GNU Linux-libre 4.19.245-gnu1
[releases.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49         [HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53         [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57         [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61         [HPD_CRT] = SDE_CRT_HOTPLUG,
62         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65         [HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77         [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81         [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113         [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114         [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115         [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117
118 static const u32 hpd_gen11[HPD_NUM_PINS] = {
119         [HPD_PORT_C] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
120         [HPD_PORT_D] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
121         [HPD_PORT_E] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
122         [HPD_PORT_F] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG
123 };
124
125 static const u32 hpd_icp[HPD_NUM_PINS] = {
126         [HPD_PORT_A] = SDE_DDIA_HOTPLUG_ICP,
127         [HPD_PORT_B] = SDE_DDIB_HOTPLUG_ICP,
128         [HPD_PORT_C] = SDE_TC1_HOTPLUG_ICP,
129         [HPD_PORT_D] = SDE_TC2_HOTPLUG_ICP,
130         [HPD_PORT_E] = SDE_TC3_HOTPLUG_ICP,
131         [HPD_PORT_F] = SDE_TC4_HOTPLUG_ICP
132 };
133
134 /* IIR can theoretically queue up two events. Be paranoid. */
135 #define GEN8_IRQ_RESET_NDX(type, which) do { \
136         I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
137         POSTING_READ(GEN8_##type##_IMR(which)); \
138         I915_WRITE(GEN8_##type##_IER(which), 0); \
139         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
140         POSTING_READ(GEN8_##type##_IIR(which)); \
141         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
142         POSTING_READ(GEN8_##type##_IIR(which)); \
143 } while (0)
144
145 #define GEN3_IRQ_RESET(type) do { \
146         I915_WRITE(type##IMR, 0xffffffff); \
147         POSTING_READ(type##IMR); \
148         I915_WRITE(type##IER, 0); \
149         I915_WRITE(type##IIR, 0xffffffff); \
150         POSTING_READ(type##IIR); \
151         I915_WRITE(type##IIR, 0xffffffff); \
152         POSTING_READ(type##IIR); \
153 } while (0)
154
155 #define GEN2_IRQ_RESET(type) do { \
156         I915_WRITE16(type##IMR, 0xffff); \
157         POSTING_READ16(type##IMR); \
158         I915_WRITE16(type##IER, 0); \
159         I915_WRITE16(type##IIR, 0xffff); \
160         POSTING_READ16(type##IIR); \
161         I915_WRITE16(type##IIR, 0xffff); \
162         POSTING_READ16(type##IIR); \
163 } while (0)
164
165 /*
166  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
167  */
168 static void gen3_assert_iir_is_zero(struct drm_i915_private *dev_priv,
169                                     i915_reg_t reg)
170 {
171         u32 val = I915_READ(reg);
172
173         if (val == 0)
174                 return;
175
176         WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
177              i915_mmio_reg_offset(reg), val);
178         I915_WRITE(reg, 0xffffffff);
179         POSTING_READ(reg);
180         I915_WRITE(reg, 0xffffffff);
181         POSTING_READ(reg);
182 }
183
184 static void gen2_assert_iir_is_zero(struct drm_i915_private *dev_priv,
185                                     i915_reg_t reg)
186 {
187         u16 val = I915_READ16(reg);
188
189         if (val == 0)
190                 return;
191
192         WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
193              i915_mmio_reg_offset(reg), val);
194         I915_WRITE16(reg, 0xffff);
195         POSTING_READ16(reg);
196         I915_WRITE16(reg, 0xffff);
197         POSTING_READ16(reg);
198 }
199
200 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
201         gen3_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
202         I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
203         I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
204         POSTING_READ(GEN8_##type##_IMR(which)); \
205 } while (0)
206
207 #define GEN3_IRQ_INIT(type, imr_val, ier_val) do { \
208         gen3_assert_iir_is_zero(dev_priv, type##IIR); \
209         I915_WRITE(type##IER, (ier_val)); \
210         I915_WRITE(type##IMR, (imr_val)); \
211         POSTING_READ(type##IMR); \
212 } while (0)
213
214 #define GEN2_IRQ_INIT(type, imr_val, ier_val) do { \
215         gen2_assert_iir_is_zero(dev_priv, type##IIR); \
216         I915_WRITE16(type##IER, (ier_val)); \
217         I915_WRITE16(type##IMR, (imr_val)); \
218         POSTING_READ16(type##IMR); \
219 } while (0)
220
221 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
222 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
223
224 /* For display hotplug interrupt */
225 static inline void
226 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
227                                      uint32_t mask,
228                                      uint32_t bits)
229 {
230         uint32_t val;
231
232         lockdep_assert_held(&dev_priv->irq_lock);
233         WARN_ON(bits & ~mask);
234
235         val = I915_READ(PORT_HOTPLUG_EN);
236         val &= ~mask;
237         val |= bits;
238         I915_WRITE(PORT_HOTPLUG_EN, val);
239 }
240
241 /**
242  * i915_hotplug_interrupt_update - update hotplug interrupt enable
243  * @dev_priv: driver private
244  * @mask: bits to update
245  * @bits: bits to enable
246  * NOTE: the HPD enable bits are modified both inside and outside
247  * of an interrupt context. To avoid that read-modify-write cycles
248  * interfer, these bits are protected by a spinlock. Since this
249  * function is usually not called from a context where the lock is
250  * held already, this function acquires the lock itself. A non-locking
251  * version is also available.
252  */
253 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
254                                    uint32_t mask,
255                                    uint32_t bits)
256 {
257         spin_lock_irq(&dev_priv->irq_lock);
258         i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
259         spin_unlock_irq(&dev_priv->irq_lock);
260 }
261
262 static u32
263 gen11_gt_engine_identity(struct drm_i915_private * const i915,
264                          const unsigned int bank, const unsigned int bit);
265
266 static bool gen11_reset_one_iir(struct drm_i915_private * const i915,
267                                 const unsigned int bank,
268                                 const unsigned int bit)
269 {
270         void __iomem * const regs = i915->regs;
271         u32 dw;
272
273         lockdep_assert_held(&i915->irq_lock);
274
275         dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank));
276         if (dw & BIT(bit)) {
277                 /*
278                  * According to the BSpec, DW_IIR bits cannot be cleared without
279                  * first servicing the Selector & Shared IIR registers.
280                  */
281                 gen11_gt_engine_identity(i915, bank, bit);
282
283                 /*
284                  * We locked GT INT DW by reading it. If we want to (try
285                  * to) recover from this succesfully, we need to clear
286                  * our bit, otherwise we are locking the register for
287                  * everybody.
288                  */
289                 raw_reg_write(regs, GEN11_GT_INTR_DW(bank), BIT(bit));
290
291                 return true;
292         }
293
294         return false;
295 }
296
297 /**
298  * ilk_update_display_irq - update DEIMR
299  * @dev_priv: driver private
300  * @interrupt_mask: mask of interrupt bits to update
301  * @enabled_irq_mask: mask of interrupt bits to enable
302  */
303 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
304                             uint32_t interrupt_mask,
305                             uint32_t enabled_irq_mask)
306 {
307         uint32_t new_val;
308
309         lockdep_assert_held(&dev_priv->irq_lock);
310
311         WARN_ON(enabled_irq_mask & ~interrupt_mask);
312
313         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
314                 return;
315
316         new_val = dev_priv->irq_mask;
317         new_val &= ~interrupt_mask;
318         new_val |= (~enabled_irq_mask & interrupt_mask);
319
320         if (new_val != dev_priv->irq_mask) {
321                 dev_priv->irq_mask = new_val;
322                 I915_WRITE(DEIMR, dev_priv->irq_mask);
323                 POSTING_READ(DEIMR);
324         }
325 }
326
327 /**
328  * ilk_update_gt_irq - update GTIMR
329  * @dev_priv: driver private
330  * @interrupt_mask: mask of interrupt bits to update
331  * @enabled_irq_mask: mask of interrupt bits to enable
332  */
333 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
334                               uint32_t interrupt_mask,
335                               uint32_t enabled_irq_mask)
336 {
337         lockdep_assert_held(&dev_priv->irq_lock);
338
339         WARN_ON(enabled_irq_mask & ~interrupt_mask);
340
341         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
342                 return;
343
344         dev_priv->gt_irq_mask &= ~interrupt_mask;
345         dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
346         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
347 }
348
349 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
350 {
351         ilk_update_gt_irq(dev_priv, mask, mask);
352         POSTING_READ_FW(GTIMR);
353 }
354
355 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
356 {
357         ilk_update_gt_irq(dev_priv, mask, 0);
358 }
359
360 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
361 {
362         WARN_ON_ONCE(INTEL_GEN(dev_priv) >= 11);
363
364         return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
365 }
366
367 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
368 {
369         if (INTEL_GEN(dev_priv) >= 11)
370                 return GEN11_GPM_WGBOXPERF_INTR_MASK;
371         else if (INTEL_GEN(dev_priv) >= 8)
372                 return GEN8_GT_IMR(2);
373         else
374                 return GEN6_PMIMR;
375 }
376
377 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
378 {
379         if (INTEL_GEN(dev_priv) >= 11)
380                 return GEN11_GPM_WGBOXPERF_INTR_ENABLE;
381         else if (INTEL_GEN(dev_priv) >= 8)
382                 return GEN8_GT_IER(2);
383         else
384                 return GEN6_PMIER;
385 }
386
387 /**
388  * snb_update_pm_irq - update GEN6_PMIMR
389  * @dev_priv: driver private
390  * @interrupt_mask: mask of interrupt bits to update
391  * @enabled_irq_mask: mask of interrupt bits to enable
392  */
393 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
394                               uint32_t interrupt_mask,
395                               uint32_t enabled_irq_mask)
396 {
397         uint32_t new_val;
398
399         WARN_ON(enabled_irq_mask & ~interrupt_mask);
400
401         lockdep_assert_held(&dev_priv->irq_lock);
402
403         new_val = dev_priv->pm_imr;
404         new_val &= ~interrupt_mask;
405         new_val |= (~enabled_irq_mask & interrupt_mask);
406
407         if (new_val != dev_priv->pm_imr) {
408                 dev_priv->pm_imr = new_val;
409                 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_imr);
410                 POSTING_READ(gen6_pm_imr(dev_priv));
411         }
412 }
413
414 void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
415 {
416         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
417                 return;
418
419         snb_update_pm_irq(dev_priv, mask, mask);
420 }
421
422 static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
423 {
424         snb_update_pm_irq(dev_priv, mask, 0);
425 }
426
427 void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
428 {
429         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
430                 return;
431
432         __gen6_mask_pm_irq(dev_priv, mask);
433 }
434
435 static void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask)
436 {
437         i915_reg_t reg = gen6_pm_iir(dev_priv);
438
439         lockdep_assert_held(&dev_priv->irq_lock);
440
441         I915_WRITE(reg, reset_mask);
442         I915_WRITE(reg, reset_mask);
443         POSTING_READ(reg);
444 }
445
446 static void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask)
447 {
448         lockdep_assert_held(&dev_priv->irq_lock);
449
450         dev_priv->pm_ier |= enable_mask;
451         I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
452         gen6_unmask_pm_irq(dev_priv, enable_mask);
453         /* unmask_pm_irq provides an implicit barrier (POSTING_READ) */
454 }
455
456 static void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask)
457 {
458         lockdep_assert_held(&dev_priv->irq_lock);
459
460         dev_priv->pm_ier &= ~disable_mask;
461         __gen6_mask_pm_irq(dev_priv, disable_mask);
462         I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
463         /* though a barrier is missing here, but don't really need a one */
464 }
465
466 void gen11_reset_rps_interrupts(struct drm_i915_private *dev_priv)
467 {
468         spin_lock_irq(&dev_priv->irq_lock);
469
470         while (gen11_reset_one_iir(dev_priv, 0, GEN11_GTPM))
471                 ;
472
473         dev_priv->gt_pm.rps.pm_iir = 0;
474
475         spin_unlock_irq(&dev_priv->irq_lock);
476 }
477
478 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
479 {
480         spin_lock_irq(&dev_priv->irq_lock);
481         gen6_reset_pm_iir(dev_priv, dev_priv->pm_rps_events);
482         dev_priv->gt_pm.rps.pm_iir = 0;
483         spin_unlock_irq(&dev_priv->irq_lock);
484 }
485
486 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
487 {
488         struct intel_rps *rps = &dev_priv->gt_pm.rps;
489
490         if (READ_ONCE(rps->interrupts_enabled))
491                 return;
492
493         spin_lock_irq(&dev_priv->irq_lock);
494         WARN_ON_ONCE(rps->pm_iir);
495
496         if (INTEL_GEN(dev_priv) >= 11)
497                 WARN_ON_ONCE(gen11_reset_one_iir(dev_priv, 0, GEN11_GTPM));
498         else
499                 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
500
501         rps->interrupts_enabled = true;
502         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
503
504         spin_unlock_irq(&dev_priv->irq_lock);
505 }
506
507 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
508 {
509         struct intel_rps *rps = &dev_priv->gt_pm.rps;
510
511         if (!READ_ONCE(rps->interrupts_enabled))
512                 return;
513
514         spin_lock_irq(&dev_priv->irq_lock);
515         rps->interrupts_enabled = false;
516
517         I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
518
519         gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
520
521         spin_unlock_irq(&dev_priv->irq_lock);
522         synchronize_irq(dev_priv->drm.irq);
523
524         /* Now that we will not be generating any more work, flush any
525          * outstanding tasks. As we are called on the RPS idle path,
526          * we will reset the GPU to minimum frequencies, so the current
527          * state of the worker can be discarded.
528          */
529         cancel_work_sync(&rps->work);
530         if (INTEL_GEN(dev_priv) >= 11)
531                 gen11_reset_rps_interrupts(dev_priv);
532         else
533                 gen6_reset_rps_interrupts(dev_priv);
534 }
535
536 void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv)
537 {
538         assert_rpm_wakelock_held(dev_priv);
539
540         spin_lock_irq(&dev_priv->irq_lock);
541         gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events);
542         spin_unlock_irq(&dev_priv->irq_lock);
543 }
544
545 void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv)
546 {
547         assert_rpm_wakelock_held(dev_priv);
548
549         spin_lock_irq(&dev_priv->irq_lock);
550         if (!dev_priv->guc.interrupts_enabled) {
551                 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) &
552                                        dev_priv->pm_guc_events);
553                 dev_priv->guc.interrupts_enabled = true;
554                 gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events);
555         }
556         spin_unlock_irq(&dev_priv->irq_lock);
557 }
558
559 void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv)
560 {
561         assert_rpm_wakelock_held(dev_priv);
562
563         spin_lock_irq(&dev_priv->irq_lock);
564         dev_priv->guc.interrupts_enabled = false;
565
566         gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events);
567
568         spin_unlock_irq(&dev_priv->irq_lock);
569         synchronize_irq(dev_priv->drm.irq);
570
571         gen9_reset_guc_interrupts(dev_priv);
572 }
573
574 /**
575  * bdw_update_port_irq - update DE port interrupt
576  * @dev_priv: driver private
577  * @interrupt_mask: mask of interrupt bits to update
578  * @enabled_irq_mask: mask of interrupt bits to enable
579  */
580 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
581                                 uint32_t interrupt_mask,
582                                 uint32_t enabled_irq_mask)
583 {
584         uint32_t new_val;
585         uint32_t old_val;
586
587         lockdep_assert_held(&dev_priv->irq_lock);
588
589         WARN_ON(enabled_irq_mask & ~interrupt_mask);
590
591         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
592                 return;
593
594         old_val = I915_READ(GEN8_DE_PORT_IMR);
595
596         new_val = old_val;
597         new_val &= ~interrupt_mask;
598         new_val |= (~enabled_irq_mask & interrupt_mask);
599
600         if (new_val != old_val) {
601                 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
602                 POSTING_READ(GEN8_DE_PORT_IMR);
603         }
604 }
605
606 /**
607  * bdw_update_pipe_irq - update DE pipe interrupt
608  * @dev_priv: driver private
609  * @pipe: pipe whose interrupt to update
610  * @interrupt_mask: mask of interrupt bits to update
611  * @enabled_irq_mask: mask of interrupt bits to enable
612  */
613 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
614                          enum pipe pipe,
615                          uint32_t interrupt_mask,
616                          uint32_t enabled_irq_mask)
617 {
618         uint32_t new_val;
619
620         lockdep_assert_held(&dev_priv->irq_lock);
621
622         WARN_ON(enabled_irq_mask & ~interrupt_mask);
623
624         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
625                 return;
626
627         new_val = dev_priv->de_irq_mask[pipe];
628         new_val &= ~interrupt_mask;
629         new_val |= (~enabled_irq_mask & interrupt_mask);
630
631         if (new_val != dev_priv->de_irq_mask[pipe]) {
632                 dev_priv->de_irq_mask[pipe] = new_val;
633                 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
634                 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
635         }
636 }
637
638 /**
639  * ibx_display_interrupt_update - update SDEIMR
640  * @dev_priv: driver private
641  * @interrupt_mask: mask of interrupt bits to update
642  * @enabled_irq_mask: mask of interrupt bits to enable
643  */
644 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
645                                   uint32_t interrupt_mask,
646                                   uint32_t enabled_irq_mask)
647 {
648         uint32_t sdeimr = I915_READ(SDEIMR);
649         sdeimr &= ~interrupt_mask;
650         sdeimr |= (~enabled_irq_mask & interrupt_mask);
651
652         WARN_ON(enabled_irq_mask & ~interrupt_mask);
653
654         lockdep_assert_held(&dev_priv->irq_lock);
655
656         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
657                 return;
658
659         I915_WRITE(SDEIMR, sdeimr);
660         POSTING_READ(SDEIMR);
661 }
662
663 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
664                               enum pipe pipe)
665 {
666         u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
667         u32 enable_mask = status_mask << 16;
668
669         lockdep_assert_held(&dev_priv->irq_lock);
670
671         if (INTEL_GEN(dev_priv) < 5)
672                 goto out;
673
674         /*
675          * On pipe A we don't support the PSR interrupt yet,
676          * on pipe B and C the same bit MBZ.
677          */
678         if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
679                 return 0;
680         /*
681          * On pipe B and C we don't support the PSR interrupt yet, on pipe
682          * A the same bit is for perf counters which we don't use either.
683          */
684         if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
685                 return 0;
686
687         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
688                          SPRITE0_FLIP_DONE_INT_EN_VLV |
689                          SPRITE1_FLIP_DONE_INT_EN_VLV);
690         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
691                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
692         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
693                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
694
695 out:
696         WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
697                   status_mask & ~PIPESTAT_INT_STATUS_MASK,
698                   "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
699                   pipe_name(pipe), enable_mask, status_mask);
700
701         return enable_mask;
702 }
703
704 void i915_enable_pipestat(struct drm_i915_private *dev_priv,
705                           enum pipe pipe, u32 status_mask)
706 {
707         i915_reg_t reg = PIPESTAT(pipe);
708         u32 enable_mask;
709
710         WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
711                   "pipe %c: status_mask=0x%x\n",
712                   pipe_name(pipe), status_mask);
713
714         lockdep_assert_held(&dev_priv->irq_lock);
715         WARN_ON(!intel_irqs_enabled(dev_priv));
716
717         if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
718                 return;
719
720         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
721         enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
722
723         I915_WRITE(reg, enable_mask | status_mask);
724         POSTING_READ(reg);
725 }
726
727 void i915_disable_pipestat(struct drm_i915_private *dev_priv,
728                            enum pipe pipe, u32 status_mask)
729 {
730         i915_reg_t reg = PIPESTAT(pipe);
731         u32 enable_mask;
732
733         WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
734                   "pipe %c: status_mask=0x%x\n",
735                   pipe_name(pipe), status_mask);
736
737         lockdep_assert_held(&dev_priv->irq_lock);
738         WARN_ON(!intel_irqs_enabled(dev_priv));
739
740         if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
741                 return;
742
743         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
744         enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
745
746         I915_WRITE(reg, enable_mask | status_mask);
747         POSTING_READ(reg);
748 }
749
750 /**
751  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
752  * @dev_priv: i915 device private
753  */
754 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
755 {
756         if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
757                 return;
758
759         spin_lock_irq(&dev_priv->irq_lock);
760
761         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
762         if (INTEL_GEN(dev_priv) >= 4)
763                 i915_enable_pipestat(dev_priv, PIPE_A,
764                                      PIPE_LEGACY_BLC_EVENT_STATUS);
765
766         spin_unlock_irq(&dev_priv->irq_lock);
767 }
768
769 /*
770  * This timing diagram depicts the video signal in and
771  * around the vertical blanking period.
