GNU Linux-libre 4.14.303-gnu1
[releases.git] / drivers / gpu / drm / i915 / i915_gem_request.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <linux/prefetch.h>
26 #include <linux/dma-fence-array.h>
27 #include <linux/sched.h>
28 #include <linux/sched/clock.h>
29 #include <linux/sched/signal.h>
30
31 #include "i915_drv.h"
32
33 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
34 {
35         return "i915";
36 }
37
38 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
39 {
40         /* The timeline struct (as part of the ppgtt underneath a context)
41          * may be freed when the request is no longer in use by the GPU.
42          * We could extend the life of a context to beyond that of all
43          * fences, possibly keeping the hw resource around indefinitely,
44          * or we just give them a false name. Since
45          * dma_fence_ops.get_timeline_name is a debug feature, the occasional
46          * lie seems justifiable.
47          */
48         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
49                 return "signaled";
50
51         return to_request(fence)->timeline->common->name;
52 }
53
54 static bool i915_fence_signaled(struct dma_fence *fence)
55 {
56         return i915_gem_request_completed(to_request(fence));
57 }
58
59 static bool i915_fence_enable_signaling(struct dma_fence *fence)
60 {
61         if (i915_fence_signaled(fence))
62                 return false;
63
64         intel_engine_enable_signaling(to_request(fence), true);
65         return !i915_fence_signaled(fence);
66 }
67
68 static signed long i915_fence_wait(struct dma_fence *fence,
69                                    bool interruptible,
70                                    signed long timeout)
71 {
72         return i915_wait_request(to_request(fence), interruptible, timeout);
73 }
74
75 static void i915_fence_release(struct dma_fence *fence)
76 {
77         struct drm_i915_gem_request *req = to_request(fence);
78
79         /* The request is put onto a RCU freelist (i.e. the address
80          * is immediately reused), mark the fences as being freed now.
81          * Otherwise the debugobjects for the fences are only marked as
82          * freed when the slab cache itself is freed, and so we would get
83          * caught trying to reuse dead objects.
84          */
85         i915_sw_fence_fini(&req->submit);
86
87         kmem_cache_free(req->i915->requests, req);
88 }
89
90 const struct dma_fence_ops i915_fence_ops = {
91         .get_driver_name = i915_fence_get_driver_name,
92         .get_timeline_name = i915_fence_get_timeline_name,
93         .enable_signaling = i915_fence_enable_signaling,
94         .signaled = i915_fence_signaled,
95         .wait = i915_fence_wait,
96         .release = i915_fence_release,
97 };
98
99 static inline void
100 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
101 {
102         struct drm_i915_file_private *file_priv;
103
104         file_priv = request->file_priv;
105         if (!file_priv)
106                 return;
107
108         spin_lock(&file_priv->mm.lock);
109         if (request->file_priv) {
110                 list_del(&request->client_link);
111                 request->file_priv = NULL;
112         }
113         spin_unlock(&file_priv->mm.lock);
114 }
115
116 static struct i915_dependency *
117 i915_dependency_alloc(struct drm_i915_private *i915)
118 {
119         return kmem_cache_alloc(i915->dependencies, GFP_KERNEL);
120 }
121
122 static void
123 i915_dependency_free(struct drm_i915_private *i915,
124                      struct i915_dependency *dep)
125 {
126         kmem_cache_free(i915->dependencies, dep);
127 }
128
129 static void
130 __i915_priotree_add_dependency(struct i915_priotree *pt,
131                                struct i915_priotree *signal,
132                                struct i915_dependency *dep,
133                                unsigned long flags)
134 {
135         INIT_LIST_HEAD(&dep->dfs_link);
136         list_add(&dep->wait_link, &signal->waiters_list);
137         list_add(&dep->signal_link, &pt->signalers_list);
138         dep->signaler = signal;
139         dep->flags = flags;
140 }
141
142 static int
143 i915_priotree_add_dependency(struct drm_i915_private *i915,
144                              struct i915_priotree *pt,
145                              struct i915_priotree *signal)
146 {
147         struct i915_dependency *dep;
148
149         dep = i915_dependency_alloc(i915);
150         if (!dep)
151                 return -ENOMEM;
152
153         __i915_priotree_add_dependency(pt, signal, dep, I915_DEPENDENCY_ALLOC);
154         return 0;
155 }
156
157 static void
158 i915_priotree_fini(struct drm_i915_private *i915, struct i915_priotree *pt)
159 {
160         struct i915_dependency *dep, *next;
161
162         GEM_BUG_ON(!list_empty(&pt->link));
163
164         /* Everyone we depended upon (the fences we wait to be signaled)
165          * should retire before us and remove themselves from our list.
166          * However, retirement is run independently on each timeline and
167          * so we may be called out-of-order.
