GNU Linux-libre 4.4.283-gnu1
[releases.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25
26 #include <linux/seq_file.h>
27 #include <drm/drmP.h>
28 #include <drm/i915_drm.h>
29 #include "i915_drv.h"
30 #include "i915_vgpu.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33
34 /**
35  * DOC: Global GTT views
36  *
37  * Background and previous state
38  *
39  * Historically objects could exists (be bound) in global GTT space only as
40  * singular instances with a view representing all of the object's backing pages
41  * in a linear fashion. This view will be called a normal view.
42  *
43  * To support multiple views of the same object, where the number of mapped
44  * pages is not equal to the backing store, or where the layout of the pages
45  * is not linear, concept of a GGTT view was added.
46  *
47  * One example of an alternative view is a stereo display driven by a single
48  * image. In this case we would have a framebuffer looking like this
49  * (2x2 pages):
50  *
51  *    12
52  *    34
53  *
54  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
55  * rendering. In contrast, fed to the display engine would be an alternative
56  * view which could look something like this:
57  *
58  *   1212
59  *   3434
60  *
61  * In this example both the size and layout of pages in the alternative view is
62  * different from the normal view.
63  *
64  * Implementation and usage
65  *
66  * GGTT views are implemented using VMAs and are distinguished via enum
67  * i915_ggtt_view_type and struct i915_ggtt_view.
68  *
69  * A new flavour of core GEM functions which work with GGTT bound objects were
70  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
71  * renaming  in large amounts of code. They take the struct i915_ggtt_view
72  * parameter encapsulating all metadata required to implement a view.
73  *
74  * As a helper for callers which are only interested in the normal view,
75  * globally const i915_ggtt_view_normal singleton instance exists. All old core
76  * GEM API functions, the ones not taking the view parameter, are operating on,
77  * or with the normal GGTT view.
78  *
79  * Code wanting to add or use a new GGTT view needs to:
80  *
81  * 1. Add a new enum with a suitable name.
82  * 2. Extend the metadata in the i915_ggtt_view structure if required.
83  * 3. Add support to i915_get_vma_pages().
84  *
85  * New views are required to build a scatter-gather table from within the
86  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
87  * exists for the lifetime of an VMA.
88  *
89  * Core API is designed to have copy semantics which means that passed in
90  * struct i915_ggtt_view does not need to be persistent (left around after
91  * calling the core API functions).
92  *
93  */
94
95 static int
96 i915_get_ggtt_vma_pages(struct i915_vma *vma);
97
98 const struct i915_ggtt_view i915_ggtt_view_normal;
99 const struct i915_ggtt_view i915_ggtt_view_rotated = {
100         .type = I915_GGTT_VIEW_ROTATED
101 };
102
103 static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
104 {
105         bool has_aliasing_ppgtt;
106         bool has_full_ppgtt;
107
108         has_aliasing_ppgtt = INTEL_INFO(dev)->gen >= 6;
109         has_full_ppgtt = INTEL_INFO(dev)->gen >= 7;
110
111         if (intel_vgpu_active(dev))
112                 has_full_ppgtt = false; /* emulation is too hard */
113
114         /*
115          * We don't allow disabling PPGTT for gen9+ as it's a requirement for
116          * execlists, the sole mechanism available to submit work.
117          */
118         if (INTEL_INFO(dev)->gen < 9 &&
119             (enable_ppgtt == 0 || !has_aliasing_ppgtt))
120                 return 0;
121
122         /* Full PPGTT is required by the Gen9 cmdparser */
123         if (enable_ppgtt == 1 && INTEL_INFO(dev)->gen != 9)
124                 return 1;
125
126         if (enable_ppgtt == 2 && has_full_ppgtt)
127                 return 2;
128
129 #ifdef CONFIG_INTEL_IOMMU
130         /* Disable ppgtt on SNB if VT-d is on. */
131         if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
132                 DRM_INFO("Disabling PPGTT because VT-d is on\n");
133                 return 0;
134         }
135 #endif
136
137         /* Early VLV doesn't have this */
138         if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
139             dev->pdev->revision < 0xb) {
140                 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
141                 return 0;
142         }
143
144         if (INTEL_INFO(dev)->gen >= 8 && i915.enable_execlists)
145                 return 2;
146         else
147                 return has_aliasing_ppgtt ? 1 : 0;
148 }
149
150 static int ppgtt_bind_vma(struct i915_vma *vma,
151                           enum i915_cache_level cache_level,
152                           u32 unused)
153 {
154         u32 pte_flags = 0;
155
156         /* Applicable to VLV, and gen8+ */
157         pte_flags = 0;
158         if (vma->obj->gt_ro)
159                 pte_flags |= PTE_READ_ONLY;
160
161         vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
162                                 cache_level, pte_flags);
163
164         return 0;
165 }
166
167 static void ppgtt_unbind_vma(struct i915_vma *vma)
168 {
169         vma->vm->clear_range(vma->vm,
170                              vma->node.start,
171                              vma->obj->base.size,
172                              true);
173 }
174
175 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
176                                   enum i915_cache_level level,
177                                   bool valid, u32 flags)
178 {
179         gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
180         pte |= addr;
181
182         if (unlikely(flags & PTE_READ_ONLY))
183                 pte &= ~_PAGE_RW;
184
185         switch (level) {
186         case I915_CACHE_NONE:
187                 pte |= PPAT_UNCACHED_INDEX;
188                 break;
189         case I915_CACHE_WT:
190                 pte |= PPAT_DISPLAY_ELLC_INDEX;
191                 break;
192         default:
193                 pte |= PPAT_CACHED_INDEX;
194                 break;
195         }
196
197         return pte;
198 }
199
200 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
201                                   const enum i915_cache_level level)
202 {
203         gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
204         pde |= addr;
205         if (level != I915_CACHE_NONE)
206                 pde |= PPAT_CACHED_PDE_INDEX;
207         else
208                 pde |= PPAT_UNCACHED_INDEX;
209         return pde;
210 }
211
212 #define gen8_pdpe_encode gen8_pde_encode
213 #define gen8_pml4e_encode gen8_pde_encode
214
215 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