772  *
773  * Assumptions about the fictitious mode used in this example:
774  *  vblank_start >= 3
775  *  vsync_start = vblank_start + 1
776  *  vsync_end = vblank_start + 2
777  *  vtotal = vblank_start + 3
778  *
779  *           start of vblank:
780  *           latch double buffered registers
781  *           increment frame counter (ctg+)
782  *           generate start of vblank interrupt (gen4+)
783  *           |
784  *           |          frame start:
785  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
786  *           |          may be shifted forward 1-3 extra lines via PIPECONF
787  *           |          |
788  *           |          |  start of vsync:
789  *           |          |  generate vsync interrupt
790  *           |          |  |
791  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
792  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
793  * ----va---> <-----------------vb--------------------> <--------va-------------
794  *       |          |       <----vs----->                     |
795  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
796  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
797  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
798  *       |          |                                         |
799  *       last visible pixel                                   first visible pixel
800  *                  |                                         increment frame counter (gen3/4)
801  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
802  *
803  * x  = horizontal active
804  * _  = horizontal blanking
805  * hs = horizontal sync
806  * va = vertical active
807  * vb = vertical blanking
808  * vs = vertical sync
809  * vbs = vblank_start (number)
810  *
811  * Summary:
812  * - most events happen at the start of horizontal sync
813  * - frame start happens at the start of horizontal blank, 1-4 lines
814  *   (depending on PIPECONF settings) after the start of vblank
815  * - gen3/4 pixel and frame counter are synchronized with the start
816  *   of horizontal active on the first line of vertical active
817  */
818
819 /* Called from drm generic code, passed a 'crtc', which
820  * we use as a pipe index
821  */
822 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
823 {
824         struct drm_i915_private *dev_priv = to_i915(dev);
825         i915_reg_t high_frame, low_frame;
826         u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
827         const struct drm_display_mode *mode = &dev->vblank[pipe].hwmode;
828         unsigned long irqflags;
829
830         htotal = mode->crtc_htotal;
831         hsync_start = mode->crtc_hsync_start;
832         vbl_start = mode->crtc_vblank_start;
833         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
834                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
835
836         /* Convert to pixel count */
837         vbl_start *= htotal;
838
839         /* Start of vblank event occurs at start of hsync */
840         vbl_start -= htotal - hsync_start;
841
842         high_frame = PIPEFRAME(pipe);
843         low_frame = PIPEFRAMEPIXEL(pipe);
844
845         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
846
847         /*
848          * High & low register fields aren't synchronized, so make sure
849          * we get a low value that's stable across two reads of the high
850          * register.
851          */
852         do {
853                 high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
854                 low   = I915_READ_FW(low_frame);
855                 high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
856         } while (high1 != high2);
857
858         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
859
860         high1 >>= PIPE_FRAME_HIGH_SHIFT;
861         pixel = low & PIPE_PIXEL_MASK;
862         low >>= PIPE_FRAME_LOW_SHIFT;
863
864         /*
865          * The frame counter increments at beginning of active.
866          * Cook up a vblank counter by also checking the pixel
867          * counter against vblank start.
868          */
869         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
870 }
871
872 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
873 {
874         struct drm_i915_private *dev_priv = to_i915(dev);
875
876         return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
877 }
878
879 /*
880  * On certain encoders on certain platforms, pipe
881  * scanline register will not work to get the scanline,
882  * since the timings are driven from the PORT or issues
883  * with scanline register updates.
884  * This function will use Framestamp and current
885  * timestamp registers to calculate the scanline.
886  */
887 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
888 {
889         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
890         struct drm_vblank_crtc *vblank =
891                 &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
892         const struct drm_display_mode *mode = &vblank->hwmode;
893         u32 vblank_start = mode->crtc_vblank_start;
894         u32 vtotal = mode->crtc_vtotal;
895         u32 htotal = mode->crtc_htotal;
896         u32 clock = mode->crtc_clock;
897         u32 scanline, scan_prev_time, scan_curr_time, scan_post_time;
898
899         /*
900          * To avoid the race condition where we might cross into the
901          * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
902          * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
903          * during the same frame.
904          */
905         do {
906                 /*
907                  * This field provides read back of the display
908                  * pipe frame time stamp. The time stamp value
909                  * is sampled at every start of vertical blank.
910                  */
911                 scan_prev_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
912
913                 /*
914                  * The TIMESTAMP_CTR register has the current
915                  * time stamp value.
916                  */
917                 scan_curr_time = I915_READ_FW(IVB_TIMESTAMP_CTR);
918
919                 scan_post_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
920         } while (scan_post_time != scan_prev_time);
921
922         scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
923                                         clock), 1000 * htotal);
924         scanline = min(scanline, vtotal - 1);
925         scanline = (scanline + vblank_start) % vtotal;
926
927         return scanline;
928 }
929
930 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
931 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
932 {
933         struct drm_device *dev = crtc->base.dev;
934         struct drm_i915_private *dev_priv = to_i915(dev);
935         const struct drm_display_mode *mode;
936         struct drm_vblank_crtc *vblank;
937         enum pipe pipe = crtc->pipe;
938         int position, vtotal;
939
940         if (!crtc->active)
941                 return -1;
942
943         vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
944         mode = &vblank->hwmode;
945
946         if (mode->private_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
947                 return __intel_get_crtc_scanline_from_timestamp(crtc);
948
949         vtotal = mode->crtc_vtotal;
950         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
951                 vtotal /= 2;
952
953         if (IS_GEN2(dev_priv))
954                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
955         else
956                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
957
958         /*
959          * On HSW, the DSL reg (0x70000) appears to return 0 if we
960          * read it just before the start of vblank.  So try it again
961          * so we don't accidentally end up spanning a vblank frame
962          * increment, causing the pipe_update_end() code to squak at us.
963          *
964          * The nature of this problem means we can't simply check the ISR
965          * bit and return the vblank start value; nor can we use the scanline
966          * debug register in the transcoder as it appears to have the same
967          * problem.  We may need to extend this to include other platforms,
968          * but so far testing only shows the problem on HSW.
969          */
970         if (HAS_DDI(dev_priv) && !position) {
971                 int i, temp;
972
973                 for (i = 0; i < 100; i++) {
974                         udelay(1);
975                         temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
976                         if (temp != position) {
977                                 position = temp;
978                                 break;
979                         }
980                 }
981         }
982
983         /*
984          * See update_scanline_offset() for the details on the
985          * scanline_offset adjustment.
986          */
987         return (position + crtc->scanline_offset) % vtotal;
988 }
989
990 static bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
991                                      bool in_vblank_irq, int *vpos, int *hpos,
992                                      ktime_t *stime, ktime_t *etime,
993                                      const struct drm_display_mode *mode)
994 {
995         struct drm_i915_private *dev_priv = to_i915(dev);
996         struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
997                                                                 pipe);
998         int position;
999         int vbl_start, vbl_end, hsync_start, htotal, vtotal;
1000         unsigned long irqflags;
1001
1002         if (WARN_ON(!mode->crtc_clock)) {
1003                 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
1004                                  "pipe %c\n", pipe_name(pipe));
1005                 return false;
1006         }
1007
1008         htotal = mode->crtc_htotal;
1009         hsync_start = mode->crtc_hsync_start;
1010         vtotal = mode->crtc_vtotal;
1011         vbl_start = mode->crtc_vblank_start;
1012         vbl_end = mode->crtc_vblank_end;
1013
1014         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
1015                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
1016                 vbl_end /= 2;
1017                 vtotal /= 2;
1018         }
1019
1020         /*
1021          * Lock uncore.lock, as we will do multiple timing critical raw
1022          * register reads, potentially with preemption disabled, so the
1023          * following code must not block on uncore.lock.
1024          */
1025         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1026
1027         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
1028
1029         /* Get optional system timestamp before query. */
1030         if (stime)
1031                 *stime = ktime_get();
1032
1033         if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
1034                 /* No obvious pixelcount register. Only query vertical
1035                  * scanout position from Display scan line register.
1036                  */
1037                 position = __intel_get_crtc_scanline(intel_crtc);
1038         } else {
1039                 /* Have access to pixelcount since start of frame.
1040                  * We can split this into vertical and horizontal
1041                  * scanout position.
1042                  */
1043                 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
1044
1045                 /* convert to pixel counts */
1046                 vbl_start *= htotal;
1047                 vbl_end *= htotal;
1048                 vtotal *= htotal;
1049
1050                 /*
1051                  * In interlaced modes, the pixel counter counts all pixels,
1052                  * so one field will have htotal more pixels. In order to avoid
1053                  * the reported position from jumping backwards when the pixel
1054                  * counter is beyond the length of the shorter field, just
1055                  * clamp the position the length of the shorter field. This
1056                  * matches how the scanline counter based position works since
1057                  * the scanline counter doesn't count the two half lines.
1058                  */
1059                 if (position >= vtotal)
1060                         position = vtotal - 1;
1061
1062                 /*
1063                  * Start of vblank interrupt is triggered at start of hsync,
1064                  * just prior to the first active line of vblank. However we
1065                  * consider lines to start at the leading edge of horizontal
1066                  * active. So, should we get here before we've crossed into
1067                  * the horizontal active of the first line in vblank, we would
1068                  * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
1069                  * always add htotal-hsync_start to the current pixel position.
1070                  */
1071                 position = (position + htotal - hsync_start) % vtotal;
1072         }
1073
1074         /* Get optional system timestamp after query. */
1075         if (etime)
1076                 *etime = ktime_get();
1077
1078         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
1079
1080         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1081
1082         /*
1083          * While in vblank, position will be negative
1084          * counting up towards 0 at vbl_end. And outside
1085          * vblank, position will be positive counting
1086          * up since vbl_end.
1087          */
1088         if (position >= vbl_start)
1089                 position -= vbl_end;
1090         else
1091                 position += vtotal - vbl_end;
1092
1093         if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
1094                 *vpos = position;
1095                 *hpos = 0;
1096         } else {
1097                 *vpos = position / htotal;
1098                 *hpos = position - (*vpos * htotal);
1099         }
1100
1101         return true;
1102 }
1103
1104 int intel_get_crtc_scanline(struct intel_crtc *crtc)
1105 {
1106         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1107         unsigned long irqflags;
1108         int position;
1109
1110         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1111         position = __intel_get_crtc_scanline(crtc);
1112         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1113
1114         return position;
1115 }
1116
1117 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
1118 {
1119         u32 busy_up, busy_down, max_avg, min_avg;
1120         u8 new_delay;
1121
1122         spin_lock(&mchdev_lock);
1123
1124         I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1125
1126         new_delay = dev_priv->ips.cur_delay;
1127
1128         I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1129         busy_up = I915_READ(RCPREVBSYTUPAVG);
1130         busy_down = I915_READ(RCPREVBSYTDNAVG);
1131         max_avg = I915_READ(RCBMAXAVG);
1132         min_avg = I915_READ(RCBMINAVG);
1133
1134         /* Handle RCS change request from hw */
1135         if (busy_up > max_avg) {
1136                 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1137                         new_delay = dev_priv->ips.cur_delay - 1;
1138                 if (new_delay < dev_priv->ips.max_delay)
1139                         new_delay = dev_priv->ips.max_delay;
1140         } else if (busy_down < min_avg) {
1141                 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1142                         new_delay = dev_priv->ips.cur_delay + 1;
1143                 if (new_delay > dev_priv->ips.min_delay)
1144                         new_delay = dev_priv->ips.min_delay;
1145         }
1146
1147         if (ironlake_set_drps(dev_priv, new_delay))
1148                 dev_priv->ips.cur_delay = new_delay;
1149
1150         spin_unlock(&mchdev_lock);
1151
1152         return;
1153 }
1154
1155 static void notify_ring(struct intel_engine_cs *engine)
1156 {
1157         const u32 seqno = intel_engine_get_seqno(engine);
1158         struct i915_request *rq = NULL;
1159         struct task_struct *tsk = NULL;
1160         struct intel_wait *wait;
1161
1162         if (unlikely(!engine->breadcrumbs.irq_armed))
1163                 return;
1164
1165         rcu_read_lock();
1166
1167         spin_lock(&engine->breadcrumbs.irq_lock);
1168         wait = engine->breadcrumbs.irq_wait;
1169         if (wait) {
1170                 /*
1171                  * We use a callback from the dma-fence to submit
1172                  * requests after waiting on our own requests. To
1173                  * ensure minimum delay in queuing the next request to
1174                  * hardware, signal the fence now rather than wait for
1175                  * the signaler to be woken up. We still wake up the
1176                  * waiter in order to handle the irq-seqno coherency
1177                  * issues (we may receive the interrupt before the
1178                  * seqno is written, see __i915_request_irq_complete())
1179                  * and to handle coalescing of multiple seqno updates
1180                  * and many waiters.
1181                  */
1182                 if (i915_seqno_passed(seqno, wait->seqno)) {
1183                         struct i915_request *waiter = wait->request;
1184
1185                         if (waiter &&
1186                             !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1187                                       &waiter->fence.flags) &&
1188                             intel_wait_check_request(wait, waiter))
1189                                 rq = i915_request_get(waiter);
1190
1191                         tsk = wait->tsk;
1192                 } else {
1193                         if (engine->irq_seqno_barrier &&
1194                             i915_seqno_passed(seqno, wait->seqno - 1)) {
1195                                 set_bit(ENGINE_IRQ_BREADCRUMB,
1196                                         &engine->irq_posted);
1197                                 tsk = wait->tsk;
1198                         }
1199                 }
1200
1201                 engine->breadcrumbs.irq_count++;
1202         } else {
1203                 if (engine->breadcrumbs.irq_armed)
1204                         __intel_engine_disarm_breadcrumbs(engine);
1205         }
1206         spin_unlock(&engine->breadcrumbs.irq_lock);
1207
1208         if (rq) {
1209                 spin_lock(&rq->lock);
1210                 dma_fence_signal_locked(&rq->fence);
1211                 GEM_BUG_ON(!i915_request_completed(rq));
1212                 spin_unlock(&rq->lock);
1213
1214                 i915_request_put(rq);
1215         }
1216
1217         if (tsk && tsk->state & TASK_NORMAL)
1218                 wake_up_process(tsk);
1219
1220         rcu_read_unlock();
1221
1222         trace_intel_engine_notify(engine, wait);
1223 }
1224
1225 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1226                         struct intel_rps_ei *ei)
1227 {
1228         ei->ktime = ktime_get_raw();
1229         ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1230         ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1231 }
1232
1233 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1234 {
1235         memset(&dev_priv->gt_pm.rps.ei, 0, sizeof(dev_priv->gt_pm.rps.ei));
1236 }
1237
1238 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1239 {
1240         struct intel_rps *rps = &dev_priv->gt_pm.rps;
1241         const struct intel_rps_ei *prev = &rps->ei;
1242         struct intel_rps_ei now;
1243         u32 events = 0;
1244
1245         if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1246                 return 0;
1247
1248         vlv_c0_read(dev_priv, &now);
1249
1250         if (prev->ktime) {
1251                 u64 time, c0;
1252                 u32 render, media;
1253
1254                 time = ktime_us_delta(now.ktime, prev->ktime);
1255
1256                 time *= dev_priv->czclk_freq;
1257
1258                 /* Workload can be split between render + media,
1259                  * e.g. SwapBuffers being blitted in X after being rendered in
1260                  * mesa. To account for this we need to combine both engines
1261                  * into our activity counter.
1262                  */
1263                 render = now.render_c0 - prev->render_c0;
1264                 media = now.media_c0 - prev->media_c0;
1265                 c0 = max(render, media);
1266                 c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1267
1268                 if (c0 > time * rps->power.up_threshold)
1269                         events = GEN6_PM_RP_UP_THRESHOLD;
1270                 else if (c0 < time * rps->power.down_threshold)
1271                         events = GEN6_PM_RP_DOWN_THRESHOLD;
1272         }
1273
1274         rps->ei = now;
1275         return events;
1276 }
1277
1278 static void gen6_pm_rps_work(struct work_struct *work)
1279 {
1280         struct drm_i915_private *dev_priv =
1281                 container_of(work, struct drm_i915_private, gt_pm.rps.work);
1282         struct intel_rps *rps = &dev_priv->gt_pm.rps;
1283         bool client_boost = false;
1284         int new_delay, adj, min, max;
1285         u32 pm_iir = 0;
1286
1287         spin_lock_irq(&dev_priv->irq_lock);
1288         if (rps->interrupts_enabled) {
1289                 pm_iir = fetch_and_zero(&rps->pm_iir);
1290                 client_boost = atomic_read(&rps->num_waiters);
1291         }
1292         spin_unlock_irq(&dev_priv->irq_lock);
1293
1294         /* Make sure we didn't queue anything we're not going to process. */
1295         WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1296         if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1297                 goto out;
1298
1299         mutex_lock(&dev_priv->pcu_lock);
1300
1301         pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1302
1303         adj = rps->last_adj;
1304         new_delay = rps->cur_freq;
1305         min = rps->min_freq_softlimit;
1306         max = rps->max_freq_softlimit;
1307         if (client_boost)
1308                 max = rps->max_freq;
1309         if (client_boost && new_delay < rps->boost_freq) {
1310                 new_delay = rps->boost_freq;
1311                 adj = 0;
1312         } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1313                 if (adj > 0)
1314                         adj *= 2;
1315                 else /* CHV needs even encode values */
1316                         adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1317
1318                 if (new_delay >= rps->max_freq_softlimit)
1319                         adj = 0;
1320         } else if (client_boost) {
1321                 adj = 0;
1322         } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1323                 if (rps->cur_freq > rps->efficient_freq)
1324                         new_delay = rps->efficient_freq;
1325                 else if (rps->cur_freq > rps->min_freq_softlimit)
1326                         new_delay = rps->min_freq_softlimit;
1327                 adj = 0;
1328         } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1329                 if (adj < 0)
1330                         adj *= 2;
1331                 else /* CHV needs even encode values */
1332                         adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1333
1334                 if (new_delay <= rps->min_freq_softlimit)
1335                         adj = 0;
1336         } else { /* unknown event */
1337                 adj = 0;
1338         }
1339
1340         rps->last_adj = adj;
1341
1342         /* sysfs frequency interfaces may have snuck in while servicing the
1343          * interrupt
1344          */
1345         new_delay += adj;
1346         new_delay = clamp_t(int, new_delay, min, max);
1347
1348         if (intel_set_rps(dev_priv, new_delay)) {
1349                 DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
1350                 rps->last_adj = 0;
1351         }
1352
1353         mutex_unlock(&dev_priv->pcu_lock);
1354
1355 out:
1356         /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1357         spin_lock_irq(&dev_priv->irq_lock);
1358         if (rps->interrupts_enabled)
1359                 gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events);
1360         spin_unlock_irq(&dev_priv->irq_lock);
1361 }
1362
1363
1364 /**
1365  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1366  * occurred.