168          */
169         list_for_each_entry_safe(dep, next, &pt->signalers_list, signal_link) {
170                 list_del(&dep->wait_link);
171                 if (dep->flags & I915_DEPENDENCY_ALLOC)
172                         i915_dependency_free(i915, dep);
173         }
174
175         /* Remove ourselves from everyone who depends upon us */
176         list_for_each_entry_safe(dep, next, &pt->waiters_list, wait_link) {
177                 list_del(&dep->signal_link);
178                 if (dep->flags & I915_DEPENDENCY_ALLOC)
179                         i915_dependency_free(i915, dep);
180         }
181 }
182
183 static void
184 i915_priotree_init(struct i915_priotree *pt)
185 {
186         INIT_LIST_HEAD(&pt->signalers_list);
187         INIT_LIST_HEAD(&pt->waiters_list);
188         INIT_LIST_HEAD(&pt->link);
189         pt->priority = INT_MIN;
190 }
191
192 static int reset_all_global_seqno(struct drm_i915_private *i915, u32 seqno)
193 {
194         struct intel_engine_cs *engine;
195         enum intel_engine_id id;
196         int ret;
197
198         /* Carefully retire all requests without writing to the rings */
199         ret = i915_gem_wait_for_idle(i915,
200                                      I915_WAIT_INTERRUPTIBLE |
201                                      I915_WAIT_LOCKED);
202         if (ret)
203                 return ret;
204
205         /* If the seqno wraps around, we need to clear the breadcrumb rbtree */
206         for_each_engine(engine, i915, id) {
207                 struct i915_gem_timeline *timeline;
208                 struct intel_timeline *tl = engine->timeline;
209
210                 if (!i915_seqno_passed(seqno, tl->seqno)) {
211                         /* spin until threads are complete */
212                         while (intel_breadcrumbs_busy(engine))
213                                 cond_resched();
214                 }
215
216                 /* Check we are idle before we fiddle with hw state! */
217                 GEM_BUG_ON(!intel_engine_is_idle(engine));
218                 GEM_BUG_ON(i915_gem_active_isset(&engine->timeline->last_request));
219
220                 /* Finally reset hw state */
221                 intel_engine_init_global_seqno(engine, seqno);
222                 tl->seqno = seqno;
223
224                 list_for_each_entry(timeline, &i915->gt.timelines, link)
225                         memset(timeline->engine[id].global_sync, 0,
226                                sizeof(timeline->engine[id].global_sync));
227         }
228
229         return 0;
230 }
231
232 int i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno)
233 {
234         struct drm_i915_private *dev_priv = to_i915(dev);
235
236         lockdep_assert_held(&dev_priv->drm.struct_mutex);
237
238         if (seqno == 0)
239                 return -EINVAL;
240
241         /* HWS page needs to be set less than what we
242          * will inject to ring
243          */
244         return reset_all_global_seqno(dev_priv, seqno - 1);
245 }
246
247 static void mark_busy(struct drm_i915_private *i915)
248 {
249         if (i915->gt.awake)
250                 return;
251
252         GEM_BUG_ON(!i915->gt.active_requests);
253
254         intel_runtime_pm_get_noresume(i915);
255
256         if (NEEDS_RC6_CTX_CORRUPTION_WA(i915))
257                 intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
258
259         i915->gt.awake = true;
260
261         intel_enable_gt_powersave(i915);
262         i915_update_gfx_val(i915);
263         if (INTEL_GEN(i915) >= 6)
264                 gen6_rps_busy(i915);
265
266         queue_delayed_work(i915->wq,
267                            &i915->gt.retire_work,
268                            round_jiffies_up_relative(HZ));
269 }
270
271 static int reserve_engine(struct intel_engine_cs *engine)
272 {
273         struct drm_i915_private *i915 = engine->i915;
274         u32 active = ++engine->timeline->inflight_seqnos;
275         u32 seqno = engine->timeline->seqno;
276         int ret;
277
278         /* Reservation is fine until we need to wrap around */
279         if (unlikely(add_overflows(seqno, active))) {
280                 ret = reset_all_global_seqno(i915, 0);
281                 if (ret) {
282                         engine->timeline->inflight_seqnos--;
283                         return ret;
284                 }
285         }
286
287         if (!i915->gt.active_requests++)
288                 mark_busy(i915);
289
290         return 0;
291 }
292
293 static void unreserve_engine(struct intel_engine_cs *engine)
294 {
295         struct drm_i915_private *i915 = engine->i915;
296
297         if (!--i915->gt.active_requests) {
298                 /* Cancel the mark_busy() from our reserve_engine() */
299                 GEM_BUG_ON(!i915->gt.awake);
300                 mod_delayed_work(i915->wq,
301                                  &i915->gt.idle_work,
302                                  msecs_to_jiffies(100));
303         }
304
305         GEM_BUG_ON(!engine->timeline->inflight_seqnos);
306         engine->timeline->inflight_seqnos--;
307 }
308
309 void i915_gem_retire_noop(struct i915_gem_active *active,
310                           struct drm_i915_gem_request *request)
311 {
312         /* Space left intentionally blank */
313 }
314
315 static void advance_ring(struct drm_i915_gem_request *request)
316 {
317         unsigned int tail;
318
319         /* We know the GPU must have read the request to have
320          * sent us the seqno + interrupt, so use the position
321          * of tail of the request to update the last known position
322          * of the GPU head.
323          *
324          * Note this requires that we are always called in request
325          * completion order.
326          */
327         if (list_is_last(&request->ring_link, &request->ring->request_list)) {
328                 /* We may race here with execlists resubmitting this request
329                  * as we retire it. The resubmission will move the ring->tail
330                  * forwards (to request->wa_tail). We either read the
331                  * current value that was written to hw, or the value that
332                  * is just about to be. Either works, if we miss the last two
333                  * noops - they are safe to be replayed on a reset.