216                                  enum i915_cache_level level,
217                                  bool valid, u32 unused)
218 {
219         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
220         pte |= GEN6_PTE_ADDR_ENCODE(addr);
221
222         switch (level) {
223         case I915_CACHE_L3_LLC:
224         case I915_CACHE_LLC:
225                 pte |= GEN6_PTE_CACHE_LLC;
226                 break;
227         case I915_CACHE_NONE:
228                 pte |= GEN6_PTE_UNCACHED;
229                 break;
230         default:
231                 MISSING_CASE(level);
232         }
233
234         return pte;
235 }
236
237 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
238                                  enum i915_cache_level level,
239                                  bool valid, u32 unused)
240 {
241         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
242         pte |= GEN6_PTE_ADDR_ENCODE(addr);
243
244         switch (level) {
245         case I915_CACHE_L3_LLC:
246                 pte |= GEN7_PTE_CACHE_L3_LLC;
247                 break;
248         case I915_CACHE_LLC:
249                 pte |= GEN6_PTE_CACHE_LLC;
250                 break;
251         case I915_CACHE_NONE:
252                 pte |= GEN6_PTE_UNCACHED;
253                 break;
254         default:
255                 MISSING_CASE(level);
256         }
257
258         return pte;
259 }
260
261 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
262                                  enum i915_cache_level level,
263                                  bool valid, u32 flags)
264 {
265         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
266         pte |= GEN6_PTE_ADDR_ENCODE(addr);
267
268         if (!(flags & PTE_READ_ONLY))
269                 pte |= BYT_PTE_WRITEABLE;
270
271         if (level != I915_CACHE_NONE)
272                 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
273
274         return pte;
275 }
276
277 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
278                                  enum i915_cache_level level,
279                                  bool valid, u32 unused)
280 {
281         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
282         pte |= HSW_PTE_ADDR_ENCODE(addr);
283
284         if (level != I915_CACHE_NONE)
285                 pte |= HSW_WB_LLC_AGE3;
286
287         return pte;
288 }
289
290 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
291                                   enum i915_cache_level level,
292                                   bool valid, u32 unused)
293 {
294         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
295         pte |= HSW_PTE_ADDR_ENCODE(addr);
296
297         switch (level) {
298         case I915_CACHE_NONE:
299                 break;
300         case I915_CACHE_WT:
301                 pte |= HSW_WT_ELLC_LLC_AGE3;
302                 break;
303         default:
304                 pte |= HSW_WB_ELLC_LLC_AGE3;
305                 break;
306         }
307
308         return pte;
309 }
310
311 static int __setup_page_dma(struct drm_device *dev,
312                             struct i915_page_dma *p, gfp_t flags)
313 {
314         struct device *device = &dev->pdev->dev;
315
316         p->page = alloc_page(flags);
317         if (!p->page)
318                 return -ENOMEM;
319
320         p->daddr = dma_map_page(device,
321                                 p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
322
323         if (dma_mapping_error(device, p->daddr)) {
324                 __free_page(p->page);
325                 return -EINVAL;
326         }
327
328         return 0;
329 }
330
331 static int setup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
332 {
333         return __setup_page_dma(dev, p, GFP_KERNEL);
334 }
335
336 static void cleanup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
337 {
338         if (WARN_ON(!p->page))
339                 return;
340
341         dma_unmap_page(&dev->pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL);
342         __free_page(p->page);
343         memset(p, 0, sizeof(*p));
344 }
345
346 static void *kmap_page_dma(struct i915_page_dma *p)
347 {
348         return kmap_atomic(p->page);
349 }
350
351 /* We use the flushing unmap only with ppgtt structures:
352  * page directories, page tables and scratch pages.
353  */
354 static void kunmap_page_dma(struct drm_device *dev, void *vaddr)
355 {
356         /* There are only few exceptions for gen >=6. chv and bxt.
357          * And we are not sure about the latter so play safe for now.
358          */
359         if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
360                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
361
362         kunmap_atomic(vaddr);
363 }
364
365 #define kmap_px(px) kmap_page_dma(px_base(px))
366 #define kunmap_px(ppgtt, vaddr) kunmap_page_dma((ppgtt)->base.dev, (vaddr))
367
368 #define setup_px(dev, px) setup_page_dma((dev), px_base(px))
369 #define cleanup_px(dev, px) cleanup_page_dma((dev), px_base(px))
370 #define fill_px(dev, px, v) fill_page_dma((dev), px_base(px), (v))
371 #define fill32_px(dev, px, v) fill_page_dma_32((dev), px_base(px), (v))
372
373 static void fill_page_dma(struct drm_device *dev, struct i915_page_dma *p,
374                           const uint64_t val)
375 {
376         int i;
377         uint64_t * const vaddr = kmap_page_dma(p);
378
379         for (i = 0; i < 512; i++)
380                 vaddr[i] = val;
381
382         kunmap_page_dma(dev, vaddr);
383 }
384
385 static void fill_page_dma_32(struct drm_device *dev, struct i915_page_dma *p,
386                              const uint32_t val32)
387 {
388         uint64_t v = val32;
389
390         v = v << 32 | val32;
391
392         fill_page_dma(dev, p, v);
393 }
394
395 static struct i915_page_scratch *alloc_scratch_page(struct drm_device *dev)
396 {
397         struct i915_page_scratch *sp;
398         int ret;
399
400         sp = kzalloc(sizeof(*sp), GFP_KERNEL);
401         if (sp == NULL)
402                 return ERR_PTR(-ENOMEM);
403
404         ret = __setup_page_dma(dev, px_base(sp), GFP_DMA32 | __GFP_ZERO);
405         if (ret) {
406                 kfree(sp);
407                 return ERR_PTR(ret);
408         }
409
410         set_pages_uc(px_page(sp), 1);
411
412         return sp;
413 }
414
415 static void free_scratch_page(struct drm_device *dev,
416                               struct i915_page_scratch *sp)
417 {
418         set_pages_wb(px_page(sp), 1);
419
420         cleanup_px(dev, sp);
421         kfree(sp);
422 }
423
424 static struct i915_page_table *alloc_pt(struct drm_device *dev)
425 {
426         struct i915_page_table *pt;
427         const size_t count = INTEL_INFO(dev)->gen >= 8 ?
