         len = intel_dp_common_rates(intel_dp, rates);
1513         if (WARN_ON(len <= 0))
1514                 return 162000;
1515
1516         return rates[len - 1];
1517 }
1518
1519 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1520 {
1521         return rate_to_index(rate, intel_dp->sink_rates);
1522 }
1523
1524 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1525                            uint8_t *link_bw, uint8_t *rate_select)
1526 {
1527         if (intel_dp->num_sink_rates) {
1528                 *link_bw = 0;
1529                 *rate_select =
1530                         intel_dp_rate_select(intel_dp, port_clock);
1531         } else {
1532                 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1533                 *rate_select = 0;
1534         }
1535 }
1536
1537 static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
1538                                 struct intel_crtc_state *pipe_config)
1539 {
1540         int bpp, bpc;
1541
1542         bpp = pipe_config->pipe_bpp;
1543         bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);
1544
1545         if (bpc > 0)
1546                 bpp = min(bpp, 3*bpc);
1547
1548         return bpp;
1549 }
1550
1551 bool
1552 intel_dp_compute_config(struct intel_encoder *encoder,
1553                         struct intel_crtc_state *pipe_config,
1554                         struct drm_connector_state *conn_state)
1555 {
1556         struct drm_device *dev = encoder->base.dev;
1557         struct drm_i915_private *dev_priv = to_i915(dev);
1558         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1559         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1560         enum port port = dp_to_dig_port(intel_dp)->port;
1561         struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
1562         struct intel_connector *intel_connector = intel_dp->attached_connector;
1563         int lane_count, clock;
1564         int min_lane_count = 1;
1565         int max_lane_count = intel_dp_max_lane_count(intel_dp);
1566         /* Conveniently, the link BW constants become indices with a shift...*/
1567         int min_clock = 0;
1568         int max_clock;
1569         int bpp, mode_rate;
1570         int link_avail, link_clock;
1571         int common_rates[DP_MAX_SUPPORTED_RATES] = {};
1572         int common_len;
1573         uint8_t link_bw, rate_select;
1574
1575         common_len = intel_dp_common_rates(intel_dp, common_rates);
1576
1577         /* No common link rates between source and sink */
1578         WARN_ON(common_len <= 0);
1579
1580         max_clock = common_len - 1;
1581
1582         if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
1583                 pipe_config->has_pch_encoder = true;
1584
1585         pipe_config->has_drrs = false;
1586         pipe_config->has_audio = intel_dp->has_audio && port != PORT_A;
1587
1588         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1589                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1590                                        adjusted_mode);
1591
1592                 if (INTEL_INFO(dev)->gen >= 9) {
1593                         int ret;
1594                         ret = skl_update_scaler_crtc(pipe_config);
1595                         if (ret)
1596                                 return ret;
1597                 }
1598
1599                 if (HAS_GMCH_DISPLAY(dev))
1600                         intel_gmch_panel_fitting(intel_crtc, pipe_config,
1601                                                  intel_connector->panel.fitting_mode);
1602                 else
1603                         intel_pch_panel_fitting(intel_crtc, pipe_config,
1604                                                 intel_connector->panel.fitting_mode);
1605         }
1606
1607         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1608                 return false;
1609
1610         DRM_DEBUG_KMS("DP link computation with max lane count %i "
1611                       "max bw %d pixel clock %iKHz\n",
1612                       max_lane_count, common_rates[max_clock],
1613                       adjusted_mode->crtc_clock);
1614
1615         /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1616          * bpc in between. */
1617         bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
1618         if (is_edp(intel_dp)) {
1619
1620                 /* Get bpp from vbt only for panels that dont have bpp in edid */
1621                 if (intel_connector->base.display_info.bpc == 0 &&
1622                         (dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp)) {
1623                         DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1624                                       dev_priv->vbt.edp.bpp);
1625                         bpp = dev_priv->vbt.edp.bpp;
1626                 }
1627
1628                 /*
1629                  * Use the maximum clock and number of lanes the eDP panel
1630                  * advertizes being capable of. The panels are generally
1631                  * designed to support only a single clock and lane
1632                  * configuration, and typically these values correspond to the
1633                  * native resolution of the panel.
1634                  */
1635                 min_lane_count = max_lane_count;
1636                 min_clock = max_clock;
1637         }
1638
1639         for (; bpp >= 6*3; bpp -= 2*3) {
1640                 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1641                                                    bpp);
1642
1643                 for (clock = min_clock; clock <= max_clock; clock++) {
1644                         for (lane_count = min_lane_count;
1645                                 lane_count <= max_lane_count;
1646                                 lane_count <<= 1) {
1647
1648                                 link_clock = common_rates[clock];
1649                                 link_avail = intel_dp_max_data_rate(link_clock,
1650                                                                     lane_count);
1651
1652                                 if (mode_rate <= link_avail) {
1653                                         goto found;
1654                                 }
1655                         }
1656                 }
1657         }
1658
1659         return false;
1660
1661 found:
1662         if (intel_dp->color_range_auto) {
1663                 /*
1664                  * See:
1665                  * CEA-861-E - 5.1 Default Encoding Parameters
1666                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1667                  */
1668                 pipe_config->limited_color_range =
1669                         bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1;
1670         } else {
1671                 pipe_config->limited_color_range =
1672                         intel_dp->limited_color_range;
1673         }
1674
1675         pipe_config->lane_count = lane_count;
1676
1677         pipe_config->pipe_bpp = bpp;
1678         pipe_config->port_clock = common_rates[clock];
1679
1680         intel_dp_compute_rate(intel_dp, pipe_config->port_clock,
1681                               &link_bw, &rate_select);
1682
1683         DRM_DEBUG_KMS("DP link bw %02x rate select %02x lane count %d clock %d bpp %d\n",
1684                       link_bw, rate_select, pipe_config->lane_count,
1685                       pipe_config->port_clock, bpp);
1686         DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1687                       mode_rate, link_avail);
1688
1689         intel_link_compute_m_n(bpp, lane_count,
1690                                adjusted_mode->crtc_clock,
1691                                pipe_config->port_clock,
1692                                &pipe_config->dp_m_n);
1693
1694         if (intel_connector->panel.downclock_mode != NULL &&
1695                 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1696                         pipe_config->has_drrs = true;
1697                         intel_link_compute_m_n(bpp, lane_count,
1698                                 intel_connector->panel.downclock_mode->clock,
1699                                 pipe_config->port_clock,
1700                                 &pipe_config->dp_m2_n2);
1701         }
1702
1703         /*
1704          * DPLL0 VCO may need to be adjusted to get the correct
1705          * clock for eDP. This will affect cdclk as well.
1706          */
1707         if (is_edp(intel_dp) &&
1708             (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))) {
1709                 int vco;
1710
1711                 switch (pipe_config->port_clock / 2) {
1712                 case 108000:
1713                 case 216000:
1714                         vco = 8640000;
1715                         break;
1716                 default:
1717                         vco = 8100000;
1718                         break;
1719                 }
1720
1721                 to_intel_atomic_state(pipe_config->base.state)->cdclk_pll_vco = vco;
1722         }
1723
1724         if (!HAS_DDI(dev))
1725                 intel_dp_set_clock(encoder, pipe_config);
1726
1727         return true;
1728 }
1729
1730 void intel_dp_set_link_params(struct intel_dp *intel_dp,
1731                               int link_rate, uint8_t lane_count,
1732                               bool link_mst)
1733 {
1734         intel_dp->link_rate = link_rate;
1735         intel_dp->lane_count = lane_count;
1736         intel_dp->link_mst = link_mst;
1737 }
1738
1739 static void intel_dp_prepare(struct intel_encoder *encoder,
1740                              struct intel_crtc_state *pipe_config)
1741 {
1742         struct drm_device *dev = encoder->base.dev;
1743         struct drm_i915_private *dev_priv = to_i915(dev);
1744         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1745         enum port port = dp_to_dig_port(intel_dp)->port;
1746         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1747         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1748
1749         intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
1750                                  pipe_config->lane_count,
1751                                  intel_crtc_has_type(pipe_config,
1752                                                      INTEL_OUTPUT_DP_MST));
1753
1754         /*
1755          * There are four kinds of DP registers:
1756          *
1757          *      IBX PCH
1758          *      SNB CPU
1759          *      IVB CPU
1760          *      CPT PCH
1761          *
1762          * IBX PCH and CPU are the same for almost everything,
1763          * except that the CPU DP PLL is configured in this
1764          * register
1765          *
1766          * CPT PCH is quite different, having many bits moved
1767          * to the TRANS_DP_CTL register instead. That
1768          * configuration happens (oddly) in ironlake_pch_enable
1769          */
1770
1771         /* Preserve the BIOS-computed detected bit. This is
1772          * supposed to be read-only.
1773          */
1774         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1775
1776         /* Handle DP bits in common between all three register formats */
1777         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1778         intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
1779
1780         /* Split out the IBX/CPU vs CPT settings */
1781
1782         if (IS_GEN7(dev) && port == PORT_A) {
1783                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1784                         intel_dp->DP |= DP_SYNC_HS_HIGH;
1785                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1786                         intel_dp->DP |= DP_SYNC_VS_HIGH;
1787                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1788
1789                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1790                         intel_dp->DP |= DP_ENHANCED_FRAMING;
1791
1792                 intel_dp->DP |= crtc->pipe << 29;
1793         } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
1794                 u32 trans_dp;
1795
1796                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1797
1798                 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1799                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1800                         trans_dp |= TRANS_DP_ENH_FRAMING;
1801                 else
1802                         trans_dp &= ~TRANS_DP_ENH_FRAMING;
1803                 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
1804         } else {
1805                 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
1806                     !IS_CHERRYVIEW(dev) && pipe_config->limited_color_range)
1807                         intel_dp->DP |= DP_COLOR_RANGE_16_235;
1808
1809                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1810                         intel_dp->DP |= DP_SYNC_HS_HIGH;
1811                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1812                         intel_dp->DP |= DP_SYNC_VS_HIGH;
1813                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1814
1815                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1816                         intel_dp->DP |= DP_ENHANCED_FRAMING;
1817
1818                 if (IS_CHERRYVIEW(dev))
1819                         intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1820                 else if (crtc->pipe == PIPE_B)
1821                         intel_dp->DP |= DP_PIPEB_SELECT;
1822         }
1823 }
1824
1825 #define IDLE_ON_MASK            (PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1826 #define IDLE_ON_VALUE           (PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
1827
1828 #define IDLE_OFF_MASK           (PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
1829 #define IDLE_OFF_VALUE          (0     | PP_SEQUENCE_NONE | 0                     | 0)
1830
1831 #define IDLE_CYCLE_MASK         (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1832 #define IDLE_CYCLE_VALUE        (0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1833
1834 static void intel_pps_verify_state(struct drm_i915_private *dev_priv,
1835                                    struct intel_dp *intel_dp);
1836
1837 static void wait_panel_status(struct intel_dp *intel_dp,
1838                                        u32 mask,
1839                                        u32 value)
1840 {
1841         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1842         struct drm_i915_private *dev_priv = to_i915(dev);
1843         i915_reg_t pp_stat_reg, pp_ctrl_reg;
1844
1845         lockdep_assert_held(&dev_priv->pps_mutex);
1846
1847         intel_pps_verify_state(dev_priv, intel_dp);
1848
1849         pp_stat_reg = _pp_stat_reg(intel_dp);
1850         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1851
1852         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1853                         mask, value,
1854                         I915_READ(pp_stat_reg),
1855                         I915_READ(pp_ctrl_reg));
1856
1857         if (intel_wait_for_register(dev_priv,
1858                                     pp_stat_reg, mask, value,
1859                                     5000))
1860                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1861                                 I915_READ(pp_stat_reg),
1862                                 I915_READ(pp_ctrl_reg));
1863
1864         DRM_DEBUG_KMS("Wait complete\n");
1865 }
1866
1867 static void wait_panel_on(struct intel_dp *intel_dp)
1868 {
1869         DRM_DEBUG_KMS("Wait for panel power on\n");
1870         wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1871 }
1872
1873 static void wait_panel_off(struct intel_dp *intel_dp)
1874 {
1875         DRM_DEBUG_KMS("Wait for panel power off time\n");
1876         wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1877 }
1878
1879 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1880 {
1881         ktime_t panel_power_on_time;
1882         s64 panel_power_off_duration;
1883
1884         DRM_DEBUG_KMS("Wait for panel power cycle\n");
1885
1886         /* take the difference of currrent time and panel power off time
1887          * and then make panel wait for t11_t12 if needed. */
1888         panel_power_on_time = ktime_get_boottime();
1889         panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
1890
1891         /* When we disable the VDD override bit last we have to do the manual
1892          * wait. */
1893         if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
1894                 wait_remaining_ms_from_jiffies(jiffies,
1895                                        intel_dp->panel_power_cycle_delay - panel_power_off_duration);
1896
1897         wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1898 }
1899
1900 static void wait_backlight_on(struct intel_dp *intel_dp)
1901 {
1902         wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1903                                        intel_dp->backlight_on_delay);
1904 }
1905
1906 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1907 {
1908         wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1909                                        intel_dp->backlight_off_delay);
1910 }
1911
1912 /* Read the current pp_control value, unlocking the register if it
1913  * is locked
1914  */
1915
1916 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1917 {
1918         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1919         struct drm_i915_private *dev_priv = to_i915(dev);
1920         u32 control;
1921
1922         lockdep_assert_held(&dev_priv->pps_mutex);
1923
1924         control = I915_READ(_pp_ctrl_reg(intel_dp));
1925         if (WARN_ON(!HAS_DDI(dev_priv) &&
1926                     (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
1927                 control &= ~PANEL_UNLOCK_MASK;
1928                 control |= PANEL_UNLOCK_REGS;
1929         }
1930         return control;
1931 }
1932
1933 /*
1934  * Must be paired with edp_panel_vdd_off().
1935  * Must hold pps_mutex around the whole on/off sequence.
1936  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1937  */
1938 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1939 {
1940         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1941         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1942         struct intel_encoder *intel_encoder = &intel_dig_port->base;
1943         struct drm_i915_private *dev_priv = to_i915(dev);
1944         enum intel_display_power_domain power_domain;
1945         u32 pp;
1946         i915_reg_t pp_stat_reg, pp_ctrl_reg;
1947         bool need_to_disable = !intel_dp->want_panel_vdd;
1948
1949         lockdep_assert_held(&dev_priv->pps_mutex);
1950
1951         if (!is_edp(intel_dp))
1952                 return false;
1953
1954         cancel_delayed_work(&intel_dp->panel_vdd_work);
1955         intel_dp->want_panel_vdd = true;
1956
1957         if (edp_have_panel_vdd(intel_dp))
1958                 return need_to_disable;
1959
1960         power_domain = intel_display_port_aux_power_domain(intel_encoder);
1961         intel_display_power_get(dev_priv, power_domain);
1962
1963         DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
1964                       port_name(intel_dig_port->port));
1965
1966         if (!edp_have_panel_power(intel_dp))
1967                 wait_panel_power_cycle(intel_dp);
1968
1969         pp = ironlake_get_pp_control(intel_dp);
1970         pp |= EDP_FORCE_VDD;
1971
1972         pp_stat_reg = _pp_stat_reg(intel_dp);
1973         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1974
1975         I915_WRITE(pp_ctrl_reg, pp);
1976         POSTING_READ(pp_ctrl_reg);
1977         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1978                         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1979         /*
1980          * If the panel wasn't on, delay before accessing aux channel
1981          */
1982         if (!edp_have_panel_power(intel_dp)) {
1983                 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
1984                               port_name(intel_dig_port->port));
1985                 msleep(intel_dp->panel_power_up_delay);
1986         }
1987
1988         return need_to_disable;
1989 }
1990
1991 /*
1992  * Must be paired with intel_edp_panel_vdd_off() or
1993  * intel_edp_panel_off().
1994  * Nested calls to these functions are not allowed since
1995  * we drop the lock. Caller must use some higher level
1996  * locking to prevent nested calls from other threads.
1997  */
1998 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1999 {
2000         bool vdd;
2001
2002         if (!is_edp(intel_dp))
2003                 return;
2004
2005         pps_lock(intel_dp);
2006         vdd = edp_panel_vdd_on(intel_dp);
2007         pps_unlock(intel_dp);
2008
2009         I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
2010              port_name(dp_to_dig_port(intel_dp)->port));
2011 }
2012
2013 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2014 {
2015         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2016         struct drm_i915_private *dev_priv = to_i915(dev);
2017         struct intel_digital_port *intel_dig_port =
2018                 dp_to_dig_port(intel_dp);
2019         struct intel_encoder *intel_encoder = &intel_dig_port->base;
2020         enum intel_display_power_domain power_domain;
2021         u32 pp;
2022         i915_reg_t pp_stat_reg, pp_ctrl_reg;
2023
2024         lockdep_assert_held(&dev_priv->pps_mutex);
2025
2026         WARN_ON(intel_dp->want_panel_vdd);
2027
2028         if (!edp_have_panel_vdd(intel_dp))
2029                 return;
2030
2031         DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
2032                       port_name(intel_dig_port->port));
2033
2034         pp = ironlake_get_pp_control(intel_dp);
2035         pp &= ~EDP_FORCE_VDD;
2036
2037         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2038         pp_stat_reg = _pp_stat_reg(intel_dp);
2039
2040         I915_WRITE(pp_ctrl_reg, pp);
2041         POSTING_READ(pp_ctrl_reg);
2042
2043         /* Make sure sequencer is idle before allowing subsequent activity */
2044         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2045         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2046
2047         if ((pp & PANEL_POWER_ON) == 0)
2048                 intel_dp->panel_power_off_time = ktime_get_boottime();
2049
2050         power_domain = intel_display_port_aux_power_domain(intel_encoder);
2051         intel_display_power_put(dev_priv, power_domain);
2052 }
2053
2054 static void edp_panel_vdd_work(struct work_struct *__work)
2055 {
2056         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
2057                                                  struct intel_dp, panel_vdd_work);
2058
2059         pps_lock(intel_dp);
2060         if (!intel_dp->want_panel_vdd)
2061                 edp_panel_vdd_off_sync(intel_dp);
2062         pps_unlock(intel_dp);
2063 }
2064
2065 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
2066 {
2067         unsigned long delay;
2068
2069         /*
2070          * Queue the timer to fire a long time from now (relative to the power
2071          * down delay) to keep the panel power up across a sequence of
2072          * operations.