334                  */
335                 tail = READ_ONCE(request->ring->tail);
336         } else {
337                 tail = request->postfix;
338         }
339         list_del(&request->ring_link);
340
341         request->ring->head = tail;
342 }
343
344 static void free_capture_list(struct drm_i915_gem_request *request)
345 {
346         struct i915_gem_capture_list *capture;
347
348         capture = request->capture_list;
349         while (capture) {
350                 struct i915_gem_capture_list *next = capture->next;
351
352                 kfree(capture);
353                 capture = next;
354         }
355 }
356
357 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
358 {
359         struct intel_engine_cs *engine = request->engine;
360         struct i915_gem_active *active, *next;
361
362         lockdep_assert_held(&request->i915->drm.struct_mutex);
363         GEM_BUG_ON(!i915_sw_fence_signaled(&request->submit));
364         GEM_BUG_ON(!i915_gem_request_completed(request));
365         GEM_BUG_ON(!request->i915->gt.active_requests);
366
367         trace_i915_gem_request_retire(request);
368
369         spin_lock_irq(&engine->timeline->lock);
370         list_del_init(&request->link);
371         spin_unlock_irq(&engine->timeline->lock);
372
373         unreserve_engine(request->engine);
374         advance_ring(request);
375
376         free_capture_list(request);
377
378         /* Walk through the active list, calling retire on each. This allows
379          * objects to track their GPU activity and mark themselves as idle
380          * when their *last* active request is completed (updating state
381          * tracking lists for eviction, active references for GEM, etc).
382          *
383          * As the ->retire() may free the node, we decouple it first and
384          * pass along the auxiliary information (to avoid dereferencing
385          * the node after the callback).
386          */
387         list_for_each_entry_safe(active, next, &request->active_list, link) {
388                 /* In microbenchmarks or focusing upon time inside the kernel,
389                  * we may spend an inordinate amount of time simply handling
390                  * the retirement of requests and processing their callbacks.
391                  * Of which, this loop itself is particularly hot due to the
392                  * cache misses when jumping around the list of i915_gem_active.
393                  * So we try to keep this loop as streamlined as possible and
394                  * also prefetch the next i915_gem_active to try and hide
395                  * the likely cache miss.
396                  */
397                 prefetchw(next);
398
399                 INIT_LIST_HEAD(&active->link);
400                 RCU_INIT_POINTER(active->request, NULL);
401
402                 active->retire(active, request);
403         }
404
405         i915_gem_request_remove_from_client(request);
406
407         /* Retirement decays the ban score as it is a sign of ctx progress */
408         atomic_dec_if_positive(&request->ctx->ban_score);
409
410         /* The backing object for the context is done after switching to the
411          * *next* context. Therefore we cannot retire the previous context until
412          * the next context has already started running. However, since we
413          * cannot take the required locks at i915_gem_request_submit() we
414          * defer the unpinning of the active context to now, retirement of
415          * the subsequent request.
416          */
417         if (engine->last_retired_context)
418                 engine->context_unpin(engine, engine->last_retired_context);
419         engine->last_retired_context = request->ctx;
420
421         spin_lock_irq(&request->lock);
422         if (request->waitboost)
423                 atomic_dec(&request->i915->rps.num_waiters);
424         dma_fence_signal_locked(&request->fence);
425         spin_unlock_irq(&request->lock);
426
427         i915_priotree_fini(request->i915, &request->priotree);
428         i915_gem_request_put(request);
429 }
430
431 void i915_gem_request_retire_upto(struct drm_i915_gem_request *req)
432 {
433         struct intel_engine_cs *engine = req->engine;
434         struct drm_i915_gem_request *tmp;
435
436         lockdep_assert_held(&req->i915->drm.struct_mutex);
437         GEM_BUG_ON(!i915_gem_request_completed(req));
438
439         if (list_empty(&req->link))
440                 return;
441
442         do {
443                 tmp = list_first_entry(&engine->timeline->requests,
444                                        typeof(*tmp), link);
445
446                 i915_gem_request_retire(tmp);
447         } while (tmp != req);
448 }
449
450 static u32 timeline_get_seqno(struct intel_timeline *tl)
451 {
452         return ++tl->seqno;
453 }
454
455 void __i915_gem_request_submit(struct drm_i915_gem_request *request)
456 {
457         struct intel_engine_cs *engine = request->engine;
458         struct intel_timeline *timeline;
459         u32 seqno;
460
461         GEM_BUG_ON(!irqs_disabled());
462         lockdep_assert_held(&engine->timeline->lock);
463
464         trace_i915_gem_request_execute(request);
465
466         /* Transfer from per-context onto the global per-engine timeline */
467         timeline = engine->timeline;
468         GEM_BUG_ON(timeline == request->timeline);
469
470         seqno = timeline_get_seqno(timeline);
471         GEM_BUG_ON(!seqno);
472         GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine), seqno));
473
474         /* We may be recursing from the signal callback of another i915 fence */
475         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
476         request->global_seqno = seqno;
477         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
478                 intel_engine_enable_signaling(request, false);
479         spin_unlock(&request->lock);
480
481         engine->emit_breadcrumb(request,
482                                 request->ring->vaddr + request->postfix);
483
484         spin_lock(&request->timeline->lock);
485         list_move_tail(&request->link, &timeline->requests);
486         spin_unlock(&request->timeline->lock);
487
488         wake_up_all(&request->execute);
489 }
490
491 void i915_gem_request_submit(struct drm_i915_gem_request *request)
492 {
493         struct intel_engine_cs *engine = request->engine;
494         unsigned long flags;
495
496         /* Will be called from irq-context when using foreign fences. */
497         spin_lock_irqsave(&engine->timeline->lock, flags);
498
499         __i915_gem_request_submit(request);
500
501         spin_unlock_irqrestore(&engine->timeline->lock, flags);
502 }
503
504 void __i915_gem_request_unsubmit(struct drm_i915_gem_request *request)
505 {
506         struct intel_engine_cs *engine = request->engine;
507         struct intel_timeline *timeline;
508
509         GEM_BUG_ON(!irqs_disabled());
510         lockdep_assert_held(&engine->timeline->lock);
511
512         /* Only unwind in reverse order, required so that the per-context list
513          * is kept in seqno/ring order.