1367  * @work: workqueue struct
1368  *
1369  * Doesn't actually do anything except notify userspace. As a consequence of
1370  * this event, userspace should try to remap the bad rows since statistically
1371  * it is likely the same row is more likely to go bad again.
1372  */
1373 static void ivybridge_parity_work(struct work_struct *work)
1374 {
1375         struct drm_i915_private *dev_priv =
1376                 container_of(work, typeof(*dev_priv), l3_parity.error_work);
1377         u32 error_status, row, bank, subbank;
1378         char *parity_event[6];
1379         uint32_t misccpctl;
1380         uint8_t slice = 0;
1381
1382         /* We must turn off DOP level clock gating to access the L3 registers.
1383          * In order to prevent a get/put style interface, acquire struct mutex
1384          * any time we access those registers.
1385          */
1386         mutex_lock(&dev_priv->drm.struct_mutex);
1387
1388         /* If we've screwed up tracking, just let the interrupt fire again */
1389         if (WARN_ON(!dev_priv->l3_parity.which_slice))
1390                 goto out;
1391
1392         misccpctl = I915_READ(GEN7_MISCCPCTL);
1393         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1394         POSTING_READ(GEN7_MISCCPCTL);
1395
1396         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1397                 i915_reg_t reg;
1398
1399                 slice--;
1400                 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1401                         break;
1402
1403                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1404
1405                 reg = GEN7_L3CDERRST1(slice);
1406
1407                 error_status = I915_READ(reg);
1408                 row = GEN7_PARITY_ERROR_ROW(error_status);
1409                 bank = GEN7_PARITY_ERROR_BANK(error_status);
1410                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1411
1412                 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1413                 POSTING_READ(reg);
1414
1415                 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1416                 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1417                 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1418                 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1419                 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1420                 parity_event[5] = NULL;
1421
1422                 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1423                                    KOBJ_CHANGE, parity_event);
1424
1425                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1426                           slice, row, bank, subbank);
1427
1428                 kfree(parity_event[4]);
1429                 kfree(parity_event[3]);
1430                 kfree(parity_event[2]);
1431                 kfree(parity_event[1]);
1432         }
1433
1434         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1435
1436 out:
1437         WARN_ON(dev_priv->l3_parity.which_slice);
1438         spin_lock_irq(&dev_priv->irq_lock);
1439         gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1440         spin_unlock_irq(&dev_priv->irq_lock);
1441
1442         mutex_unlock(&dev_priv->drm.struct_mutex);
1443 }
1444
1445 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1446                                                u32 iir)
1447 {
1448         if (!HAS_L3_DPF(dev_priv))
1449                 return;
1450
1451         spin_lock(&dev_priv->irq_lock);
1452         gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1453         spin_unlock(&dev_priv->irq_lock);
1454
1455         iir &= GT_PARITY_ERROR(dev_priv);
1456         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1457                 dev_priv->l3_parity.which_slice |= 1 << 1;
1458
1459         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1460                 dev_priv->l3_parity.which_slice |= 1 << 0;
1461
1462         queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1463 }
1464
1465 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1466                                u32 gt_iir)
1467 {
1468         if (gt_iir & GT_RENDER_USER_INTERRUPT)
1469                 notify_ring(dev_priv->engine[RCS]);
1470         if (gt_iir & ILK_BSD_USER_INTERRUPT)
1471                 notify_ring(dev_priv->engine[VCS]);
1472 }
1473
1474 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1475                                u32 gt_iir)
1476 {
1477         if (gt_iir & GT_RENDER_USER_INTERRUPT)
1478                 notify_ring(dev_priv->engine[RCS]);
1479         if (gt_iir & GT_BSD_USER_INTERRUPT)
1480                 notify_ring(dev_priv->engine[VCS]);
1481         if (gt_iir & GT_BLT_USER_INTERRUPT)
1482                 notify_ring(dev_priv->engine[BCS]);
1483
1484         if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1485                       GT_BSD_CS_ERROR_INTERRUPT |
1486                       GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1487                 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1488
1489         if (gt_iir & GT_PARITY_ERROR(dev_priv))
1490                 ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1491 }
1492
1493 static void
1494 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir)
1495 {
1496         bool tasklet = false;
1497
1498         if (iir & GT_CONTEXT_SWITCH_INTERRUPT)
1499                 tasklet = true;
1500
1501         if (iir & GT_RENDER_USER_INTERRUPT) {
1502                 notify_ring(engine);
1503                 tasklet |= USES_GUC_SUBMISSION(engine->i915);
1504         }
1505
1506         if (tasklet)
1507                 tasklet_hi_schedule(&engine->execlists.tasklet);
1508 }
1509
1510 static void gen8_gt_irq_ack(struct drm_i915_private *i915,
1511                             u32 master_ctl, u32 gt_iir[4])
1512 {
1513         void __iomem * const regs = i915->regs;
1514
1515 #define GEN8_GT_IRQS (GEN8_GT_RCS_IRQ | \
1516                       GEN8_GT_BCS_IRQ | \
1517                       GEN8_GT_VCS1_IRQ | \
1518                       GEN8_GT_VCS2_IRQ | \
1519                       GEN8_GT_VECS_IRQ | \
1520                       GEN8_GT_PM_IRQ | \
1521                       GEN8_GT_GUC_IRQ)
1522
1523         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1524                 gt_iir[0] = raw_reg_read(regs, GEN8_GT_IIR(0));
1525                 if (likely(gt_iir[0]))
1526                         raw_reg_write(regs, GEN8_GT_IIR(0), gt_iir[0]);
1527         }
1528
1529         if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1530                 gt_iir[1] = raw_reg_read(regs, GEN8_GT_IIR(1));
1531                 if (likely(gt_iir[1]))
1532                         raw_reg_write(regs, GEN8_GT_IIR(1), gt_iir[1]);
1533         }
1534
1535         if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1536                 gt_iir[2] = raw_reg_read(regs, GEN8_GT_IIR(2));
1537                 if (likely(gt_iir[2] & (i915->pm_rps_events |
1538                                         i915->pm_guc_events)))
1539                         raw_reg_write(regs, GEN8_GT_IIR(2),
1540                                       gt_iir[2] & (i915->pm_rps_events |
1541                                                    i915->pm_guc_events));
1542         }
1543
1544         if (master_ctl & GEN8_GT_VECS_IRQ) {
1545                 gt_iir[3] = raw_reg_read(regs, GEN8_GT_IIR(3));
1546                 if (likely(gt_iir[3]))
1547                         raw_reg_write(regs, GEN8_GT_IIR(3), gt_iir[3]);
1548         }
1549 }
1550
1551 static void gen8_gt_irq_handler(struct drm_i915_private *i915,
1552                                 u32 master_ctl, u32 gt_iir[4])
1553 {
1554         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1555                 gen8_cs_irq_handler(i915->engine[RCS],
1556                                     gt_iir[0] >> GEN8_RCS_IRQ_SHIFT);
1557                 gen8_cs_irq_handler(i915->engine[BCS],
1558                                     gt_iir[0] >> GEN8_BCS_IRQ_SHIFT);
1559         }
1560
1561         if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1562                 gen8_cs_irq_handler(i915->engine[VCS],
1563                                     gt_iir[1] >> GEN8_VCS1_IRQ_SHIFT);
1564                 gen8_cs_irq_handler(i915->engine[VCS2],
1565                                     gt_iir[1] >> GEN8_VCS2_IRQ_SHIFT);
1566         }
1567
1568         if (master_ctl & GEN8_GT_VECS_IRQ) {
1569                 gen8_cs_irq_handler(i915->engine[VECS],
1570                                     gt_iir[3] >> GEN8_VECS_IRQ_SHIFT);
1571         }
1572
1573         if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1574                 gen6_rps_irq_handler(i915, gt_iir[2]);
1575                 gen9_guc_irq_handler(i915, gt_iir[2]);
1576         }
1577 }
1578
1579 static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1580 {
1581         switch (pin) {
1582         case HPD_PORT_C:
1583                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
1584         case HPD_PORT_D:
1585                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
1586         case HPD_PORT_E:
1587                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
1588         case HPD_PORT_F:
1589                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
1590         default:
1591                 return false;
1592         }
1593 }
1594
1595 static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1596 {
1597         switch (pin) {
1598         case HPD_PORT_A:
1599                 return val & PORTA_HOTPLUG_LONG_DETECT;
1600         case HPD_PORT_B:
1601                 return val & PORTB_HOTPLUG_LONG_DETECT;
1602         case HPD_PORT_C:
1603                 return val & PORTC_HOTPLUG_LONG_DETECT;
1604         default:
1605                 return false;
1606         }
1607 }
1608
1609 static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1610 {
1611         switch (pin) {
1612         case HPD_PORT_A:
1613                 return val & ICP_DDIA_HPD_LONG_DETECT;
1614         case HPD_PORT_B:
1615                 return val & ICP_DDIB_HPD_LONG_DETECT;
1616         default:
1617                 return false;
1618         }
1619 }
1620
1621 static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1622 {
1623         switch (pin) {
1624         case HPD_PORT_C:
1625                 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1626         case HPD_PORT_D:
1627                 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1628         case HPD_PORT_E:
1629                 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1630         case HPD_PORT_F:
1631                 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1632         default:
1633                 return false;
1634         }
1635 }
1636
1637 static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val)
1638 {
1639         switch (pin) {
1640         case HPD_PORT_E:
1641                 return val & PORTE_HOTPLUG_LONG_DETECT;
1642         default:
1643                 return false;
1644         }
1645 }
1646
1647 static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1648 {
1649         switch (pin) {
1650         case HPD_PORT_A:
1651                 return val & PORTA_HOTPLUG_LONG_DETECT;
1652         case HPD_PORT_B:
1653                 return val & PORTB_HOTPLUG_LONG_DETECT;
1654         case HPD_PORT_C:
1655                 return val & PORTC_HOTPLUG_LONG_DETECT;
1656         case HPD_PORT_D:
1657                 return val & PORTD_HOTPLUG_LONG_DETECT;
1658         default:
1659                 return false;
1660         }
1661 }
1662
1663 static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1664 {
1665         switch (pin) {
1666         case HPD_PORT_A:
1667                 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1668         default:
1669                 return false;
1670         }
1671 }
1672
1673 static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1674 {
1675         switch (pin) {
1676         case HPD_PORT_B:
1677                 return val & PORTB_HOTPLUG_LONG_DETECT;
1678         case HPD_PORT_C:
1679                 return val & PORTC_HOTPLUG_LONG_DETECT;
1680         case HPD_PORT_D:
1681                 return val & PORTD_HOTPLUG_LONG_DETECT;
1682         default:
1683                 return false;
1684         }
1685 }
1686
1687 static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1688 {
1689         switch (pin) {
1690         case HPD_PORT_B:
1691                 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1692         case HPD_PORT_C:
1693                 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1694         case HPD_PORT_D:
1695                 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1696         default:
1697                 return false;
1698         }
1699 }
1700
1701 /*
1702  * Get a bit mask of pins that have triggered, and which ones may be long.
1703  * This can be called multiple times with the same masks to accumulate
1704  * hotplug detection results from several registers.
1705  *
1706  * Note that the caller is expected to zero out the masks initially.
1707  */
1708 static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
1709                                u32 *pin_mask, u32 *long_mask,
1710                                u32 hotplug_trigger, u32 dig_hotplug_reg,
1711                                const u32 hpd[HPD_NUM_PINS],
1712                                bool long_pulse_detect(enum hpd_pin pin, u32 val))
1713 {
1714         enum hpd_pin pin;
1715
1716         for_each_hpd_pin(pin) {
1717                 if ((hpd[pin] & hotplug_trigger) == 0)
1718                         continue;
1719
1720                 *pin_mask |= BIT(pin);
1721
1722                 if (long_pulse_detect(pin, dig_hotplug_reg))
1723                         *long_mask |= BIT(pin);
1724         }
1725
1726         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n",
1727                          hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask);
1728
1729 }
1730
1731 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1732 {
1733         wake_up_all(&dev_priv->gmbus_wait_queue);
1734 }
1735
1736 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1737 {
1738         wake_up_all(&dev_priv->gmbus_wait_queue);
1739 }
1740
1741 #if defined(CONFIG_DEBUG_FS)
1742 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1743                                          enum pipe pipe,
1744                                          uint32_t crc0, uint32_t crc1,
1745                                          uint32_t crc2, uint32_t crc3,
1746                                          uint32_t crc4)
1747 {
1748         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1749         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1750         uint32_t crcs[5];
1751
1752         spin_lock(&pipe_crc->lock);
1753         /*
1754          * For some not yet identified reason, the first CRC is
1755          * bonkers. So let's just wait for the next vblank and read
1756          * out the buggy result.
1757          *
1758          * On GEN8+ sometimes the second CRC is bonkers as well, so
1759          * don't trust that one either.
1760          */
1761         if (pipe_crc->skipped <= 0 ||
1762             (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1763                 pipe_crc->skipped++;
1764                 spin_unlock(&pipe_crc->lock);
1765                 return;
1766         }
1767         spin_unlock(&pipe_crc->lock);
1768
1769         crcs[0] = crc0;
1770         crcs[1] = crc1;
1771         crcs[2] = crc2;
1772         crcs[3] = crc3;
1773         crcs[4] = crc4;
1774         drm_crtc_add_crc_entry(&crtc->base, true,
1775                                 drm_crtc_accurate_vblank_count(&crtc->base),
1776                                 crcs);
1777 }
1778 #else
1779 static inline void
1780 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1781                              enum pipe pipe,
1782                              uint32_t crc0, uint32_t crc1,
1783                              uint32_t crc2, uint32_t crc3,
1784                              uint32_t crc4) {}
1785 #endif
1786
1787
1788 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1789                                      enum pipe pipe)
1790 {
1791         display_pipe_crc_irq_handler(dev_priv, pipe,
1792                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1793                                      0, 0, 0, 0);
1794 }
1795
1796 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1797                                      enum pipe pipe)
1798 {
1799         display_pipe_crc_irq_handler(dev_priv, pipe,
1800                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1801                                      I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1802                                      I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1803                                      I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1804                                      I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1805 }
1806
1807 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1808                                       enum pipe pipe)
1809 {
1810         uint32_t res1, res2;
1811
1812         if (INTEL_GEN(dev_priv) >= 3)
1813                 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1814         else
1815                 res1 = 0;
1816
1817         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1818                 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1819         else
1820                 res2 = 0;
1821
1822         display_pipe_crc_irq_handler(dev_priv, pipe,
1823                                      I915_READ(PIPE_CRC_RES_RED(pipe)),
1824                                      I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1825                                      I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1826                                      res1, res2);
1827 }
1828
1829 /* The RPS events need forcewake, so we add them to a work queue and mask their
1830  * IMR bits until the work is done. Other interrupts can be processed without
1831  * the work queue. */
1832 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1833 {
1834         struct intel_rps *rps = &dev_priv->gt_pm.rps;
1835
1836         if (pm_iir & dev_priv->pm_rps_events) {
1837                 spin_lock(&dev_priv->irq_lock);
1838                 gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1839                 if (rps->interrupts_enabled) {
1840                         rps->pm_iir |= pm_iir & dev_priv->pm_rps_events;
1841                         schedule_work(&rps->work);
1842                 }
1843                 spin_unlock(&dev_priv->irq_lock);
1844         }
1845
1846         if (INTEL_GEN(dev_priv) >= 8)
1847                 return;
1848
1849         if (HAS_VEBOX(dev_priv)) {
1850                 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1851                         notify_ring(dev_priv->engine[VECS]);
1852
1853                 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1854                         DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1855         }
1856 }
1857
1858 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir)
1859 {
1860         if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT)
1861                 intel_guc_to_host_event_handler(&dev_priv->guc);
1862 }
1863
1864 static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1865 {
1866         enum pipe pipe;
1867
1868         for_each_pipe(dev_priv, pipe) {
1869                 I915_WRITE(PIPESTAT(pipe),
1870                            PIPESTAT_INT_STATUS_MASK |
1871                            PIPE_FIFO_UNDERRUN_STATUS);
1872
1873                 dev_priv->pipestat_irq_mask[pipe] = 0;
1874         }
1875 }
1876
1877 static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1878                                   u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1879 {
1880         int pipe;
1881
1882         spin_lock(&dev_priv->irq_lock);
1883
1884         if (!dev_priv->display_irqs_enabled) {
1885                 spin_unlock(&dev_priv->irq_lock);
1886                 return;
1887         }
1888
1889         for_each_pipe(dev_priv, pipe) {
1890                 i915_reg_t reg;
1891                 u32 status_mask, enable_mask, iir_bit = 0;
1892
1893                 /*
1894                  * PIPESTAT bits get signalled even when the interrupt is
1895                  * disabled with the mask bits, and some of the status bits do
1896                  * not generate interrupts at all (like the underrun bit). Hence
1897                  * we need to be careful that we only handle what we want to
1898                  * handle.
1899                  */
1900
1901                 /* fifo underruns are filterered in the underrun handler. */
1902                 status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1903
1904                 switch (pipe) {
1905                 case PIPE_A:
1906                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1907                         break;
1908                 case PIPE_B:
1909                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1910                         break;
1911                 case PIPE_C:
1912                         iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1913                         break;
1914                 }
1915                 if (iir & iir_bit)
1916                         status_mask |= dev_priv->pipestat_irq_mask[pipe];
1917
1918                 if (!status_mask)
1919                         continue;
1920
1921                 reg = PIPESTAT(pipe);
1922                 pipe_stats[pipe] = I915_READ(reg) & status_mask;
1923                 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
1924
1925                 /*
1926                  * Clear the PIPE*STAT regs before the IIR
1927                  *
1928                  * Toggle the enable bits to make sure we get an
1929                  * edge in the ISR pipe event bit if we don't clear
1930                  * all the enabled status bits. Otherwise the edge
1931                  * triggered IIR on i965/g4x wouldn't notice that
1932                  * an interrupt is still pending.