2073          */
2074         delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
2075         schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
2076 }
2077
2078 /*
2079  * Must be paired with edp_panel_vdd_on().
2080  * Must hold pps_mutex around the whole on/off sequence.
2081  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2082  */
2083 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2084 {
2085         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2086
2087         lockdep_assert_held(&dev_priv->pps_mutex);
2088
2089         if (!is_edp(intel_dp))
2090                 return;
2091
2092         I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
2093              port_name(dp_to_dig_port(intel_dp)->port));
2094
2095         intel_dp->want_panel_vdd = false;
2096
2097         if (sync)
2098                 edp_panel_vdd_off_sync(intel_dp);
2099         else
2100                 edp_panel_vdd_schedule_off(intel_dp);
2101 }
2102
2103 static void edp_panel_on(struct intel_dp *intel_dp)
2104 {
2105         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2106         struct drm_i915_private *dev_priv = to_i915(dev);
2107         u32 pp;
2108         i915_reg_t pp_ctrl_reg;
2109
2110         lockdep_assert_held(&dev_priv->pps_mutex);
2111
2112         if (!is_edp(intel_dp))
2113                 return;
2114
2115         DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
2116                       port_name(dp_to_dig_port(intel_dp)->port));
2117
2118         if (WARN(edp_have_panel_power(intel_dp),
2119                  "eDP port %c panel power already on\n",
2120                  port_name(dp_to_dig_port(intel_dp)->port)))
2121                 return;
2122
2123         wait_panel_power_cycle(intel_dp);
2124
2125         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2126         pp = ironlake_get_pp_control(intel_dp);
2127         if (IS_GEN5(dev)) {
2128                 /* ILK workaround: disable reset around power sequence */
2129                 pp &= ~PANEL_POWER_RESET;
2130                 I915_WRITE(pp_ctrl_reg, pp);
2131                 POSTING_READ(pp_ctrl_reg);
2132         }
2133
2134         pp |= PANEL_POWER_ON;
2135         if (!IS_GEN5(dev))
2136                 pp |= PANEL_POWER_RESET;
2137
2138         I915_WRITE(pp_ctrl_reg, pp);
2139         POSTING_READ(pp_ctrl_reg);
2140
2141         wait_panel_on(intel_dp);
2142         intel_dp->last_power_on = jiffies;
2143
2144         if (IS_GEN5(dev)) {
2145                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2146                 I915_WRITE(pp_ctrl_reg, pp);
2147                 POSTING_READ(pp_ctrl_reg);
2148         }
2149 }
2150
2151 void intel_edp_panel_on(struct intel_dp *intel_dp)
2152 {
2153         if (!is_edp(intel_dp))
2154                 return;
2155
2156         pps_lock(intel_dp);
2157         edp_panel_on(intel_dp);
2158         pps_unlock(intel_dp);
2159 }
2160
2161
2162 static void edp_panel_off(struct intel_dp *intel_dp)
2163 {
2164         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2165         struct intel_encoder *intel_encoder = &intel_dig_port->base;
2166         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2167         struct drm_i915_private *dev_priv = to_i915(dev);
2168         enum intel_display_power_domain power_domain;
2169         u32 pp;
2170         i915_reg_t pp_ctrl_reg;
2171
2172         lockdep_assert_held(&dev_priv->pps_mutex);
2173
2174         if (!is_edp(intel_dp))
2175                 return;
2176
2177         DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2178                       port_name(dp_to_dig_port(intel_dp)->port));
2179
2180         WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2181              port_name(dp_to_dig_port(intel_dp)->port));
2182
2183         pp = ironlake_get_pp_control(intel_dp);
2184         /* We need to switch off panel power _and_ force vdd, for otherwise some
2185          * panels get very unhappy and cease to work. */
2186         pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2187                 EDP_BLC_ENABLE);
2188
2189         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2190
2191         intel_dp->want_panel_vdd = false;
2192
2193         I915_WRITE(pp_ctrl_reg, pp);
2194         POSTING_READ(pp_ctrl_reg);
2195
2196         wait_panel_off(intel_dp);
2197         intel_dp->panel_power_off_time = ktime_get_boottime();
2198
2199         /* We got a reference when we enabled the VDD. */
2200         power_domain = intel_display_port_aux_power_domain(intel_encoder);
2201         intel_display_power_put(dev_priv, power_domain);
2202 }
2203
2204 void intel_edp_panel_off(struct intel_dp *intel_dp)
2205 {
2206         if (!is_edp(intel_dp))
2207                 return;
2208
2209         pps_lock(intel_dp);
2210         edp_panel_off(intel_dp);
2211         pps_unlock(intel_dp);
2212 }
2213
2214 /* Enable backlight in the panel power control. */
2215 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2216 {
2217         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2218         struct drm_device *dev = intel_dig_port->base.base.dev;
2219         struct drm_i915_private *dev_priv = to_i915(dev);
2220         u32 pp;
2221         i915_reg_t pp_ctrl_reg;
2222
2223         /*
2224          * If we enable the backlight right away following a panel power
2225          * on, we may see slight flicker as the panel syncs with the eDP
2226          * link.  So delay a bit to make sure the image is solid before
2227          * allowing it to appear.
2228          */
2229         wait_backlight_on(intel_dp);
2230
2231         pps_lock(intel_dp);
2232
2233         pp = ironlake_get_pp_control(intel_dp);
2234         pp |= EDP_BLC_ENABLE;
2235
2236         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2237
2238         I915_WRITE(pp_ctrl_reg, pp);
2239         POSTING_READ(pp_ctrl_reg);
2240
2241         pps_unlock(intel_dp);
2242 }
2243
2244 /* Enable backlight PWM and backlight PP control. */
2245 void intel_edp_backlight_on(struct intel_dp *intel_dp)
2246 {
2247         if (!is_edp(intel_dp))
2248                 return;
2249
2250         DRM_DEBUG_KMS("\n");
2251
2252         intel_panel_enable_backlight(intel_dp->attached_connector);
2253         _intel_edp_backlight_on(intel_dp);
2254 }
2255
2256 /* Disable backlight in the panel power control. */
2257 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2258 {
2259         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2260         struct drm_i915_private *dev_priv = to_i915(dev);
2261         u32 pp;
2262         i915_reg_t pp_ctrl_reg;
2263
2264         if (!is_edp(intel_dp))
2265                 return;
2266
2267         pps_lock(intel_dp);
2268
2269         pp = ironlake_get_pp_control(intel_dp);
2270         pp &= ~EDP_BLC_ENABLE;
2271
2272         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2273
2274         I915_WRITE(pp_ctrl_reg, pp);
2275         POSTING_READ(pp_ctrl_reg);
2276
2277         pps_unlock(intel_dp);
2278
2279         intel_dp->last_backlight_off = jiffies;
2280         edp_wait_backlight_off(intel_dp);
2281 }
2282
2283 /* Disable backlight PP control and backlight PWM. */
2284 void intel_edp_backlight_off(struct intel_dp *intel_dp)
2285 {
2286         if (!is_edp(intel_dp))
2287                 return;
2288
2289         DRM_DEBUG_KMS("\n");
2290
2291         _intel_edp_backlight_off(intel_dp);
2292         intel_panel_disable_backlight(intel_dp->attached_connector);
2293 }
2294
2295 /*
2296  * Hook for controlling the panel power control backlight through the bl_power
2297  * sysfs attribute. Take care to handle multiple calls.
2298  */
2299 static void intel_edp_backlight_power(struct intel_connector *connector,
2300                                       bool enable)
2301 {
2302         struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2303         bool is_enabled;
2304
2305         pps_lock(intel_dp);
2306         is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2307         pps_unlock(intel_dp);
2308
2309         if (is_enabled == enable)
2310                 return;
2311
2312         DRM_DEBUG_KMS("panel power control backlight %s\n",
2313                       enable ? "enable" : "disable");
2314
2315         if (enable)
2316                 _intel_edp_backlight_on(intel_dp);
2317         else
2318                 _intel_edp_backlight_off(intel_dp);
2319 }
2320
2321 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
2322 {
2323         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2324         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2325         bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
2326
2327         I915_STATE_WARN(cur_state != state,
2328                         "DP port %c state assertion failure (expected %s, current %s)\n",
2329                         port_name(dig_port->port),
2330                         onoff(state), onoff(cur_state));
2331 }
2332 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
2333
2334 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
2335 {
2336         bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
2337
2338         I915_STATE_WARN(cur_state != state,
2339                         "eDP PLL state assertion failure (expected %s, current %s)\n",
2340                         onoff(state), onoff(cur_state));
2341 }
2342 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
2343 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
2344
2345 static void ironlake_edp_pll_on(struct intel_dp *intel_dp,
2346                                 struct intel_crtc_state *pipe_config)
2347 {
2348         struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2349         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2350
2351         assert_pipe_disabled(dev_priv, crtc->pipe);
2352         assert_dp_port_disabled(intel_dp);
2353         assert_edp_pll_disabled(dev_priv);
2354
2355         DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2356                       pipe_config->port_clock);
2357
2358         intel_dp->DP &= ~DP_PLL_FREQ_MASK;
2359
2360         if (pipe_config->port_clock == 162000)
2361                 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
2362         else
2363                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
2364
2365         I915_WRITE(DP_A, intel_dp->DP);
2366         POSTING_READ(DP_A);
2367         udelay(500);
2368
2369         /*
2370          * [DevILK] Work around required when enabling DP PLL
2371          * while a pipe is enabled going to FDI:
2372          * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
2373          * 2. Program DP PLL enable
2374          */
2375         if (IS_GEN5(dev_priv))
2376                 intel_wait_for_vblank_if_active(&dev_priv->drm, !crtc->pipe);
2377
2378         intel_dp->DP |= DP_PLL_ENABLE;
2379
2380         I915_WRITE(DP_A, intel_dp->DP);
2381         POSTING_READ(DP_A);
2382         udelay(200);
2383 }
2384
2385 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2386 {
2387         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2388         struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
2389         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2390
2391         assert_pipe_disabled(dev_priv, crtc->pipe);
2392         assert_dp_port_disabled(intel_dp);
2393         assert_edp_pll_enabled(dev_priv);
2394
2395         DRM_DEBUG_KMS("disabling eDP PLL\n");
2396
2397         intel_dp->DP &= ~DP_PLL_ENABLE;
2398
2399         I915_WRITE(DP_A, intel_dp->DP);
2400         POSTING_READ(DP_A);
2401         udelay(200);
2402 }
2403
2404 /* If the sink supports it, try to set the power state appropriately */
2405 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2406 {
2407         int ret, i;
2408
2409         /* Should have a valid DPCD by this point */
2410         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2411                 return;
2412
2413         if (mode != DRM_MODE_DPMS_ON) {
2414                 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2415                                          DP_SET_POWER_D3);
2416         } else {
2417                 /*
2418                  * When turning on, we need to retry for 1ms to give the sink
2419                  * time to wake up.
2420                  */
2421                 for (i = 0; i < 3; i++) {
2422                         ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2423                                                  DP_SET_POWER_D0);
2424                         if (ret == 1)
2425                                 break;
2426                         msleep(1);
2427                 }
2428         }
2429
2430         if (ret != 1)
2431                 DRM_DEBUG_KMS("failed to %s sink power state\n",
2432                               mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2433 }
2434
2435 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
2436                                   enum pipe *pipe)
2437 {
2438         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2439         enum port port = dp_to_dig_port(intel_dp)->port;
2440         struct drm_device *dev = encoder->base.dev;
2441         struct drm_i915_private *dev_priv = to_i915(dev);
2442         enum intel_display_power_domain power_domain;
2443         u32 tmp;
2444         bool ret;
2445
2446         power_domain = intel_display_port_power_domain(encoder);
2447         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2448                 return false;
2449
2450         ret = false;
2451
2452         tmp = I915_READ(intel_dp->output_reg);
2453
2454         if (!(tmp & DP_PORT_EN))
2455                 goto out;
2456
2457         if (IS_GEN7(dev) && port == PORT_A) {
2458                 *pipe = PORT_TO_PIPE_CPT(tmp);
2459         } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
2460                 enum pipe p;
2461
2462                 for_each_pipe(dev_priv, p) {
2463                         u32 trans_dp = I915_READ(TRANS_DP_CTL(p));
2464                         if (TRANS_DP_PIPE_TO_PORT(trans_dp) == port) {
2465                                 *pipe = p;
2466                                 ret = true;
2467
2468                                 goto out;
2469                         }
2470                 }
2471
2472                 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
2473                               i915_mmio_reg_offset(intel_dp->output_reg));
2474         } else if (IS_CHERRYVIEW(dev)) {
2475                 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
2476         } else {
2477                 *pipe = PORT_TO_PIPE(tmp);
2478         }
2479
2480         ret = true;
2481
2482 out:
2483         intel_display_power_put(dev_priv, power_domain);
2484
2485         return ret;
2486 }
2487
2488 static void intel_dp_get_config(struct intel_encoder *encoder,
2489                                 struct intel_crtc_state *pipe_config)
2490 {
2491         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2492         u32 tmp, flags = 0;
2493         struct drm_device *dev = encoder->base.dev;
2494         struct drm_i915_private *dev_priv = to_i915(dev);
2495         enum port port = dp_to_dig_port(intel_dp)->port;
2496         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2497
2498         tmp = I915_READ(intel_dp->output_reg);
2499
2500         pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2501
2502         if (HAS_PCH_CPT(dev) && port != PORT_A) {
2503                 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2504
2505                 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2506                         flags |= DRM_MODE_FLAG_PHSYNC;
2507                 else
2508                         flags |= DRM_MODE_FLAG_NHSYNC;
2509
2510                 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2511                         flags |= DRM_MODE_FLAG_PVSYNC;
2512                 else
2513                         flags |= DRM_MODE_FLAG_NVSYNC;
2514         } else {
2515                 if (tmp & DP_SYNC_HS_HIGH)
2516                         flags |= DRM_MODE_FLAG_PHSYNC;
2517                 else
2518                         flags |= DRM_MODE_FLAG_NHSYNC;
2519
2520                 if (tmp & DP_SYNC_VS_HIGH)
2521                         flags |= DRM_MODE_FLAG_PVSYNC;
2522                 else
2523                         flags |= DRM_MODE_FLAG_NVSYNC;
2524         }
2525
2526         pipe_config->base.adjusted_mode.flags |= flags;
2527
2528         if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
2529             !IS_CHERRYVIEW(dev) && tmp & DP_COLOR_RANGE_16_235)
2530                 pipe_config->limited_color_range = true;
2531
2532         pipe_config->lane_count =
2533                 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
2534
2535         intel_dp_get_m_n(crtc, pipe_config);
2536
2537         if (port == PORT_A) {
2538                 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
2539                         pipe_config->port_clock = 162000;
2540                 else
2541                         pipe_config->port_clock = 270000;
2542         }
2543
2544         pipe_config->base.adjusted_mode.crtc_clock =
2545                 intel_dotclock_calculate(pipe_config->port_clock,
2546                                          &pipe_config->dp_m_n);
2547
2548         if (is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
2549             pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
2550                 /*
2551                  * This is a big fat ugly hack.
2552                  *
2553                  * Some machines in UEFI boot mode provide us a VBT that has 18
2554                  * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2555                  * unknown we fail to light up. Yet the same BIOS boots up with
2556                  * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2557                  * max, not what it tells us to use.
2558                  *
2559                  * Note: This will still be broken if the eDP panel is not lit
2560                  * up by the BIOS, and thus we can't get the mode at module
2561                  * load.