514          */
515         GEM_BUG_ON(request->global_seqno != engine->timeline->seqno);
516         engine->timeline->seqno--;
517
518         /* We may be recursing from the signal callback of another i915 fence */
519         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
520         request->global_seqno = 0;
521         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
522                 intel_engine_cancel_signaling(request);
523         spin_unlock(&request->lock);
524
525         /* Transfer back from the global per-engine timeline to per-context */
526         timeline = request->timeline;
527         GEM_BUG_ON(timeline == engine->timeline);
528
529         spin_lock(&timeline->lock);
530         list_move(&request->link, &timeline->requests);
531         spin_unlock(&timeline->lock);
532
533         /* We don't need to wake_up any waiters on request->execute, they
534          * will get woken by any other event or us re-adding this request
535          * to the engine timeline (__i915_gem_request_submit()). The waiters
536          * should be quite adapt at finding that the request now has a new
537          * global_seqno to the one they went to sleep on.
538          */
539 }
540
541 void i915_gem_request_unsubmit(struct drm_i915_gem_request *request)
542 {
543         struct intel_engine_cs *engine = request->engine;
544         unsigned long flags;
545
546         /* Will be called from irq-context when using foreign fences. */
547         spin_lock_irqsave(&engine->timeline->lock, flags);
548
549         __i915_gem_request_unsubmit(request);
550
551         spin_unlock_irqrestore(&engine->timeline->lock, flags);
552 }
553
554 static int __i915_sw_fence_call
555 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
556 {
557         struct drm_i915_gem_request *request =
558                 container_of(fence, typeof(*request), submit);
559
560         switch (state) {
561         case FENCE_COMPLETE:
562                 trace_i915_gem_request_submit(request);
563                 request->engine->submit_request(request);
564                 break;
565
566         case FENCE_FREE:
567                 i915_gem_request_put(request);
568                 break;
569         }
570
571         return NOTIFY_DONE;
572 }
573
574 /**
575  * i915_gem_request_alloc - allocate a request structure
576  *
577  * @engine: engine that we wish to issue the request on.
578  * @ctx: context that the request will be associated with.
579  *
580  * Returns a pointer to the allocated request if successful,
581  * or an error code if not.
582  */
583 struct drm_i915_gem_request *
584 i915_gem_request_alloc(struct intel_engine_cs *engine,
585                        struct i915_gem_context *ctx)
586 {
587         struct drm_i915_private *dev_priv = engine->i915;
588         struct drm_i915_gem_request *req;
589         struct intel_ring *ring;
590         int ret;
591
592         lockdep_assert_held(&dev_priv->drm.struct_mutex);
593
594         /* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
595          * EIO if the GPU is already wedged.
596          */
597         if (i915_terminally_wedged(&dev_priv->gpu_error))
598                 return ERR_PTR(-EIO);
599
600         /* Pinning the contexts may generate requests in order to acquire
601          * GGTT space, so do this first before we reserve a seqno for
602          * ourselves.
603          */
604         ring = engine->context_pin(engine, ctx);
605         if (IS_ERR(ring))
606                 return ERR_CAST(ring);
607         GEM_BUG_ON(!ring);
608
609         ret = reserve_engine(engine);
610         if (ret)
611                 goto err_unpin;
612
613         /* Move the oldest request to the slab-cache (if not in use!) */
614         req = list_first_entry_or_null(&engine->timeline->requests,
615                                        typeof(*req), link);
616         if (req && i915_gem_request_completed(req))
617                 i915_gem_request_retire(req);
618
619         /* Beware: Dragons be flying overhead.
620          *
621          * We use RCU to look up requests in flight. The lookups may
622          * race with the request being allocated from the slab freelist.
623          * That is the request we are writing to here, may be in the process
624          * of being read by __i915_gem_active_get_rcu(). As such,
625          * we have to be very careful when overwriting the contents. During
626          * the RCU lookup, we change chase the request->engine pointer,
627          * read the request->global_seqno and increment the reference count.
628          *
629          * The reference count is incremented atomically. If it is zero,
630          * the lookup knows the request is unallocated and complete. Otherwise,
631          * it is either still in use, or has been reallocated and reset
632          * with dma_fence_init(). This increment is safe for release as we
633          * check that the request we have a reference to and matches the active
634          * request.
635          *
636          * Before we increment the refcount, we chase the request->engine
637          * pointer. We must not call kmem_cache_zalloc() or else we set
638          * that pointer to NULL and cause a crash during the lookup. If
639          * we see the request is completed (based on the value of the
640          * old engine and seqno), the lookup is complete and reports NULL.
641          * If we decide the request is not completed (new engine or seqno),
642          * then we grab a reference and double check that it is still the
643          * active request - which it won't be and restart the lookup.
644          *
645          * Do not use kmem_cache_zalloc() here!