428                 GEN8_PTES : GEN6_PTES;
429         int ret = -ENOMEM;
430
431         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
432         if (!pt)
433                 return ERR_PTR(-ENOMEM);
434
435         pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
436                                 GFP_KERNEL);
437
438         if (!pt->used_ptes)
439                 goto fail_bitmap;
440
441         ret = setup_px(dev, pt);
442         if (ret)
443                 goto fail_page_m;
444
445         return pt;
446
447 fail_page_m:
448         kfree(pt->used_ptes);
449 fail_bitmap:
450         kfree(pt);
451
452         return ERR_PTR(ret);
453 }
454
455 static void free_pt(struct drm_device *dev, struct i915_page_table *pt)
456 {
457         cleanup_px(dev, pt);
458         kfree(pt->used_ptes);
459         kfree(pt);
460 }
461
462 static void gen8_initialize_pt(struct i915_address_space *vm,
463                                struct i915_page_table *pt)
464 {
465         gen8_pte_t scratch_pte;
466
467         scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
468                                       I915_CACHE_LLC, true, 0);
469
470         fill_px(vm->dev, pt, scratch_pte);
471 }
472
473 static void gen6_initialize_pt(struct i915_address_space *vm,
474                                struct i915_page_table *pt)
475 {
476         gen6_pte_t scratch_pte;
477
478         WARN_ON(px_dma(vm->scratch_page) == 0);
479
480         scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
481                                      I915_CACHE_LLC, true, 0);
482
483         fill32_px(vm->dev, pt, scratch_pte);
484 }
485
486 static struct i915_page_directory *alloc_pd(struct drm_device *dev)
487 {
488         struct i915_page_directory *pd;
489         int ret = -ENOMEM;
490
491         pd = kzalloc(sizeof(*pd), GFP_KERNEL);
492         if (!pd)
493                 return ERR_PTR(-ENOMEM);
494
495         pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
496                                 sizeof(*pd->used_pdes), GFP_KERNEL);
497         if (!pd->used_pdes)
498                 goto fail_bitmap;
499
500         ret = setup_px(dev, pd);
501         if (ret)
502                 goto fail_page_m;
503
504         return pd;
505
506 fail_page_m:
507         kfree(pd->used_pdes);
508 fail_bitmap:
509         kfree(pd);
510
511         return ERR_PTR(ret);
512 }
513
514 static void free_pd(struct drm_device *dev, struct i915_page_directory *pd)
515 {
516         if (px_page(pd)) {
517                 cleanup_px(dev, pd);
518                 kfree(pd->used_pdes);
519                 kfree(pd);
520         }
521 }
522
523 static void gen8_initialize_pd(struct i915_address_space *vm,
524                                struct i915_page_directory *pd)
525 {
526         gen8_pde_t scratch_pde;
527
528         scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC);
529
530         fill_px(vm->dev, pd, scratch_pde);
531 }
532
533 static int __pdp_init(struct drm_device *dev,
534                       struct i915_page_directory_pointer *pdp)
535 {
536         size_t pdpes = I915_PDPES_PER_PDP(dev);
537
538         pdp->used_pdpes = kcalloc(BITS_TO_LONGS(pdpes),
539                                   sizeof(unsigned long),
540                                   GFP_KERNEL);
541         if (!pdp->used_pdpes)
542                 return -ENOMEM;
543
544         pdp->page_directory = kcalloc(pdpes, sizeof(*pdp->page_directory),
545                                       GFP_KERNEL);
546         if (!pdp->page_directory) {
547                 kfree(pdp->used_pdpes);
548                 /* the PDP might be the statically allocated top level. Keep it
549                  * as clean as possible */
550                 pdp->used_pdpes = NULL;
551                 return -ENOMEM;
552         }
553
554         return 0;
555 }
556
557 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
558 {
559         kfree(pdp->used_pdpes);
560         kfree(pdp->page_directory);
561         pdp->page_directory = NULL;
562 }
563
564 static struct
565 i915_page_directory_pointer *alloc_pdp(struct drm_device *dev)
566 {
567         struct i915_page_directory_pointer *pdp;
568         int ret = -ENOMEM;
569
570         WARN_ON(!USES_FULL_48BIT_PPGTT(dev));
571
572         pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
573         if (!pdp)
574                 return ERR_PTR(-ENOMEM);
575
576         ret = __pdp_init(dev, pdp);
577         if (ret)
578                 goto fail_bitmap;
579
580         ret = setup_px(dev, pdp);
581         if (ret)
582                 goto fail_page_m;
583
584         return pdp;
585
586 fail_page_m:
587         __pdp_fini(pdp);
588 fail_bitmap:
589         kfree(pdp);
590
591         return ERR_PTR(ret);
592 }
593
594 static void free_pdp(struct drm_device *dev,
595                      struct i915_page_directory_pointer *pdp)
596 {
597         __pdp_fini(pdp);
598         if (USES_FULL_48BIT_PPGTT(dev)) {
599                 cleanup_px(dev, pdp);
600                 kfree(pdp);
601         }
602 }
603
604 static void gen8_initialize_pdp(struct i915_address_space *vm,
605                                 struct i915_page_directory_pointer *pdp)
606 {
607         gen8_ppgtt_pdpe_t scratch_pdpe;
608
609         scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
610
611         fill_px(vm->dev, pdp, scratch_pdpe);
612 }
613
614 static void gen8_initialize_pml4(struct i915_address_space *vm,
615                                  struct i915_pml4 *pml4)
616 {
617         gen8_ppgtt_pml4e_t scratch_pml4e;
618
619         scratch_pml4e = gen8_pml4e_encode(px_dma(vm->scratch_pdp),
620                                           I915_CACHE_LLC);
621
622         fill_px(vm->dev, pml4, scratch_pml4e);
623 }
624
625 static void
626 gen8_setup_page_directory(struct i915_hw_ppgtt *ppgtt,
627                           struct i915_page_directory_pointer *pdp,
628                           struct i915_page_directory *pd,
629                           int index)
630 {
631         gen8_ppgtt_pdpe_t *page_directorypo;
632
633         if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
634                 return;
635
636         page_directorypo = kmap_px(pdp);