2562                  */
2563                 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2564                               pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
2565                 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
2566         }
2567 }
2568
2569 static void intel_disable_dp(struct intel_encoder *encoder,
2570                              struct intel_crtc_state *old_crtc_state,
2571                              struct drm_connector_state *old_conn_state)
2572 {
2573         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2574         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2575
2576         if (old_crtc_state->has_audio)
2577                 intel_audio_codec_disable(encoder);
2578
2579         if (HAS_PSR(dev_priv) && !HAS_DDI(dev_priv))
2580                 intel_psr_disable(intel_dp);
2581
2582         /* Make sure the panel is off before trying to change the mode. But also
2583          * ensure that we have vdd while we switch off the panel. */
2584         intel_edp_panel_vdd_on(intel_dp);
2585         intel_edp_backlight_off(intel_dp);
2586         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2587         intel_edp_panel_off(intel_dp);
2588
2589         /* disable the port before the pipe on g4x */
2590         if (INTEL_GEN(dev_priv) < 5)
2591                 intel_dp_link_down(intel_dp);
2592 }
2593
2594 static void ilk_post_disable_dp(struct intel_encoder *encoder,
2595                                 struct intel_crtc_state *old_crtc_state,
2596                                 struct drm_connector_state *old_conn_state)
2597 {
2598         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2599         enum port port = dp_to_dig_port(intel_dp)->port;
2600
2601         intel_dp_link_down(intel_dp);
2602
2603         /* Only ilk+ has port A */
2604         if (port == PORT_A)
2605                 ironlake_edp_pll_off(intel_dp);
2606 }
2607
2608 static void vlv_post_disable_dp(struct intel_encoder *encoder,
2609                                 struct intel_crtc_state *old_crtc_state,
2610                                 struct drm_connector_state *old_conn_state)
2611 {
2612         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2613
2614         intel_dp_link_down(intel_dp);
2615 }
2616
2617 static void chv_post_disable_dp(struct intel_encoder *encoder,
2618                                 struct intel_crtc_state *old_crtc_state,
2619                                 struct drm_connector_state *old_conn_state)
2620 {
2621         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2622         struct drm_device *dev = encoder->base.dev;
2623         struct drm_i915_private *dev_priv = to_i915(dev);
2624
2625         intel_dp_link_down(intel_dp);
2626
2627         mutex_lock(&dev_priv->sb_lock);
2628
2629         /* Assert data lane reset */
2630         chv_data_lane_soft_reset(encoder, true);
2631
2632         mutex_unlock(&dev_priv->sb_lock);
2633 }
2634
2635 static void
2636 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2637                          uint32_t *DP,
2638                          uint8_t dp_train_pat)
2639 {
2640         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2641         struct drm_device *dev = intel_dig_port->base.base.dev;
2642         struct drm_i915_private *dev_priv = to_i915(dev);
2643         enum port port = intel_dig_port->port;
2644
2645         if (dp_train_pat & DP_TRAINING_PATTERN_MASK)
2646                 DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
2647                               dp_train_pat & DP_TRAINING_PATTERN_MASK);
2648
2649         if (HAS_DDI(dev)) {
2650                 uint32_t temp = I915_READ(DP_TP_CTL(port));
2651
2652                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2653                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2654                 else
2655                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2656
2657                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2658                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2659                 case DP_TRAINING_PATTERN_DISABLE:
2660                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2661
2662                         break;
2663                 case DP_TRAINING_PATTERN_1:
2664                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2665                         break;
2666                 case DP_TRAINING_PATTERN_2:
2667                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2668                         break;
2669                 case DP_TRAINING_PATTERN_3:
2670                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2671                         break;
2672                 }
2673                 I915_WRITE(DP_TP_CTL(port), temp);
2674
2675         } else if ((IS_GEN7(dev) && port == PORT_A) ||
2676                    (HAS_PCH_CPT(dev) && port != PORT_A)) {
2677                 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2678
2679                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2680                 case DP_TRAINING_PATTERN_DISABLE:
2681                         *DP |= DP_LINK_TRAIN_OFF_CPT;
2682                         break;
2683                 case DP_TRAINING_PATTERN_1:
2684                         *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2685                         break;
2686                 case DP_TRAINING_PATTERN_2:
2687                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2688                         break;
2689                 case DP_TRAINING_PATTERN_3:
2690                         DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
2691                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2692                         break;
2693                 }
2694
2695         } else {
2696                 if (IS_CHERRYVIEW(dev))
2697                         *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2698                 else
2699                         *DP &= ~DP_LINK_TRAIN_MASK;
2700
2701                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2702                 case DP_TRAINING_PATTERN_DISABLE:
2703                         *DP |= DP_LINK_TRAIN_OFF;
2704                         break;
2705                 case DP_TRAINING_PATTERN_1:
2706                         *DP |= DP_LINK_TRAIN_PAT_1;
2707                         break;
2708                 case DP_TRAINING_PATTERN_2:
2709                         *DP |= DP_LINK_TRAIN_PAT_2;
2710                         break;
2711                 case DP_TRAINING_PATTERN_3:
2712                         if (IS_CHERRYVIEW(dev)) {
2713                                 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2714                         } else {
2715                                 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
2716                                 *DP |= DP_LINK_TRAIN_PAT_2;
2717                         }
2718                         break;
2719                 }
2720         }
2721 }
2722
2723 static void intel_dp_enable_port(struct intel_dp *intel_dp,
2724                                  struct intel_crtc_state *old_crtc_state)
2725 {
2726         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2727         struct drm_i915_private *dev_priv = to_i915(dev);
2728
2729         /* enable with pattern 1 (as per spec) */
2730
2731         intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
2732
2733         /*
2734          * Magic for VLV/CHV. We _must_ first set up the register
2735          * without actually enabling the port, and then do another
2736          * write to enable the port. Otherwise link training will
2737          * fail when the power sequencer is freshly used for this port.
2738          */
2739         intel_dp->DP |= DP_PORT_EN;
2740         if (old_crtc_state->has_audio)
2741                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
2742
2743         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2744         POSTING_READ(intel_dp->output_reg);
2745 }
2746
2747 static void intel_enable_dp(struct intel_encoder *encoder,
2748                             struct intel_crtc_state *pipe_config)
2749 {
2750         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2751         struct drm_device *dev = encoder->base.dev;
2752         struct drm_i915_private *dev_priv = to_i915(dev);
2753         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2754         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2755         enum pipe pipe = crtc->pipe;
2756
2757         if (WARN_ON(dp_reg & DP_PORT_EN))
2758                 return;
2759
2760         pps_lock(intel_dp);
2761
2762         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
2763                 vlv_init_panel_power_sequencer(intel_dp);
2764
2765         intel_dp_enable_port(intel_dp, pipe_config);
2766
2767         edp_panel_vdd_on(intel_dp);
2768         edp_panel_on(intel_dp);
2769         edp_panel_vdd_off(intel_dp, true);
2770
2771         pps_unlock(intel_dp);
2772
2773         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
2774                 unsigned int lane_mask = 0x0;
2775
2776                 if (IS_CHERRYVIEW(dev))
2777                         lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
2778
2779                 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
2780                                     lane_mask);
2781         }
2782
2783         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2784         intel_dp_start_link_train(intel_dp);
2785         intel_dp_stop_link_train(intel_dp);
2786
2787         if (pipe_config->has_audio) {
2788                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2789                                  pipe_name(pipe));
2790                 intel_audio_codec_enable(encoder);
2791         }
2792 }
2793
2794 static void g4x_enable_dp(struct intel_encoder *encoder,
2795                           struct intel_crtc_state *pipe_config,
2796                           struct drm_connector_state *conn_state)
2797 {
2798         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2799
2800         intel_enable_dp(encoder, pipe_config);
2801         intel_edp_backlight_on(intel_dp);
2802 }
2803
2804 static void vlv_enable_dp(struct intel_encoder *encoder,
2805                           struct intel_crtc_state *pipe_config,
2806                           struct drm_connector_state *conn_state)
2807 {
2808         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2809
2810         intel_edp_backlight_on(intel_dp);
2811         intel_psr_enable(intel_dp);
2812 }
2813
2814 static void g4x_pre_enable_dp(struct intel_encoder *encoder,
2815                               struct intel_crtc_state *pipe_config,
2816                               struct drm_connector_state *conn_state)
2817 {
2818         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2819         enum port port = dp_to_dig_port(intel_dp)->port;
2820
2821         intel_dp_prepare(encoder, pipe_config);
2822
2823         /* Only ilk+ has port A */
2824         if (port == PORT_A)
2825                 ironlake_edp_pll_on(intel_dp, pipe_config);
2826 }
2827
2828 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
2829 {
2830         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2831         struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
2832         enum pipe pipe = intel_dp->pps_pipe;
2833         i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
2834
2835         if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
2836                 return;
2837
2838         edp_panel_vdd_off_sync(intel_dp);
2839
2840         /*
2841          * VLV seems to get confused when multiple power seqeuencers
2842          * have the same port selected (even if only one has power/vdd
2843          * enabled). The failure manifests as vlv_wait_port_ready() failing
2844          * CHV on the other hand doesn't seem to mind having the same port
2845          * selected in multiple power seqeuencers, but let's clear the
2846          * port select always when logically disconnecting a power sequencer
2847          * from a port.
2848          */
2849         DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
2850                       pipe_name(pipe), port_name(intel_dig_port->port));
2851         I915_WRITE(pp_on_reg, 0);
2852         POSTING_READ(pp_on_reg);
2853
2854         intel_dp->pps_pipe = INVALID_PIPE;
2855 }
2856
2857 static void vlv_steal_power_sequencer(struct drm_device *dev,
2858                                       enum pipe pipe)
2859 {
2860         struct drm_i915_private *dev_priv = to_i915(dev);
2861         struct intel_encoder *encoder;
2862
2863         lockdep_assert_held(&dev_priv->pps_mutex);
2864
2865         for_each_intel_encoder(dev, encoder) {
2866                 struct intel_dp *intel_dp;
2867                 enum port port;
2868
2869                 if (encoder->type != INTEL_OUTPUT_EDP)
2870                         continue;
2871
2872                 intel_dp = enc_to_intel_dp(&encoder->base);
2873                 port = dp_to_dig_port(intel_dp)->port;
2874
2875                 if (intel_dp->pps_pipe != pipe)
2876                         continue;
2877
2878                 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2879                               pipe_name(pipe), port_name(port));
2880
2881                 WARN(encoder->base.crtc,
2882                      "stealing pipe %c power sequencer from active eDP port %c\n",
2883                      pipe_name(pipe), port_name(port));
2884
2885                 /* make sure vdd is off before we steal it */
2886                 vlv_detach_power_sequencer(intel_dp);
2887         }
2888 }
2889
2890 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2891 {
2892         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2893         struct intel_encoder *encoder = &intel_dig_port->base;
2894         struct drm_device *dev = encoder->base.dev;
2895         struct drm_i915_private *dev_priv = to_i915(dev);
2896         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2897
2898         lockdep_assert_held(&dev_priv->pps_mutex);
2899
2900         if (!is_edp(intel_dp))
2901                 return;
2902
2903         if (intel_dp->pps_pipe == crtc->pipe)
2904                 return;
2905
2906         /*
2907          * If another power sequencer was being used on this
2908          * port previously make sure to turn off vdd there while
2909          * we still have control of it.
2910          */
2911         if (intel_dp->pps_pipe != INVALID_PIPE)
2912                 vlv_detach_power_sequencer(intel_dp);
2913
2914         /*
2915          * We may be stealing the power
2916          * sequencer from another port.
2917          */
2918         vlv_steal_power_sequencer(dev, crtc->pipe);
2919
2920         /* now it's all ours */
2921         intel_dp->pps_pipe = crtc->pipe;
2922
2923         DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2924                       pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2925
2926         /* init power sequencer on this pipe and port */
2927         intel_dp_init_panel_power_sequencer(dev, intel_dp);
2928         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, true);
2929 }
2930
2931 static void vlv_pre_enable_dp(struct intel_encoder *encoder,
2932                               struct intel_crtc_state *pipe_config,
2933                               struct drm_connector_state *conn_state)
2934 {
2935         vlv_phy_pre_encoder_enable(encoder);
2936
2937         intel_enable_dp(encoder, pipe_config);
2938 }
2939
2940 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
2941                                   struct intel_crtc_state *pipe_config,
2942                                   struct drm_connector_state *conn_state)
2943 {
2944         intel_dp_prepare(encoder, pipe_config);
2945
2946         vlv_phy_pre_pll_enable(encoder);
2947 }
2948
2949 static void chv_pre_enable_dp(struct intel_encoder *encoder,
2950                               struct intel_crtc_state *pipe_config,
2951                               struct drm_connector_state *conn_state)
2952 {
2953         chv_phy_pre_encoder_enable(encoder);
2954
2955         intel_enable_dp(encoder, pipe_config);
2956
2957         /* Second common lane will stay alive on its own now */
2958         chv_phy_release_cl2_override(encoder);
2959 }
2960
2961 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
2962                                   struct intel_crtc_state *pipe_config,
2963                                   struct drm_connector_state *conn_state)
2964 {
2965         intel_dp_prepare(encoder, pipe_config);
2966
2967         chv_phy_pre_pll_enable(encoder);
2968 }
2969
2970 static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
2971                                     struct intel_crtc_state *pipe_config,
2972                                     struct drm_connector_state *conn_state)
2973 {
2974         chv_phy_post_pll_disable(encoder);
2975 }
2976
2977 /*
2978  * Fetch AUX CH registers 0x202 - 0x207 which contain
2979  * link status information
2980  */
2981 bool
2982 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2983 {
2984         return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
2985                                 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2986 }
2987
2988 /* These are source-specific values. */
2989 uint8_t
2990 intel_dp_voltage_max(struct intel_dp *intel_dp)
2991 {
2992         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2993         struct drm_i915_private *dev_priv = to_i915(dev);
2994         enum port port = dp_to_dig_port(intel_dp)->port;
2995
2996         if (IS_BROXTON(dev))
2997                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2998         else if (INTEL_INFO(dev)->gen >= 9) {
2999                 if (dev_priv->vbt.edp.low_vswing && port == PORT_A)
3000                         return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3001                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3002         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
3003                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3004         else if (IS_GEN7(dev) && port == PORT_A)
3005                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3006         else if (HAS_PCH_CPT(dev) && port != PORT_A)
3007                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3008         else
3009                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3010 }
3011
3012 uint8_t
3013 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
3014 {
3015         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3016         enum port port = dp_to_dig_port(intel_dp)->port;
3017
3018         if (INTEL_INFO(dev)->gen >= 9) {
3019                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3020                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3021                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
3022                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3023                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3024                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3025                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3026                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3027                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3028                 default:
3029                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3030                 }
3031         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3032                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3033                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3034                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
3035                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3036                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3037                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3038                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3039                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3040                 default:
3041                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3042                 }
3043         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
3044                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3045                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3046                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
3047                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3048                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3049                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3050                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3051                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3052                 default:
3053                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3054                 }
3055         } else if (IS_GEN7(dev) && port == PORT_A) {
3056                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3057                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3058                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3059                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3060                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3061                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3062                 default:
3063                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3064                 }
3065         } else {
3066                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3067                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3068                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3069                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3070                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3071                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3072                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3073                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3074                 default:
3075                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3076                 }
3077         }
3078 }
3079
3080 static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
3081 {
3082         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3083         unsigned long demph_reg_value, preemph_reg_value,
3084                 uniqtranscale_reg_value;
3085         uint8_t train_set = intel_dp->train_set[0];
3086
3087         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3088         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3089                 preemph_reg_value = 0x0004000;
3090                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3091                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3092                         demph_reg_value = 0x2B405555;
3093                         uniqtranscale_reg_value = 0x552AB83A;
3094                         break;
3095                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3096                         demph_reg_value = 0x2B404040;
3097                         uniqtranscale_reg_value = 0x5548B83A;
3098                         break;
3099                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3100                         demph_reg_value = 0x2B245555;
3101                         uniqtranscale_reg_value = 0x5560B83A;
3102                         break;
3103                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3104                         demph_reg_value = 0x2B405555;
3105                         uniqtranscale_reg_value = 0x5598DA3A;
3106                         break;
3107                 default:
3108                         return 0;
3109                 }
3110                 break;
3111         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3112                 preemph_reg_value = 0x0002000;