646          */
647         req = kmem_cache_alloc(dev_priv->requests, GFP_KERNEL);
648         if (!req) {
649                 ret = -ENOMEM;
650                 goto err_unreserve;
651         }
652
653         req->timeline = i915_gem_context_lookup_timeline(ctx, engine);
654         GEM_BUG_ON(req->timeline == engine->timeline);
655
656         spin_lock_init(&req->lock);
657         dma_fence_init(&req->fence,
658                        &i915_fence_ops,
659                        &req->lock,
660                        req->timeline->fence_context,
661                        timeline_get_seqno(req->timeline));
662
663         /* We bump the ref for the fence chain */
664         i915_sw_fence_init(&i915_gem_request_get(req)->submit, submit_notify);
665         init_waitqueue_head(&req->execute);
666
667         i915_priotree_init(&req->priotree);
668
669         INIT_LIST_HEAD(&req->active_list);
670         req->i915 = dev_priv;
671         req->engine = engine;
672         req->ctx = ctx;
673         req->ring = ring;
674
675         /* No zalloc, must clear what we need by hand */
676         req->global_seqno = 0;
677         req->file_priv = NULL;
678         req->batch = NULL;
679         req->capture_list = NULL;
680         req->waitboost = false;
681
682         /*
683          * Reserve space in the ring buffer for all the commands required to
684          * eventually emit this request. This is to guarantee that the
685          * i915_add_request() call can't fail. Note that the reserve may need
686          * to be redone if the request is not actually submitted straight
687          * away, e.g. because a GPU scheduler has deferred it.
688          */
689         req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
690         GEM_BUG_ON(req->reserved_space < engine->emit_breadcrumb_sz);
691
692         ret = engine->request_alloc(req);
693         if (ret)
694                 goto err_ctx;
695
696         /* Record the position of the start of the request so that
697          * should we detect the updated seqno part-way through the
698          * GPU processing the request, we never over-estimate the
699          * position of the head.
700          */
701         req->head = req->ring->emit;
702
703         /* Check that we didn't interrupt ourselves with a new request */
704         GEM_BUG_ON(req->timeline->seqno != req->fence.seqno);
705         return req;
706
707 err_ctx:
708         /* Make sure we didn't add ourselves to external state before freeing */
709         GEM_BUG_ON(!list_empty(&req->active_list));
710         GEM_BUG_ON(!list_empty(&req->priotree.signalers_list));
711         GEM_BUG_ON(!list_empty(&req->priotree.waiters_list));
712
713         kmem_cache_free(dev_priv->requests, req);
714 err_unreserve:
715         unreserve_engine(engine);
716 err_unpin:
717         engine->context_unpin(engine, ctx);
718         return ERR_PTR(ret);
719 }
720
721 static int
722 i915_gem_request_await_request(struct drm_i915_gem_request *to,
723                                struct drm_i915_gem_request *from)
724 {
725         int ret;
726
727         GEM_BUG_ON(to == from);
728         GEM_BUG_ON(to->timeline == from->timeline);
729
730         if (i915_gem_request_completed(from))
731                 return 0;
732
733         if (to->engine->schedule) {
734                 ret = i915_priotree_add_dependency(to->i915,
735                                                    &to->priotree,
736                                                    &from->priotree);
737                 if (ret < 0)
738                         return ret;
739         }
740
741         if (to->engine == from->engine) {
742                 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
743                                                        &from->submit,
744                                                        GFP_KERNEL);
745                 return ret < 0 ? ret : 0;
746         }
747
748         if (to->engine->semaphore.sync_to) {
749                 u32 seqno;
750
751                 GEM_BUG_ON(!from->engine->semaphore.signal);
752
753                 seqno = i915_gem_request_global_seqno(from);
754                 if (!seqno)
755                         goto await_dma_fence;
756
757                 if (seqno <= to->timeline->global_sync[from->engine->id])
758                         return 0;
759
760                 trace_i915_gem_ring_sync_to(to, from);
761                 ret = to->engine->semaphore.sync_to(to, from);
762                 if (ret)
763                         return ret;
764
765                 to->timeline->global_sync[from->engine->id] = seqno;
766                 return 0;
767         }
768
769 await_dma_fence:
770         ret = i915_sw_fence_await_dma_fence(&to->submit,
771                                             &from->fence, 0,
772                                             GFP_KERNEL);
773         return ret < 0 ? ret : 0;
774 }
775
776 int
777 i915_gem_request_await_dma_fence(struct drm_i915_gem_request *req,
778                                  struct dma_fence *fence)
779 {
780         struct dma_fence **child = &fence;
781         unsigned int nchild = 1;
782         int ret;
783
784         /* Note that if the fence-array was created in signal-on-any mode,
785          * we should *not* decompose it into its individual fences. However,
786          * we don't currently store which mode the fence-array is operating
787          * in. Fortunately, the only user of signal-on-any is private to
788          * amdgpu and we should not see any incoming fence-array from
789          * sync-file being in signal-on-any mode.
790          */
791         if (dma_fence_is_array(fence)) {
792                 struct dma_fence_array *array = to_dma_fence_array(fence);
793
794                 child = array->fences;
795                 nchild = array->num_fences;
796                 GEM_BUG_ON(!nchild);
797         }
798
799         do {
800                 fence = *child++;
801                 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
802                         continue;
803
804                 /*
805                  * Requests on the same timeline are explicitly ordered, along
806                  * with their dependencies, by i915_add_request() which ensures
807                  * that requests are submitted in-order through each ring.