637         page_directorypo[index] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
638         kunmap_px(ppgtt, page_directorypo);
639 }
640
641 static void
642 gen8_setup_page_directory_pointer(struct i915_hw_ppgtt *ppgtt,
643                                   struct i915_pml4 *pml4,
644                                   struct i915_page_directory_pointer *pdp,
645                                   int index)
646 {
647         gen8_ppgtt_pml4e_t *pagemap = kmap_px(pml4);
648
649         WARN_ON(!USES_FULL_48BIT_PPGTT(ppgtt->base.dev));
650         pagemap[index] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
651         kunmap_px(ppgtt, pagemap);
652 }
653
654 /* Broadwell Page Directory Pointer Descriptors */
655 static int gen8_write_pdp(struct drm_i915_gem_request *req,
656                           unsigned entry,
657                           dma_addr_t addr)
658 {
659         struct intel_engine_cs *ring = req->ring;
660         int ret;
661
662         BUG_ON(entry >= 4);
663
664         ret = intel_ring_begin(req, 6);
665         if (ret)
666                 return ret;
667
668         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
669         intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
670         intel_ring_emit(ring, upper_32_bits(addr));
671         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
672         intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
673         intel_ring_emit(ring, lower_32_bits(addr));
674         intel_ring_advance(ring);
675
676         return 0;
677 }
678
679 static int gen8_legacy_mm_switch(struct i915_hw_ppgtt *ppgtt,
680                                  struct drm_i915_gem_request *req)
681 {
682         int i, ret;
683
684         for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
685                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
686
687                 ret = gen8_write_pdp(req, i, pd_daddr);
688                 if (ret)
689                         return ret;
690         }
691
692         return 0;
693 }
694
695 static int gen8_48b_mm_switch(struct i915_hw_ppgtt *ppgtt,
696                               struct drm_i915_gem_request *req)
697 {
698         return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
699 }
700
701 static void gen8_ppgtt_clear_pte_range(struct i915_address_space *vm,
702                                        struct i915_page_directory_pointer *pdp,
703                                        uint64_t start,
704                                        uint64_t length,
705                                        gen8_pte_t scratch_pte)
706 {
707         struct i915_hw_ppgtt *ppgtt =
708                 container_of(vm, struct i915_hw_ppgtt, base);
709         gen8_pte_t *pt_vaddr;
710         unsigned pdpe = gen8_pdpe_index(start);
711         unsigned pde = gen8_pde_index(start);
712         unsigned pte = gen8_pte_index(start);
713         unsigned num_entries = length >> PAGE_SHIFT;
714         unsigned last_pte, i;
715
716         if (WARN_ON(!pdp))
717                 return;
718
719         while (num_entries) {
720                 struct i915_page_directory *pd;
721                 struct i915_page_table *pt;
722
723                 if (WARN_ON(!pdp->page_directory[pdpe]))
724                         break;
725
726                 pd = pdp->page_directory[pdpe];
727
728                 if (WARN_ON(!pd->page_table[pde]))
729                         break;
730
731                 pt = pd->page_table[pde];
732
733                 if (WARN_ON(!px_page(pt)))
734                         break;
735
736                 last_pte = pte + num_entries;
737                 if (last_pte > GEN8_PTES)
738                         last_pte = GEN8_PTES;
739
740                 pt_vaddr = kmap_px(pt);
741
742                 for (i = pte; i < last_pte; i++) {
743                         pt_vaddr[i] = scratch_pte;
744                         num_entries--;
745                 }
746
747                 kunmap_px(ppgtt, pt);
748
749                 pte = 0;
750                 if (++pde == I915_PDES) {
751                         if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
752                                 break;
753                         pde = 0;
754                 }
755         }
756 }
757
758 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
759                                    uint64_t start,
760                                    uint64_t length,
761                                    bool use_scratch)
762 {
763         struct i915_hw_ppgtt *ppgtt =
764                 container_of(vm, struct i915_hw_ppgtt, base);
765         gen8_pte_t scratch_pte =
766                 gen8_pte_encode(px_dma(vm->scratch_page),
767                                 I915_CACHE_LLC, use_scratch, 0);
768
769         if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
770                 gen8_ppgtt_clear_pte_range(vm, &ppgtt->pdp, start, length,
771                                            scratch_pte);
772         } else {
773                 uint64_t templ4, pml4e;
774                 struct i915_page_directory_pointer *pdp;
775
776                 gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, templ4, pml4e) {
777                         gen8_ppgtt_clear_pte_range(vm, pdp, start, length,
778                                                    scratch_pte);
779                 }
780         }
781 }
782
783 static void
784 gen8_ppgtt_insert_pte_entries(struct i915_address_space *vm,
785                               struct i915_page_directory_pointer *pdp,
786                               struct sg_page_iter *sg_iter,
787                               uint64_t start,
788                               enum i915_cache_level cache_level,
789                               u32 flags)
790 {
791         struct i915_hw_ppgtt *ppgtt =
792                 container_of(vm, struct i915_hw_ppgtt, base);
793         gen8_pte_t *pt_vaddr;
794         unsigned pdpe = gen8_pdpe_index(start);
795         unsigned pde = gen8_pde_index(start);
796         unsigned pte = gen8_pte_index(start);
797
798         pt_vaddr = NULL;
799
800         while (__sg_page_iter_next(sg_iter)) {
801                 if (pt_vaddr == NULL) {