3113                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3114                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3115                         demph_reg_value = 0x2B404040;
3116                         uniqtranscale_reg_value = 0x5552B83A;
3117                         break;
3118                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3119                         demph_reg_value = 0x2B404848;
3120                         uniqtranscale_reg_value = 0x5580B83A;
3121                         break;
3122                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3123                         demph_reg_value = 0x2B404040;
3124                         uniqtranscale_reg_value = 0x55ADDA3A;
3125                         break;
3126                 default:
3127                         return 0;
3128                 }
3129                 break;
3130         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3131                 preemph_reg_value = 0x0000000;
3132                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3133                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3134                         demph_reg_value = 0x2B305555;
3135                         uniqtranscale_reg_value = 0x5570B83A;
3136                         break;
3137                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3138                         demph_reg_value = 0x2B2B4040;
3139                         uniqtranscale_reg_value = 0x55ADDA3A;
3140                         break;
3141                 default:
3142                         return 0;
3143                 }
3144                 break;
3145         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3146                 preemph_reg_value = 0x0006000;
3147                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3148                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3149                         demph_reg_value = 0x1B405555;
3150                         uniqtranscale_reg_value = 0x55ADDA3A;
3151                         break;
3152                 default:
3153                         return 0;
3154                 }
3155                 break;
3156         default:
3157                 return 0;
3158         }
3159
3160         vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
3161                                  uniqtranscale_reg_value, 0);
3162
3163         return 0;
3164 }
3165
3166 static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3167 {
3168         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3169         u32 deemph_reg_value, margin_reg_value;
3170         bool uniq_trans_scale = false;
3171         uint8_t train_set = intel_dp->train_set[0];
3172
3173         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3174         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3175                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3176                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3177                         deemph_reg_value = 128;
3178                         margin_reg_value = 52;
3179                         break;
3180                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3181                         deemph_reg_value = 128;
3182                         margin_reg_value = 77;
3183                         break;
3184                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3185                         deemph_reg_value = 128;
3186                         margin_reg_value = 102;
3187                         break;
3188                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3189                         deemph_reg_value = 128;
3190                         margin_reg_value = 154;
3191                         uniq_trans_scale = true;
3192                         break;
3193                 default:
3194                         return 0;
3195                 }
3196                 break;
3197         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3198                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3199                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3200                         deemph_reg_value = 85;
3201                         margin_reg_value = 78;
3202                         break;
3203                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3204                         deemph_reg_value = 85;
3205                         margin_reg_value = 116;
3206                         break;
3207                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3208                         deemph_reg_value = 85;
3209                         margin_reg_value = 154;
3210                         break;
3211                 default:
3212                         return 0;
3213                 }
3214                 break;
3215         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3216                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3217                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3218                         deemph_reg_value = 64;
3219                         margin_reg_value = 104;
3220                         break;
3221                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3222                         deemph_reg_value = 64;
3223                         margin_reg_value = 154;
3224                         break;
3225                 default:
3226                         return 0;
3227                 }
3228                 break;
3229         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3230                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3231                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3232                         deemph_reg_value = 43;
3233                         margin_reg_value = 154;
3234                         break;
3235                 default:
3236                         return 0;
3237                 }
3238                 break;
3239         default:
3240                 return 0;
3241         }
3242
3243         chv_set_phy_signal_level(encoder, deemph_reg_value,
3244                                  margin_reg_value, uniq_trans_scale);
3245
3246         return 0;
3247 }
3248
3249 static uint32_t
3250 gen4_signal_levels(uint8_t train_set)
3251 {
3252         uint32_t        signal_levels = 0;
3253
3254         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3255         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3256         default:
3257                 signal_levels |= DP_VOLTAGE_0_4;
3258                 break;
3259         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3260                 signal_levels |= DP_VOLTAGE_0_6;
3261                 break;
3262         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3263                 signal_levels |= DP_VOLTAGE_0_8;
3264                 break;
3265         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3266                 signal_levels |= DP_VOLTAGE_1_2;
3267                 break;
3268         }
3269         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3270         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3271         default:
3272                 signal_levels |= DP_PRE_EMPHASIS_0;
3273                 break;
3274         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3275                 signal_levels |= DP_PRE_EMPHASIS_3_5;
3276                 break;
3277         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3278                 signal_levels |= DP_PRE_EMPHASIS_6;
3279                 break;
3280         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3281                 signal_levels |= DP_PRE_EMPHASIS_9_5;
3282                 break;
3283         }
3284         return signal_levels;
3285 }
3286
3287 /* Gen6's DP voltage swing and pre-emphasis control */
3288 static uint32_t
3289 gen6_edp_signal_levels(uint8_t train_set)
3290 {
3291         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3292                                          DP_TRAIN_PRE_EMPHASIS_MASK);
3293         switch (signal_levels) {
3294         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3295         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3296                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3297         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3298                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3299         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3300         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3301                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3302         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3303         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3304                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3305         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3306         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3307                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3308         default:
3309                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3310                               "0x%x\n", signal_levels);
3311                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3312         }
3313 }
3314
3315 /* Gen7's DP voltage swing and pre-emphasis control */
3316 static uint32_t
3317 gen7_edp_signal_levels(uint8_t train_set)
3318 {
3319         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3320                                          DP_TRAIN_PRE_EMPHASIS_MASK);
3321         switch (signal_levels) {
3322         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3323                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3324         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3325                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3326         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3327                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3328
3329         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3330                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3331         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3332                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3333
3334         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3335                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3336         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3337                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3338
3339         default:
3340                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3341                               "0x%x\n", signal_levels);
3342                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3343         }
3344 }
3345
3346 void
3347 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3348 {
3349         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3350         enum port port = intel_dig_port->port;
3351         struct drm_device *dev = intel_dig_port->base.base.dev;
3352         struct drm_i915_private *dev_priv = to_i915(dev);
3353         uint32_t signal_levels, mask = 0;
3354         uint8_t train_set = intel_dp->train_set[0];
3355
3356         if (HAS_DDI(dev)) {
3357                 signal_levels = ddi_signal_levels(intel_dp);
3358
3359                 if (IS_BROXTON(dev))
3360                         signal_levels = 0;
3361                 else
3362                         mask = DDI_BUF_EMP_MASK;
3363         } else if (IS_CHERRYVIEW(dev)) {
3364                 signal_levels = chv_signal_levels(intel_dp);
3365         } else if (IS_VALLEYVIEW(dev)) {
3366                 signal_levels = vlv_signal_levels(intel_dp);
3367         } else if (IS_GEN7(dev) && port == PORT_A) {
3368                 signal_levels = gen7_edp_signal_levels(train_set);
3369                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3370         } else if (IS_GEN6(dev) && port == PORT_A) {
3371                 signal_levels = gen6_edp_signal_levels(train_set);
3372                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3373         } else {
3374                 signal_levels = gen4_signal_levels(train_set);
3375                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3376         }
3377
3378         if (mask)
3379                 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3380
3381         DRM_DEBUG_KMS("Using vswing level %d\n",
3382                 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
3383         DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
3384                 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
3385                         DP_TRAIN_PRE_EMPHASIS_SHIFT);
3386
3387         intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3388
3389         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3390         POSTING_READ(intel_dp->output_reg);
3391 }
3392
3393 void
3394 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
3395                                        uint8_t dp_train_pat)
3396 {
3397         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3398         struct drm_i915_private *dev_priv =
3399                 to_i915(intel_dig_port->base.base.dev);
3400
3401         _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3402
3403         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3404         POSTING_READ(intel_dp->output_reg);
3405 }
3406
3407 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3408 {
3409         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3410         struct drm_device *dev = intel_dig_port->base.base.dev;
3411         struct drm_i915_private *dev_priv = to_i915(dev);
3412         enum port port = intel_dig_port->port;
3413         uint32_t val;
3414
3415         if (!HAS_DDI(dev))
3416                 return;
3417
3418         val = I915_READ(DP_TP_CTL(port));
3419         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3420         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3421         I915_WRITE(DP_TP_CTL(port), val);
3422
3423         /*
3424          * On PORT_A we can have only eDP in SST mode. There the only reason
3425          * we need to set idle transmission mode is to work around a HW issue
3426          * where we enable the pipe while not in idle link-training mode.
3427          * In this case there is requirement to wait for a minimum number of
3428          * idle patterns to be sent.
3429          */
3430         if (port == PORT_A)
3431                 return;
3432
3433         if (intel_wait_for_register(dev_priv,DP_TP_STATUS(port),
3434                                     DP_TP_STATUS_IDLE_DONE,
3435                                     DP_TP_STATUS_IDLE_DONE,
3436                                     1))
3437                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3438 }
3439
3440 static void
3441 intel_dp_link_down(struct intel_dp *intel_dp)
3442 {
3443         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3444         struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
3445         enum port port = intel_dig_port->port;
3446         struct drm_device *dev = intel_dig_port->base.base.dev;
3447         struct drm_i915_private *dev_priv = to_i915(dev);
3448         uint32_t DP = intel_dp->DP;
3449
3450         if (WARN_ON(HAS_DDI(dev)))
3451                 return;
3452
3453         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3454                 return;
3455
3456         DRM_DEBUG_KMS("\n");
3457
3458         if ((IS_GEN7(dev) && port == PORT_A) ||
3459             (HAS_PCH_CPT(dev) && port != PORT_A)) {
3460                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3461                 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3462         } else {
3463                 if (IS_CHERRYVIEW(dev))
3464                         DP &= ~DP_LINK_TRAIN_MASK_CHV;
3465                 else
3466                         DP &= ~DP_LINK_TRAIN_MASK;
3467                 DP |= DP_LINK_TRAIN_PAT_IDLE;
3468         }
3469         I915_WRITE(intel_dp->output_reg, DP);
3470         POSTING_READ(intel_dp->output_reg);
3471
3472         DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
3473         I915_WRITE(intel_dp->output_reg, DP);
3474         POSTING_READ(intel_dp->output_reg);
3475
3476         /*
3477          * HW workaround for IBX, we need to move the port
3478          * to transcoder A after disabling it to allow the
3479          * matching HDMI port to be enabled on transcoder A.
3480          */
3481         if (HAS_PCH_IBX(dev) && crtc->pipe == PIPE_B && port != PORT_A) {
3482                 /*
3483                  * We get CPU/PCH FIFO underruns on the other pipe when
3484                  * doing the workaround. Sweep them under the rug.
3485                  */
3486                 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3487                 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3488
3489                 /* always enable with pattern 1 (as per spec) */
3490                 DP &= ~(DP_PIPEB_SELECT | DP_LINK_TRAIN_MASK);
3491                 DP |= DP_PORT_EN | DP_LINK_TRAIN_PAT_1;
3492                 I915_WRITE(intel_dp->output_reg, DP);
3493                 POSTING_READ(intel_dp->output_reg);
3494
3495                 DP &= ~DP_PORT_EN;
3496                 I915_WRITE(intel_dp->output_reg, DP);
3497                 POSTING_READ(intel_dp->output_reg);
3498
3499                 intel_wait_for_vblank_if_active(&dev_priv->drm, PIPE_A);
3500                 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3501                 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3502         }
3503
3504         msleep(intel_dp->panel_power_down_delay);
3505
3506         intel_dp->DP = DP;
3507 }
3508
3509 static bool
3510 intel_dp_read_dpcd(struct intel_dp *intel_dp)
3511 {
3512         if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
3513                              sizeof(intel_dp->dpcd)) < 0)
3514                 return false; /* aux transfer failed */
3515
3516         DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3517
3518         return intel_dp->dpcd[DP_DPCD_REV] != 0;
3519 }
3520
3521 static bool
3522 intel_edp_init_dpcd(struct intel_dp *intel_dp)
3523 {
3524         struct drm_i915_private *dev_priv =
3525                 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
3526
3527         /* this function is meant to be called only once */
3528         WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
3529
3530         if (!intel_dp_read_dpcd(intel_dp))
3531                 return false;
3532
3533         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
3534                 dev_priv->no_aux_handshake = intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
3535                         DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3536
3537         /* Check if the panel supports PSR */
3538         drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT,
3539                          intel_dp->psr_dpcd,
3540                          sizeof(intel_dp->psr_dpcd));
3541         if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3542                 dev_priv->psr.sink_support = true;
3543                 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3544         }
3545
3546         if (INTEL_GEN(dev_priv) >= 9 &&
3547             (intel_dp->psr_dpcd[0] & DP_PSR2_IS_SUPPORTED)) {
3548                 uint8_t frame_sync_cap;
3549
3550                 dev_priv->psr.sink_support = true;
3551                 drm_dp_dpcd_read(&intel_dp->aux,
3552                                  DP_SINK_DEVICE_AUX_FRAME_SYNC_CAP,
3553                                  &frame_sync_cap, 1);
3554                 dev_priv->psr.aux_frame_sync = frame_sync_cap ? true : false;
3555                 /* PSR2 needs frame sync as well */
3556                 dev_priv->psr.psr2_support = dev_priv->psr.aux_frame_sync;
3557                 DRM_DEBUG_KMS("PSR2 %s on sink",
3558                               dev_priv->psr.psr2_support ? "supported" : "not supported");
3559         }
3560
3561         /*
3562          * Read the eDP display control registers.
3563          *
3564          * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
3565          * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
3566          * set, but require eDP 1.4+ detection (e.g. for supported link rates
3567          * method). The display control registers should read zero if they're
3568          * not supported anyway.
3569          */
3570         if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
3571                              intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
3572                              sizeof(intel_dp->edp_dpcd))
3573                 DRM_DEBUG_KMS("EDP DPCD : %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
3574                               intel_dp->edp_dpcd);
3575
3576         /* Intermediate frequency support */
3577         if (intel_dp->edp_dpcd[0] >= 0x03) { /* eDp v1.4 or higher */
3578                 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
3579                 int i;
3580
3581                 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
3582                                 sink_rates, sizeof(sink_rates));
3583
3584                 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
3585                         int val = le16_to_cpu(sink_rates[i]);
3586
3587                         if (val == 0)
3588                                 break;
3589
3590                         /* Value read is in kHz while drm clock is saved in deca-kHz */
3591                         intel_dp->sink_rates[i] = (val * 200) / 10;
3592                 }
3593                 intel_dp->num_sink_rates = i;
3594         }
3595
3596         return true;
3597 }
3598
3599
3600 static bool
3601 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3602 {
3603         if (!intel_dp_read_dpcd(intel_dp))
3604                 return false;
3605
3606         if (drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT,
3607                              &intel_dp->sink_count, 1) < 0)
3608                 return false;
3609
3610         /*
3611          * Sink count can change between short pulse hpd hence
3612          * a member variable in intel_dp will track any changes
3613          * between short pulse interrupts.
3614          */
3615         intel_dp->sink_count = DP_GET_SINK_COUNT(intel_dp->sink_count);
3616
3617         /*
3618          * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
3619          * a dongle is present but no display. Unless we require to know
3620          * if a dongle is present or not, we don't need to update
3621          * downstream port information. So, an early return here saves
3622          * time from performing other operations which are not required.
3623          */
3624         if (!is_edp(intel_dp) && !intel_dp->sink_count)
3625                 return false;
3626
3627         if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3628               DP_DWN_STRM_PORT_PRESENT))
3629                 return true; /* native DP sink */
3630
3631         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3632                 return true; /* no per-port downstream info */
3633
3634         if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3635                              intel_dp->downstream_ports,
3636                              DP_MAX_DOWNSTREAM_PORTS) < 0)
3637                 return false; /* downstream port status fetch failed */
3638
3639         return true;
3640 }
3641
3642 static void
3643 intel_dp_probe_oui(struct intel_dp *intel_dp)
3644 {
3645         u8 buf[3];
3646
3647         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3648                 return;
3649
3650         if (drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3651                 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3652                               buf[0], buf[1], buf[2]);
3653
3654         if (drm_dp_dpcd_read(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3655                 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3656                               buf[0], buf[1], buf[2]);
3657 }
3658
3659 static bool
3660 intel_dp_can_mst(struct intel_dp *intel_dp)
3661 {
3662         u8 buf[1];
3663
3664         if (!i915.enable_dp_mst)