808                  */
809                 if (fence->context == req->fence.context)
810                         continue;
811
812                 /* Squash repeated waits to the same timelines */
813                 if (fence->context != req->i915->mm.unordered_timeline &&
814                     intel_timeline_sync_is_later(req->timeline, fence))
815                         continue;
816
817                 if (dma_fence_is_i915(fence))
818                         ret = i915_gem_request_await_request(req,
819                                                              to_request(fence));
820                 else
821                         ret = i915_sw_fence_await_dma_fence(&req->submit, fence,
822                                                             I915_FENCE_TIMEOUT,
823                                                             GFP_KERNEL);
824                 if (ret < 0)
825                         return ret;
826
827                 /* Record the latest fence used against each timeline */
828                 if (fence->context != req->i915->mm.unordered_timeline)
829                         intel_timeline_sync_set(req->timeline, fence);
830         } while (--nchild);
831
832         return 0;
833 }
834
835 /**
836  * i915_gem_request_await_object - set this request to (async) wait upon a bo
837  *
838  * @to: request we are wishing to use
839  * @obj: object which may be in use on another ring.
840  *
841  * This code is meant to abstract object synchronization with the GPU.
842  * Conceptually we serialise writes between engines inside the GPU.
843  * We only allow one engine to write into a buffer at any time, but
844  * multiple readers. To ensure each has a coherent view of memory, we must:
845  *
846  * - If there is an outstanding write request to the object, the new
847  *   request must wait for it to complete (either CPU or in hw, requests
848  *   on the same ring will be naturally ordered).
849  *
850  * - If we are a write request (pending_write_domain is set), the new
851  *   request must wait for outstanding read requests to complete.
852  *
853  * Returns 0 if successful, else propagates up the lower layer error.
854  */
855 int
856 i915_gem_request_await_object(struct drm_i915_gem_request *to,
857                               struct drm_i915_gem_object *obj,
858                               bool write)
859 {
860         struct dma_fence *excl;
861         int ret = 0;
862
863         if (write) {
864                 struct dma_fence **shared;
865                 unsigned int count, i;
866
867                 ret = reservation_object_get_fences_rcu(obj->resv,
868                                                         &excl, &count, &shared);
869                 if (ret)
870                         return ret;
871
872                 for (i = 0; i < count; i++) {
873                         ret = i915_gem_request_await_dma_fence(to, shared[i]);
874                         if (ret)
875                                 break;
876
877                         dma_fence_put(shared[i]);
878                 }
879
880                 for (; i < count; i++)
881                         dma_fence_put(shared[i]);
882                 kfree(shared);
883         } else {
884                 excl = reservation_object_get_excl_rcu(obj->resv);
885         }
886
887         if (excl) {
888                 if (ret == 0)
889                         ret = i915_gem_request_await_dma_fence(to, excl);
890
891                 dma_fence_put(excl);
892         }
893
894         return ret;
895 }
896
897 /*
898  * NB: This function is not allowed to fail. Doing so would mean the the
899  * request is not being tracked for completion but the work itself is
900  * going to happen on the hardware. This would be a Bad Thing(tm).
901  */
902 void __i915_add_request(struct drm_i915_gem_request *request, bool flush_caches)
903 {
904         struct intel_engine_cs *engine = request->engine;
905         struct intel_ring *ring = request->ring;
906         struct intel_timeline *timeline = request->timeline;
907         struct drm_i915_gem_request *prev;
908         u32 *cs;
909         int err;
910
911         lockdep_assert_held(&request->i915->drm.struct_mutex);
912         trace_i915_gem_request_add(request);
913
914         /* Make sure that no request gazumped us - if it was allocated after
915          * our i915_gem_request_alloc() and called __i915_add_request() before
916          * us, the timeline will hold its seqno which is later than ours.
917          */
918         GEM_BUG_ON(timeline->seqno != request->fence.seqno);
919
920         /*
921          * To ensure that this call will not fail, space for its emissions
922          * should already have been reserved in the ring buffer. Let the ring
923          * know that it is time to use that space up.
924          */
925         request->reserved_space = 0;
926
927         /*
928          * Emit any outstanding flushes - execbuf can fail to emit the flush
929          * after having emitted the batchbuffer command. Hence we need to fix
930          * things up similar to emitting the lazy request. The difference here
931          * is that the flush _must_ happen before the next request, no matter
932          * what.
933          */
934         if (flush_caches) {
935                 err = engine->emit_flush(request, EMIT_FLUSH);
936
937                 /* Not allowed to fail! */
938                 WARN(err, "engine->emit_flush() failed: %d!\n", err);
939         }
940
941         /* Record the position of the start of the breadcrumb so that
942          * should we detect the updated seqno part-way through the
943          * GPU processing the request, we never over-estimate the
944          * position of the ring's HEAD.
945          */
946         cs = intel_ring_begin(request, engine->emit_breadcrumb_sz);
947         GEM_BUG_ON(IS_ERR(cs));
948         request->postfix = intel_ring_offset(request, cs);
949
950         /* Seal the request and mark it as pending execution. Note that
951          * we may inspect this state, without holding any locks, during
952          * hangcheck. Hence we apply the barrier to ensure that we do not
953          * see a more recent value in the hws than we are tracking.