1933                  */
1934                 if (pipe_stats[pipe]) {
1935                         I915_WRITE(reg, pipe_stats[pipe]);
1936                         I915_WRITE(reg, enable_mask);
1937                 }
1938         }
1939         spin_unlock(&dev_priv->irq_lock);
1940 }
1941
1942 static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1943                                       u16 iir, u32 pipe_stats[I915_MAX_PIPES])
1944 {
1945         enum pipe pipe;
1946
1947         for_each_pipe(dev_priv, pipe) {
1948                 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1949                         drm_handle_vblank(&dev_priv->drm, pipe);
1950
1951                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1952                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1953
1954                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1955                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1956         }
1957 }
1958
1959 static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1960                                       u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1961 {
1962         bool blc_event = false;
1963         enum pipe pipe;
1964
1965         for_each_pipe(dev_priv, pipe) {
1966                 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1967                         drm_handle_vblank(&dev_priv->drm, pipe);
1968
1969                 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1970                         blc_event = true;
1971
1972                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1973                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1974
1975                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1976                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1977         }
1978
1979         if (blc_event || (iir & I915_ASLE_INTERRUPT))
1980                 intel_opregion_asle_intr(dev_priv);
1981 }
1982
1983 static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1984                                       u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1985 {
1986         bool blc_event = false;
1987         enum pipe pipe;
1988
1989         for_each_pipe(dev_priv, pipe) {
1990                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1991                         drm_handle_vblank(&dev_priv->drm, pipe);
1992
1993                 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1994                         blc_event = true;
1995
1996                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1997                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1998
1999                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2000                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2001         }
2002
2003         if (blc_event || (iir & I915_ASLE_INTERRUPT))
2004                 intel_opregion_asle_intr(dev_priv);
2005
2006         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
2007                 gmbus_irq_handler(dev_priv);
2008 }
2009
2010 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
2011                                             u32 pipe_stats[I915_MAX_PIPES])
2012 {
2013         enum pipe pipe;
2014
2015         for_each_pipe(dev_priv, pipe) {
2016                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
2017                         drm_handle_vblank(&dev_priv->drm, pipe);
2018
2019                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
2020                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2021
2022                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2023                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2024         }
2025
2026         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
2027                 gmbus_irq_handler(dev_priv);
2028 }
2029
2030 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
2031 {
2032         u32 hotplug_status = 0, hotplug_status_mask;
2033         int i;
2034
2035         if (IS_G4X(dev_priv) ||
2036             IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2037                 hotplug_status_mask = HOTPLUG_INT_STATUS_G4X |
2038                         DP_AUX_CHANNEL_MASK_INT_STATUS_G4X;
2039         else
2040                 hotplug_status_mask = HOTPLUG_INT_STATUS_I915;
2041
2042         /*
2043          * We absolutely have to clear all the pending interrupt
2044          * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port
2045          * interrupt bit won't have an edge, and the i965/g4x
2046          * edge triggered IIR will not notice that an interrupt
2047          * is still pending. We can't use PORT_HOTPLUG_EN to
2048          * guarantee the edge as the act of toggling the enable
2049          * bits can itself generate a new hotplug interrupt :(
2050          */
2051         for (i = 0; i < 10; i++) {
2052                 u32 tmp = I915_READ(PORT_HOTPLUG_STAT) & hotplug_status_mask;
2053
2054                 if (tmp == 0)
2055                         return hotplug_status;
2056
2057                 hotplug_status |= tmp;
2058                 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2059         }
2060
2061         WARN_ONCE(1,
2062                   "PORT_HOTPLUG_STAT did not clear (0x%08x)\n",
2063                   I915_READ(PORT_HOTPLUG_STAT));
2064
2065         return hotplug_status;
2066 }
2067
2068 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2069                                  u32 hotplug_status)
2070 {
2071         u32 pin_mask = 0, long_mask = 0;
2072
2073         if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
2074             IS_CHERRYVIEW(dev_priv)) {
2075                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
2076
2077                 if (hotplug_trigger) {
2078                         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2079                                            hotplug_trigger, hotplug_trigger,
2080                                            hpd_status_g4x,
2081                                            i9xx_port_hotplug_long_detect);
2082
2083                         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2084                 }
2085
2086                 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
2087                         dp_aux_irq_handler(dev_priv);
2088         } else {
2089                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
2090
2091                 if (hotplug_trigger) {
2092                         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2093                                            hotplug_trigger, hotplug_trigger,
2094                                            hpd_status_i915,
2095                                            i9xx_port_hotplug_long_detect);
2096                         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2097                 }
2098         }
2099 }
2100
2101 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
2102 {
2103         struct drm_device *dev = arg;
2104         struct drm_i915_private *dev_priv = to_i915(dev);
2105         irqreturn_t ret = IRQ_NONE;
2106
2107         if (!intel_irqs_enabled(dev_priv))
2108                 return IRQ_NONE;
2109
2110         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2111         disable_rpm_wakeref_asserts(dev_priv);
2112
2113         do {
2114                 u32 iir, gt_iir, pm_iir;
2115                 u32 pipe_stats[I915_MAX_PIPES] = {};
2116                 u32 hotplug_status = 0;
2117                 u32 ier = 0;
2118
2119                 gt_iir = I915_READ(GTIIR);
2120                 pm_iir = I915_READ(GEN6_PMIIR);
2121                 iir = I915_READ(VLV_IIR);
2122
2123                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
2124                         break;
2125
2126                 ret = IRQ_HANDLED;
2127
2128                 /*
2129                  * Theory on interrupt generation, based on empirical evidence:
2130                  *
2131                  * x = ((VLV_IIR & VLV_IER) ||
2132                  *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
2133                  *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
2134                  *
2135                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2136                  * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
2137                  * guarantee the CPU interrupt will be raised again even if we
2138                  * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
2139                  * bits this time around.
2140                  */
2141                 I915_WRITE(VLV_MASTER_IER, 0);
2142                 ier = I915_READ(VLV_IER);
2143                 I915_WRITE(VLV_IER, 0);
2144
2145                 if (gt_iir)
2146                         I915_WRITE(GTIIR, gt_iir);
2147                 if (pm_iir)
2148                         I915_WRITE(GEN6_PMIIR, pm_iir);
2149
2150                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
2151                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2152
2153                 /* Call regardless, as some status bits might not be
2154                  * signalled in iir */
2155                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2156
2157                 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2158                            I915_LPE_PIPE_B_INTERRUPT))
2159                         intel_lpe_audio_irq_handler(dev_priv);
2160
2161                 /*
2162                  * VLV_IIR is single buffered, and reflects the level
2163                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2164                  */
2165                 if (iir)
2166                         I915_WRITE(VLV_IIR, iir);
2167
2168                 I915_WRITE(VLV_IER, ier);
2169                 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2170
2171                 if (gt_iir)
2172                         snb_gt_irq_handler(dev_priv, gt_iir);
2173                 if (pm_iir)
2174                         gen6_rps_irq_handler(dev_priv, pm_iir);
2175
2176                 if (hotplug_status)
2177                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2178
2179                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2180         } while (0);
2181
2182         enable_rpm_wakeref_asserts(dev_priv);
2183
2184         return ret;
2185 }
2186
2187 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
2188 {
2189         struct drm_device *dev = arg;
2190         struct drm_i915_private *dev_priv = to_i915(dev);
2191         irqreturn_t ret = IRQ_NONE;
2192
2193         if (!intel_irqs_enabled(dev_priv))
2194                 return IRQ_NONE;
2195
2196         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2197         disable_rpm_wakeref_asserts(dev_priv);
2198
2199         do {
2200                 u32 master_ctl, iir;
2201                 u32 pipe_stats[I915_MAX_PIPES] = {};
2202                 u32 hotplug_status = 0;
2203                 u32 gt_iir[4];
2204                 u32 ier = 0;
2205
2206                 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
2207                 iir = I915_READ(VLV_IIR);
2208
2209                 if (master_ctl == 0 && iir == 0)
2210                         break;
2211
2212                 ret = IRQ_HANDLED;
2213
2214                 /*
2215                  * Theory on interrupt generation, based on empirical evidence:
2216                  *
2217                  * x = ((VLV_IIR & VLV_IER) ||
2218                  *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
2219                  *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
2220                  *
2221                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2222                  * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
2223                  * guarantee the CPU interrupt will be raised again even if we
2224                  * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
2225                  * bits this time around.
2226                  */
2227                 I915_WRITE(GEN8_MASTER_IRQ, 0);
2228                 ier = I915_READ(VLV_IER);
2229                 I915_WRITE(VLV_IER, 0);
2230
2231                 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2232
2233                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
2234                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2235
2236                 /* Call regardless, as some status bits might not be
2237                  * signalled in iir */
2238                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2239
2240                 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2241                            I915_LPE_PIPE_B_INTERRUPT |
2242                            I915_LPE_PIPE_C_INTERRUPT))
2243                         intel_lpe_audio_irq_handler(dev_priv);
2244
2245                 /*
2246                  * VLV_IIR is single buffered, and reflects the level
2247                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2248                  */
2249                 if (iir)
2250                         I915_WRITE(VLV_IIR, iir);
2251
2252                 I915_WRITE(VLV_IER, ier);
2253                 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2254
2255                 gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir);
2256
2257                 if (hotplug_status)
2258                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2259
2260                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2261         } while (0);
2262
2263         enable_rpm_wakeref_asserts(dev_priv);
2264
2265         return ret;
2266 }
2267
2268 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2269                                 u32 hotplug_trigger,
2270                                 const u32 hpd[HPD_NUM_PINS])
2271 {
2272         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2273
2274         /*
2275          * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2276          * unless we touch the hotplug register, even if hotplug_trigger is
2277          * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2278          * errors.
2279          */
2280         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2281         if (!hotplug_trigger) {
2282                 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
2283                         PORTD_HOTPLUG_STATUS_MASK |
2284                         PORTC_HOTPLUG_STATUS_MASK |
2285                         PORTB_HOTPLUG_STATUS_MASK;
2286                 dig_hotplug_reg &= ~mask;
2287         }
2288
2289         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2290         if (!hotplug_trigger)
2291                 return;
2292
2293         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2294                            dig_hotplug_reg, hpd,
2295                            pch_port_hotplug_long_detect);
2296
2297         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2298 }
2299
2300 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2301 {
2302         int pipe;
2303         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2304
2305         ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2306
2307         if (pch_iir & SDE_AUDIO_POWER_MASK) {
2308                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2309                                SDE_AUDIO_POWER_SHIFT);
2310                 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2311                                  port_name(port));
2312         }
2313
2314         if (pch_iir & SDE_AUX_MASK)
2315                 dp_aux_irq_handler(dev_priv);
2316
2317         if (pch_iir & SDE_GMBUS)
2318                 gmbus_irq_handler(dev_priv);
2319
2320         if (pch_iir & SDE_AUDIO_HDCP_MASK)
2321                 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2322
2323         if (pch_iir & SDE_AUDIO_TRANS_MASK)
2324                 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2325
2326         if (pch_iir & SDE_POISON)
2327                 DRM_ERROR("PCH poison interrupt\n");
2328
2329         if (pch_iir & SDE_FDI_MASK)
2330                 for_each_pipe(dev_priv, pipe)
2331                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2332                                          pipe_name(pipe),
2333                                          I915_READ(FDI_RX_IIR(pipe)));
2334
2335         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2336                 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2337
2338         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2339                 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2340
2341         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2342                 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
2343
2344         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2345                 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
2346 }
2347
2348 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2349 {
2350         u32 err_int = I915_READ(GEN7_ERR_INT);
2351         enum pipe pipe;
2352
2353         if (err_int & ERR_INT_POISON)
2354                 DRM_ERROR("Poison interrupt\n");
2355
2356         for_each_pipe(dev_priv, pipe) {
2357                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2358                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2359
2360                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2361                         if (IS_IVYBRIDGE(dev_priv))
2362                                 ivb_pipe_crc_irq_handler(dev_priv, pipe);
2363                         else
2364                                 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2365                 }
2366         }
2367
2368         I915_WRITE(GEN7_ERR_INT, err_int);
2369 }
2370
2371 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2372 {
2373         u32 serr_int = I915_READ(SERR_INT);
2374         enum pipe pipe;
2375
2376         if (serr_int & SERR_INT_POISON)
2377                 DRM_ERROR("PCH poison interrupt\n");
2378
2379         for_each_pipe(dev_priv, pipe)
2380                 if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
2381                         intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
2382
2383         I915_WRITE(SERR_INT, serr_int);
2384 }
2385
2386 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2387 {
2388         int pipe;
2389         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2390
2391         ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2392
2393         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2394                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2395                                SDE_AUDIO_POWER_SHIFT_CPT);
2396                 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2397                                  port_name(port));
2398         }
2399
2400         if (pch_iir & SDE_AUX_MASK_CPT)
2401                 dp_aux_irq_handler(dev_priv);
2402
2403         if (pch_iir & SDE_GMBUS_CPT)
2404                 gmbus_irq_handler(dev_priv);
2405
2406         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2407                 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2408
2409         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2410                 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2411
2412         if (pch_iir & SDE_FDI_MASK_CPT)
2413                 for_each_pipe(dev_priv, pipe)
2414                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2415                                          pipe_name(pipe),
2416                                          I915_READ(FDI_RX_IIR(pipe)));
2417
2418         if (pch_iir & SDE_ERROR_CPT)
2419                 cpt_serr_int_handler(dev_priv);
2420 }
2421
2422 static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2423 {
2424         u32 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP;
2425         u32 tc_hotplug_trigger = pch_iir & SDE_TC_MASK_ICP;
2426         u32 pin_mask = 0, long_mask = 0;
2427
2428         if (ddi_hotplug_trigger) {
2429                 u32 dig_hotplug_reg;
2430
2431                 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI);
2432                 I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg);
2433
2434                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2435                                    ddi_hotplug_trigger,
2436                                    dig_hotplug_reg, hpd_icp,
2437                                    icp_ddi_port_hotplug_long_detect);
2438         }
2439
2440         if (tc_hotplug_trigger) {
2441                 u32 dig_hotplug_reg;
2442
2443                 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC);
2444                 I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg);
2445
2446                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2447                                    tc_hotplug_trigger,
2448                                    dig_hotplug_reg, hpd_icp,
2449                                    icp_tc_port_hotplug_long_detect);
2450         }
2451
2452         if (pin_mask)
2453                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2454
2455         if (pch_iir & SDE_GMBUS_ICP)
2456                 gmbus_irq_handler(dev_priv);
2457 }
2458
2459 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2460 {
2461         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2462                 ~SDE_PORTE_HOTPLUG_SPT;
2463         u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2464         u32 pin_mask = 0, long_mask = 0;
2465
2466         if (hotplug_trigger) {
2467                 u32 dig_hotplug_reg;
2468
2469                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2470                 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2471
2472                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2473                                    hotplug_trigger, dig_hotplug_reg, hpd_spt,
2474                                    spt_port_hotplug_long_detect);
2475         }
2476
2477         if (hotplug2_trigger) {
2478                 u32 dig_hotplug_reg;
2479
2480                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2481                 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2482
2483                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2484                                    hotplug2_trigger, dig_hotplug_reg, hpd_spt,
2485                                    spt_port_hotplug2_long_detect);
2486         }
2487
2488         if (pin_mask)
2489                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2490
2491         if (pch_iir & SDE_GMBUS_CPT)
2492                 gmbus_irq_handler(dev_priv);
2493 }
2494
2495 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2496                                 u32 hotplug_trigger,
2497                                 const u32 hpd[HPD_NUM_PINS])
2498 {
2499         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2500
2501         dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2502         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2503
2504         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2505                            dig_hotplug_reg, hpd,
2506                            ilk_port_hotplug_long_detect);
2507
2508         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2509 }
2510
2511 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2512                                     u32 de_iir)
2513 {
2514         enum pipe pipe;
2515         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2516
2517         if (hotplug_trigger)
2518                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2519
2520         if (de_iir & DE_AUX_CHANNEL_A)
2521                 dp_aux_irq_handler(dev_priv);
2522
2523         if (de_iir & DE_GSE)
2524                 intel_opregion_asle_intr(dev_priv);
2525
2526         if (de_iir & DE_POISON)
2527                 DRM_ERROR("Poison interrupt\n");
2528
2529         for_each_pipe(dev_priv, pipe) {
2530                 if (de_iir & DE_PIPE_VBLANK(pipe))
2531                         drm_handle_vblank(&dev_priv->drm, pipe);
2532
2533                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2534                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2535
2536                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2537                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2538         }
2539
2540         /* check event from PCH */
2541         if (de_iir & DE_PCH_EVENT) {
2542                 u32 pch_iir = I915_READ(SDEIIR);
2543
2544                 if (HAS_PCH_CPT(dev_priv))
2545                         cpt_irq_handler(dev_priv, pch_iir);
2546                 else
2547                         ibx_irq_handler(dev_priv, pch_iir);
2548
2549                 /* should clear PCH hotplug event before clear CPU irq */
2550                 I915_WRITE(SDEIIR, pch_iir);
2551         }
2552
2553         if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
2554                 ironlake_rps_change_irq_handler(dev_priv);
2555 }
2556
2557 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2558                                     u32 de_iir)
2559 {
2560         enum pipe pipe;
2561         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2562
2563         if (hotplug_trigger)
2564                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2565
2566         if (de_iir & DE_ERR_INT_IVB)
2567                 ivb_err_int_handler(dev_priv);
2568
2569         if (de_iir & DE_EDP_PSR_INT_HSW) {
2570                 u32 psr_iir = I915_READ(EDP_PSR_IIR);
2571
2572                 intel_psr_irq_handler(dev_priv, psr_iir);
2573                 I915_WRITE(EDP_PSR_IIR, psr_iir);
2574         }
2575
2576         if (de_iir & DE_AUX_CHANNEL_A_IVB)
2577                 dp_aux_irq_handler(dev_priv);
2578
2579         if (de_iir & DE_GSE_IVB)
2580                 intel_opregion_asle_intr(dev_priv);
2581
2582         for_each_pipe(dev_priv, pipe) {
2583                 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2584                         drm_handle_vblank(&dev_priv->drm, pipe);
2585         }
2586
2587         /* check event from PCH */
2588         if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2589                 u32 pch_iir = I915_READ(SDEIIR);
2590
2591                 cpt_irq_handler(dev_priv, pch_iir);
2592
2593                 /* clear PCH hotplug event before clear CPU irq */
2594                 I915_WRITE(SDEIIR, pch_iir);
2595         }
2596 }
2597
2598 /*
2599  * To handle irqs with the minimum potential races with fresh interrupts, we:
2600  * 1 - Disable Master Interrupt Control.
2601  * 2 - Find the source(s) of the interrupt.
2602  * 3 - Clear the Interrupt Identity bits (IIR).
2603  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2604  * 5 - Re-enable Master Interrupt Control.