3665                 return false;
3666
3667         if (!intel_dp->can_mst)
3668                 return false;
3669
3670         if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3671                 return false;
3672
3673         if (drm_dp_dpcd_read(&intel_dp->aux, DP_MSTM_CAP, buf, 1) != 1)
3674                 return false;
3675
3676         return buf[0] & DP_MST_CAP;
3677 }
3678
3679 static void
3680 intel_dp_configure_mst(struct intel_dp *intel_dp)
3681 {
3682         if (!i915.enable_dp_mst)
3683                 return;
3684
3685         if (!intel_dp->can_mst)
3686                 return;
3687
3688         intel_dp->is_mst = intel_dp_can_mst(intel_dp);
3689
3690         if (intel_dp->is_mst)
3691                 DRM_DEBUG_KMS("Sink is MST capable\n");
3692         else
3693                 DRM_DEBUG_KMS("Sink is not MST capable\n");
3694
3695         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
3696                                         intel_dp->is_mst);
3697 }
3698
3699 static int intel_dp_sink_crc_stop(struct intel_dp *intel_dp)
3700 {
3701         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3702         struct drm_device *dev = dig_port->base.base.dev;
3703         struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3704         u8 buf;
3705         int ret = 0;
3706         int count = 0;
3707         int attempts = 10;
3708
3709         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
3710                 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3711                 ret = -EIO;
3712                 goto out;
3713         }
3714
3715         if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3716                                buf & ~DP_TEST_SINK_START) < 0) {
3717                 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3718                 ret = -EIO;
3719                 goto out;
3720         }
3721
3722         do {
3723                 intel_wait_for_vblank(dev, intel_crtc->pipe);
3724
3725                 if (drm_dp_dpcd_readb(&intel_dp->aux,
3726                                       DP_TEST_SINK_MISC, &buf) < 0) {
3727                         ret = -EIO;
3728                         goto out;
3729                 }
3730                 count = buf & DP_TEST_COUNT_MASK;
3731         } while (--attempts && count);
3732
3733         if (attempts == 0) {
3734                 DRM_DEBUG_KMS("TIMEOUT: Sink CRC counter is not zeroed after calculation is stopped\n");
3735                 ret = -ETIMEDOUT;
3736         }
3737
3738  out:
3739         hsw_enable_ips(intel_crtc);
3740         return ret;
3741 }
3742
3743 static int intel_dp_sink_crc_start(struct intel_dp *intel_dp)
3744 {
3745         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3746         struct drm_device *dev = dig_port->base.base.dev;
3747         struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3748         u8 buf;
3749         int ret;
3750
3751         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
3752                 return -EIO;
3753
3754         if (!(buf & DP_TEST_CRC_SUPPORTED))
3755                 return -ENOTTY;
3756
3757         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
3758                 return -EIO;
3759
3760         if (buf & DP_TEST_SINK_START) {
3761                 ret = intel_dp_sink_crc_stop(intel_dp);
3762                 if (ret)
3763                         return ret;
3764         }
3765
3766         hsw_disable_ips(intel_crtc);
3767
3768         if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3769                                buf | DP_TEST_SINK_START) < 0) {
3770                 hsw_enable_ips(intel_crtc);
3771                 return -EIO;
3772         }
3773
3774         intel_wait_for_vblank(dev, intel_crtc->pipe);
3775         return 0;
3776 }
3777
3778 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3779 {
3780         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3781         struct drm_device *dev = dig_port->base.base.dev;
3782         struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3783         u8 buf;
3784         int count, ret;
3785         int attempts = 6;
3786
3787         ret = intel_dp_sink_crc_start(intel_dp);
3788         if (ret)
3789                 return ret;
3790
3791         do {
3792                 intel_wait_for_vblank(dev, intel_crtc->pipe);
3793
3794                 if (drm_dp_dpcd_readb(&intel_dp->aux,
3795                                       DP_TEST_SINK_MISC, &buf) < 0) {
3796                         ret = -EIO;
3797                         goto stop;
3798                 }
3799                 count = buf & DP_TEST_COUNT_MASK;
3800
3801         } while (--attempts && count == 0);
3802
3803         if (attempts == 0) {
3804                 DRM_ERROR("Panel is unable to calculate any CRC after 6 vblanks\n");
3805                 ret = -ETIMEDOUT;
3806                 goto stop;
3807         }
3808
3809         if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0) {
3810                 ret = -EIO;
3811                 goto stop;
3812         }
3813
3814 stop:
3815         intel_dp_sink_crc_stop(intel_dp);
3816         return ret;
3817 }
3818
3819 static bool
3820 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3821 {
3822         return drm_dp_dpcd_read(&intel_dp->aux,
3823                                        DP_DEVICE_SERVICE_IRQ_VECTOR,
3824                                        sink_irq_vector, 1) == 1;
3825 }
3826
3827 static bool
3828 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3829 {
3830         int ret;
3831
3832         ret = drm_dp_dpcd_read(&intel_dp->aux,
3833                                              DP_SINK_COUNT_ESI,
3834                                              sink_irq_vector, 14);
3835         if (ret != 14)
3836                 return false;
3837
3838         return true;
3839 }
3840
3841 static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
3842 {
3843         uint8_t test_result = DP_TEST_ACK;
3844         return test_result;
3845 }
3846
3847 static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
3848 {
3849         uint8_t test_result = DP_TEST_NAK;
3850         return test_result;
3851 }
3852
3853 static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
3854 {
3855         uint8_t test_result = DP_TEST_NAK;
3856         struct intel_connector *intel_connector = intel_dp->attached_connector;
3857         struct drm_connector *connector = &intel_connector->base;
3858
3859         if (intel_connector->detect_edid == NULL ||
3860             connector->edid_corrupt ||
3861             intel_dp->aux.i2c_defer_count > 6) {
3862                 /* Check EDID read for NACKs, DEFERs and corruption
3863                  * (DP CTS 1.2 Core r1.1)
3864                  *    4.2.2.4 : Failed EDID read, I2C_NAK
3865                  *    4.2.2.5 : Failed EDID read, I2C_DEFER
3866                  *    4.2.2.6 : EDID corruption detected
3867                  * Use failsafe mode for all cases
3868                  */
3869                 if (intel_dp->aux.i2c_nack_count > 0 ||
3870                         intel_dp->aux.i2c_defer_count > 0)
3871                         DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
3872                                       intel_dp->aux.i2c_nack_count,
3873                                       intel_dp->aux.i2c_defer_count);
3874                 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_FAILSAFE;
3875         } else {
3876                 struct edid *block = intel_connector->detect_edid;
3877
3878                 /* We have to write the checksum
3879                  * of the last block read
3880                  */
3881                 block += intel_connector->detect_edid->extensions;
3882
3883                 if (!drm_dp_dpcd_write(&intel_dp->aux,
3884                                         DP_TEST_EDID_CHECKSUM,
3885                                         &block->checksum,
3886                                         1))
3887                         DRM_DEBUG_KMS("Failed to write EDID checksum\n");
3888
3889                 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
3890                 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_STANDARD;
3891         }
3892
3893         /* Set test active flag here so userspace doesn't interrupt things */
3894         intel_dp->compliance_test_active = 1;
3895
3896         return test_result;
3897 }
3898
3899 static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
3900 {
3901         uint8_t test_result = DP_TEST_NAK;
3902         return test_result;
3903 }
3904
3905 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
3906 {
3907         uint8_t response = DP_TEST_NAK;
3908         uint8_t rxdata = 0;
3909         int status = 0;
3910
3911         status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_REQUEST, &rxdata, 1);
3912         if (status <= 0) {
3913                 DRM_DEBUG_KMS("Could not read test request from sink\n");
3914                 goto update_status;
3915         }
3916
3917         switch (rxdata) {
3918         case DP_TEST_LINK_TRAINING:
3919                 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
3920                 intel_dp->compliance_test_type = DP_TEST_LINK_TRAINING;
3921                 response = intel_dp_autotest_link_training(intel_dp);
3922                 break;
3923         case DP_TEST_LINK_VIDEO_PATTERN:
3924                 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
3925                 intel_dp->compliance_test_type = DP_TEST_LINK_VIDEO_PATTERN;
3926                 response = intel_dp_autotest_video_pattern(intel_dp);
3927                 break;
3928         case DP_TEST_LINK_EDID_READ:
3929                 DRM_DEBUG_KMS("EDID test requested\n");
3930                 intel_dp->compliance_test_type = DP_TEST_LINK_EDID_READ;
3931                 response = intel_dp_autotest_edid(intel_dp);
3932                 break;
3933         case DP_TEST_LINK_PHY_TEST_PATTERN:
3934                 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
3935                 intel_dp->compliance_test_type = DP_TEST_LINK_PHY_TEST_PATTERN;
3936                 response = intel_dp_autotest_phy_pattern(intel_dp);
3937                 break;
3938         default:
3939                 DRM_DEBUG_KMS("Invalid test request '%02x'\n", rxdata);
3940                 break;
3941         }
3942
3943 update_status:
3944         status = drm_dp_dpcd_write(&intel_dp->aux,
3945                                    DP_TEST_RESPONSE,
3946                                    &response, 1);
3947         if (status <= 0)
3948                 DRM_DEBUG_KMS("Could not write test response to sink\n");
3949 }
3950
3951 static int
3952 intel_dp_check_mst_status(struct intel_dp *intel_dp)
3953 {
3954         bool bret;
3955
3956         if (intel_dp->is_mst) {
3957                 u8 esi[16] = { 0 };
3958                 int ret = 0;
3959                 int retry;
3960                 bool handled;
3961                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3962 go_again:
3963                 if (bret == true) {
3964
3965                         /* check link status - esi[10] = 0x200c */
3966                         if (intel_dp->active_mst_links &&
3967                             !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
3968                                 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
3969                                 intel_dp_start_link_train(intel_dp);
3970                                 intel_dp_stop_link_train(intel_dp);
3971                         }
3972
3973                         DRM_DEBUG_KMS("got esi %3ph\n", esi);
3974                         ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
3975
3976                         if (handled) {
3977                                 for (retry = 0; retry < 3; retry++) {
3978                                         int wret;
3979                                         wret = drm_dp_dpcd_write(&intel_dp->aux,
3980                                                                  DP_SINK_COUNT_ESI+1,
3981                                                                  &esi[1], 3);
3982                                         if (wret == 3) {
3983                                                 break;
3984                                         }
3985                                 }
3986
3987                                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3988                                 if (bret == true) {
3989                                         DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
3990                                         goto go_again;
3991                                 }
3992                         } else
3993                                 ret = 0;
3994
3995                         return ret;
3996                 } else {
3997                         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3998                         DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
3999                         intel_dp->is_mst = false;
4000                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4001                         /* send a hotplug event */
4002                         drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
4003                 }
4004         }
4005         return -EINVAL;
4006 }
4007
4008 static void
4009 intel_dp_check_link_status(struct intel_dp *intel_dp)
4010 {
4011         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4012         struct drm_device *dev = intel_dp_to_dev(intel_dp);
4013         u8 link_status[DP_LINK_STATUS_SIZE];
4014
4015         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
4016
4017         if (!intel_dp_get_link_status(intel_dp, link_status)) {
4018                 DRM_ERROR("Failed to get link status\n");
4019                 return;
4020         }
4021
4022         if (!intel_encoder->base.crtc)
4023                 return;
4024
4025         if (!to_intel_crtc(intel_encoder->base.crtc)->active)
4026                 return;
4027
4028         /* FIXME: we need to synchronize this sort of stuff with hardware
4029          * readout. Currently fast link training doesn't work on boot-up. */
4030         if (!intel_dp->lane_count)
4031                 return;
4032
4033         /* if link training is requested we should perform it always */
4034         if ((intel_dp->compliance_test_type == DP_TEST_LINK_TRAINING) ||
4035             (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count))) {
4036                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
4037                               intel_encoder->base.name);
4038                 intel_dp_start_link_train(intel_dp);
4039                 intel_dp_stop_link_train(intel_dp);
4040         }
4041 }
4042
4043 /*
4044  * According to DP spec
4045  * 5.1.2:
4046  *  1. Read DPCD
4047  *  2. Configure link according to Receiver Capabilities
4048  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
4049  *  4. Check link status on receipt of hot-plug interrupt
4050  *
4051  * intel_dp_short_pulse -  handles short pulse interrupts
4052  * when full detection is not required.
4053  * Returns %true if short pulse is handled and full detection
4054  * is NOT required and %false otherwise.
4055  */
4056 static bool
4057 intel_dp_short_pulse(struct intel_dp *intel_dp)
4058 {
4059         struct drm_device *dev = intel_dp_to_dev(intel_dp);
4060         u8 sink_irq_vector = 0;
4061         u8 old_sink_count = intel_dp->sink_count;
4062         bool ret;
4063
4064         /*
4065          * Clearing compliance test variables to allow capturing
4066          * of values for next automated test request.
4067          */
4068         intel_dp->compliance_test_active = 0;
4069         intel_dp->compliance_test_type = 0;
4070         intel_dp->compliance_test_data = 0;
4071
4072         /*
4073          * Now read the DPCD to see if it's actually running
4074          * If the current value of sink count doesn't match with
4075          * the value that was stored earlier or dpcd read failed
4076          * we need to do full detection
4077          */
4078         ret = intel_dp_get_dpcd(intel_dp);
4079
4080         if ((old_sink_count != intel_dp->sink_count) || !ret) {
4081                 /* No need to proceed if we are going to do full detect */
4082                 return false;
4083         }
4084
4085         /* Try to read the source of the interrupt */
4086         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4087             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) &&
4088             sink_irq_vector != 0) {
4089                 /* Clear interrupt source */
4090                 drm_dp_dpcd_writeb(&intel_dp->aux,
4091                                    DP_DEVICE_SERVICE_IRQ_VECTOR,
4092                                    sink_irq_vector);
4093
4094                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4095                         DRM_DEBUG_DRIVER("Test request in short pulse not handled\n");
4096                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4097                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4098         }
4099
4100         drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4101         intel_dp_check_link_status(intel_dp);
4102         drm_modeset_unlock(&dev->mode_config.connection_mutex);
4103
4104         return true;
4105 }
4106
4107 /* XXX this is probably wrong for multiple downstream ports */
4108 static enum drm_connector_status
4109 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4110 {
4111         uint8_t *dpcd = intel_dp->dpcd;
4112         uint8_t type;
4113
4114         if (!intel_dp_get_dpcd(intel_dp))
4115                 return connector_status_disconnected;
4116
4117         if (is_edp(intel_dp))
4118                 return connector_status_connected;
4119
4120         /* if there's no downstream port, we're done */
4121         if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
4122                 return connector_status_connected;
4123
4124         /* If we're HPD-aware, SINK_COUNT changes dynamically */
4125         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4126             intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4127
4128                 return intel_dp->sink_count ?
4129                 connector_status_connected : connector_status_disconnected;
4130         }
4131
4132         if (intel_dp_can_mst(intel_dp))
4133                 return connector_status_connected;
4134
4135         /* If no HPD, poke DDC gently */
4136         if (drm_probe_ddc(&intel_dp->aux.ddc))
4137                 return connector_status_connected;
4138
4139         /* Well we tried, say unknown for unreliable port types */
4140         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4141                 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4142                 if (type == DP_DS_PORT_TYPE_VGA ||
4143                     type == DP_DS_PORT_TYPE_NON_EDID)
4144                         return connector_status_unknown;
4145         } else {
4146                 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4147                         DP_DWN_STRM_PORT_TYPE_MASK;
4148                 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4149                     type == DP_DWN_STRM_PORT_TYPE_OTHER)
4150                         return connector_status_unknown;
4151         }
4152
4153         /* Anything else is out of spec, warn and ignore */
4154         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4155         return connector_status_disconnected;
4156 }
4157
4158 static enum drm_connector_status
4159 edp_detect(struct intel_dp *intel_dp)
4160 {
4161         struct drm_device *dev = intel_dp_to_dev(intel_dp);
4162         enum drm_connector_status status;
4163
4164         status = intel_panel_detect(dev);
4165         if (status == connector_status_unknown)
4166                 status = connector_status_connected;
4167
4168         return status;
4169 }
4170
4171 static bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
4172                                        struct intel_digital_port *port)
4173 {
4174         u32 bit;
4175
4176         switch (port->port) {
4177         case PORT_A:
4178                 return true;
4179         case PORT_B:
4180                 bit = SDE_PORTB_HOTPLUG;
4181                 break;
4182         case PORT_C:
4183                 bit = SDE_PORTC_HOTPLUG;
4184                 break;
4185         case PORT_D:
4186                 bit = SDE_PORTD_HOTPLUG;
4187                 break;
4188         default:
4189                 MISSING_CASE(port->port);
4190                 return false;
4191         }
4192
4193         return I915_READ(SDEISR) & bit;
4194 }
4195
4196 static bool cpt_digital_port_connected(struct drm_i915_private *dev_priv,
4197                                        struct intel_digital_port *port)
4198 {
4199         u32 bit;
4200
4201         switch (port->port) {
4202         case PORT_A:
4203                 return true;
4204         case PORT_B:
4205                 bit = SDE_PORTB_HOTPLUG_CPT;
4206                 break;
4207         case PORT_C:
4208                 bit = SDE_PORTC_HOTPLUG_CPT;
4209                 break;
4210         case PORT_D:
4211                 bit = SDE_PORTD_HOTPLUG_CPT;
4212                 break;
4213         case PORT_E:
4214                 bit = SDE_PORTE_HOTPLUG_SPT;
4215                 break;
4216         default:
4217                 MISSING_CASE(port->port);
4218                 return false;
4219         }
4220
4221         return I915_READ(SDEISR) & bit;
4222 }
4223
4224 static bool g4x_digital_port_connected(struct drm_i915_private *dev_priv,
4225                                        struct intel_digital_port *port)
4226 {
4227         u32 bit;
4228
4229         switch (port->port) {
4230         case PORT_B:
4231                 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4232                 break;
4233         case PORT_C:
4234                 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4235                 break;
4236         case PORT_D:
4237                 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4238                 break;
4239         default:
4240                 MISSING_CASE(port->port);
4241                 return false;
4242         }
4243
4244         return I915_READ(PORT_HOTPLUG_STAT) & bit;
4245 }
4246
4247 static bool gm45_digital_port_connected(struct drm_i915_private *dev_priv,
4248                                         struct intel_digital_port *port)
4249 {
4250         u32 bit;
4251
4252         switch (port->port) {
4253         case PORT_B:
4254                 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
4255                 break;
4256         case PORT_C:
4257                 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
4258                 break;
4259         case PORT_D:
4260                 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
4261                 break;
4262         default:
4263                 MISSING_CASE(port->port);
4264                 return false;
4265         }
4266
4267         return I915_READ(PORT_HOTPLUG_STAT) & bit;
4268 }
4269
4270 static bool bxt_digital_port_connected(struct drm_i915_private *dev_priv,
4271                                        struct intel_digital_port *intel_dig_port)
4272 {
4273         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4274         enum port port;
4275         u32 bit;
4276
4277         intel_hpd_pin_to_port(intel_encoder->hpd_pin, &port);
4278         switch (port) {
4279         case PORT_A:
4280                 bit = BXT_DE_PORT_HP_DDIA;
4281                 break;
4282         case PORT_B:
4283                 bit = BXT_DE_PORT_HP_DDIB;
4284                 break;
4285         case PORT_C:
4286                 bit = BXT_DE_PORT_HP_DDIC;
4287                 break;
4288         default:
4289                 MISSING_CASE(port);
4290                 return false;
4291         }
4292
4293         return I915_READ(GEN8_DE_PORT_ISR) & bit;
4294 }
4295
4296 /*
4297  * intel_digital_port_connected - is the specified port connected?
4298  * @dev_priv: i915 private structure
4299  * @port: the port to test
4300  *
4301  * Return %true if @port is connected, %false otherwise.