954          */
955
956         prev = i915_gem_active_raw(&timeline->last_request,
957                                    &request->i915->drm.struct_mutex);
958         if (prev) {
959                 i915_sw_fence_await_sw_fence(&request->submit, &prev->submit,
960                                              &request->submitq);
961                 if (engine->schedule)
962                         __i915_priotree_add_dependency(&request->priotree,
963                                                        &prev->priotree,
964                                                        &request->dep,
965                                                        0);
966         }
967
968         spin_lock_irq(&timeline->lock);
969         list_add_tail(&request->link, &timeline->requests);
970         spin_unlock_irq(&timeline->lock);
971
972         GEM_BUG_ON(timeline->seqno != request->fence.seqno);
973         i915_gem_active_set(&timeline->last_request, request);
974
975         list_add_tail(&request->ring_link, &ring->request_list);
976         request->emitted_jiffies = jiffies;
977
978         /* Let the backend know a new request has arrived that may need
979          * to adjust the existing execution schedule due to a high priority
980          * request - i.e. we may want to preempt the current request in order
981          * to run a high priority dependency chain *before* we can execute this
982          * request.
983          *
984          * This is called before the request is ready to run so that we can
985          * decide whether to preempt the entire chain so that it is ready to
986          * run at the earliest possible convenience.
987          */
988         if (engine->schedule)
989                 engine->schedule(request, request->ctx->priority);
990
991         local_bh_disable();
992         i915_sw_fence_commit(&request->submit);
993         local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
994 }
995
996 static unsigned long local_clock_us(unsigned int *cpu)
997 {
998         unsigned long t;
999
1000         /* Cheaply and approximately convert from nanoseconds to microseconds.
1001          * The result and subsequent calculations are also defined in the same
1002          * approximate microseconds units. The principal source of timing
1003          * error here is from the simple truncation.
1004          *
1005          * Note that local_clock() is only defined wrt to the current CPU;
1006          * the comparisons are no longer valid if we switch CPUs. Instead of
1007          * blocking preemption for the entire busywait, we can detect the CPU
1008          * switch and use that as indicator of system load and a reason to
1009          * stop busywaiting, see busywait_stop().
1010          */
1011         *cpu = get_cpu();
1012         t = local_clock() >> 10;
1013         put_cpu();
1014
1015         return t;
1016 }
1017
1018 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1019 {
1020         unsigned int this_cpu;
1021
1022         if (time_after(local_clock_us(&this_cpu), timeout))
1023                 return true;
1024
1025         return this_cpu != cpu;
1026 }
1027
1028 bool __i915_spin_request(const struct drm_i915_gem_request *req,
1029                          u32 seqno, int state, unsigned long timeout_us)
1030 {
1031         struct intel_engine_cs *engine = req->engine;
1032         unsigned int irq, cpu;
1033
1034         /* When waiting for high frequency requests, e.g. during synchronous
1035          * rendering split between the CPU and GPU, the finite amount of time
1036          * required to set up the irq and wait upon it limits the response
1037          * rate. By busywaiting on the request completion for a short while we
1038          * can service the high frequency waits as quick as possible. However,
1039          * if it is a slow request, we want to sleep as quickly as possible.
1040          * The tradeoff between waiting and sleeping is roughly the time it
1041          * takes to sleep on a request, on the order of a microsecond.
1042          */
1043
1044         irq = atomic_read(&engine->irq_count);
1045         timeout_us += local_clock_us(&cpu);
1046         do {
1047                 if (seqno != i915_gem_request_global_seqno(req))
1048                         break;
1049
1050                 if (i915_seqno_passed(intel_engine_get_seqno(req->engine),
1051                                       seqno))
1052                         return true;
1053
1054                 /* Seqno are meant to be ordered *before* the interrupt. If
1055                  * we see an interrupt without a corresponding seqno advance,
1056                  * assume we won't see one in the near future but require
1057                  * the engine->seqno_barrier() to fixup coherency.
1058                  */
1059                 if (atomic_read(&engine->irq_count) != irq)
1060                         break;
1061
1062                 if (signal_pending_state(state, current))
1063                         break;
1064
1065                 if (busywait_stop(timeout_us, cpu))
1066                         break;
1067
1068                 cpu_relax();
1069         } while (!need_resched());
1070
1071         return false;
1072 }
1073
1074 static bool __i915_wait_request_check_and_reset(struct drm_i915_gem_request *request)
1075 {
1076         if (likely(!i915_reset_handoff(&request->i915->gpu_error)))
1077                 return false;
1078
1079         __set_current_state(TASK_RUNNING);
1080         i915_reset(request->i915, 0);
1081         return true;
1082 }
1083
1084 /**
1085  * i915_wait_request - wait until execution of request has finished
1086  * @req: the request to wait upon
1087  * @flags: how to wait
1088  * @timeout: how long to wait in jiffies
1089  *
1090  * i915_wait_request() waits for the request to be completed, for a
1091  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1092  * unbounded wait).
1093  *
1094  * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
1095  * in via the flags, and vice versa if the struct_mutex is not held, the caller
1096  * must not specify that the wait is locked.
1097  *
1098  * Returns the remaining time (in jiffies) if the request completed, which may
1099  * be zero or -ETIME if the request is unfinished after the timeout expires.
1100  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1101  * pending before the request completes.