802                         struct i915_page_directory *pd = pdp->page_directory[pdpe];
803                         struct i915_page_table *pt = pd->page_table[pde];
804                         pt_vaddr = kmap_px(pt);
805                 }
806
807                 pt_vaddr[pte] =
808                         gen8_pte_encode(sg_page_iter_dma_address(sg_iter),
809                                         cache_level, true, flags);
810                 if (++pte == GEN8_PTES) {
811                         kunmap_px(ppgtt, pt_vaddr);
812                         pt_vaddr = NULL;
813                         if (++pde == I915_PDES) {
814                                 if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
815                                         break;
816                                 pde = 0;
817                         }
818                         pte = 0;
819                 }
820         }
821
822         if (pt_vaddr)
823                 kunmap_px(ppgtt, pt_vaddr);
824 }
825
826 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
827                                       struct sg_table *pages,
828                                       uint64_t start,
829                                       enum i915_cache_level cache_level,
830                                       u32 flags)
831 {
832         struct i915_hw_ppgtt *ppgtt =
833                 container_of(vm, struct i915_hw_ppgtt, base);
834         struct sg_page_iter sg_iter;
835
836         __sg_page_iter_start(&sg_iter, pages->sgl, sg_nents(pages->sgl), 0);
837
838         if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
839                 gen8_ppgtt_insert_pte_entries(vm, &ppgtt->pdp, &sg_iter, start,
840                                               cache_level, flags);
841         } else {
842                 struct i915_page_directory_pointer *pdp;
843                 uint64_t templ4, pml4e;
844                 uint64_t length = (uint64_t)pages->orig_nents << PAGE_SHIFT;
845
846                 gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, templ4, pml4e) {
847                         gen8_ppgtt_insert_pte_entries(vm, pdp, &sg_iter,
848                                                       start, cache_level, flags);
849                 }
850         }
851 }
852
853 static void gen8_free_page_tables(struct drm_device *dev,
854                                   struct i915_page_directory *pd)
855 {
856         int i;
857
858         if (!px_page(pd))
859                 return;
860
861         for_each_set_bit(i, pd->used_pdes, I915_PDES) {
862                 if (WARN_ON(!pd->page_table[i]))
863                         continue;
864
865                 free_pt(dev, pd->page_table[i]);
866                 pd->page_table[i] = NULL;
867         }
868 }
869
870 static int gen8_init_scratch(struct i915_address_space *vm)
871 {
872         struct drm_device *dev = vm->dev;
873
874         vm->scratch_page = alloc_scratch_page(dev);
875         if (IS_ERR(vm->scratch_page))
876                 return PTR_ERR(vm->scratch_page);
877
878         vm->scratch_pt = alloc_pt(dev);
879         if (IS_ERR(vm->scratch_pt)) {
880                 free_scratch_page(dev, vm->scratch_page);
881                 return PTR_ERR(vm->scratch_pt);
882         }
883
884         vm->scratch_pd = alloc_pd(dev);
885         if (IS_ERR(vm->scratch_pd)) {
886                 free_pt(dev, vm->scratch_pt);
887                 free_scratch_page(dev, vm->scratch_page);
888                 return PTR_ERR(vm->scratch_pd);
889         }
890
891         if (USES_FULL_48BIT_PPGTT(dev)) {
892                 vm->scratch_pdp = alloc_pdp(dev);
893                 if (IS_ERR(vm->scratch_pdp)) {
894                         free_pd(dev, vm->scratch_pd);
895                         free_pt(dev, vm->scratch_pt);
896                         free_scratch_page(dev, vm->scratch_page);
897                         return PTR_ERR(vm->scratch_pdp);
898                 }
899         }
900
901         gen8_initialize_pt(vm, vm->scratch_pt);
902         gen8_initialize_pd(vm, vm->scratch_pd);
903         if (USES_FULL_48BIT_PPGTT(dev))
904                 gen8_initialize_pdp(vm, vm->scratch_pdp);
905
906         return 0;
907 }
908
909 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
910 {
911         enum vgt_g2v_type msg;
912         struct drm_device *dev = ppgtt->base.dev;
913         struct drm_i915_private *dev_priv = dev->dev_private;
914         unsigned int offset = vgtif_reg(pdp0_lo);
915         int i;
916
917         if (USES_FULL_48BIT_PPGTT(dev)) {
918                 u64 daddr = px_dma(&ppgtt->pml4);
919
920                 I915_WRITE(offset, lower_32_bits(daddr));
921                 I915_WRITE(offset + 4, upper_32_bits(daddr));
922
923                 msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
924                                 VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
925         } else {
926                 for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
927                         u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
928
929                         I915_WRITE(offset, lower_32_bits(daddr));
930                         I915_WRITE(offset + 4, upper_32_bits(daddr));
931
932                         offset += 8;
933                 }
934
935                 msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
936                                 VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
937         }
938
939         I915_WRITE(vgtif_reg(g2v_notify), msg);
940
941         return 0;
942 }
943
944 static void gen8_free_scratch(struct i915_address_space *vm)
945 {
946         struct drm_device *dev = vm->dev;
947
948         if (USES_FULL_48BIT_PPGTT(dev))
949                 free_pdp(dev, vm->scratch_pdp);
950         free_pd(dev, vm->scratch_pd);
951         free_pt(dev, vm->scratch_pt);
952         free_scratch_page(dev, vm->scratch_page);
953 }
954
955 static void gen8_ppgtt_cleanup_3lvl(struct drm_device *dev,
956                                     struct i915_page_directory_pointer *pdp)
957 {
958         int i;
959
960         for_each_set_bit(i, pdp->used_pdpes, I915_PDPES_PER_PDP(dev)) {
961                 if (WARN_ON(!pdp->page_directory[i]))
962                         continue;