4302  */
4303 static bool intel_digital_port_connected(struct drm_i915_private *dev_priv,
4304                                          struct intel_digital_port *port)
4305 {
4306         if (HAS_PCH_IBX(dev_priv))
4307                 return ibx_digital_port_connected(dev_priv, port);
4308         else if (HAS_PCH_SPLIT(dev_priv))
4309                 return cpt_digital_port_connected(dev_priv, port);
4310         else if (IS_BROXTON(dev_priv))
4311                 return bxt_digital_port_connected(dev_priv, port);
4312         else if (IS_GM45(dev_priv))
4313                 return gm45_digital_port_connected(dev_priv, port);
4314         else
4315                 return g4x_digital_port_connected(dev_priv, port);
4316 }
4317
4318 static struct edid *
4319 intel_dp_get_edid(struct intel_dp *intel_dp)
4320 {
4321         struct intel_connector *intel_connector = intel_dp->attached_connector;
4322
4323         /* use cached edid if we have one */
4324         if (intel_connector->edid) {
4325                 /* invalid edid */
4326                 if (IS_ERR(intel_connector->edid))
4327                         return NULL;
4328
4329                 return drm_edid_duplicate(intel_connector->edid);
4330         } else
4331                 return drm_get_edid(&intel_connector->base,
4332                                     &intel_dp->aux.ddc);
4333 }
4334
4335 static void
4336 intel_dp_set_edid(struct intel_dp *intel_dp)
4337 {
4338         struct intel_connector *intel_connector = intel_dp->attached_connector;
4339         struct edid *edid;
4340
4341         intel_dp_unset_edid(intel_dp);
4342         edid = intel_dp_get_edid(intel_dp);
4343         intel_connector->detect_edid = edid;
4344
4345         if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4346                 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4347         else
4348                 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4349 }
4350
4351 static void
4352 intel_dp_unset_edid(struct intel_dp *intel_dp)
4353 {
4354         struct intel_connector *intel_connector = intel_dp->attached_connector;
4355
4356         kfree(intel_connector->detect_edid);
4357         intel_connector->detect_edid = NULL;
4358
4359         intel_dp->has_audio = false;
4360 }
4361
4362 static enum drm_connector_status
4363 intel_dp_long_pulse(struct intel_connector *intel_connector)
4364 {
4365         struct drm_connector *connector = &intel_connector->base;
4366         struct intel_dp *intel_dp = intel_attached_dp(connector);
4367         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4368         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4369         struct drm_device *dev = connector->dev;
4370         enum drm_connector_status status;
4371         enum intel_display_power_domain power_domain;
4372         u8 sink_irq_vector = 0;
4373
4374         power_domain = intel_display_port_aux_power_domain(intel_encoder);
4375         intel_display_power_get(to_i915(dev), power_domain);
4376
4377         /* Can't disconnect eDP, but you can close the lid... */
4378         if (is_edp(intel_dp))
4379                 status = edp_detect(intel_dp);
4380         else if (intel_digital_port_connected(to_i915(dev),
4381                                               dp_to_dig_port(intel_dp)))
4382                 status = intel_dp_detect_dpcd(intel_dp);
4383         else
4384                 status = connector_status_disconnected;
4385
4386         if (status == connector_status_disconnected) {
4387                 intel_dp->compliance_test_active = 0;
4388                 intel_dp->compliance_test_type = 0;
4389                 intel_dp->compliance_test_data = 0;
4390
4391                 if (intel_dp->is_mst) {
4392                         DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
4393                                       intel_dp->is_mst,
4394                                       intel_dp->mst_mgr.mst_state);
4395                         intel_dp->is_mst = false;
4396                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4397                                                         intel_dp->is_mst);
4398                 }
4399
4400                 goto out;
4401         }
4402
4403         if (intel_encoder->type != INTEL_OUTPUT_EDP)
4404                 intel_encoder->type = INTEL_OUTPUT_DP;
4405
4406         DRM_DEBUG_KMS("Display Port TPS3 support: source %s, sink %s\n",
4407                       yesno(intel_dp_source_supports_hbr2(intel_dp)),
4408                       yesno(drm_dp_tps3_supported(intel_dp->dpcd)));
4409
4410         intel_dp_print_rates(intel_dp);
4411
4412         intel_dp_probe_oui(intel_dp);
4413
4414         intel_dp_print_hw_revision(intel_dp);
4415         intel_dp_print_sw_revision(intel_dp);
4416
4417         intel_dp_configure_mst(intel_dp);
4418
4419         if (intel_dp->is_mst) {
4420                 /*
4421                  * If we are in MST mode then this connector
4422                  * won't appear connected or have anything
4423                  * with EDID on it
4424                  */
4425                 status = connector_status_disconnected;
4426                 goto out;
4427         } else if (connector->status == connector_status_connected) {
4428                 /*
4429                  * If display was connected already and is still connected
4430                  * check links status, there has been known issues of
4431                  * link loss triggerring long pulse!!!!
4432                  */
4433                 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4434                 intel_dp_check_link_status(intel_dp);
4435                 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4436                 goto out;
4437         }
4438
4439         /*
4440          * Clearing NACK and defer counts to get their exact values
4441          * while reading EDID which are required by Compliance tests
4442          * 4.2.2.4 and 4.2.2.5
4443          */
4444         intel_dp->aux.i2c_nack_count = 0;
4445         intel_dp->aux.i2c_defer_count = 0;
4446
4447         intel_dp_set_edid(intel_dp);
4448         if (is_edp(intel_dp) || intel_connector->detect_edid)
4449                 status = connector_status_connected;
4450         intel_dp->detect_done = true;
4451
4452         /* Try to read the source of the interrupt */
4453         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4454             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) &&
4455             sink_irq_vector != 0) {
4456                 /* Clear interrupt source */
4457                 drm_dp_dpcd_writeb(&intel_dp->aux,
4458                                    DP_DEVICE_SERVICE_IRQ_VECTOR,
4459                                    sink_irq_vector);
4460
4461                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4462                         intel_dp_handle_test_request(intel_dp);
4463                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4464                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4465         }
4466
4467 out:
4468         if (status != connector_status_connected && !intel_dp->is_mst)
4469                 intel_dp_unset_edid(intel_dp);
4470
4471         intel_display_power_put(to_i915(dev), power_domain);
4472         return status;
4473 }
4474
4475 static enum drm_connector_status
4476 intel_dp_detect(struct drm_connector *connector, bool force)
4477 {
4478         struct intel_dp *intel_dp = intel_attached_dp(connector);
4479         enum drm_connector_status status = connector->status;
4480
4481         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4482                       connector->base.id, connector->name);
4483
4484         /* If full detect is not performed yet, do a full detect */
4485         if (!intel_dp->detect_done)
4486                 status = intel_dp_long_pulse(intel_dp->attached_connector);
4487
4488         intel_dp->detect_done = false;
4489
4490         return status;
4491 }
4492
4493 static void
4494 intel_dp_force(struct drm_connector *connector)
4495 {
4496         struct intel_dp *intel_dp = intel_attached_dp(connector);
4497         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4498         struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
4499         enum intel_display_power_domain power_domain;
4500
4501         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4502                       connector->base.id, connector->name);
4503         intel_dp_unset_edid(intel_dp);
4504
4505         if (connector->status != connector_status_connected)
4506                 return;
4507
4508         power_domain = intel_display_port_aux_power_domain(intel_encoder);
4509         intel_display_power_get(dev_priv, power_domain);
4510
4511         intel_dp_set_edid(intel_dp);
4512
4513         intel_display_power_put(dev_priv, power_domain);
4514
4515         if (intel_encoder->type != INTEL_OUTPUT_EDP)
4516                 intel_encoder->type = INTEL_OUTPUT_DP;
4517 }
4518
4519 static int intel_dp_get_modes(struct drm_connector *connector)
4520 {
4521         struct intel_connector *intel_connector = to_intel_connector(connector);
4522         struct edid *edid;
4523
4524         edid = intel_connector->detect_edid;
4525         if (edid) {
4526                 int ret = intel_connector_update_modes(connector, edid);
4527                 if (ret)
4528                         return ret;
4529         }
4530
4531         /* if eDP has no EDID, fall back to fixed mode */
4532         if (is_edp(intel_attached_dp(connector)) &&
4533             intel_connector->panel.fixed_mode) {
4534                 struct drm_display_mode *mode;
4535
4536                 mode = drm_mode_duplicate(connector->dev,
4537                                           intel_connector->panel.fixed_mode);
4538                 if (mode) {
4539                         drm_mode_probed_add(connector, mode);
4540                         return 1;
4541                 }
4542         }
4543
4544         return 0;
4545 }
4546
4547 static bool
4548 intel_dp_detect_audio(struct drm_connector *connector)
4549 {
4550         bool has_audio = false;
4551         struct edid *edid;
4552
4553         edid = to_intel_connector(connector)->detect_edid;
4554         if (edid)
4555                 has_audio = drm_detect_monitor_audio(edid);
4556
4557         return has_audio;
4558 }
4559
4560 static int
4561 intel_dp_set_property(struct drm_connector *connector,
4562                       struct drm_property *property,
4563                       uint64_t val)
4564 {
4565         struct drm_i915_private *dev_priv = to_i915(connector->dev);
4566         struct intel_connector *intel_connector = to_intel_connector(connector);
4567         struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4568         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4569         int ret;
4570
4571         ret = drm_object_property_set_value(&connector->base, property, val);
4572         if (ret)
4573                 return ret;
4574
4575         if (property == dev_priv->force_audio_property) {
4576                 int i = val;
4577                 bool has_audio;
4578
4579                 if (i == intel_dp->force_audio)
4580                         return 0;
4581
4582                 intel_dp->force_audio = i;
4583
4584                 if (i == HDMI_AUDIO_AUTO)
4585                         has_audio = intel_dp_detect_audio(connector);
4586                 else
4587                         has_audio = (i == HDMI_AUDIO_ON);
4588
4589                 if (has_audio == intel_dp->has_audio)
4590                         return 0;
4591
4592                 intel_dp->has_audio = has_audio;
4593                 goto done;
4594         }
4595
4596         if (property == dev_priv->broadcast_rgb_property) {
4597                 bool old_auto = intel_dp->color_range_auto;
4598                 bool old_range = intel_dp->limited_color_range;
4599
4600                 switch (val) {
4601                 case INTEL_BROADCAST_RGB_AUTO:
4602                         intel_dp->color_range_auto = true;
4603                         break;
4604                 case INTEL_BROADCAST_RGB_FULL:
4605                         intel_dp->color_range_auto = false;
4606                         intel_dp->limited_color_range = false;
4607                         break;
4608                 case INTEL_BROADCAST_RGB_LIMITED:
4609                         intel_dp->color_range_auto = false;
4610                         intel_dp->limited_color_range = true;
4611                         break;
4612                 default:
4613                         return -EINVAL;
4614                 }
4615
4616                 if (old_auto == intel_dp->color_range_auto &&
4617                     old_range == intel_dp->limited_color_range)
4618                         return 0;
4619
4620                 goto done;
4621         }
4622
4623         if (is_edp(intel_dp) &&
4624             property == connector->dev->mode_config.scaling_mode_property) {
4625                 if (val == DRM_MODE_SCALE_NONE) {
4626                         DRM_DEBUG_KMS("no scaling not supported\n");
4627                         return -EINVAL;
4628                 }
4629                 if (HAS_GMCH_DISPLAY(dev_priv) &&
4630                     val == DRM_MODE_SCALE_CENTER) {
4631                         DRM_DEBUG_KMS("centering not supported\n");
4632                         return -EINVAL;
4633                 }
4634
4635                 if (intel_connector->panel.fitting_mode == val) {
4636                         /* the eDP scaling property is not changed */
4637                         return 0;
4638                 }
4639                 intel_connector->panel.fitting_mode = val;
4640
4641                 goto done;
4642         }
4643
4644         return -EINVAL;
4645
4646 done:
4647         if (intel_encoder->base.crtc)
4648                 intel_crtc_restore_mode(intel_encoder->base.crtc);
4649
4650         return 0;
4651 }
4652
4653 static int
4654 intel_dp_connector_register(struct drm_connector *connector)
4655 {
4656         struct intel_dp *intel_dp = intel_attached_dp(connector);
4657         int ret;
4658
4659         ret = intel_connector_register(connector);
4660         if (ret)
4661                 return ret;
4662
4663         i915_debugfs_connector_add(connector);
4664
4665         DRM_DEBUG_KMS("registering %s bus for %s\n",
4666                       intel_dp->aux.name, connector->kdev->kobj.name);
4667
4668         intel_dp->aux.dev = connector->kdev;
4669         return drm_dp_aux_register(&intel_dp->aux);
4670 }
4671
4672 static void
4673 intel_dp_connector_unregister(struct drm_connector *connector)
4674 {
4675         drm_dp_aux_unregister(&intel_attached_dp(connector)->aux);
4676         intel_connector_unregister(connector);
4677 }
4678
4679 static void
4680 intel_dp_connector_destroy(struct drm_connector *connector)
4681 {
4682         struct intel_connector *intel_connector = to_intel_connector(connector);
4683
4684         kfree(intel_connector->detect_edid);
4685
4686         if (!IS_ERR_OR_NULL(intel_connector->edid))
4687                 kfree(intel_connector->edid);
4688
4689         /* Can't call is_edp() since the encoder may have been destroyed
4690          * already. */
4691         if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4692                 intel_panel_fini(&intel_connector->panel);
4693
4694         drm_connector_cleanup(connector);
4695         kfree(connector);
4696 }
4697
4698 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4699 {
4700         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4701         struct intel_dp *intel_dp = &intel_dig_port->dp;
4702
4703         intel_dp_mst_encoder_cleanup(intel_dig_port);
4704         if (is_edp(intel_dp)) {
4705                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4706                 /*
4707                  * vdd might still be enabled do to the delayed vdd off.
4708                  * Make sure vdd is actually turned off here.
4709                  */
4710                 pps_lock(intel_dp);
4711                 edp_panel_vdd_off_sync(intel_dp);
4712                 pps_unlock(intel_dp);
4713
4714                 if (intel_dp->edp_notifier.notifier_call) {
4715                         unregister_reboot_notifier(&intel_dp->edp_notifier);
4716                         intel_dp->edp_notifier.notifier_call = NULL;
4717                 }
4718         }
4719
4720         intel_dp_aux_fini(intel_dp);
4721
4722         drm_encoder_cleanup(encoder);
4723         kfree(intel_dig_port);
4724 }
4725
4726 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4727 {
4728         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4729
4730         if (!is_edp(intel_dp))
4731                 return;
4732
4733         /*
4734          * vdd might still be enabled do to the delayed vdd off.
4735          * Make sure vdd is actually turned off here.
4736          */
4737         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4738         pps_lock(intel_dp);
4739         edp_panel_vdd_off_sync(intel_dp);
4740         pps_unlock(intel_dp);
4741 }
4742
4743 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
4744 {
4745         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4746         struct drm_device *dev = intel_dig_port->base.base.dev;
4747         struct drm_i915_private *dev_priv = to_i915(dev);
4748         enum intel_display_power_domain power_domain;
4749
4750         lockdep_assert_held(&dev_priv->pps_mutex);
4751
4752         if (!edp_have_panel_vdd(intel_dp))
4753                 return;
4754
4755         /*
4756          * The VDD bit needs a power domain reference, so if the bit is
4757          * already enabled when we boot or resume, grab this reference and
4758          * schedule a vdd off, so we don't hold on to the reference
4759          * indefinitely.
4760          */
4761         DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4762         power_domain = intel_display_port_aux_power_domain(&intel_dig_port->base);
4763         intel_display_power_get(dev_priv, power_domain);
4764
4765         edp_panel_vdd_schedule_off(intel_dp);
4766 }
4767
4768 void intel_dp_encoder_reset(struct drm_encoder *encoder)
4769 {
4770         struct drm_i915_private *dev_priv = to_i915(encoder->dev);
4771         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4772
4773         if (!HAS_DDI(dev_priv))
4774                 intel_dp->DP = I915_READ(intel_dp->output_reg);
4775
4776         if (to_intel_encoder(encoder)->type != INTEL_OUTPUT_EDP)
4777                 return;
4778
4779         pps_lock(intel_dp);
4780
4781         /* Reinit the power sequencer, in case BIOS did something with it. */
4782         intel_dp_pps_init(encoder->dev, intel_dp);
4783         intel_edp_panel_vdd_sanitize(intel_dp);
4784
4785         pps_unlock(intel_dp);
4786 }
4787
4788 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4789         .dpms = drm_atomic_helper_connector_dpms,
4790         .detect = intel_dp_detect,
4791         .force = intel_dp_force,
4792         .fill_modes = drm_helper_probe_single_connector_modes,
4793         .set_property = intel_dp_set_property,
4794         .atomic_get_property = intel_connector_atomic_get_property,
4795         .late_register = intel_dp_connector_register,
4796         .early_unregister = intel_dp_connector_unregister,
4797         .destroy = intel_dp_connector_destroy,
4798         .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
4799         .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
4800 };
4801
4802 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4803         .get_modes = intel_dp_get_modes,
4804         .mode_valid = intel_dp_mode_valid,
4805 };
4806
4807 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4808         .reset = intel_dp_encoder_reset,
4809         .destroy = intel_dp_encoder_destroy,
4810 };
4811
4812 enum irqreturn
4813 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4814 {
4815         struct intel_dp *intel_dp = &intel_dig_port->dp;
4816         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4817         struct drm_device *dev = intel_dig_port->base.base.dev;
4818         struct drm_i915_private *dev_priv = to_i915(dev);
4819         enum intel_display_power_domain power_domain;
4820         enum irqreturn ret = IRQ_NONE;
4821
4822         if (intel_dig_port->base.type != INTEL_OUTPUT_EDP &&
4823             intel_dig_port->base.type != INTEL_OUTPUT_HDMI)
4824                 intel_dig_port->base.type = INTEL_OUTPUT_DP;
4825
4826         if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
4827                 /*
4828                  * vdd off can generate a long pulse on eDP which
4829                  * would require vdd on to handle it, and thus we
4830                  * would end up in an endless cycle of
4831                  * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
4832                  */
4833                 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
4834                               port_name(intel_dig_port->port));
4835                 return IRQ_HANDLED;
4836         }
4837
4838         DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
4839                       port_name(intel_dig_port->port),
4840                       long_hpd ? "long" : "short");
4841
4842         if (long_hpd) {
4843                 intel_dp->detect_done = false;
4844                 return IRQ_NONE;
4845         }
4846
4847         power_domain = intel_display_port_aux_power_domain(intel_encoder);
4848         intel_display_power_get(dev_priv, power_domain);
4849
4850         if (intel_dp->is_mst) {
4851                 if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
4852                         /*
4853                          * If we were in MST mode, and device is not
4854                          * there, get out of MST mode
4855                          */
4856                         DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
4857                                       intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4858                         intel_dp->is_mst = false;
4859                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4860                                                         intel_dp->is_mst);
4861                         intel_dp->detect_done = false;
4862                         goto put_power;
4863                 }
4864         }
4865
4866         if (!intel_dp->is_mst) {
4867                 if (!intel_dp_short_pulse(intel_dp)) {
4868                         intel_dp->detect_done = false;
4869                         goto put_power;
4870                 }
4871         }
4872
4873         ret = IRQ_HANDLED;
4874
4875 put_power:
4876         intel_display_power_put(dev_priv, power_domain);
4877
4878         return ret;
4879 }
4880
4881 /* check the VBT to see whether the eDP is on another port */
4882 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
4883 {
4884         struct drm_i915_private *dev_priv = to_i915(dev);
4885
4886         /*
4887          * eDP not supported on g4x. so bail out early just
4888          * for a bit extra safety in case the VBT is bonkers.