2605  */
2606 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2607 {
2608         struct drm_device *dev = arg;
2609         struct drm_i915_private *dev_priv = to_i915(dev);
2610         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2611         irqreturn_t ret = IRQ_NONE;
2612
2613         if (!intel_irqs_enabled(dev_priv))
2614                 return IRQ_NONE;
2615
2616         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2617         disable_rpm_wakeref_asserts(dev_priv);
2618
2619         /* disable master interrupt before clearing iir  */
2620         de_ier = I915_READ(DEIER);
2621         I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2622
2623         /* Disable south interrupts. We'll only write to SDEIIR once, so further
2624          * interrupts will will be stored on its back queue, and then we'll be
2625          * able to process them after we restore SDEIER (as soon as we restore
2626          * it, we'll get an interrupt if SDEIIR still has something to process
2627          * due to its back queue). */
2628         if (!HAS_PCH_NOP(dev_priv)) {
2629                 sde_ier = I915_READ(SDEIER);
2630                 I915_WRITE(SDEIER, 0);
2631         }
2632
2633         /* Find, clear, then process each source of interrupt */
2634
2635         gt_iir = I915_READ(GTIIR);
2636         if (gt_iir) {
2637                 I915_WRITE(GTIIR, gt_iir);
2638                 ret = IRQ_HANDLED;
2639                 if (INTEL_GEN(dev_priv) >= 6)
2640                         snb_gt_irq_handler(dev_priv, gt_iir);
2641                 else
2642                         ilk_gt_irq_handler(dev_priv, gt_iir);
2643         }
2644
2645         de_iir = I915_READ(DEIIR);
2646         if (de_iir) {
2647                 I915_WRITE(DEIIR, de_iir);
2648                 ret = IRQ_HANDLED;
2649                 if (INTEL_GEN(dev_priv) >= 7)
2650                         ivb_display_irq_handler(dev_priv, de_iir);
2651                 else
2652                         ilk_display_irq_handler(dev_priv, de_iir);
2653         }
2654
2655         if (INTEL_GEN(dev_priv) >= 6) {
2656                 u32 pm_iir = I915_READ(GEN6_PMIIR);
2657                 if (pm_iir) {
2658                         I915_WRITE(GEN6_PMIIR, pm_iir);
2659                         ret = IRQ_HANDLED;
2660                         gen6_rps_irq_handler(dev_priv, pm_iir);
2661                 }
2662         }
2663
2664         I915_WRITE(DEIER, de_ier);
2665         if (!HAS_PCH_NOP(dev_priv))
2666                 I915_WRITE(SDEIER, sde_ier);
2667
2668         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2669         enable_rpm_wakeref_asserts(dev_priv);
2670
2671         return ret;
2672 }
2673
2674 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2675                                 u32 hotplug_trigger,
2676                                 const u32 hpd[HPD_NUM_PINS])
2677 {
2678         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2679
2680         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2681         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2682
2683         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2684                            dig_hotplug_reg, hpd,
2685                            bxt_port_hotplug_long_detect);
2686
2687         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2688 }
2689
2690 static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2691 {
2692         u32 pin_mask = 0, long_mask = 0;
2693         u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK;
2694         u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK;
2695
2696         if (trigger_tc) {
2697                 u32 dig_hotplug_reg;
2698
2699                 dig_hotplug_reg = I915_READ(GEN11_TC_HOTPLUG_CTL);
2700                 I915_WRITE(GEN11_TC_HOTPLUG_CTL, dig_hotplug_reg);
2701
2702                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tc,
2703                                    dig_hotplug_reg, hpd_gen11,
2704                                    gen11_port_hotplug_long_detect);
2705         }
2706
2707         if (trigger_tbt) {
2708                 u32 dig_hotplug_reg;
2709
2710                 dig_hotplug_reg = I915_READ(GEN11_TBT_HOTPLUG_CTL);
2711                 I915_WRITE(GEN11_TBT_HOTPLUG_CTL, dig_hotplug_reg);
2712
2713                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tbt,
2714                                    dig_hotplug_reg, hpd_gen11,
2715                                    gen11_port_hotplug_long_detect);
2716         }
2717
2718         if (pin_mask)
2719                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2720         else
2721                 DRM_ERROR("Unexpected DE HPD interrupt 0x%08x\n", iir);
2722 }
2723
2724 static irqreturn_t
2725 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2726 {
2727         irqreturn_t ret = IRQ_NONE;
2728         u32 iir;
2729         enum pipe pipe;
2730
2731         if (master_ctl & GEN8_DE_MISC_IRQ) {
2732                 iir = I915_READ(GEN8_DE_MISC_IIR);
2733                 if (iir) {
2734                         bool found = false;
2735
2736                         I915_WRITE(GEN8_DE_MISC_IIR, iir);
2737                         ret = IRQ_HANDLED;
2738
2739                         if (iir & GEN8_DE_MISC_GSE) {
2740                                 intel_opregion_asle_intr(dev_priv);
2741                                 found = true;
2742                         }
2743
2744                         if (iir & GEN8_DE_EDP_PSR) {
2745                                 u32 psr_iir = I915_READ(EDP_PSR_IIR);
2746
2747                                 intel_psr_irq_handler(dev_priv, psr_iir);
2748                                 I915_WRITE(EDP_PSR_IIR, psr_iir);
2749                                 found = true;
2750                         }
2751
2752                         if (!found)
2753                                 DRM_ERROR("Unexpected DE Misc interrupt\n");
2754                 }
2755                 else
2756                         DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2757         }
2758
2759         if (INTEL_GEN(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) {
2760                 iir = I915_READ(GEN11_DE_HPD_IIR);
2761                 if (iir) {
2762                         I915_WRITE(GEN11_DE_HPD_IIR, iir);
2763                         ret = IRQ_HANDLED;
2764                         gen11_hpd_irq_handler(dev_priv, iir);
2765                 } else {
2766                         DRM_ERROR("The master control interrupt lied, (DE HPD)!\n");
2767                 }
2768         }
2769
2770         if (master_ctl & GEN8_DE_PORT_IRQ) {
2771                 iir = I915_READ(GEN8_DE_PORT_IIR);
2772                 if (iir) {
2773                         u32 tmp_mask;
2774                         bool found = false;
2775
2776                         I915_WRITE(GEN8_DE_PORT_IIR, iir);
2777                         ret = IRQ_HANDLED;
2778
2779                         tmp_mask = GEN8_AUX_CHANNEL_A;
2780                         if (INTEL_GEN(dev_priv) >= 9)
2781                                 tmp_mask |= GEN9_AUX_CHANNEL_B |
2782                                             GEN9_AUX_CHANNEL_C |
2783                                             GEN9_AUX_CHANNEL_D;
2784
2785                         if (INTEL_GEN(dev_priv) >= 11)
2786                                 tmp_mask |= ICL_AUX_CHANNEL_E;
2787
2788                         if (IS_CNL_WITH_PORT_F(dev_priv) ||
2789                             INTEL_GEN(dev_priv) >= 11)
2790                                 tmp_mask |= CNL_AUX_CHANNEL_F;
2791
2792                         if (iir & tmp_mask) {
2793                                 dp_aux_irq_handler(dev_priv);
2794                                 found = true;
2795                         }
2796
2797                         if (IS_GEN9_LP(dev_priv)) {
2798                                 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2799                                 if (tmp_mask) {
2800                                         bxt_hpd_irq_handler(dev_priv, tmp_mask,
2801                                                             hpd_bxt);
2802                                         found = true;
2803                                 }
2804                         } else if (IS_BROADWELL(dev_priv)) {
2805                                 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2806                                 if (tmp_mask) {
2807                                         ilk_hpd_irq_handler(dev_priv,
2808                                                             tmp_mask, hpd_bdw);
2809                                         found = true;
2810                                 }
2811                         }
2812
2813                         if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2814                                 gmbus_irq_handler(dev_priv);
2815                                 found = true;
2816                         }
2817
2818                         if (!found)
2819                                 DRM_ERROR("Unexpected DE Port interrupt\n");
2820                 }
2821                 else
2822                         DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2823         }
2824
2825         for_each_pipe(dev_priv, pipe) {
2826                 u32 fault_errors;
2827
2828                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2829                         continue;
2830
2831                 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2832                 if (!iir) {
2833                         DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2834                         continue;
2835                 }
2836
2837                 ret = IRQ_HANDLED;
2838                 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2839
2840                 if (iir & GEN8_PIPE_VBLANK)
2841                         drm_handle_vblank(&dev_priv->drm, pipe);
2842
2843                 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2844                         hsw_pipe_crc_irq_handler(dev_priv, pipe);
2845
2846                 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2847                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2848
2849                 fault_errors = iir;
2850                 if (INTEL_GEN(dev_priv) >= 9)
2851                         fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2852                 else
2853                         fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2854
2855                 if (fault_errors)
2856                         DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2857                                   pipe_name(pipe),
2858                                   fault_errors);
2859         }
2860
2861         if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2862             master_ctl & GEN8_DE_PCH_IRQ) {
2863                 /*
2864                  * FIXME(BDW): Assume for now that the new interrupt handling
2865                  * scheme also closed the SDE interrupt handling race we've seen
2866                  * on older pch-split platforms. But this needs testing.
2867                  */
2868                 iir = I915_READ(SDEIIR);
2869                 if (iir) {
2870                         I915_WRITE(SDEIIR, iir);
2871                         ret = IRQ_HANDLED;
2872
2873                         if (HAS_PCH_ICP(dev_priv))
2874                                 icp_irq_handler(dev_priv, iir);
2875                         else if (HAS_PCH_SPT(dev_priv) ||
2876                                  HAS_PCH_KBP(dev_priv) ||
2877                                  HAS_PCH_CNP(dev_priv))
2878                                 spt_irq_handler(dev_priv, iir);
2879                         else
2880                                 cpt_irq_handler(dev_priv, iir);
2881                 } else {
2882                         /*
2883                          * Like on previous PCH there seems to be something
2884                          * fishy going on with forwarding PCH interrupts.
2885                          */
2886                         DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2887                 }
2888         }
2889
2890         return ret;
2891 }
2892
2893 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2894 {
2895         struct drm_i915_private *dev_priv = to_i915(arg);
2896         u32 master_ctl;
2897         u32 gt_iir[4];
2898
2899         if (!intel_irqs_enabled(dev_priv))
2900                 return IRQ_NONE;
2901
2902         master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2903         master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2904         if (!master_ctl)
2905                 return IRQ_NONE;
2906
2907         I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2908
2909         /* Find, clear, then process each source of interrupt */
2910         gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2911
2912         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2913         if (master_ctl & ~GEN8_GT_IRQS) {
2914                 disable_rpm_wakeref_asserts(dev_priv);
2915                 gen8_de_irq_handler(dev_priv, master_ctl);
2916                 enable_rpm_wakeref_asserts(dev_priv);
2917         }
2918
2919         I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2920
2921         gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir);
2922
2923         return IRQ_HANDLED;
2924 }
2925
2926 struct wedge_me {
2927         struct delayed_work work;
2928         struct drm_i915_private *i915;
2929         const char *name;
2930 };
2931
2932 static void wedge_me(struct work_struct *work)
2933 {
2934         struct wedge_me *w = container_of(work, typeof(*w), work.work);
2935
2936         dev_err(w->i915->drm.dev,
2937                 "%s timed out, cancelling all in-flight rendering.\n",
2938                 w->name);
2939         i915_gem_set_wedged(w->i915);
2940 }
2941
2942 static void __init_wedge(struct wedge_me *w,
2943                          struct drm_i915_private *i915,
2944                          long timeout,
2945                          const char *name)
2946 {
2947         w->i915 = i915;
2948         w->name = name;
2949
2950         INIT_DELAYED_WORK_ONSTACK(&w->work, wedge_me);
2951         schedule_delayed_work(&w->work, timeout);
2952 }
2953
2954 static void __fini_wedge(struct wedge_me *w)
2955 {
2956         cancel_delayed_work_sync(&w->work);
2957         destroy_delayed_work_on_stack(&w->work);
2958         w->i915 = NULL;
2959 }
2960
2961 #define i915_wedge_on_timeout(W, DEV, TIMEOUT)                          \
2962         for (__init_wedge((W), (DEV), (TIMEOUT), __func__);             \
2963              (W)->i915;                                                 \
2964              __fini_wedge((W)))
2965
2966 static u32
2967 gen11_gt_engine_identity(struct drm_i915_private * const i915,
2968                          const unsigned int bank, const unsigned int bit)
2969 {
2970         void __iomem * const regs = i915->regs;
2971         u32 timeout_ts;
2972         u32 ident;
2973
2974         lockdep_assert_held(&i915->irq_lock);
2975
2976         raw_reg_write(regs, GEN11_IIR_REG_SELECTOR(bank), BIT(bit));
2977
2978         /*
2979          * NB: Specs do not specify how long to spin wait,
2980          * so we do ~100us as an educated guess.
2981          */
2982         timeout_ts = (local_clock() >> 10) + 100;
2983         do {
2984                 ident = raw_reg_read(regs, GEN11_INTR_IDENTITY_REG(bank));
2985         } while (!(ident & GEN11_INTR_DATA_VALID) &&
2986                  !time_after32(local_clock() >> 10, timeout_ts));
2987
2988         if (unlikely(!(ident & GEN11_INTR_DATA_VALID))) {
2989                 DRM_ERROR("INTR_IDENTITY_REG%u:%u 0x%08x not valid!\n",
2990                           bank, bit, ident);
2991                 return 0;
2992         }
2993
2994         raw_reg_write(regs, GEN11_INTR_IDENTITY_REG(bank),
2995                       GEN11_INTR_DATA_VALID);
2996
2997         return ident;
2998 }
2999
3000 static void
3001 gen11_other_irq_handler(struct drm_i915_private * const i915,
3002                         const u8 instance, const u16 iir)
3003 {
3004         if (instance == OTHER_GTPM_INSTANCE)
3005                 return gen6_rps_irq_handler(i915, iir);
3006
3007         WARN_ONCE(1, "unhandled other interrupt instance=0x%x, iir=0x%x\n",
3008                   instance, iir);
3009 }
3010
3011 static void
3012 gen11_engine_irq_handler(struct drm_i915_private * const i915,
3013                          const u8 class, const u8 instance, const u16 iir)
3014 {
3015         struct intel_engine_cs *engine;
3016
3017         if (instance <= MAX_ENGINE_INSTANCE)
3018                 engine = i915->engine_class[class][instance];
3019         else
3020                 engine = NULL;
3021
3022         if (likely(engine))
3023                 return gen8_cs_irq_handler(engine, iir);
3024
3025         WARN_ONCE(1, "unhandled engine interrupt class=0x%x, instance=0x%x\n",
3026                   class, instance);
3027 }
3028
3029 static void
3030 gen11_gt_identity_handler(struct drm_i915_private * const i915,
3031                           const u32 identity)
3032 {
3033         const u8 class = GEN11_INTR_ENGINE_CLASS(identity);
3034         const u8 instance = GEN11_INTR_ENGINE_INSTANCE(identity);
3035         const u16 intr = GEN11_INTR_ENGINE_INTR(identity);
3036
3037         if (unlikely(!intr))
3038                 return;
3039
3040         if (class <= COPY_ENGINE_CLASS)
3041                 return gen11_engine_irq_handler(i915, class, instance, intr);
3042
3043         if (class == OTHER_CLASS)
3044                 return gen11_other_irq_handler(i915, instance, intr);
3045
3046         WARN_ONCE(1, "unknown interrupt class=0x%x, instance=0x%x, intr=0x%x\n",
3047                   class, instance, intr);
3048 }
3049
3050 static void
3051 gen11_gt_bank_handler(struct drm_i915_private * const i915,
3052                       const unsigned int bank)
3053 {
3054         void __iomem * const regs = i915->regs;
3055         unsigned long intr_dw;
3056         unsigned int bit;
3057
3058         lockdep_assert_held(&i915->irq_lock);
3059
3060         intr_dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank));
3061
3062         if (unlikely(!intr_dw)) {
3063                 DRM_ERROR("GT_INTR_DW%u blank!\n", bank);
3064                 return;
3065         }
3066
3067         for_each_set_bit(bit, &intr_dw, 32) {
3068                 const u32 ident = gen11_gt_engine_identity(i915,
3069                                                            bank, bit);
3070
3071                 gen11_gt_identity_handler(i915, ident);
3072         }
3073
3074         /* Clear must be after shared has been served for engine */
3075         raw_reg_write(regs, GEN11_GT_INTR_DW(bank), intr_dw);
3076 }
3077
3078 static void
3079 gen11_gt_irq_handler(struct drm_i915_private * const i915,
3080                      const u32 master_ctl)
3081 {
3082         unsigned int bank;
3083
3084         spin_lock(&i915->irq_lock);
3085
3086         for (bank = 0; bank < 2; bank++) {
3087                 if (master_ctl & GEN11_GT_DW_IRQ(bank))
3088                         gen11_gt_bank_handler(i915, bank);
3089         }
3090
3091         spin_unlock(&i915->irq_lock);
3092 }
3093
3094 static u32
3095 gen11_gu_misc_irq_ack(struct drm_i915_private *dev_priv, const u32 master_ctl)
3096 {
3097         void __iomem * const regs = dev_priv->regs;
3098         u32 iir;
3099
3100         if (!(master_ctl & GEN11_GU_MISC_IRQ))
3101                 return 0;
3102
3103         iir = raw_reg_read(regs, GEN11_GU_MISC_IIR);
3104         if (likely(iir))
3105                 raw_reg_write(regs, GEN11_GU_MISC_IIR, iir);
3106
3107         return iir;
3108 }
3109
3110 static void
3111 gen11_gu_misc_irq_handler(struct drm_i915_private *dev_priv, const u32 iir)
3112 {
3113         if (iir & GEN11_GU_MISC_GSE)
3114                 intel_opregion_asle_intr(dev_priv);
3115 }
3116
3117 static irqreturn_t gen11_irq_handler(int irq, void *arg)
3118 {
3119         struct drm_i915_private * const i915 = to_i915(arg);
3120         void __iomem * const regs = i915->regs;
3121         u32 master_ctl;
3122         u32 gu_misc_iir;
3123
3124         if (!intel_irqs_enabled(i915))
3125                 return IRQ_NONE;
3126
3127         master_ctl = raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
3128         master_ctl &= ~GEN11_MASTER_IRQ;
3129         if (!master_ctl)
3130                 return IRQ_NONE;
3131
3132         /* Disable interrupts. */
3133         raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
3134
3135         /* Find, clear, then process each source of interrupt. */
3136         gen11_gt_irq_handler(i915, master_ctl);
3137
3138         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3139         if (master_ctl & GEN11_DISPLAY_IRQ) {
3140                 const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
3141
3142                 disable_rpm_wakeref_asserts(i915);
3143                 /*
3144                  * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
3145                  * for the display related bits.
3146                  */
3147                 gen8_de_irq_handler(i915, disp_ctl);
3148                 enable_rpm_wakeref_asserts(i915);
3149         }
3150
3151         gu_misc_iir = gen11_gu_misc_irq_ack(i915, master_ctl);
3152
3153         /* Acknowledge and enable interrupts. */
3154         raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ | master_ctl);
3155
3156         gen11_gu_misc_irq_handler(i915, gu_misc_iir);
3157
3158         return IRQ_HANDLED;
3159 }
3160
3161 static void i915_reset_device(struct drm_i915_private *dev_priv,
3162                               u32 engine_mask,
3163                               const char *reason)
3164 {
3165         struct i915_gpu_error *error = &dev_priv->gpu_error;
3166         struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
3167         char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
3168         char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
3169         char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
3170         struct wedge_me w;
3171
3172         kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
3173
3174         DRM_DEBUG_DRIVER("resetting chip\n");
3175         kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
3176
3177         /* Use a watchdog to ensure that our reset completes */
3178         i915_wedge_on_timeout(&w, dev_priv, 5*HZ) {
3179                 intel_prepare_reset(dev_priv);
3180
3181                 error->reason = reason;
3182                 error->stalled_mask = engine_mask;
3183
3184                 /* Signal that locked waiters should reset the GPU */
3185                 smp_mb__before_atomic();
3186                 set_bit(I915_RESET_HANDOFF, &error->flags);
3187                 wake_up_all(&error->wait_queue);
3188
3189                 /* Wait for anyone holding the lock to wakeup, without
3190                  * blocking indefinitely on struct_mutex.
3191                  */
3192                 do {
3193                         if (mutex_trylock(&dev_priv->drm.struct_mutex)) {
3194                                 i915_reset(dev_priv, engine_mask, reason);
3195                                 mutex_unlock(&dev_priv->drm.struct_mutex);
3196                         }
3197                 } while (wait_on_bit_timeout(&error->flags,
3198                                              I915_RESET_HANDOFF,
3199                                              TASK_UNINTERRUPTIBLE,
3200                                              1));
3201
3202                 error->stalled_mask = 0;
3203                 error->reason = NULL;
3204
3205                 intel_finish_reset(dev_priv);
3206         }
3207
3208         if (!test_bit(I915_WEDGED, &error->flags))
3209                 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_done_event);
3210 }
3211
3212 static void i915_clear_error_registers(struct drm_i915_private *dev_priv)
3213 {
3214         u32 eir;
3215
3216         if (!IS_GEN2(dev_priv))
3217                 I915_WRITE(PGTBL_ER, I915_READ(PGTBL_ER));
3218
3219         if (INTEL_GEN(dev_priv) < 4)
3220                 I915_WRITE(IPEIR, I915_READ(IPEIR));
3221         else
3222                 I915_WRITE(IPEIR_I965, I915_READ(IPEIR_I965));
3223
3224         I915_WRITE(EIR, I915_READ(EIR));
3225         eir = I915_READ(EIR);
3226         if (eir) {
3227                 /*
3228                  * some errors might have become stuck,
3229                  * mask them.
3230                  */
3231                 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
3232                 I915_WRITE(EMR, I915_READ(EMR) | eir);
3233                 I915_WRITE(IIR, I915_MASTER_ERROR_INTERRUPT);
3234         }
3235 }
3236
3237 /**
3238  * i915_handle_error - handle a gpu error
3239  * @dev_priv: i915 device private
3240  * @engine_mask: mask representing engines that are hung
3241  * @flags: control flags
3242  * @fmt: Error message format string
3243  *
3244  * Do some basic checking of register state at error time and
3245  * dump it to the syslog.  Also call i915_capture_error_state() to make
3246  * sure we get a record and make it available in debugfs.  Fire a uevent
3247  * so userspace knows something bad happened (should trigger collection
3248  * of a ring dump etc.).