963
964                 gen8_free_page_tables(dev, pdp->page_directory[i]);
965                 free_pd(dev, pdp->page_directory[i]);
966         }
967
968         free_pdp(dev, pdp);
969 }
970
971 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
972 {
973         int i;
974
975         for_each_set_bit(i, ppgtt->pml4.used_pml4es, GEN8_PML4ES_PER_PML4) {
976                 if (WARN_ON(!ppgtt->pml4.pdps[i]))
977                         continue;
978
979                 gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, ppgtt->pml4.pdps[i]);
980         }
981
982         cleanup_px(ppgtt->base.dev, &ppgtt->pml4);
983 }
984
985 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
986 {
987         struct i915_hw_ppgtt *ppgtt =
988                 container_of(vm, struct i915_hw_ppgtt, base);
989
990         if (intel_vgpu_active(vm->dev))
991                 gen8_ppgtt_notify_vgt(ppgtt, false);
992
993         if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
994                 gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, &ppgtt->pdp);
995         else
996                 gen8_ppgtt_cleanup_4lvl(ppgtt);
997
998         gen8_free_scratch(vm);
999 }
1000
1001 /**
1002  * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
1003  * @vm: Master vm structure.
1004  * @pd: Page directory for this address range.
1005  * @start:      Starting virtual address to begin allocations.
1006  * @length:     Size of the allocations.
1007  * @new_pts:    Bitmap set by function with new allocations. Likely used by the
1008  *              caller to free on error.
1009  *
1010  * Allocate the required number of page tables. Extremely similar to
1011  * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
1012  * the page directory boundary (instead of the page directory pointer). That
1013  * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
1014  * possible, and likely that the caller will need to use multiple calls of this
1015  * function to achieve the appropriate allocation.
1016  *
1017  * Return: 0 if success; negative error code otherwise.
1018  */
1019 static int gen8_ppgtt_alloc_pagetabs(struct i915_address_space *vm,
1020                                      struct i915_page_directory *pd,
1021                                      uint64_t start,
1022                                      uint64_t length,
1023                                      unsigned long *new_pts)
1024 {
1025         struct drm_device *dev = vm->dev;
1026         struct i915_page_table *pt;
1027         uint64_t temp;
1028         uint32_t pde;
1029
1030         gen8_for_each_pde(pt, pd, start, length, temp, pde) {
1031                 /* Don't reallocate page tables */
1032                 if (test_bit(pde, pd->used_pdes)) {
1033                         /* Scratch is never allocated this way */
1034                         WARN_ON(pt == vm->scratch_pt);
1035                         continue;
1036                 }
1037
1038                 pt = alloc_pt(dev);
1039                 if (IS_ERR(pt))
1040                         goto unwind_out;
1041
1042                 gen8_initialize_pt(vm, pt);
1043                 pd->page_table[pde] = pt;
1044                 __set_bit(pde, new_pts);
1045                 trace_i915_page_table_entry_alloc(vm, pde, start, GEN8_PDE_SHIFT);
1046         }
1047
1048         return 0;
1049
1050 unwind_out:
1051         for_each_set_bit(pde, new_pts, I915_PDES)
1052                 free_pt(dev, pd->page_table[pde]);
1053
1054         return -ENOMEM;
1055 }
1056
1057 /**
1058  * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
1059  * @vm: Master vm structure.
1060  * @pdp:        Page directory pointer for this address range.
1061  * @start:      Starting virtual address to begin allocations.
1062  * @length:     Size of the allocations.
1063  * @new_pds:    Bitmap set by function with new allocations. Likely used by the
1064  *              caller to free on error.
1065  *
1066  * Allocate the required number of page directories starting at the pde index of
1067  * @start, and ending at the pde index @start + @length. This function will skip
1068  * over already allocated page directories within the range, and only allocate
1069  * new ones, setting the appropriate pointer within the pdp as well as the
1070  * correct position in the bitmap @new_pds.
1071  *
1072  * The function will only allocate the pages within the range for a give page
1073  * directory pointer. In other words, if @start + @length straddles a virtually
1074  * addressed PDP boundary (512GB for 4k pages), there will be more allocations
1075  * required by the caller, This is not currently possible, and the BUG in the
1076  * code will prevent it.
1077  *
1078  * Return: 0 if success; negative error code otherwise.
1079  */
1080 static int
1081 gen8_ppgtt_alloc_page_directories(struct i915_address_space *vm,
1082                                   struct i915_page_directory_pointer *pdp,
1083                                   uint64_t start,
1084                                   uint64_t length,
1085                                   unsigned long *new_pds)
1086 {
1087         struct drm_device *dev = vm->dev;
1088         struct i915_page_directory *pd;
1089         uint64_t temp;
1090         uint32_t pdpe;
1091         uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1092
1093         WARN_ON(!bitmap_empty(new_pds, pdpes));
1094
1095         gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
1096                 if (test_bit(pdpe, pdp->used_pdpes))
1097                         continue;
1098
1099                 pd = alloc_pd(dev);
1100                 if (IS_ERR(pd))
1101                         goto unwind_out;
1102
1103                 gen8_initialize_pd(vm, pd);
1104                 pdp->page_directory[pdpe] = pd;
1105                 __set_bit(pdpe, new_pds);
1106                 trace_i915_page_directory_entry_alloc(vm, pdpe, start, GEN8_PDPE_SHIFT);
1107         }
1108
1109         return 0;
1110
1111 unwind_out:
1112         for_each_set_bit(pdpe, new_pds, pdpes)
1113                 free_pd(dev, pdp->page_directory[pdpe]);
1114
1115         return -ENOMEM;
1116 }
1117
1118 /**
1119  * gen8_ppgtt_alloc_page_dirpointers() - Allocate pdps for VA range.