4889          */
4890         if (INTEL_INFO(dev)->gen < 5)
4891                 return false;
4892
4893         if (port == PORT_A)
4894                 return true;
4895
4896         return intel_bios_is_port_edp(dev_priv, port);
4897 }
4898
4899 void
4900 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
4901 {
4902         struct intel_connector *intel_connector = to_intel_connector(connector);
4903
4904         intel_attach_force_audio_property(connector);
4905         intel_attach_broadcast_rgb_property(connector);
4906         intel_dp->color_range_auto = true;
4907
4908         if (is_edp(intel_dp)) {
4909                 drm_mode_create_scaling_mode_property(connector->dev);
4910                 drm_object_attach_property(
4911                         &connector->base,
4912                         connector->dev->mode_config.scaling_mode_property,
4913                         DRM_MODE_SCALE_ASPECT);
4914                 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
4915         }
4916 }
4917
4918 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
4919 {
4920         intel_dp->panel_power_off_time = ktime_get_boottime();
4921         intel_dp->last_power_on = jiffies;
4922         intel_dp->last_backlight_off = jiffies;
4923 }
4924
4925 static void
4926 intel_pps_readout_hw_state(struct drm_i915_private *dev_priv,
4927                            struct intel_dp *intel_dp, struct edp_power_seq *seq)
4928 {
4929         u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
4930         struct pps_registers regs;
4931
4932         intel_pps_get_registers(dev_priv, intel_dp, &regs);
4933
4934         /* Workaround: Need to write PP_CONTROL with the unlock key as
4935          * the very first thing. */
4936         pp_ctl = ironlake_get_pp_control(intel_dp);
4937
4938         pp_on = I915_READ(regs.pp_on);
4939         pp_off = I915_READ(regs.pp_off);
4940         if (!IS_BROXTON(dev_priv)) {
4941                 I915_WRITE(regs.pp_ctrl, pp_ctl);
4942                 pp_div = I915_READ(regs.pp_div);
4943         }
4944
4945         /* Pull timing values out of registers */
4946         seq->t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
4947                      PANEL_POWER_UP_DELAY_SHIFT;
4948
4949         seq->t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
4950                   PANEL_LIGHT_ON_DELAY_SHIFT;
4951
4952         seq->t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
4953                   PANEL_LIGHT_OFF_DELAY_SHIFT;
4954
4955         seq->t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
4956                    PANEL_POWER_DOWN_DELAY_SHIFT;
4957
4958         if (IS_BROXTON(dev_priv)) {
4959                 u16 tmp = (pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
4960                         BXT_POWER_CYCLE_DELAY_SHIFT;
4961                 if (tmp > 0)
4962                         seq->t11_t12 = (tmp - 1) * 1000;
4963                 else
4964                         seq->t11_t12 = 0;
4965         } else {
4966                 seq->t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
4967                        PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
4968         }
4969 }
4970
4971 static void
4972 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
4973 {
4974         DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4975                       state_name,
4976                       seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
4977 }
4978
4979 static void
4980 intel_pps_verify_state(struct drm_i915_private *dev_priv,
4981                        struct intel_dp *intel_dp)
4982 {
4983         struct edp_power_seq hw;
4984         struct edp_power_seq *sw = &intel_dp->pps_delays;
4985
4986         intel_pps_readout_hw_state(dev_priv, intel_dp, &hw);
4987
4988         if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
4989             hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
4990                 DRM_ERROR("PPS state mismatch\n");
4991                 intel_pps_dump_state("sw", sw);
4992                 intel_pps_dump_state("hw", &hw);
4993         }
4994 }
4995
4996 static void
4997 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
4998                                     struct intel_dp *intel_dp)
4999 {
5000         struct drm_i915_private *dev_priv = to_i915(dev);
5001         struct edp_power_seq cur, vbt, spec,
5002                 *final = &intel_dp->pps_delays;
5003
5004         lockdep_assert_held(&dev_priv->pps_mutex);
5005
5006         /* already initialized? */
5007         if (final->t11_t12 != 0)
5008                 return;
5009
5010         intel_pps_readout_hw_state(dev_priv, intel_dp, &cur);
5011
5012         intel_pps_dump_state("cur", &cur);
5013
5014         vbt = dev_priv->vbt.edp.pps;
5015
5016         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
5017          * our hw here, which are all in 100usec. */
5018         spec.t1_t3 = 210 * 10;
5019         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
5020         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
5021         spec.t10 = 500 * 10;
5022         /* This one is special and actually in units of 100ms, but zero
5023          * based in the hw (so we need to add 100 ms). But the sw vbt
5024          * table multiplies it with 1000 to make it in units of 100usec,
5025          * too. */
5026         spec.t11_t12 = (510 + 100) * 10;
5027
5028         intel_pps_dump_state("vbt", &vbt);
5029
5030         /* Use the max of the register settings and vbt. If both are
5031          * unset, fall back to the spec limits. */
5032 #define assign_final(field)     final->field = (max(cur.field, vbt.field) == 0 ? \
5033                                        spec.field : \
5034                                        max(cur.field, vbt.field))
5035         assign_final(t1_t3);
5036         assign_final(t8);
5037         assign_final(t9);
5038         assign_final(t10);
5039         assign_final(t11_t12);
5040 #undef assign_final
5041
5042 #define get_delay(field)        (DIV_ROUND_UP(final->field, 10))
5043         intel_dp->panel_power_up_delay = get_delay(t1_t3);
5044         intel_dp->backlight_on_delay = get_delay(t8);
5045         intel_dp->backlight_off_delay = get_delay(t9);
5046         intel_dp->panel_power_down_delay = get_delay(t10);
5047         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
5048 #undef get_delay
5049
5050         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
5051                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
5052                       intel_dp->panel_power_cycle_delay);
5053
5054         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
5055                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
5056
5057         /*
5058          * We override the HW backlight delays to 1 because we do manual waits
5059          * on them. For T8, even BSpec recommends doing it. For T9, if we
5060          * don't do this, we'll end up waiting for the backlight off delay
5061          * twice: once when we do the manual sleep, and once when we disable
5062          * the panel and wait for the PP_STATUS bit to become zero.
5063          */
5064         final->t8 = 1;
5065         final->t9 = 1;
5066
5067         /*
5068          * HW has only a 100msec granularity for t11_t12 so round it up
5069          * accordingly.
5070          */
5071         final->t11_t12 = roundup(final->t11_t12, 100 * 10);
5072 }
5073
5074 static void
5075 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
5076                                               struct intel_dp *intel_dp,
5077                                               bool force_disable_vdd)
5078 {
5079         struct drm_i915_private *dev_priv = to_i915(dev);
5080         u32 pp_on, pp_off, pp_div, port_sel = 0;
5081         int div = dev_priv->rawclk_freq / 1000;
5082         struct pps_registers regs;
5083         enum port port = dp_to_dig_port(intel_dp)->port;
5084         const struct edp_power_seq *seq = &intel_dp->pps_delays;
5085
5086         lockdep_assert_held(&dev_priv->pps_mutex);
5087
5088         intel_pps_get_registers(dev_priv, intel_dp, &regs);
5089
5090         /*
5091          * On some VLV machines the BIOS can leave the VDD
5092          * enabled even on power seqeuencers which aren't
5093          * hooked up to any port. This would mess up the
5094          * power domain tracking the first time we pick
5095          * one of these power sequencers for use since
5096          * edp_panel_vdd_on() would notice that the VDD was
5097          * already on and therefore wouldn't grab the power
5098          * domain reference. Disable VDD first to avoid this.
5099          * This also avoids spuriously turning the VDD on as
5100          * soon as the new power seqeuencer gets initialized.
5101          */
5102         if (force_disable_vdd) {
5103                 u32 pp = ironlake_get_pp_control(intel_dp);
5104
5105                 WARN(pp & PANEL_POWER_ON, "Panel power already on\n");
5106
5107                 if (pp & EDP_FORCE_VDD)
5108                         DRM_DEBUG_KMS("VDD already on, disabling first\n");
5109
5110                 pp &= ~EDP_FORCE_VDD;
5111
5112                 I915_WRITE(regs.pp_ctrl, pp);
5113         }
5114
5115         pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
5116                 (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
5117         pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
5118                  (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
5119         /* Compute the divisor for the pp clock, simply match the Bspec
5120          * formula. */
5121         if (IS_BROXTON(dev)) {
5122                 pp_div = I915_READ(regs.pp_ctrl);
5123                 pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
5124                 pp_div |= (DIV_ROUND_UP((seq->t11_t12 + 1), 1000)
5125                                 << BXT_POWER_CYCLE_DELAY_SHIFT);
5126         } else {
5127                 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
5128                 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5129                                 << PANEL_POWER_CYCLE_DELAY_SHIFT);
5130         }
5131
5132         /* Haswell doesn't have any port selection bits for the panel
5133          * power sequencer any more. */
5134         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5135                 port_sel = PANEL_PORT_SELECT_VLV(port);
5136         } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5137                 if (port == PORT_A)
5138                         port_sel = PANEL_PORT_SELECT_DPA;
5139                 else
5140                         port_sel = PANEL_PORT_SELECT_DPD;
5141         }
5142
5143         pp_on |= port_sel;
5144
5145         I915_WRITE(regs.pp_on, pp_on);
5146         I915_WRITE(regs.pp_off, pp_off);
5147         if (IS_BROXTON(dev))
5148                 I915_WRITE(regs.pp_ctrl, pp_div);
5149         else
5150                 I915_WRITE(regs.pp_div, pp_div);
5151
5152         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
5153                       I915_READ(regs.pp_on),
5154                       I915_READ(regs.pp_off),
5155                       IS_BROXTON(dev) ?
5156                       (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK) :
5157                       I915_READ(regs.pp_div));
5158 }
5159
5160 static void intel_dp_pps_init(struct drm_device *dev,
5161                               struct intel_dp *intel_dp)
5162 {
5163         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5164                 vlv_initial_power_sequencer_setup(intel_dp);
5165         } else {
5166                 intel_dp_init_panel_power_sequencer(dev, intel_dp);
5167                 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, false);
5168         }
5169 }
5170
5171 /**
5172  * intel_dp_set_drrs_state - program registers for RR switch to take effect
5173  * @dev_priv: i915 device
5174  * @crtc_state: a pointer to the active intel_crtc_state
5175  * @refresh_rate: RR to be programmed
5176  *
5177  * This function gets called when refresh rate (RR) has to be changed from
5178  * one frequency to another. Switches can be between high and low RR
5179  * supported by the panel or to any other RR based on media playback (in
5180  * this case, RR value needs to be passed from user space).
5181  *
5182  * The caller of this function needs to take a lock on dev_priv->drrs.
5183  */
5184 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
5185                                     struct intel_crtc_state *crtc_state,
5186                                     int refresh_rate)
5187 {
5188         struct intel_encoder *encoder;
5189         struct intel_digital_port *dig_port = NULL;
5190         struct intel_dp *intel_dp = dev_priv->drrs.dp;
5191         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
5192         enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
5193
5194         if (refresh_rate <= 0) {
5195                 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
5196                 return;
5197         }
5198
5199         if (intel_dp == NULL) {
5200                 DRM_DEBUG_KMS("DRRS not supported.\n");
5201                 return;
5202         }
5203
5204         /*
5205          * FIXME: This needs proper synchronization with psr state for some
5206          * platforms that cannot have PSR and DRRS enabled at the same time.
5207          */
5208
5209         dig_port = dp_to_dig_port(intel_dp);
5210         encoder = &dig_port->base;
5211         intel_crtc = to_intel_crtc(encoder->base.crtc);
5212
5213         if (!intel_crtc) {
5214                 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
5215                 return;
5216         }
5217
5218         if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
5219                 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
5220                 return;
5221         }
5222
5223         if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
5224                         refresh_rate)
5225                 index = DRRS_LOW_RR;
5226
5227         if (index == dev_priv->drrs.refresh_rate_type) {
5228                 DRM_DEBUG_KMS(
5229                         "DRRS requested for previously set RR...ignoring\n");
5230                 return;
5231         }
5232
5233         if (!crtc_state->base.active) {
5234                 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
5235                 return;
5236         }
5237
5238         if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
5239                 switch (index) {
5240                 case DRRS_HIGH_RR:
5241                         intel_dp_set_m_n(intel_crtc, M1_N1);
5242                         break;
5243                 case DRRS_LOW_RR:
5244                         intel_dp_set_m_n(intel_crtc, M2_N2);
5245                         break;
5246                 case DRRS_MAX_RR:
5247                 default:
5248                         DRM_ERROR("Unsupported refreshrate type\n");
5249                 }
5250         } else if (INTEL_GEN(dev_priv) > 6) {
5251                 i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
5252                 u32 val;
5253
5254                 val = I915_READ(reg);
5255                 if (index > DRRS_HIGH_RR) {
5256                         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5257                                 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5258                         else
5259                                 val |= PIPECONF_EDP_RR_MODE_SWITCH;
5260                 } else {
5261                         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5262                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5263                         else
5264                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5265                 }
5266                 I915_WRITE(reg, val);
5267         }
5268
5269         dev_priv->drrs.refresh_rate_type = index;
5270
5271         DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
5272 }
5273
5274 /**
5275  * intel_edp_drrs_enable - init drrs struct if supported
5276  * @intel_dp: DP struct
5277  * @crtc_state: A pointer to the active crtc state.
5278  *
5279  * Initializes frontbuffer_bits and drrs.dp
5280  */
5281 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
5282                            struct intel_crtc_state *crtc_state)
5283 {
5284         struct drm_device *dev = intel_dp_to_dev(intel_dp);
5285         struct drm_i915_private *dev_priv = to_i915(dev);
5286
5287         if (!crtc_state->has_drrs) {
5288                 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
5289                 return;
5290         }
5291
5292         mutex_lock(&dev_priv->drrs.mutex);
5293         if (WARN_ON(dev_priv->drrs.dp)) {
5294                 DRM_ERROR("DRRS already enabled\n");
5295                 goto unlock;
5296         }
5297
5298         dev_priv->drrs.busy_frontbuffer_bits = 0;
5299
5300         dev_priv->drrs.dp = intel_dp;
5301
5302 unlock:
5303         mutex_unlock(&dev_priv->drrs.mutex);
5304 }
5305
5306 /**
5307  * intel_edp_drrs_disable - Disable DRRS
5308  * @intel_dp: DP struct
5309  * @old_crtc_state: Pointer to old crtc_state.
5310  *
5311  */
5312 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
5313                             struct intel_crtc_state *old_crtc_state)
5314 {
5315         struct drm_device *dev = intel_dp_to_dev(intel_dp);
5316         struct drm_i915_private *dev_priv = to_i915(dev);
5317
5318         if (!old_crtc_state->has_drrs)
5319                 return;
5320
5321         mutex_lock(&dev_priv->drrs.mutex);
5322         if (!dev_priv->drrs.dp) {
5323                 mutex_unlock(&dev_priv->drrs.mutex);
5324                 return;
5325         }
5326
5327         if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5328                 intel_dp_set_drrs_state(dev_priv, old_crtc_state,
5329                         intel_dp->attached_connector->panel.fixed_mode->vrefresh);
5330
5331         dev_priv->drrs.dp = NULL;
5332         mutex_unlock(&dev_priv->drrs.mutex);
5333
5334         cancel_delayed_work_sync(&dev_priv->drrs.work);
5335 }
5336
5337 static void intel_edp_drrs_downclock_work(struct work_struct *work)
5338 {
5339         struct drm_i915_private *dev_priv =
5340                 container_of(work, typeof(*dev_priv), drrs.work.work);
5341         struct intel_dp *intel_dp;
5342
5343         mutex_lock(&dev_priv->drrs.mutex);
5344
5345         intel_dp = dev_priv->drrs.dp;
5346
5347         if (!intel_dp)
5348                 goto unlock;
5349
5350         /*
5351          * The delayed work can race with an invalidate hence we need to
5352          * recheck.
5353          */
5354
5355         if (dev_priv->drrs.busy_frontbuffer_bits)
5356                 goto unlock;
5357
5358         if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
5359                 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
5360
5361                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5362                         intel_dp->attached_connector->panel.downclock_mode->vrefresh);
5363         }
5364
5365 unlock:
5366         mutex_unlock(&dev_priv->drrs.mutex);
5367 }
5368
5369 /**
5370  * intel_edp_drrs_invalidate - Disable Idleness DRRS
5371  * @dev_priv: i915 device
5372  * @frontbuffer_bits: frontbuffer plane tracking bits
5373  *
5374  * This function gets called everytime rendering on the given planes start.
5375  * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
5376  *
5377  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5378  */
5379 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
5380                                unsigned int frontbuffer_bits)
5381 {
5382         struct drm_crtc *crtc;
5383         enum pipe pipe;
5384
5385         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5386                 return;
5387
5388         cancel_delayed_work(&dev_priv->drrs.work);
5389
5390         mutex_lock(&dev_priv->drrs.mutex);
5391         if (!dev_priv->drrs.dp) {
5392                 mutex_unlock(&dev_priv->drrs.mutex);
5393                 return;
5394         }
5395
5396         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5397         pipe = to_intel_crtc(crtc)->pipe;
5398
5399         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5400         dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
5401
5402         /* invalidate means busy screen hence upclock */
5403         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5404                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5405                         dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
5406
5407         mutex_unlock(&dev_priv->drrs.mutex);
5408 }
5409
5410 /**
5411  * intel_edp_drrs_flush - Restart Idleness DRRS
5412  * @dev_priv: i915 device
5413  * @frontbuffer_bits: frontbuffer plane tracking bits
5414  *
5415  * This function gets called every time rendering on the given planes has
5416  * completed or flip on a crtc is completed. So DRRS should be upclocked
5417  * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
5418  * if no other planes are dirty.