3249  */
3250 void i915_handle_error(struct drm_i915_private *dev_priv,
3251                        u32 engine_mask,
3252                        unsigned long flags,
3253                        const char *fmt, ...)
3254 {
3255         struct intel_engine_cs *engine;
3256         unsigned int tmp;
3257         char error_msg[80];
3258         char *msg = NULL;
3259
3260         if (fmt) {
3261                 va_list args;
3262
3263                 va_start(args, fmt);
3264                 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
3265                 va_end(args);
3266
3267                 msg = error_msg;
3268         }
3269
3270         /*
3271          * In most cases it's guaranteed that we get here with an RPM
3272          * reference held, for example because there is a pending GPU
3273          * request that won't finish until the reset is done. This
3274          * isn't the case at least when we get here by doing a
3275          * simulated reset via debugfs, so get an RPM reference.
3276          */
3277         intel_runtime_pm_get(dev_priv);
3278
3279         engine_mask &= INTEL_INFO(dev_priv)->ring_mask;
3280
3281         if (flags & I915_ERROR_CAPTURE) {
3282                 i915_capture_error_state(dev_priv, engine_mask, msg);
3283                 i915_clear_error_registers(dev_priv);
3284         }
3285
3286         /*
3287          * Try engine reset when available. We fall back to full reset if
3288          * single reset fails.
3289          */
3290         if (intel_has_reset_engine(dev_priv)) {
3291                 for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
3292                         BUILD_BUG_ON(I915_RESET_MODESET >= I915_RESET_ENGINE);
3293                         if (test_and_set_bit(I915_RESET_ENGINE + engine->id,
3294                                              &dev_priv->gpu_error.flags))
3295                                 continue;
3296
3297                         if (i915_reset_engine(engine, msg) == 0)
3298                                 engine_mask &= ~intel_engine_flag(engine);
3299
3300                         clear_bit(I915_RESET_ENGINE + engine->id,
3301                                   &dev_priv->gpu_error.flags);
3302                         wake_up_bit(&dev_priv->gpu_error.flags,
3303                                     I915_RESET_ENGINE + engine->id);
3304                 }
3305         }
3306
3307         if (!engine_mask)
3308                 goto out;
3309
3310         /* Full reset needs the mutex, stop any other user trying to do so. */
3311         if (test_and_set_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags)) {
3312                 wait_event(dev_priv->gpu_error.reset_queue,
3313                            !test_bit(I915_RESET_BACKOFF,
3314                                      &dev_priv->gpu_error.flags));
3315                 goto out;
3316         }
3317
3318         /* Prevent any other reset-engine attempt. */
3319         for_each_engine(engine, dev_priv, tmp) {
3320                 while (test_and_set_bit(I915_RESET_ENGINE + engine->id,
3321                                         &dev_priv->gpu_error.flags))
3322                         wait_on_bit(&dev_priv->gpu_error.flags,
3323                                     I915_RESET_ENGINE + engine->id,
3324                                     TASK_UNINTERRUPTIBLE);
3325         }
3326
3327         i915_reset_device(dev_priv, engine_mask, msg);
3328
3329         for_each_engine(engine, dev_priv, tmp) {
3330                 clear_bit(I915_RESET_ENGINE + engine->id,
3331                           &dev_priv->gpu_error.flags);
3332         }
3333
3334         clear_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags);
3335         wake_up_all(&dev_priv->gpu_error.reset_queue);
3336
3337 out:
3338         intel_runtime_pm_put(dev_priv);
3339 }
3340
3341 /* Called from drm generic code, passed 'crtc' which
3342  * we use as a pipe index
3343  */
3344 static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe)
3345 {
3346         struct drm_i915_private *dev_priv = to_i915(dev);
3347         unsigned long irqflags;
3348
3349         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3350         i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
3351         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3352
3353         return 0;
3354 }
3355
3356 static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe)
3357 {
3358         struct drm_i915_private *dev_priv = to_i915(dev);
3359         unsigned long irqflags;
3360
3361         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3362         i915_enable_pipestat(dev_priv, pipe,
3363                              PIPE_START_VBLANK_INTERRUPT_STATUS);
3364         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3365
3366         return 0;
3367 }
3368
3369 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
3370 {
3371         struct drm_i915_private *dev_priv = to_i915(dev);
3372         unsigned long irqflags;
3373         uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
3374                 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
3375
3376         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3377         ilk_enable_display_irq(dev_priv, bit);
3378         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3379
3380         /* Even though there is no DMC, frame counter can get stuck when
3381          * PSR is active as no frames are generated.
3382          */
3383         if (HAS_PSR(dev_priv))
3384                 drm_vblank_restore(dev, pipe);
3385
3386         return 0;
3387 }
3388
3389 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
3390 {
3391         struct drm_i915_private *dev_priv = to_i915(dev);
3392         unsigned long irqflags;
3393
3394         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3395         bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3396         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3397
3398         /* Even if there is no DMC, frame counter can get stuck when
3399          * PSR is active as no frames are generated, so check only for PSR.
3400          */
3401         if (HAS_PSR(dev_priv))
3402                 drm_vblank_restore(dev, pipe);
3403
3404         return 0;
3405 }
3406
3407 /* Called from drm generic code, passed 'crtc' which
3408  * we use as a pipe index
3409  */
3410 static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe)
3411 {
3412         struct drm_i915_private *dev_priv = to_i915(dev);
3413         unsigned long irqflags;
3414
3415         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3416         i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
3417         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3418 }
3419
3420 static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe)
3421 {
3422         struct drm_i915_private *dev_priv = to_i915(dev);
3423         unsigned long irqflags;
3424
3425         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3426         i915_disable_pipestat(dev_priv, pipe,
3427                               PIPE_START_VBLANK_INTERRUPT_STATUS);
3428         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3429 }
3430
3431 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
3432 {
3433         struct drm_i915_private *dev_priv = to_i915(dev);
3434         unsigned long irqflags;
3435         uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
3436                 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
3437
3438         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3439         ilk_disable_display_irq(dev_priv, bit);
3440         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3441 }
3442
3443 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
3444 {
3445         struct drm_i915_private *dev_priv = to_i915(dev);
3446         unsigned long irqflags;
3447
3448         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3449         bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3450         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3451 }
3452
3453 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
3454 {
3455         if (HAS_PCH_NOP(dev_priv))
3456                 return;
3457
3458         GEN3_IRQ_RESET(SDE);
3459
3460         if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3461                 I915_WRITE(SERR_INT, 0xffffffff);
3462 }
3463
3464 /*
3465  * SDEIER is also touched by the interrupt handler to work around missed PCH
3466  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3467  * instead we unconditionally enable all PCH interrupt sources here, but then
3468  * only unmask them as needed with SDEIMR.
3469  *
3470  * This function needs to be called before interrupts are enabled.
3471  */
3472 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3473 {
3474         struct drm_i915_private *dev_priv = to_i915(dev);
3475
3476         if (HAS_PCH_NOP(dev_priv))
3477                 return;
3478
3479         WARN_ON(I915_READ(SDEIER) != 0);
3480         I915_WRITE(SDEIER, 0xffffffff);
3481         POSTING_READ(SDEIER);
3482 }
3483
3484 static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv)
3485 {
3486         GEN3_IRQ_RESET(GT);
3487         if (INTEL_GEN(dev_priv) >= 6)
3488                 GEN3_IRQ_RESET(GEN6_PM);
3489 }
3490
3491 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3492 {
3493         if (IS_CHERRYVIEW(dev_priv))
3494                 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3495         else
3496                 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3497
3498         i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
3499         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3500
3501         i9xx_pipestat_irq_reset(dev_priv);
3502
3503         GEN3_IRQ_RESET(VLV_);
3504         dev_priv->irq_mask = ~0u;
3505 }
3506
3507 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3508 {
3509         u32 pipestat_mask;
3510         u32 enable_mask;
3511         enum pipe pipe;
3512
3513         pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
3514
3515         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3516         for_each_pipe(dev_priv, pipe)
3517                 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3518
3519         enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3520                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3521                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3522                 I915_LPE_PIPE_A_INTERRUPT |
3523                 I915_LPE_PIPE_B_INTERRUPT;
3524
3525         if (IS_CHERRYVIEW(dev_priv))
3526                 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
3527                         I915_LPE_PIPE_C_INTERRUPT;
3528
3529         WARN_ON(dev_priv->irq_mask != ~0u);
3530
3531         dev_priv->irq_mask = ~enable_mask;
3532
3533         GEN3_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
3534 }
3535
3536 /* drm_dma.h hooks
3537 */
3538 static void ironlake_irq_reset(struct drm_device *dev)
3539 {
3540         struct drm_i915_private *dev_priv = to_i915(dev);
3541
3542         if (IS_GEN5(dev_priv))
3543                 I915_WRITE(HWSTAM, 0xffffffff);
3544
3545         GEN3_IRQ_RESET(DE);
3546         if (IS_GEN7(dev_priv))
3547                 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3548
3549         if (IS_HASWELL(dev_priv)) {
3550                 I915_WRITE(EDP_PSR_IMR, 0xffffffff);
3551                 I915_WRITE(EDP_PSR_IIR, 0xffffffff);
3552         }
3553
3554         gen5_gt_irq_reset(dev_priv);
3555
3556         ibx_irq_reset(dev_priv);
3557 }
3558
3559 static void valleyview_irq_reset(struct drm_device *dev)
3560 {
3561         struct drm_i915_private *dev_priv = to_i915(dev);
3562
3563         I915_WRITE(VLV_MASTER_IER, 0);
3564         POSTING_READ(VLV_MASTER_IER);
3565
3566         gen5_gt_irq_reset(dev_priv);
3567
3568         spin_lock_irq(&dev_priv->irq_lock);
3569         if (dev_priv->display_irqs_enabled)
3570                 vlv_display_irq_reset(dev_priv);
3571         spin_unlock_irq(&dev_priv->irq_lock);
3572 }
3573
3574 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3575 {
3576         GEN8_IRQ_RESET_NDX(GT, 0);
3577         GEN8_IRQ_RESET_NDX(GT, 1);
3578         GEN8_IRQ_RESET_NDX(GT, 2);
3579         GEN8_IRQ_RESET_NDX(GT, 3);
3580 }
3581
3582 static void gen8_irq_reset(struct drm_device *dev)
3583 {
3584         struct drm_i915_private *dev_priv = to_i915(dev);
3585         int pipe;
3586
3587         I915_WRITE(GEN8_MASTER_IRQ, 0);
3588         POSTING_READ(GEN8_MASTER_IRQ);
3589
3590         gen8_gt_irq_reset(dev_priv);
3591
3592         I915_WRITE(EDP_PSR_IMR, 0xffffffff);
3593         I915_WRITE(EDP_PSR_IIR, 0xffffffff);
3594
3595         for_each_pipe(dev_priv, pipe)
3596                 if (intel_display_power_is_enabled(dev_priv,
3597                                                    POWER_DOMAIN_PIPE(pipe)))
3598                         GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3599
3600         GEN3_IRQ_RESET(GEN8_DE_PORT_);
3601         GEN3_IRQ_RESET(GEN8_DE_MISC_);
3602         GEN3_IRQ_RESET(GEN8_PCU_);
3603
3604         if (HAS_PCH_SPLIT(dev_priv))
3605                 ibx_irq_reset(dev_priv);
3606 }
3607
3608 static void gen11_gt_irq_reset(struct drm_i915_private *dev_priv)
3609 {
3610         /* Disable RCS, BCS, VCS and VECS class engines. */
3611         I915_WRITE(GEN11_RENDER_COPY_INTR_ENABLE, 0);
3612         I915_WRITE(GEN11_VCS_VECS_INTR_ENABLE,    0);
3613
3614         /* Restore masks irqs on RCS, BCS, VCS and VECS engines. */
3615         I915_WRITE(GEN11_RCS0_RSVD_INTR_MASK,   ~0);
3616         I915_WRITE(GEN11_BCS_RSVD_INTR_MASK,    ~0);
3617         I915_WRITE(GEN11_VCS0_VCS1_INTR_MASK,   ~0);
3618         I915_WRITE(GEN11_VCS2_VCS3_INTR_MASK,   ~0);
3619         I915_WRITE(GEN11_VECS0_VECS1_INTR_MASK, ~0);
3620
3621         I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0);
3622         I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_MASK,  ~0);
3623 }
3624
3625 static void gen11_irq_reset(struct drm_device *dev)
3626 {
3627         struct drm_i915_private *dev_priv = dev->dev_private;
3628         int pipe;
3629
3630         I915_WRITE(GEN11_GFX_MSTR_IRQ, 0);
3631         POSTING_READ(GEN11_GFX_MSTR_IRQ);
3632
3633         gen11_gt_irq_reset(dev_priv);
3634
3635         I915_WRITE(GEN11_DISPLAY_INT_CTL, 0);
3636
3637         for_each_pipe(dev_priv, pipe)
3638                 if (intel_display_power_is_enabled(dev_priv,
3639                                                    POWER_DOMAIN_PIPE(pipe)))
3640                         GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3641
3642         GEN3_IRQ_RESET(GEN8_DE_PORT_);
3643         GEN3_IRQ_RESET(GEN8_DE_MISC_);
3644         GEN3_IRQ_RESET(GEN11_DE_HPD_);
3645         GEN3_IRQ_RESET(GEN11_GU_MISC_);
3646         GEN3_IRQ_RESET(GEN8_PCU_);
3647
3648         if (HAS_PCH_ICP(dev_priv))
3649                 GEN3_IRQ_RESET(SDE);
3650 }
3651
3652 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3653                                      u8 pipe_mask)
3654 {
3655         uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3656         enum pipe pipe;
3657
3658         spin_lock_irq(&dev_priv->irq_lock);
3659
3660         if (!intel_irqs_enabled(dev_priv)) {
3661                 spin_unlock_irq(&dev_priv->irq_lock);
3662                 return;
3663         }
3664
3665         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3666                 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3667                                   dev_priv->de_irq_mask[pipe],
3668                                   ~dev_priv->de_irq_mask[pipe] | extra_ier);
3669
3670         spin_unlock_irq(&dev_priv->irq_lock);
3671 }
3672
3673 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3674                                      u8 pipe_mask)
3675 {
3676         enum pipe pipe;
3677
3678         spin_lock_irq(&dev_priv->irq_lock);
3679
3680         if (!intel_irqs_enabled(dev_priv)) {
3681                 spin_unlock_irq(&dev_priv->irq_lock);
3682                 return;
3683         }
3684
3685         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3686                 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3687
3688         spin_unlock_irq(&dev_priv->irq_lock);
3689
3690         /* make sure we're done processing display irqs */
3691         synchronize_irq(dev_priv->drm.irq);
3692 }
3693
3694 static void cherryview_irq_reset(struct drm_device *dev)
3695 {
3696         struct drm_i915_private *dev_priv = to_i915(dev);
3697
3698         I915_WRITE(GEN8_MASTER_IRQ, 0);
3699         POSTING_READ(GEN8_MASTER_IRQ);
3700
3701         gen8_gt_irq_reset(dev_priv);
3702
3703         GEN3_IRQ_RESET(GEN8_PCU_);
3704
3705         spin_lock_irq(&dev_priv->irq_lock);
3706         if (dev_priv->display_irqs_enabled)
3707                 vlv_display_irq_reset(dev_priv);
3708         spin_unlock_irq(&dev_priv->irq_lock);
3709 }
3710
3711 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3712                                   const u32 hpd[HPD_NUM_PINS])
3713 {
3714         struct intel_encoder *encoder;
3715         u32 enabled_irqs = 0;
3716
3717         for_each_intel_encoder(&dev_priv->drm, encoder)
3718                 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3719                         enabled_irqs |= hpd[encoder->hpd_pin];
3720
3721         return enabled_irqs;
3722 }
3723
3724 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3725 {
3726         u32 hotplug;
3727
3728         /*
3729          * Enable digital hotplug on the PCH, and configure the DP short pulse
3730          * duration to 2ms (which is the minimum in the Display Port spec).
3731          * The pulse duration bits are reserved on LPT+.
3732          */
3733         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3734         hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3735                      PORTC_PULSE_DURATION_MASK |
3736                      PORTD_PULSE_DURATION_MASK);
3737         hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3738         hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3739         hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3740         /*
3741          * When CPU and PCH are on the same package, port A
3742          * HPD must be enabled in both north and south.
3743          */
3744         if (HAS_PCH_LPT_LP(dev_priv))
3745                 hotplug |= PORTA_HOTPLUG_ENABLE;
3746         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3747 }
3748
3749 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3750 {
3751         u32 hotplug_irqs, enabled_irqs;
3752
3753         if (HAS_PCH_IBX(dev_priv)) {
3754                 hotplug_irqs = SDE_HOTPLUG_MASK;
3755                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3756         } else {
3757                 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3758                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3759         }
3760
3761         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3762
3763         ibx_hpd_detection_setup(dev_priv);
3764 }
3765
3766 static void icp_hpd_detection_setup(struct drm_i915_private *dev_priv)
3767 {
3768         u32 hotplug;
3769
3770         hotplug = I915_READ(SHOTPLUG_CTL_DDI);
3771         hotplug |= ICP_DDIA_HPD_ENABLE |
3772                    ICP_DDIB_HPD_ENABLE;
3773         I915_WRITE(SHOTPLUG_CTL_DDI, hotplug);
3774
3775         hotplug = I915_READ(SHOTPLUG_CTL_TC);
3776         hotplug |= ICP_TC_HPD_ENABLE(PORT_TC1) |
3777                    ICP_TC_HPD_ENABLE(PORT_TC2) |
3778                    ICP_TC_HPD_ENABLE(PORT_TC3) |
3779                    ICP_TC_HPD_ENABLE(PORT_TC4);
3780         I915_WRITE(SHOTPLUG_CTL_TC, hotplug);
3781 }
3782
3783 static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv)
3784 {
3785         u32 hotplug_irqs, enabled_irqs;
3786
3787         hotplug_irqs = SDE_DDI_MASK_ICP | SDE_TC_MASK_ICP;
3788         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_icp);
3789
3790         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3791
3792         icp_hpd_detection_setup(dev_priv);
3793 }
3794
3795 static void gen11_hpd_detection_setup(struct drm_i915_private *dev_priv)
3796 {
3797         u32 hotplug;
3798
3799         hotplug = I915_READ(GEN11_TC_HOTPLUG_CTL);
3800         hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3801                    GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3802                    GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3803                    GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3804         I915_WRITE(GEN11_TC_HOTPLUG_CTL, hotplug);
3805
3806         hotplug = I915_READ(GEN11_TBT_HOTPLUG_CTL);
3807         hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3808                    GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3809                    GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3810                    GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3811         I915_WRITE(GEN11_TBT_HOTPLUG_CTL, hotplug);
3812 }
3813
3814 static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv)
3815 {
3816         u32 hotplug_irqs, enabled_irqs;
3817         u32 val;
3818
3819         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_gen11);
3820         hotplug_irqs = GEN11_DE_TC_HOTPLUG_MASK | GEN11_DE_TBT_HOTPLUG_MASK;
3821
3822         val = I915_READ(GEN11_DE_HPD_IMR);
3823         val &= ~hotplug_irqs;
3824         val |= ~enabled_irqs & hotplug_irqs;
3825         I915_WRITE(GEN11_DE_HPD_IMR, val);
3826         POSTING_READ(GEN11_DE_HPD_IMR);
3827
3828         gen11_hpd_detection_setup(dev_priv);
3829
3830         if (HAS_PCH_ICP(dev_priv))
3831                 icp_hpd_irq_setup(dev_priv);
3832 }
3833
3834 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3835 {
3836         u32 val, hotplug;
3837
3838         /* Display WA #1179 WaHardHangonHotPlug: cnp */
3839         if (HAS_PCH_CNP(dev_priv)) {
3840                 val = I915_READ(SOUTH_CHICKEN1);
3841                 val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
3842                 val |= CHASSIS_CLK_REQ_DURATION(0xf);
3843                 I915_WRITE(SOUTH_CHICKEN1, val);
3844         }
3845
3846         /* Enable digital hotplug on the PCH */
3847         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3848         hotplug |= PORTA_HOTPLUG_ENABLE |
3849                    PORTB_HOTPLUG_ENABLE |
3850                    PORTC_HOTPLUG_ENABLE |
3851                    PORTD_HOTPLUG_ENABLE;
3852         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3853
3854         hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3855         hotplug |= PORTE_HOTPLUG_ENABLE;
3856         I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3857 }
3858
3859 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3860 {
3861         u32 hotplug_irqs, enabled_irqs;
3862
3863         hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3864         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3865
3866         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3867
3868         spt_hpd_detection_setup(dev_priv);
3869 }
3870
3871 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3872 {
3873         u32 hotplug;
3874
3875         /*
3876          * Enable digital hotplug on the CPU, and configure the DP short pulse
3877          * duration to 2ms (which is the minimum in the Display Port spec)
3878          * The pulse duration bits are reserved on HSW+.