1120  * @vm: Master vm structure.
1121  * @pml4:       Page map level 4 for this address range.
1122  * @start:      Starting virtual address to begin allocations.
1123  * @length:     Size of the allocations.
1124  * @new_pdps:   Bitmap set by function with new allocations. Likely used by the
1125  *              caller to free on error.
1126  *
1127  * Allocate the required number of page directory pointers. Extremely similar to
1128  * gen8_ppgtt_alloc_page_directories() and gen8_ppgtt_alloc_pagetabs().
1129  * The main difference is here we are limited by the pml4 boundary (instead of
1130  * the page directory pointer).
1131  *
1132  * Return: 0 if success; negative error code otherwise.
1133  */
1134 static int
1135 gen8_ppgtt_alloc_page_dirpointers(struct i915_address_space *vm,
1136                                   struct i915_pml4 *pml4,
1137                                   uint64_t start,
1138                                   uint64_t length,
1139                                   unsigned long *new_pdps)
1140 {
1141         struct drm_device *dev = vm->dev;
1142         struct i915_page_directory_pointer *pdp;
1143         uint64_t temp;
1144         uint32_t pml4e;
1145
1146         WARN_ON(!bitmap_empty(new_pdps, GEN8_PML4ES_PER_PML4));
1147
1148         gen8_for_each_pml4e(pdp, pml4, start, length, temp, pml4e) {
1149                 if (!test_bit(pml4e, pml4->used_pml4es)) {
1150                         pdp = alloc_pdp(dev);
1151                         if (IS_ERR(pdp))
1152                                 goto unwind_out;
1153
1154                         gen8_initialize_pdp(vm, pdp);
1155                         pml4->pdps[pml4e] = pdp;
1156                         __set_bit(pml4e, new_pdps);
1157                         trace_i915_page_directory_pointer_entry_alloc(vm,
1158                                                                       pml4e,
1159                                                                       start,
1160                                                                       GEN8_PML4E_SHIFT);
1161                 }
1162         }
1163
1164         return 0;
1165
1166 unwind_out:
1167         for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1168                 free_pdp(dev, pml4->pdps[pml4e]);
1169
1170         return -ENOMEM;
1171 }
1172
1173 static void
1174 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long *new_pts)
1175 {
1176         kfree(new_pts);
1177         kfree(new_pds);
1178 }
1179
1180 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
1181  * of these are based on the number of PDPEs in the system.
1182  */
1183 static
1184 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
1185                                          unsigned long **new_pts,
1186                                          uint32_t pdpes)
1187 {
1188         unsigned long *pds;
1189         unsigned long *pts;
1190
1191         pds = kcalloc(BITS_TO_LONGS(pdpes), sizeof(unsigned long), GFP_TEMPORARY);
1192         if (!pds)
1193                 return -ENOMEM;
1194
1195         pts = kcalloc(pdpes, BITS_TO_LONGS(I915_PDES) * sizeof(unsigned long),
1196                       GFP_TEMPORARY);
1197         if (!pts)
1198                 goto err_out;
1199
1200         *new_pds = pds;
1201         *new_pts = pts;
1202
1203         return 0;
1204
1205 err_out:
1206         free_gen8_temp_bitmaps(pds, pts);
1207         return -ENOMEM;
1208 }
1209
1210 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
1211  * the page table structures, we mark them dirty so that
1212  * context switching/execlist queuing code takes extra steps
1213  * to ensure that tlbs are flushed.
1214  */
1215 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
1216 {
1217         ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
1218 }
1219
1220 static int gen8_alloc_va_range_3lvl(struct i915_address_space *vm,
1221                                     struct i915_page_directory_pointer *pdp,
1222                                     uint64_t start,
1223                                     uint64_t length)
1224 {
1225         struct i915_hw_ppgtt *ppgtt =
1226                 container_of(vm, struct i915_hw_ppgtt, base);
1227         unsigned long *new_page_dirs, *new_page_tables;
1228         struct drm_device *dev = vm->dev;
1229         struct i915_page_directory *pd;
1230         const uint64_t orig_start = start;
1231         const uint64_t orig_length = length;
1232         uint64_t temp;
1233         uint32_t pdpe;
1234         uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1235         int ret;
1236
1237         /* Wrap is never okay since we can only represent 48b, and we don't
1238          * actually use the other side of the canonical address space.