1102  */
1103 long i915_wait_request(struct drm_i915_gem_request *req,
1104                        unsigned int flags,
1105                        long timeout)
1106 {
1107         const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1108                 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1109         wait_queue_head_t *errq = &req->i915->gpu_error.wait_queue;
1110         DEFINE_WAIT_FUNC(reset, default_wake_function);
1111         DEFINE_WAIT_FUNC(exec, default_wake_function);
1112         struct intel_wait wait;
1113
1114         might_sleep();
1115 #if IS_ENABLED(CONFIG_LOCKDEP)
1116         GEM_BUG_ON(debug_locks &&
1117                    !!lockdep_is_held(&req->i915->drm.struct_mutex) !=
1118                    !!(flags & I915_WAIT_LOCKED));
1119 #endif
1120         GEM_BUG_ON(timeout < 0);
1121
1122         if (i915_gem_request_completed(req))
1123                 return timeout;
1124
1125         if (!timeout)
1126                 return -ETIME;
1127
1128         trace_i915_gem_request_wait_begin(req, flags);
1129
1130         add_wait_queue(&req->execute, &exec);
1131         if (flags & I915_WAIT_LOCKED)
1132                 add_wait_queue(errq, &reset);
1133
1134         intel_wait_init(&wait, req);
1135
1136 restart:
1137         do {
1138                 set_current_state(state);
1139                 if (intel_wait_update_request(&wait, req))
1140                         break;
1141
1142                 if (flags & I915_WAIT_LOCKED &&
1143                     __i915_wait_request_check_and_reset(req))
1144                         continue;
1145
1146                 if (signal_pending_state(state, current)) {
1147                         timeout = -ERESTARTSYS;
1148                         goto complete;
1149                 }
1150
1151                 if (!timeout) {
1152                         timeout = -ETIME;
1153                         goto complete;
1154                 }
1155
1156                 timeout = io_schedule_timeout(timeout);
1157         } while (1);
1158
1159         GEM_BUG_ON(!intel_wait_has_seqno(&wait));
1160         GEM_BUG_ON(!i915_sw_fence_signaled(&req->submit));
1161
1162         /* Optimistic short spin before touching IRQs */
1163         if (i915_spin_request(req, state, 5))
1164                 goto complete;
1165
1166         set_current_state(state);
1167         if (intel_engine_add_wait(req->engine, &wait))
1168                 /* In order to check that we haven't missed the interrupt
1169                  * as we enabled it, we need to kick ourselves to do a
1170                  * coherent check on the seqno before we sleep.
1171                  */
1172                 goto wakeup;
1173
1174         if (flags & I915_WAIT_LOCKED)
1175                 __i915_wait_request_check_and_reset(req);
1176
1177         for (;;) {
1178                 if (signal_pending_state(state, current)) {
1179                         timeout = -ERESTARTSYS;
1180                         break;
1181                 }
1182
1183                 if (!timeout) {
1184                         timeout = -ETIME;
1185                         break;
1186                 }
1187
1188                 timeout = io_schedule_timeout(timeout);
1189
1190                 if (intel_wait_complete(&wait) &&
1191                     intel_wait_check_request(&wait, req))
1192                         break;
1193
1194                 set_current_state(state);
1195
1196 wakeup:
1197                 /* Carefully check if the request is complete, giving time
1198                  * for the seqno to be visible following the interrupt.
1199                  * We also have to check in case we are kicked by the GPU
1200                  * reset in order to drop the struct_mutex.
1201                  */
1202                 if (__i915_request_irq_complete(req))
1203                         break;
1204
1205                 /* If the GPU is hung, and we hold the lock, reset the GPU
1206                  * and then check for completion. On a full reset, the engine's
1207                  * HW seqno will be advanced passed us and we are complete.
1208                  * If we do a partial reset, we have to wait for the GPU to
1209                  * resume and update the breadcrumb.
1210                  *
1211                  * If we don't hold the mutex, we can just wait for the worker
1212                  * to come along and update the breadcrumb (either directly
1213                  * itself, or indirectly by recovering the GPU).
1214                  */
1215                 if (flags & I915_WAIT_LOCKED &&
1216                     __i915_wait_request_check_and_reset(req))
1217                         continue;
1218
1219                 /* Only spin if we know the GPU is processing this request */
1220                 if (i915_spin_request(req, state, 2))
1221                         break;
1222
1223                 if (!intel_wait_check_request(&wait, req)) {
1224                         intel_engine_remove_wait(req->engine, &wait);
1225                         goto restart;
1226                 }
1227         }
1228
1229         intel_engine_remove_wait(req->engine, &wait);
1230 complete:
1231         __set_current_state(TASK_RUNNING);
1232         if (flags & I915_WAIT_LOCKED)
1233                 remove_wait_queue(errq, &reset);
1234         remove_wait_queue(&req->execute, &exec);
1235         trace_i915_gem_request_wait_end(req);
1236
1237         return timeout;
1238 }
1239
1240 static void engine_retire_requests(struct intel_engine_cs *engine)
1241 {
1242         struct drm_i915_gem_request *request, *next;
1243         u32 seqno = intel_engine_get_seqno(engine);
1244         LIST_HEAD(retire);
1245
1246         spin_lock_irq(&engine->timeline->lock);
1247         list_for_each_entry_safe(request, next,
1248                                  &engine->timeline->requests, link) {
1249                 if (!i915_seqno_passed(seqno, request->global_seqno))
1250                         break;
1251
1252                 list_move_tail(&request->link, &retire);
1253         }
1254         spin_unlock_irq(&engine->timeline->lock);
1255
1256         list_for_each_entry_safe(request, next, &retire, link)
1257                 i915_gem_request_retire(request);
1258 }
1259
1260 void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
1261 {
1262         struct intel_engine_cs *engine;
1263         enum intel_engine_id id;
1264
1265         lockdep_assert_held(&dev_priv->drm.struct_mutex);
1266
1267         if (!dev_priv->gt.active_requests)
1268                 return;
1269
1270         for_each_engine(engine, dev_priv, id)
1271                 engine_retire_requests(engine);
1272 }
1273
1274 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1275 #include "selftests/mock_request.c"
1276 #include "selftests/i915_gem_request.c"
1277 #endif