3879          */
3880         hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3881         hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3882         hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3883                    DIGITAL_PORTA_PULSE_DURATION_2ms;
3884         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3885 }
3886
3887 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3888 {
3889         u32 hotplug_irqs, enabled_irqs;
3890
3891         if (INTEL_GEN(dev_priv) >= 8) {
3892                 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3893                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3894
3895                 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3896         } else if (INTEL_GEN(dev_priv) >= 7) {
3897                 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3898                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3899
3900                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3901         } else {
3902                 hotplug_irqs = DE_DP_A_HOTPLUG;
3903                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3904
3905                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3906         }
3907
3908         ilk_hpd_detection_setup(dev_priv);
3909
3910         ibx_hpd_irq_setup(dev_priv);
3911 }
3912
3913 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3914                                       u32 enabled_irqs)
3915 {
3916         u32 hotplug;
3917
3918         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3919         hotplug |= PORTA_HOTPLUG_ENABLE |
3920                    PORTB_HOTPLUG_ENABLE |
3921                    PORTC_HOTPLUG_ENABLE;
3922
3923         DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3924                       hotplug, enabled_irqs);
3925         hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3926
3927         /*
3928          * For BXT invert bit has to be set based on AOB design
3929          * for HPD detection logic, update it based on VBT fields.
3930          */
3931         if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3932             intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3933                 hotplug |= BXT_DDIA_HPD_INVERT;
3934         if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3935             intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3936                 hotplug |= BXT_DDIB_HPD_INVERT;
3937         if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3938             intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3939                 hotplug |= BXT_DDIC_HPD_INVERT;
3940
3941         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3942 }
3943
3944 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3945 {
3946         __bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3947 }
3948
3949 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3950 {
3951         u32 hotplug_irqs, enabled_irqs;
3952
3953         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3954         hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3955
3956         bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3957
3958         __bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3959 }
3960
3961 static void ibx_irq_postinstall(struct drm_device *dev)
3962 {
3963         struct drm_i915_private *dev_priv = to_i915(dev);
3964         u32 mask;
3965
3966         if (HAS_PCH_NOP(dev_priv))
3967                 return;
3968
3969         if (HAS_PCH_IBX(dev_priv))
3970                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3971         else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3972                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3973         else
3974                 mask = SDE_GMBUS_CPT;
3975
3976         gen3_assert_iir_is_zero(dev_priv, SDEIIR);
3977         I915_WRITE(SDEIMR, ~mask);
3978
3979         if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3980             HAS_PCH_LPT(dev_priv))
3981                 ibx_hpd_detection_setup(dev_priv);
3982         else
3983                 spt_hpd_detection_setup(dev_priv);
3984 }
3985
3986 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3987 {
3988         struct drm_i915_private *dev_priv = to_i915(dev);
3989         u32 pm_irqs, gt_irqs;
3990
3991         pm_irqs = gt_irqs = 0;
3992
3993         dev_priv->gt_irq_mask = ~0;
3994         if (HAS_L3_DPF(dev_priv)) {
3995                 /* L3 parity interrupt is always unmasked. */
3996                 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv);
3997                 gt_irqs |= GT_PARITY_ERROR(dev_priv);
3998         }
3999
4000         gt_irqs |= GT_RENDER_USER_INTERRUPT;
4001         if (IS_GEN5(dev_priv)) {
4002                 gt_irqs |= ILK_BSD_USER_INTERRUPT;
4003         } else {
4004                 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
4005         }
4006
4007         GEN3_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
4008
4009         if (INTEL_GEN(dev_priv) >= 6) {
4010                 /*
4011                  * RPS interrupts will get enabled/disabled on demand when RPS
4012                  * itself is enabled/disabled.
4013                  */
4014                 if (HAS_VEBOX(dev_priv)) {
4015                         pm_irqs |= PM_VEBOX_USER_INTERRUPT;
4016                         dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT;
4017                 }
4018
4019                 dev_priv->pm_imr = 0xffffffff;
4020                 GEN3_IRQ_INIT(GEN6_PM, dev_priv->pm_imr, pm_irqs);
4021         }
4022 }
4023
4024 static int ironlake_irq_postinstall(struct drm_device *dev)
4025 {
4026         struct drm_i915_private *dev_priv = to_i915(dev);
4027         u32 display_mask, extra_mask;
4028
4029         if (INTEL_GEN(dev_priv) >= 7) {
4030                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
4031                                 DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
4032                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
4033                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
4034                               DE_DP_A_HOTPLUG_IVB);
4035         } else {
4036                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
4037                                 DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
4038                                 DE_PIPEA_CRC_DONE | DE_POISON);
4039                 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
4040                               DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
4041                               DE_DP_A_HOTPLUG);
4042         }
4043
4044         if (IS_HASWELL(dev_priv)) {
4045                 gen3_assert_iir_is_zero(dev_priv, EDP_PSR_IIR);
4046                 intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
4047                 display_mask |= DE_EDP_PSR_INT_HSW;
4048         }
4049
4050         dev_priv->irq_mask = ~display_mask;
4051
4052         ibx_irq_pre_postinstall(dev);
4053
4054         GEN3_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
4055
4056         gen5_gt_irq_postinstall(dev);
4057
4058         ilk_hpd_detection_setup(dev_priv);
4059
4060         ibx_irq_postinstall(dev);
4061
4062         if (IS_IRONLAKE_M(dev_priv)) {
4063                 /* Enable PCU event interrupts
4064                  *
4065                  * spinlocking not required here for correctness since interrupt
4066                  * setup is guaranteed to run in single-threaded context. But we
4067                  * need it to make the assert_spin_locked happy. */
4068                 spin_lock_irq(&dev_priv->irq_lock);
4069                 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
4070                 spin_unlock_irq(&dev_priv->irq_lock);
4071         }
4072
4073         return 0;
4074 }
4075
4076 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
4077 {
4078         lockdep_assert_held(&dev_priv->irq_lock);
4079
4080         if (dev_priv->display_irqs_enabled)
4081                 return;
4082
4083         dev_priv->display_irqs_enabled = true;
4084
4085         if (intel_irqs_enabled(dev_priv)) {
4086                 vlv_display_irq_reset(dev_priv);
4087                 vlv_display_irq_postinstall(dev_priv);
4088         }
4089 }
4090
4091 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
4092 {
4093         lockdep_assert_held(&dev_priv->irq_lock);
4094
4095         if (!dev_priv->display_irqs_enabled)
4096                 return;
4097
4098         dev_priv->display_irqs_enabled = false;
4099
4100         if (intel_irqs_enabled(dev_priv))
4101                 vlv_display_irq_reset(dev_priv);
4102 }
4103
4104
4105 static int valleyview_irq_postinstall(struct drm_device *dev)
4106 {
4107         struct drm_i915_private *dev_priv = to_i915(dev);
4108
4109         gen5_gt_irq_postinstall(dev);
4110
4111         spin_lock_irq(&dev_priv->irq_lock);
4112         if (dev_priv->display_irqs_enabled)
4113                 vlv_display_irq_postinstall(dev_priv);
4114         spin_unlock_irq(&dev_priv->irq_lock);
4115
4116         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
4117         POSTING_READ(VLV_MASTER_IER);
4118
4119         return 0;
4120 }
4121
4122 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
4123 {
4124         /* These are interrupts we'll toggle with the ring mask register */
4125         uint32_t gt_interrupts[] = {
4126                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
4127                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
4128                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
4129                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
4130                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
4131                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
4132                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
4133                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
4134                 0,
4135                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
4136                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
4137                 };
4138
4139         if (HAS_L3_DPF(dev_priv))
4140                 gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
4141
4142         dev_priv->pm_ier = 0x0;
4143         dev_priv->pm_imr = ~dev_priv->pm_ier;
4144         GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
4145         GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
4146         /*
4147          * RPS interrupts will get enabled/disabled on demand when RPS itself
4148          * is enabled/disabled. Same wil be the case for GuC interrupts.
4149          */
4150         GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_imr, dev_priv->pm_ier);
4151         GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
4152 }
4153
4154 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
4155 {
4156         uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
4157         uint32_t de_pipe_enables;
4158         u32 de_port_masked = GEN8_AUX_CHANNEL_A;
4159         u32 de_port_enables;
4160         u32 de_misc_masked = GEN8_DE_EDP_PSR;
4161         enum pipe pipe;
4162
4163         if (INTEL_GEN(dev_priv) <= 10)
4164                 de_misc_masked |= GEN8_DE_MISC_GSE;
4165
4166         if (INTEL_GEN(dev_priv) >= 9) {
4167                 de_pipe_masked |= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
4168                 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
4169                                   GEN9_AUX_CHANNEL_D;
4170                 if (IS_GEN9_LP(dev_priv))
4171                         de_port_masked |= BXT_DE_PORT_GMBUS;
4172         } else {
4173                 de_pipe_masked |= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
4174         }
4175
4176         if (INTEL_GEN(dev_priv) >= 11)
4177                 de_port_masked |= ICL_AUX_CHANNEL_E;
4178
4179         if (IS_CNL_WITH_PORT_F(dev_priv) || INTEL_GEN(dev_priv) >= 11)
4180                 de_port_masked |= CNL_AUX_CHANNEL_F;
4181
4182         de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
4183                                            GEN8_PIPE_FIFO_UNDERRUN;
4184
4185         de_port_enables = de_port_masked;
4186         if (IS_GEN9_LP(dev_priv))
4187                 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
4188         else if (IS_BROADWELL(dev_priv))
4189                 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
4190
4191         gen3_assert_iir_is_zero(dev_priv, EDP_PSR_IIR);
4192         intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
4193
4194         for_each_pipe(dev_priv, pipe) {
4195                 dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
4196
4197                 if (intel_display_power_is_enabled(dev_priv,
4198                                 POWER_DOMAIN_PIPE(pipe)))
4199                         GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
4200                                           dev_priv->de_irq_mask[pipe],
4201                                           de_pipe_enables);
4202         }
4203
4204         GEN3_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
4205         GEN3_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
4206
4207         if (INTEL_GEN(dev_priv) >= 11) {
4208                 u32 de_hpd_masked = 0;
4209                 u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK |
4210                                      GEN11_DE_TBT_HOTPLUG_MASK;
4211
4212                 GEN3_IRQ_INIT(GEN11_DE_HPD_, ~de_hpd_masked, de_hpd_enables);
4213                 gen11_hpd_detection_setup(dev_priv);
4214         } else if (IS_GEN9_LP(dev_priv)) {
4215                 bxt_hpd_detection_setup(dev_priv);
4216         } else if (IS_BROADWELL(dev_priv)) {
4217                 ilk_hpd_detection_setup(dev_priv);
4218         }
4219 }
4220
4221 static int gen8_irq_postinstall(struct drm_device *dev)
4222 {
4223         struct drm_i915_private *dev_priv = to_i915(dev);
4224
4225         if (HAS_PCH_SPLIT(dev_priv))
4226                 ibx_irq_pre_postinstall(dev);
4227
4228         gen8_gt_irq_postinstall(dev_priv);
4229         gen8_de_irq_postinstall(dev_priv);
4230
4231         if (HAS_PCH_SPLIT(dev_priv))
4232                 ibx_irq_postinstall(dev);
4233
4234         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
4235         POSTING_READ(GEN8_MASTER_IRQ);
4236
4237         return 0;
4238 }
4239
4240 static void gen11_gt_irq_postinstall(struct drm_i915_private *dev_priv)
4241 {
4242         const u32 irqs = GT_RENDER_USER_INTERRUPT | GT_CONTEXT_SWITCH_INTERRUPT;
4243
4244         BUILD_BUG_ON(irqs & 0xffff0000);
4245
4246         /* Enable RCS, BCS, VCS and VECS class interrupts. */
4247         I915_WRITE(GEN11_RENDER_COPY_INTR_ENABLE, irqs << 16 | irqs);
4248         I915_WRITE(GEN11_VCS_VECS_INTR_ENABLE,    irqs << 16 | irqs);
4249
4250         /* Unmask irqs on RCS, BCS, VCS and VECS engines. */
4251         I915_WRITE(GEN11_RCS0_RSVD_INTR_MASK,   ~(irqs << 16));
4252         I915_WRITE(GEN11_BCS_RSVD_INTR_MASK,    ~(irqs << 16));
4253         I915_WRITE(GEN11_VCS0_VCS1_INTR_MASK,   ~(irqs | irqs << 16));
4254         I915_WRITE(GEN11_VCS2_VCS3_INTR_MASK,   ~(irqs | irqs << 16));
4255         I915_WRITE(GEN11_VECS0_VECS1_INTR_MASK, ~(irqs | irqs << 16));
4256
4257         /*
4258          * RPS interrupts will get enabled/disabled on demand when RPS itself
4259          * is enabled/disabled.
4260          */
4261         dev_priv->pm_ier = 0x0;
4262         dev_priv->pm_imr = ~dev_priv->pm_ier;
4263         I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0);
4264         I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_MASK,  ~0);
4265 }
4266
4267 static void icp_irq_postinstall(struct drm_device *dev)
4268 {
4269         struct drm_i915_private *dev_priv = to_i915(dev);
4270         u32 mask = SDE_GMBUS_ICP;
4271
4272         WARN_ON(I915_READ(SDEIER) != 0);
4273         I915_WRITE(SDEIER, 0xffffffff);
4274         POSTING_READ(SDEIER);
4275
4276         gen3_assert_iir_is_zero(dev_priv, SDEIIR);
4277         I915_WRITE(SDEIMR, ~mask);
4278
4279         icp_hpd_detection_setup(dev_priv);
4280 }
4281
4282 static int gen11_irq_postinstall(struct drm_device *dev)
4283 {
4284         struct drm_i915_private *dev_priv = dev->dev_private;
4285         u32 gu_misc_masked = GEN11_GU_MISC_GSE;
4286
4287         if (HAS_PCH_ICP(dev_priv))
4288                 icp_irq_postinstall(dev);
4289
4290         gen11_gt_irq_postinstall(dev_priv);
4291         gen8_de_irq_postinstall(dev_priv);
4292
4293         GEN3_IRQ_INIT(GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
4294
4295         I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE);
4296
4297         I915_WRITE(GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
4298         POSTING_READ(GEN11_GFX_MSTR_IRQ);
4299
4300         return 0;
4301 }
4302
4303 static int cherryview_irq_postinstall(struct drm_device *dev)
4304 {
4305         struct drm_i915_private *dev_priv = to_i915(dev);
4306
4307         gen8_gt_irq_postinstall(dev_priv);
4308
4309         spin_lock_irq(&dev_priv->irq_lock);
4310         if (dev_priv->display_irqs_enabled)
4311                 vlv_display_irq_postinstall(dev_priv);
4312         spin_unlock_irq(&dev_priv->irq_lock);
4313
4314         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
4315         POSTING_READ(GEN8_MASTER_IRQ);
4316
4317         return 0;
4318 }
4319
4320 static void i8xx_irq_reset(struct drm_device *dev)
4321 {
4322         struct drm_i915_private *dev_priv = to_i915(dev);
4323
4324         i9xx_pipestat_irq_reset(dev_priv);
4325
4326         I915_WRITE16(HWSTAM, 0xffff);
4327
4328         GEN2_IRQ_RESET();
4329 }
4330
4331 static int i8xx_irq_postinstall(struct drm_device *dev)
4332 {
4333         struct drm_i915_private *dev_priv = to_i915(dev);
4334         u16 enable_mask;
4335
4336         I915_WRITE16(EMR, ~(I915_ERROR_PAGE_TABLE |
4337                             I915_ERROR_MEMORY_REFRESH));
4338
4339         /* Unmask the interrupts that we always want on. */
4340         dev_priv->irq_mask =
4341                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4342                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4343                   I915_MASTER_ERROR_INTERRUPT);
4344
4345         enable_mask =
4346                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4347                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4348                 I915_MASTER_ERROR_INTERRUPT |
4349                 I915_USER_INTERRUPT;
4350
4351         GEN2_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
4352
4353         /* Interrupt setup is already guaranteed to be single-threaded, this is
4354          * just to make the assert_spin_locked check happy. */
4355         spin_lock_irq(&dev_priv->irq_lock);
4356         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4357         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4358         spin_unlock_irq(&dev_priv->irq_lock);
4359
4360         return 0;
4361 }
4362
4363 static void i8xx_error_irq_ack(struct drm_i915_private *dev_priv,
4364                                u16 *eir, u16 *eir_stuck)
4365 {
4366         u16 emr;
4367
4368         *eir = I915_READ16(EIR);
4369
4370         if (*eir)
4371                 I915_WRITE16(EIR, *eir);
4372
4373         *eir_stuck = I915_READ16(EIR);
4374         if (*eir_stuck == 0)
4375                 return;
4376
4377         /*
4378          * Toggle all EMR bits to make sure we get an edge
4379          * in the ISR master error bit if we don't clear
4380          * all the EIR bits. Otherwise the edge triggered
4381          * IIR on i965/g4x wouldn't notice that an interrupt
4382          * is still pending. Also some EIR bits can't be
4383          * cleared except by handling the underlying error
4384          * (or by a GPU reset) so we mask any bit that
4385          * remains set.
4386          */
4387         emr = I915_READ16(EMR);
4388         I915_WRITE16(EMR, 0xffff);
4389         I915_WRITE16(EMR, emr | *eir_stuck);
4390 }
4391
4392 static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv,
4393                                    u16 eir, u16 eir_stuck)
4394 {
4395         DRM_DEBUG("Master Error: EIR 0x%04x\n", eir);
4396
4397         if (eir_stuck)
4398                 DRM_DEBUG_DRIVER("EIR stuck: 0x%04x, masked\n", eir_stuck);
4399 }
4400
4401 static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv,
4402                                u32 *eir, u32 *eir_stuck)
4403 {
4404         u32 emr;
4405
4406         *eir = I915_READ(EIR);
4407
4408         I915_WRITE(EIR, *eir);
4409
4410         *eir_stuck = I915_READ(EIR);
4411         if (*eir_stuck == 0)
4412                 return;
4413
4414         /*
4415          * Toggle all EMR bits to make sure we get an edge
4416          * in the ISR master error bit if we don't clear
4417          * all the EIR bits. Otherwise the edge triggered
4418          * IIR on i965/g4x wouldn't notice that an interrupt
4419          * is still pending. Also some EIR bits can't be
4420          * cleared except by handling the underlying error
4421          * (or by a GPU reset) so we mask any bit that
4422          * remains set.