5419  *
5420  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5421  */
5422 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
5423                           unsigned int frontbuffer_bits)
5424 {
5425         struct drm_crtc *crtc;
5426         enum pipe pipe;
5427
5428         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5429                 return;
5430
5431         cancel_delayed_work(&dev_priv->drrs.work);
5432
5433         mutex_lock(&dev_priv->drrs.mutex);
5434         if (!dev_priv->drrs.dp) {
5435                 mutex_unlock(&dev_priv->drrs.mutex);
5436                 return;
5437         }
5438
5439         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5440         pipe = to_intel_crtc(crtc)->pipe;
5441
5442         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5443         dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
5444
5445         /* flush means busy screen hence upclock */
5446         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5447                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5448                                 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
5449
5450         /*
5451          * flush also means no more activity hence schedule downclock, if all
5452          * other fbs are quiescent too
5453          */
5454         if (!dev_priv->drrs.busy_frontbuffer_bits)
5455                 schedule_delayed_work(&dev_priv->drrs.work,
5456                                 msecs_to_jiffies(1000));
5457         mutex_unlock(&dev_priv->drrs.mutex);
5458 }
5459
5460 /**
5461  * DOC: Display Refresh Rate Switching (DRRS)
5462  *
5463  * Display Refresh Rate Switching (DRRS) is a power conservation feature
5464  * which enables swtching between low and high refresh rates,
5465  * dynamically, based on the usage scenario. This feature is applicable
5466  * for internal panels.
5467  *
5468  * Indication that the panel supports DRRS is given by the panel EDID, which
5469  * would list multiple refresh rates for one resolution.
5470  *
5471  * DRRS is of 2 types - static and seamless.
5472  * Static DRRS involves changing refresh rate (RR) by doing a full modeset
5473  * (may appear as a blink on screen) and is used in dock-undock scenario.
5474  * Seamless DRRS involves changing RR without any visual effect to the user
5475  * and can be used during normal system usage. This is done by programming
5476  * certain registers.
5477  *
5478  * Support for static/seamless DRRS may be indicated in the VBT based on
5479  * inputs from the panel spec.
5480  *
5481  * DRRS saves power by switching to low RR based on usage scenarios.
5482  *
5483  * The implementation is based on frontbuffer tracking implementation.  When
5484  * there is a disturbance on the screen triggered by user activity or a periodic
5485  * system activity, DRRS is disabled (RR is changed to high RR).  When there is
5486  * no movement on screen, after a timeout of 1 second, a switch to low RR is
5487  * made.
5488  *
5489  * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
5490  * and intel_edp_drrs_flush() are called.
5491  *
5492  * DRRS can be further extended to support other internal panels and also
5493  * the scenario of video playback wherein RR is set based on the rate
5494  * requested by userspace.
5495  */
5496
5497 /**
5498  * intel_dp_drrs_init - Init basic DRRS work and mutex.
5499  * @intel_connector: eDP connector
5500  * @fixed_mode: preferred mode of panel
5501  *
5502  * This function is  called only once at driver load to initialize basic
5503  * DRRS stuff.
5504  *
5505  * Returns:
5506  * Downclock mode if panel supports it, else return NULL.
5507  * DRRS support is determined by the presence of downclock mode (apart
5508  * from VBT setting).
5509  */
5510 static struct drm_display_mode *
5511 intel_dp_drrs_init(struct intel_connector *intel_connector,
5512                 struct drm_display_mode *fixed_mode)
5513 {
5514         struct drm_connector *connector = &intel_connector->base;
5515         struct drm_device *dev = connector->dev;
5516         struct drm_i915_private *dev_priv = to_i915(dev);
5517         struct drm_display_mode *downclock_mode = NULL;
5518
5519         INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
5520         mutex_init(&dev_priv->drrs.mutex);
5521
5522         if (INTEL_INFO(dev)->gen <= 6) {
5523                 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5524                 return NULL;
5525         }
5526
5527         if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5528                 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5529                 return NULL;
5530         }
5531
5532         downclock_mode = intel_find_panel_downclock
5533                                         (dev, fixed_mode, connector);
5534
5535         if (!downclock_mode) {
5536                 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
5537                 return NULL;
5538         }
5539
5540         dev_priv->drrs.type = dev_priv->vbt.drrs_type;
5541
5542         dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
5543         DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5544         return downclock_mode;
5545 }
5546
5547 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5548                                      struct intel_connector *intel_connector)
5549 {
5550         struct drm_connector *connector = &intel_connector->base;
5551         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5552         struct intel_encoder *intel_encoder = &intel_dig_port->base;
5553         struct drm_device *dev = intel_encoder->base.dev;
5554         struct drm_i915_private *dev_priv = to_i915(dev);
5555         struct drm_display_mode *fixed_mode = NULL;
5556         struct drm_display_mode *downclock_mode = NULL;
5557         bool has_dpcd;
5558         struct drm_display_mode *scan;
5559         struct edid *edid;
5560         enum pipe pipe = INVALID_PIPE;
5561
5562         if (!is_edp(intel_dp))
5563                 return true;
5564
5565         /*
5566          * On IBX/CPT we may get here with LVDS already registered. Since the
5567          * driver uses the only internal power sequencer available for both
5568          * eDP and LVDS bail out early in this case to prevent interfering
5569          * with an already powered-on LVDS power sequencer.
5570          */
5571         if (intel_get_lvds_encoder(dev)) {
5572                 WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
5573                 DRM_INFO("LVDS was detected, not registering eDP\n");
5574
5575                 return false;
5576         }
5577
5578         pps_lock(intel_dp);
5579
5580         intel_dp_init_panel_power_timestamps(intel_dp);
5581         intel_dp_pps_init(dev, intel_dp);
5582         intel_edp_panel_vdd_sanitize(intel_dp);
5583
5584         pps_unlock(intel_dp);
5585
5586         /* Cache DPCD and EDID for edp. */
5587         has_dpcd = intel_edp_init_dpcd(intel_dp);
5588
5589         if (!has_dpcd) {
5590                 /* if this fails, presume the device is a ghost */
5591                 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5592                 goto out_vdd_off;
5593         }
5594
5595         mutex_lock(&dev->mode_config.mutex);
5596         edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5597         if (edid) {
5598                 if (drm_add_edid_modes(connector, edid)) {
5599                         drm_mode_connector_update_edid_property(connector,
5600                                                                 edid);
5601                         drm_edid_to_eld(connector, edid);
5602                 } else {
5603                         kfree(edid);
5604                         edid = ERR_PTR(-EINVAL);
5605                 }
5606         } else {
5607                 edid = ERR_PTR(-ENOENT);
5608         }
5609         intel_connector->edid = edid;
5610
5611         /* prefer fixed mode from EDID if available */
5612         list_for_each_entry(scan, &connector->probed_modes, head) {
5613                 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5614                         fixed_mode = drm_mode_duplicate(dev, scan);
5615                         downclock_mode = intel_dp_drrs_init(
5616                                                 intel_connector, fixed_mode);
5617                         break;
5618                 }
5619         }
5620
5621         /* fallback to VBT if available for eDP */
5622         if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5623                 fixed_mode = drm_mode_duplicate(dev,
5624                                         dev_priv->vbt.lfp_lvds_vbt_mode);
5625                 if (fixed_mode) {
5626                         fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5627                         connector->display_info.width_mm = fixed_mode->width_mm;
5628                         connector->display_info.height_mm = fixed_mode->height_mm;
5629                 }
5630         }
5631         mutex_unlock(&dev->mode_config.mutex);
5632
5633         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5634                 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5635                 register_reboot_notifier(&intel_dp->edp_notifier);
5636
5637                 /*
5638                  * Figure out the current pipe for the initial backlight setup.
5639                  * If the current pipe isn't valid, try the PPS pipe, and if that
5640                  * fails just assume pipe A.
5641                  */
5642                 if (IS_CHERRYVIEW(dev))
5643                         pipe = DP_PORT_TO_PIPE_CHV(intel_dp->DP);
5644                 else
5645                         pipe = PORT_TO_PIPE(intel_dp->DP);
5646
5647                 if (pipe != PIPE_A && pipe != PIPE_B)
5648                         pipe = intel_dp->pps_pipe;
5649
5650                 if (pipe != PIPE_A && pipe != PIPE_B)
5651                         pipe = PIPE_A;
5652
5653                 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
5654                               pipe_name(pipe));
5655         }
5656
5657         intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5658         intel_connector->panel.backlight.power = intel_edp_backlight_power;
5659         intel_panel_setup_backlight(connector, pipe);
5660
5661         return true;
5662
5663 out_vdd_off:
5664         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5665         /*
5666          * vdd might still be enabled do to the delayed vdd off.
5667          * Make sure vdd is actually turned off here.
5668          */
5669         pps_lock(intel_dp);
5670         edp_panel_vdd_off_sync(intel_dp);
5671         pps_unlock(intel_dp);
5672
5673         return false;
5674 }
5675
5676 bool
5677 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5678                         struct intel_connector *intel_connector)
5679 {
5680         struct drm_connector *connector = &intel_connector->base;
5681         struct intel_dp *intel_dp = &intel_dig_port->dp;
5682         struct intel_encoder *intel_encoder = &intel_dig_port->base;
5683         struct drm_device *dev = intel_encoder->base.dev;
5684         struct drm_i915_private *dev_priv = to_i915(dev);
5685         enum port port = intel_dig_port->port;
5686         int type;
5687
5688         if (WARN(intel_dig_port->max_lanes < 1,
5689                  "Not enough lanes (%d) for DP on port %c\n",
5690                  intel_dig_port->max_lanes, port_name(port)))
5691                 return false;
5692
5693         intel_dp->pps_pipe = INVALID_PIPE;
5694
5695         /* intel_dp vfuncs */
5696         if (INTEL_INFO(dev)->gen >= 9)
5697                 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
5698         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
5699                 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5700         else if (HAS_PCH_SPLIT(dev))
5701                 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5702         else
5703                 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
5704
5705         if (INTEL_INFO(dev)->gen >= 9)
5706                 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
5707         else
5708                 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
5709
5710         if (HAS_DDI(dev))
5711                 intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;
5712
5713         /* Preserve the current hw state. */
5714         intel_dp->DP = I915_READ(intel_dp->output_reg);
5715         intel_dp->attached_connector = intel_connector;
5716
5717         if (intel_dp_is_edp(dev, port))
5718                 type = DRM_MODE_CONNECTOR_eDP;
5719         else
5720                 type = DRM_MODE_CONNECTOR_DisplayPort;
5721
5722         /*
5723          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5724          * for DP the encoder type can be set by the caller to
5725          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5726          */
5727         if (type == DRM_MODE_CONNECTOR_eDP)
5728                 intel_encoder->type = INTEL_OUTPUT_EDP;
5729
5730         /* eDP only on port B and/or C on vlv/chv */
5731         if (WARN_ON((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
5732                     is_edp(intel_dp) && port != PORT_B && port != PORT_C))
5733                 return false;
5734
5735         DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5736                         type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5737                         port_name(port));
5738
5739         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5740         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5741
5742         connector->interlace_allowed = true;
5743         connector->doublescan_allowed = 0;
5744
5745         intel_dp_aux_init(intel_dp);
5746
5747         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5748                           edp_panel_vdd_work);
5749
5750         intel_connector_attach_encoder(intel_connector, intel_encoder);
5751
5752         if (HAS_DDI(dev))
5753                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5754         else
5755                 intel_connector->get_hw_state = intel_connector_get_hw_state;
5756
5757         /* Set up the hotplug pin. */
5758         switch (port) {
5759         case PORT_A:
5760                 intel_encoder->hpd_pin = HPD_PORT_A;
5761                 break;
5762         case PORT_B:
5763                 intel_encoder->hpd_pin = HPD_PORT_B;
5764                 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
5765                         intel_encoder->hpd_pin = HPD_PORT_A;
5766                 break;
5767         case PORT_C:
5768                 intel_encoder->hpd_pin = HPD_PORT_C;
5769                 break;
5770         case PORT_D:
5771                 intel_encoder->hpd_pin = HPD_PORT_D;
5772                 break;
5773         case PORT_E:
5774                 intel_encoder->hpd_pin = HPD_PORT_E;
5775                 break;
5776         default:
5777                 BUG();
5778         }
5779
5780         /* init MST on ports that can support it */
5781         if (HAS_DP_MST(dev) && !is_edp(intel_dp) &&
5782             (port == PORT_B || port == PORT_C || port == PORT_D))
5783                 intel_dp_mst_encoder_init(intel_dig_port,
5784                                           intel_connector->base.base.id);
5785
5786         if (!intel_edp_init_connector(intel_dp, intel_connector)) {
5787                 intel_dp_aux_fini(intel_dp);
5788                 intel_dp_mst_encoder_cleanup(intel_dig_port);
5789                 goto fail;
5790         }
5791
5792         intel_dp_add_properties(intel_dp, connector);
5793
5794         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
5795          * 0xd.  Failure to do so will result in spurious interrupts being
5796          * generated on the port when a cable is not attached.
5797          */
5798         if (IS_G4X(dev) && !IS_GM45(dev)) {
5799                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
5800                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
5801         }
5802
5803         return true;
5804
5805 fail:
5806         drm_connector_cleanup(connector);
5807
5808         return false;
5809 }
5810
5811 bool intel_dp_init(struct drm_device *dev,
5812                    i915_reg_t output_reg,
5813                    enum port port)
5814 {
5815         struct drm_i915_private *dev_priv = to_i915(dev);
5816         struct intel_digital_port *intel_dig_port;
5817         struct intel_encoder *intel_encoder;
5818         struct drm_encoder *encoder;
5819         struct intel_connector *intel_connector;
5820
5821         intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
5822         if (!intel_dig_port)
5823                 return false;
5824
5825         intel_connector = intel_connector_alloc();
5826         if (!intel_connector)
5827                 goto err_connector_alloc;
5828
5829         intel_encoder = &intel_dig_port->base;
5830         encoder = &intel_encoder->base;
5831
5832         if (drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
5833                              DRM_MODE_ENCODER_TMDS, "DP %c", port_name(port)))
5834                 goto err_encoder_init;
5835
5836         intel_encoder->compute_config = intel_dp_compute_config;
5837         intel_encoder->disable = intel_disable_dp;
5838         intel_encoder->get_hw_state = intel_dp_get_hw_state;
5839         intel_encoder->get_config = intel_dp_get_config;
5840         intel_encoder->suspend = intel_dp_encoder_suspend;
5841         if (IS_CHERRYVIEW(dev)) {
5842                 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
5843                 intel_encoder->pre_enable = chv_pre_enable_dp;
5844                 intel_encoder->enable = vlv_enable_dp;
5845                 intel_encoder->post_disable = chv_post_disable_dp;
5846                 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
5847         } else if (IS_VALLEYVIEW(dev)) {
5848                 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
5849                 intel_encoder->pre_enable = vlv_pre_enable_dp;
5850                 intel_encoder->enable = vlv_enable_dp;
5851                 intel_encoder->post_disable = vlv_post_disable_dp;
5852         } else {
5853                 intel_encoder->pre_enable = g4x_pre_enable_dp;
5854                 intel_encoder->enable = g4x_enable_dp;
5855                 if (INTEL_INFO(dev)->gen >= 5)
5856                         intel_encoder->post_disable = ilk_post_disable_dp;
5857         }
5858
5859         intel_dig_port->port = port;
5860         intel_dig_port->dp.output_reg = output_reg;
5861         intel_dig_port->max_lanes = 4;
5862
5863         intel_encoder->type = INTEL_OUTPUT_DP;
5864         if (IS_CHERRYVIEW(dev)) {
5865                 if (port == PORT_D)
5866                         intel_encoder->crtc_mask = 1 << 2;
5867                 else
5868                         intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
5869         } else {
5870                 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
5871         }
5872         intel_encoder->cloneable = 0;
5873
5874         intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
5875         dev_priv->hotplug.irq_port[port] = intel_dig_port;
5876
5877         if (!intel_dp_init_connector(intel_dig_port, intel_connector))
5878                 goto err_init_connector;
5879
5880         return true;
5881
5882 err_init_connector:
5883         drm_encoder_cleanup(encoder);
5884 err_encoder_init:
5885         kfree(intel_connector);
5886 err_connector_alloc:
5887         kfree(intel_dig_port);
5888         return false;
5889 }
5890
5891 void intel_dp_mst_suspend(struct drm_device *dev)
5892 {
5893         struct drm_i915_private *dev_priv = to_i915(dev);
5894         int i;
5895
5896         /* disable MST */
5897         for (i = 0; i < I915_MAX_PORTS; i++) {
5898                 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
5899
5900                 if (!intel_dig_port || !intel_dig_port->dp.can_mst)
5901                         continue;
5902
5903                 if (intel_dig_port->dp.is_mst)
5904                         drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
5905         }
5906 }
5907
5908 void intel_dp_mst_resume(struct drm_device *dev)
5909 {
5910         struct drm_i915_private *dev_priv = to_i915(dev);
5911         int i;
5912
5913         for (i = 0; i < I915_MAX_PORTS; i++) {
5914                 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
5915                 int ret;
5916
5917                 if (!intel_dig_port || !intel_dig_port->dp.can_mst)
5918                         continue;
5919
5920                 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
5921                 if (ret)
5922                         intel_dp_check_mst_status(&intel_dig_port->dp);
5923         }
5924 }