4423          */
4424         emr = I915_READ(EMR);
4425         I915_WRITE(EMR, 0xffffffff);
4426         I915_WRITE(EMR, emr | *eir_stuck);
4427 }
4428
4429 static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv,
4430                                    u32 eir, u32 eir_stuck)
4431 {
4432         DRM_DEBUG("Master Error, EIR 0x%08x\n", eir);
4433
4434         if (eir_stuck)
4435                 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masked\n", eir_stuck);
4436 }
4437
4438 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
4439 {
4440         struct drm_device *dev = arg;
4441         struct drm_i915_private *dev_priv = to_i915(dev);
4442         irqreturn_t ret = IRQ_NONE;
4443
4444         if (!intel_irqs_enabled(dev_priv))
4445                 return IRQ_NONE;
4446
4447         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4448         disable_rpm_wakeref_asserts(dev_priv);
4449
4450         do {
4451                 u32 pipe_stats[I915_MAX_PIPES] = {};
4452                 u16 eir = 0, eir_stuck = 0;
4453                 u16 iir;
4454
4455                 iir = I915_READ16(IIR);
4456                 if (iir == 0)
4457                         break;
4458
4459                 ret = IRQ_HANDLED;
4460
4461                 /* Call regardless, as some status bits might not be
4462                  * signalled in iir */
4463                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4464
4465                 if (iir & I915_MASTER_ERROR_INTERRUPT)
4466                         i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4467
4468                 I915_WRITE16(IIR, iir);
4469
4470                 if (iir & I915_USER_INTERRUPT)
4471                         notify_ring(dev_priv->engine[RCS]);
4472
4473                 if (iir & I915_MASTER_ERROR_INTERRUPT)
4474                         i8xx_error_irq_handler(dev_priv, eir, eir_stuck);
4475
4476                 i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4477         } while (0);
4478
4479         enable_rpm_wakeref_asserts(dev_priv);
4480
4481         return ret;
4482 }
4483
4484 static void i915_irq_reset(struct drm_device *dev)
4485 {
4486         struct drm_i915_private *dev_priv = to_i915(dev);
4487
4488         if (I915_HAS_HOTPLUG(dev_priv)) {
4489                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4490                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4491         }
4492
4493         i9xx_pipestat_irq_reset(dev_priv);
4494
4495         I915_WRITE(HWSTAM, 0xffffffff);
4496
4497         GEN3_IRQ_RESET();
4498 }
4499
4500 static int i915_irq_postinstall(struct drm_device *dev)
4501 {
4502         struct drm_i915_private *dev_priv = to_i915(dev);
4503         u32 enable_mask;
4504
4505         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE |
4506                           I915_ERROR_MEMORY_REFRESH));
4507
4508         /* Unmask the interrupts that we always want on. */
4509         dev_priv->irq_mask =
4510                 ~(I915_ASLE_INTERRUPT |
4511                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4512                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4513                   I915_MASTER_ERROR_INTERRUPT);
4514
4515         enable_mask =
4516                 I915_ASLE_INTERRUPT |
4517                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4518                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4519                 I915_MASTER_ERROR_INTERRUPT |
4520                 I915_USER_INTERRUPT;
4521
4522         if (I915_HAS_HOTPLUG(dev_priv)) {
4523                 /* Enable in IER... */
4524                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4525                 /* and unmask in IMR */
4526                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4527         }
4528
4529         GEN3_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
4530
4531         /* Interrupt setup is already guaranteed to be single-threaded, this is
4532          * just to make the assert_spin_locked check happy. */
4533         spin_lock_irq(&dev_priv->irq_lock);
4534         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4535         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4536         spin_unlock_irq(&dev_priv->irq_lock);
4537
4538         i915_enable_asle_pipestat(dev_priv);
4539
4540         return 0;
4541 }
4542
4543 static irqreturn_t i915_irq_handler(int irq, void *arg)
4544 {
4545         struct drm_device *dev = arg;
4546         struct drm_i915_private *dev_priv = to_i915(dev);
4547         irqreturn_t ret = IRQ_NONE;
4548
4549         if (!intel_irqs_enabled(dev_priv))
4550                 return IRQ_NONE;
4551
4552         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4553         disable_rpm_wakeref_asserts(dev_priv);
4554
4555         do {
4556                 u32 pipe_stats[I915_MAX_PIPES] = {};
4557                 u32 eir = 0, eir_stuck = 0;
4558                 u32 hotplug_status = 0;
4559                 u32 iir;
4560
4561                 iir = I915_READ(IIR);
4562                 if (iir == 0)
4563                         break;
4564
4565                 ret = IRQ_HANDLED;
4566
4567                 if (I915_HAS_HOTPLUG(dev_priv) &&
4568                     iir & I915_DISPLAY_PORT_INTERRUPT)
4569                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4570
4571                 /* Call regardless, as some status bits might not be
4572                  * signalled in iir */
4573                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4574
4575                 if (iir & I915_MASTER_ERROR_INTERRUPT)
4576                         i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4577
4578                 I915_WRITE(IIR, iir);
4579
4580                 if (iir & I915_USER_INTERRUPT)
4581                         notify_ring(dev_priv->engine[RCS]);
4582
4583                 if (iir & I915_MASTER_ERROR_INTERRUPT)
4584                         i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4585
4586                 if (hotplug_status)
4587                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4588
4589                 i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4590         } while (0);
4591
4592         enable_rpm_wakeref_asserts(dev_priv);
4593
4594         return ret;
4595 }
4596
4597 static void i965_irq_reset(struct drm_device *dev)
4598 {
4599         struct drm_i915_private *dev_priv = to_i915(dev);
4600
4601         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4602         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4603
4604         i9xx_pipestat_irq_reset(dev_priv);
4605
4606         I915_WRITE(HWSTAM, 0xffffffff);
4607
4608         GEN3_IRQ_RESET();
4609 }
4610
4611 static int i965_irq_postinstall(struct drm_device *dev)
4612 {
4613         struct drm_i915_private *dev_priv = to_i915(dev);
4614         u32 enable_mask;
4615         u32 error_mask;
4616
4617         /*
4618          * Enable some error detection, note the instruction error mask
4619          * bit is reserved, so we leave it masked.
4620          */
4621         if (IS_G4X(dev_priv)) {
4622                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4623                                GM45_ERROR_MEM_PRIV |
4624                                GM45_ERROR_CP_PRIV |
4625                                I915_ERROR_MEMORY_REFRESH);
4626         } else {
4627                 error_mask = ~(I915_ERROR_PAGE_TABLE |
4628                                I915_ERROR_MEMORY_REFRESH);
4629         }
4630         I915_WRITE(EMR, error_mask);
4631
4632         /* Unmask the interrupts that we always want on. */
4633         dev_priv->irq_mask =
4634                 ~(I915_ASLE_INTERRUPT |
4635                   I915_DISPLAY_PORT_INTERRUPT |
4636                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4637                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4638                   I915_MASTER_ERROR_INTERRUPT);
4639
4640         enable_mask =
4641                 I915_ASLE_INTERRUPT |
4642                 I915_DISPLAY_PORT_INTERRUPT |
4643                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4644                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4645                 I915_MASTER_ERROR_INTERRUPT |
4646                 I915_USER_INTERRUPT;
4647
4648         if (IS_G4X(dev_priv))
4649                 enable_mask |= I915_BSD_USER_INTERRUPT;
4650
4651         GEN3_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
4652
4653         /* Interrupt setup is already guaranteed to be single-threaded, this is
4654          * just to make the assert_spin_locked check happy. */
4655         spin_lock_irq(&dev_priv->irq_lock);
4656         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4657         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4658         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4659         spin_unlock_irq(&dev_priv->irq_lock);
4660
4661         i915_enable_asle_pipestat(dev_priv);
4662
4663         return 0;
4664 }
4665
4666 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4667 {
4668         u32 hotplug_en;
4669
4670         lockdep_assert_held(&dev_priv->irq_lock);
4671
4672         /* Note HDMI and DP share hotplug bits */
4673         /* enable bits are the same for all generations */
4674         hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4675         /* Programming the CRT detection parameters tends
4676            to generate a spurious hotplug event about three
4677            seconds later.  So just do it once.
4678         */
4679         if (IS_G4X(dev_priv))
4680                 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4681         hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4682
4683         /* Ignore TV since it's buggy */
4684         i915_hotplug_interrupt_update_locked(dev_priv,
4685                                              HOTPLUG_INT_EN_MASK |
4686                                              CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4687                                              CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4688                                              hotplug_en);
4689 }
4690
4691 static irqreturn_t i965_irq_handler(int irq, void *arg)
4692 {
4693         struct drm_device *dev = arg;
4694         struct drm_i915_private *dev_priv = to_i915(dev);
4695         irqreturn_t ret = IRQ_NONE;
4696
4697         if (!intel_irqs_enabled(dev_priv))
4698                 return IRQ_NONE;
4699
4700         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4701         disable_rpm_wakeref_asserts(dev_priv);
4702
4703         do {
4704                 u32 pipe_stats[I915_MAX_PIPES] = {};
4705                 u32 eir = 0, eir_stuck = 0;
4706                 u32 hotplug_status = 0;
4707                 u32 iir;
4708
4709                 iir = I915_READ(IIR);
4710                 if (iir == 0)
4711                         break;
4712
4713                 ret = IRQ_HANDLED;
4714
4715                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4716                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4717
4718                 /* Call regardless, as some status bits might not be
4719                  * signalled in iir */
4720                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4721
4722                 if (iir & I915_MASTER_ERROR_INTERRUPT)
4723                         i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4724
4725                 I915_WRITE(IIR, iir);
4726
4727                 if (iir & I915_USER_INTERRUPT)
4728                         notify_ring(dev_priv->engine[RCS]);
4729
4730                 if (iir & I915_BSD_USER_INTERRUPT)
4731                         notify_ring(dev_priv->engine[VCS]);
4732
4733                 if (iir & I915_MASTER_ERROR_INTERRUPT)
4734                         i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4735
4736                 if (hotplug_status)
4737                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4738
4739                 i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4740         } while (0);
4741
4742         enable_rpm_wakeref_asserts(dev_priv);
4743
4744         return ret;
4745 }
4746
4747 /**
4748  * intel_irq_init - initializes irq support
4749  * @dev_priv: i915 device instance
4750  *
4751  * This function initializes all the irq support including work items, timers
4752  * and all the vtables. It does not setup the interrupt itself though.
4753  */
4754 void intel_irq_init(struct drm_i915_private *dev_priv)
4755 {
4756         struct drm_device *dev = &dev_priv->drm;
4757         struct intel_rps *rps = &dev_priv->gt_pm.rps;
4758         int i;
4759
4760         intel_hpd_init_work(dev_priv);
4761
4762         INIT_WORK(&rps->work, gen6_pm_rps_work);
4763
4764         INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4765         for (i = 0; i < MAX_L3_SLICES; ++i)
4766                 dev_priv->l3_parity.remap_info[i] = NULL;
4767
4768         if (HAS_GUC_SCHED(dev_priv))
4769                 dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT;
4770
4771         /* Let's track the enabled rps events */
4772         if (IS_VALLEYVIEW(dev_priv))
4773                 /* WaGsvRC0ResidencyMethod:vlv */
4774                 dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4775         else
4776                 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4777
4778         rps->pm_intrmsk_mbz = 0;
4779
4780         /*
4781          * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
4782          * if GEN6_PM_UP_EI_EXPIRED is masked.
4783          *
4784          * TODO: verify if this can be reproduced on VLV,CHV.
4785          */
4786         if (INTEL_GEN(dev_priv) <= 7)
4787                 rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
4788
4789         if (INTEL_GEN(dev_priv) >= 8)
4790                 rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
4791
4792         if (IS_GEN2(dev_priv)) {
4793                 /* Gen2 doesn't have a hardware frame counter */
4794                 dev->max_vblank_count = 0;
4795         } else if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
4796                 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4797                 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4798         } else {
4799                 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4800                 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4801         }
4802
4803         /*
4804          * Opt out of the vblank disable timer on everything except gen2.
4805          * Gen2 doesn't have a hardware frame counter and so depends on
4806          * vblank interrupts to produce sane vblank seuquence numbers.
4807          */
4808         if (!IS_GEN2(dev_priv))
4809                 dev->vblank_disable_immediate = true;
4810
4811         /* Most platforms treat the display irq block as an always-on
4812          * power domain. vlv/chv can disable it at runtime and need
4813          * special care to avoid writing any of the display block registers
4814          * outside of the power domain. We defer setting up the display irqs
4815          * in this case to the runtime pm.
4816          */
4817         dev_priv->display_irqs_enabled = true;
4818         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4819                 dev_priv->display_irqs_enabled = false;
4820
4821         dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4822
4823         dev->driver->get_vblank_timestamp = drm_calc_vbltimestamp_from_scanoutpos;
4824         dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4825
4826         if (IS_CHERRYVIEW(dev_priv)) {
4827                 dev->driver->irq_handler = cherryview_irq_handler;
4828                 dev->driver->irq_preinstall = cherryview_irq_reset;
4829                 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4830                 dev->driver->irq_uninstall = cherryview_irq_reset;
4831                 dev->driver->enable_vblank = i965_enable_vblank;
4832                 dev->driver->disable_vblank = i965_disable_vblank;
4833                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4834         } else if (IS_VALLEYVIEW(dev_priv)) {
4835                 dev->driver->irq_handler = valleyview_irq_handler;
4836                 dev->driver->irq_preinstall = valleyview_irq_reset;
4837                 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4838                 dev->driver->irq_uninstall = valleyview_irq_reset;
4839                 dev->driver->enable_vblank = i965_enable_vblank;
4840                 dev->driver->disable_vblank = i965_disable_vblank;
4841                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4842         } else if (INTEL_GEN(dev_priv) >= 11) {
4843                 dev->driver->irq_handler = gen11_irq_handler;
4844                 dev->driver->irq_preinstall = gen11_irq_reset;
4845                 dev->driver->irq_postinstall = gen11_irq_postinstall;
4846                 dev->driver->irq_uninstall = gen11_irq_reset;
4847                 dev->driver->enable_vblank = gen8_enable_vblank;
4848                 dev->driver->disable_vblank = gen8_disable_vblank;
4849                 dev_priv->display.hpd_irq_setup = gen11_hpd_irq_setup;
4850         } else if (INTEL_GEN(dev_priv) >= 8) {
4851                 dev->driver->irq_handler = gen8_irq_handler;
4852                 dev->driver->irq_preinstall = gen8_irq_reset;
4853                 dev->driver->irq_postinstall = gen8_irq_postinstall;
4854                 dev->driver->irq_uninstall = gen8_irq_reset;
4855                 dev->driver->enable_vblank = gen8_enable_vblank;
4856                 dev->driver->disable_vblank = gen8_disable_vblank;
4857                 if (IS_GEN9_LP(dev_priv))
4858                         dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4859                 else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
4860                          HAS_PCH_CNP(dev_priv))
4861                         dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4862                 else
4863                         dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4864         } else if (HAS_PCH_SPLIT(dev_priv)) {
4865                 dev->driver->irq_handler = ironlake_irq_handler;
4866                 dev->driver->irq_preinstall = ironlake_irq_reset;
4867                 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4868                 dev->driver->irq_uninstall = ironlake_irq_reset;
4869                 dev->driver->enable_vblank = ironlake_enable_vblank;
4870                 dev->driver->disable_vblank = ironlake_disable_vblank;
4871                 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4872         } else {
4873                 if (IS_GEN2(dev_priv)) {
4874                         dev->driver->irq_preinstall = i8xx_irq_reset;
4875                         dev->driver->irq_postinstall = i8xx_irq_postinstall;
4876                         dev->driver->irq_handler = i8xx_irq_handler;
4877                         dev->driver->irq_uninstall = i8xx_irq_reset;
4878                         dev->driver->enable_vblank = i8xx_enable_vblank;
4879                         dev->driver->disable_vblank = i8xx_disable_vblank;
4880                 } else if (IS_GEN3(dev_priv)) {
4881                         dev->driver->irq_preinstall = i915_irq_reset;
4882                         dev->driver->irq_postinstall = i915_irq_postinstall;
4883                         dev->driver->irq_uninstall = i915_irq_reset;
4884                         dev->driver->irq_handler = i915_irq_handler;
4885                         dev->driver->enable_vblank = i8xx_enable_vblank;
4886                         dev->driver->disable_vblank = i8xx_disable_vblank;
4887                 } else {
4888                         dev->driver->irq_preinstall = i965_irq_reset;
4889                         dev->driver->irq_postinstall = i965_irq_postinstall;
4890                         dev->driver->irq_uninstall = i965_irq_reset;
4891                         dev->driver->irq_handler = i965_irq_handler;
4892                         dev->driver->enable_vblank = i965_enable_vblank;
4893                         dev->driver->disable_vblank = i965_disable_vblank;
4894                 }
4895                 if (I915_HAS_HOTPLUG(dev_priv))
4896                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4897         }
4898 }
4899
4900 /**
4901  * intel_irq_fini - deinitializes IRQ support
4902  * @i915: i915 device instance
4903  *
4904  * This function deinitializes all the IRQ support.
4905  */
4906 void intel_irq_fini(struct drm_i915_private *i915)
4907 {
4908         int i;
4909
4910         for (i = 0; i < MAX_L3_SLICES; ++i)
4911                 kfree(i915->l3_parity.remap_info[i]);
4912 }
4913
4914 /**
4915  * intel_irq_install - enables the hardware interrupt
4916  * @dev_priv: i915 device instance
4917  *
4918  * This function enables the hardware interrupt handling, but leaves the hotplug
4919  * handling still disabled. It is called after intel_irq_init().
4920  *
4921  * In the driver load and resume code we need working interrupts in a few places
4922  * but don't want to deal with the hassle of concurrent probe and hotplug
4923  * workers. Hence the split into this two-stage approach.
4924  */
4925 int intel_irq_install(struct drm_i915_private *dev_priv)
4926 {
4927         /*
4928          * We enable some interrupt sources in our postinstall hooks, so mark
4929          * interrupts as enabled _before_ actually enabling them to avoid
4930          * special cases in our ordering checks.
4931          */
4932         dev_priv->runtime_pm.irqs_enabled = true;
4933
4934         return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
4935 }
4936
4937 /**
4938  * intel_irq_uninstall - finilizes all irq handling
4939  * @dev_priv: i915 device instance
4940  *
4941  * This stops interrupt and hotplug handling and unregisters and frees all
4942  * resources acquired in the init functions.
4943  */
4944 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4945 {
4946         drm_irq_uninstall(&dev_priv->drm);
4947         intel_hpd_cancel_work(dev_priv);
4948         dev_priv->runtime_pm.irqs_enabled = false;
4949 }
4950
4951 /**
4952  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4953  * @dev_priv: i915 device instance
4954  *
4955  * This function is used to disable interrupts at runtime, both in the runtime
4956  * pm and the system suspend/resume code.
4957  */
4958 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4959 {
4960         dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
4961         dev_priv->runtime_pm.irqs_enabled = false;
4962         synchronize_irq(dev_priv->drm.irq);
4963 }
4964
4965 /**
4966  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4967  * @dev_priv: i915 device instance
4968  *
4969  * This function is used to enable interrupts at runtime, both in the runtime
4970  * pm and the system suspend/resume code.
4971  */
4972 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4973 {
4974         dev_priv->runtime_pm.irqs_enabled = true;
4975         dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
4976         dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
4977 }