1239          */
1240         if (WARN_ON(start + length < start))
1241                 return -ENODEV;
1242
1243         if (WARN_ON(start + length > vm->total))
1244                 return -ENODEV;
1245
1246         ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1247         if (ret)
1248                 return ret;
1249
1250         /* Do the allocations first so we can easily bail out */
1251         ret = gen8_ppgtt_alloc_page_directories(vm, pdp, start, length,
1252                                                 new_page_dirs);
1253         if (ret) {
1254                 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1255                 return ret;
1256         }
1257
1258         /* For every page directory referenced, allocate page tables */
1259         gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
1260                 ret = gen8_ppgtt_alloc_pagetabs(vm, pd, start, length,
1261                                                 new_page_tables + pdpe * BITS_TO_LONGS(I915_PDES));
1262                 if (ret)
1263                         goto err_out;
1264         }
1265
1266         start = orig_start;
1267         length = orig_length;
1268
1269         /* Allocations have completed successfully, so set the bitmaps, and do
1270          * the mappings. */
1271         gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
1272                 gen8_pde_t *const page_directory = kmap_px(pd);
1273                 struct i915_page_table *pt;
1274                 uint64_t pd_len = length;
1275                 uint64_t pd_start = start;
1276                 uint32_t pde;
1277
1278                 /* Every pd should be allocated, we just did that above. */
1279                 WARN_ON(!pd);
1280
1281                 gen8_for_each_pde(pt, pd, pd_start, pd_len, temp, pde) {
1282                         /* Same reasoning as pd */
1283                         WARN_ON(!pt);
1284                         WARN_ON(!pd_len);
1285                         WARN_ON(!gen8_pte_count(pd_start, pd_len));
1286
1287                         /* Set our used ptes within the page table */
1288                         bitmap_set(pt->used_ptes,
1289                                    gen8_pte_index(pd_start),
1290                                    gen8_pte_count(pd_start, pd_len));
1291
1292                         /* Our pde is now pointing to the pagetable, pt */
1293                         __set_bit(pde, pd->used_pdes);
1294
1295                         /* Map the PDE to the page table */
1296                         page_directory[pde] = gen8_pde_encode(px_dma(pt),
1297                                                               I915_CACHE_LLC);
1298                         trace_i915_page_table_entry_map(&ppgtt->base, pde, pt,
1299                                                         gen8_pte_index(start),
1300                                                         gen8_pte_count(start, length),
1301                                                         GEN8_PTES);
1302
1303                         /* NB: We haven't yet mapped ptes to pages. At this
1304                          * point we're still relying on insert_entries() */
1305                 }
1306
1307                 kunmap_px(ppgtt, page_directory);
1308                 __set_bit(pdpe, pdp->used_pdpes);
1309                 gen8_setup_page_directory(ppgtt, pdp, pd, pdpe);
1310         }
1311
1312         free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1313         mark_tlbs_dirty(ppgtt);
1314         return 0;
1315
1316 err_out:
1317         while (pdpe--) {
1318                 for_each_set_bit(temp, new_page_tables + pdpe *
1319                                 BITS_TO_LONGS(I915_PDES), I915_PDES)
1320                         free_pt(dev, pdp->page_directory[pdpe]->page_table[temp]);
1321         }
1322
1323         for_each_set_bit(pdpe, new_page_dirs, pdpes)
1324                 free_pd(dev, pdp->page_directory[pdpe]);
1325
1326         free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1327         mark_tlbs_dirty(ppgtt);
1328         return ret;
1329 }
1330
1331 static int gen8_alloc_va_range_4lvl(struct i915_address_space *vm,
1332                                     struct i915_pml4 *pml4,
1333                                     uint64_t start,
1334                                     uint64_t length)
1335 {
1336         DECLARE_BITMAP(new_pdps, GEN8_PML4ES_PER_PML4);
1337         struct i915_hw_ppgtt *ppgtt =
1338                         container_of(vm, struct i915_hw_ppgtt, base);
1339         struct i915_page_directory_pointer *pdp;
1340         uint64_t temp, pml4e;
1341         int ret = 0;
1342
1343         /* Do the pml4 allocations first, so we don't need to track the newly
1344          * allocated tables below the pdp */
1345         bitmap_zero(new_pdps, GEN8_PML4ES_PER_PML4);
1346
1347         /* The pagedirectory and pagetable allocations are done in the shared 3
1348          * and 4 level code. Just allocate the pdps.
1349          */
1350         ret = gen8_ppgtt_alloc_page_dirpointers(vm, pml4, start, length,
1351                                                 new_pdps);
1352         if (ret)
1353                 return ret;
1354
1355         WARN(bitmap_weight(new_pdps, GEN8_PML4ES_PER_PML4) > 2,
1356              "The allocation has spanned more than 512GB. "
1357              "It is highly likely this is incorrect.");
1358
1359         gen8_for_each_pml4e(pdp, pml4, start, length, temp, pml4e) {
1360                 WARN_ON(!pdp);
1361
1362                 ret = gen8_alloc_va_range_3lvl(vm, pdp, start, length);
1363                 if (ret)
1364                         goto err_out;
1365
1366                 gen8_setup_page_directory_pointer(ppgtt, pml4, pdp, pml4e);
1367         }
1368
1369         bitmap_or(pml4->used_pml4es, new_pdps, pml4->used_pml4es,
1370                   GEN8_PML4ES_PER_PML4);
1371
1372         return 0;
1373
1374 err_out:
1375         for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1376                 gen8_ppgtt_cleanup_3lvl(vm->dev, pml4->pdps[pml4e]);
1377
1378         return ret;
1379 }
1380
1381 static int gen8_alloc_va_range(struct i915_address_space *vm,
1382                                uint64_t start, uint64_t length)
1383 {
1384         struct i915_hw_ppgtt *ppgtt =
1385                 container_of(vm, struct i915_hw_ppgtt, base);
1386
1387         if (USES_FULL_48BIT_PPGTT(vm->dev))
1388                 return gen8_alloc_va_range_4lvl(vm, &ppgtt->pml4, start, length);
1389         else
1390                 return gen8_alloc_va_range_3lvl(vm, &ppgtt->pdp, start, length);
1391 }
1392
1393 static void gen8_dump_pdp(struct i915_page_directory_pointer *pdp,
1394                           uint64_t start, uint64_t length,
1395                           gen8_pte_t scratch_pte,
1396                           struct seq_file *m)
1397 {
1398         struct i915_page_directory *pd;
1399         uint64_t temp;
1400         uint32_t pdpe;
1401
1402         gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
1403                 struct i915_page_table *pt;
1404                 uint64_t pd_len = length;
1405                 uint64_t pd_start = start;
1406                 uint32_t pde;
1407
1408                 if (!test_bit(pdpe, pdp->used_pdpes))
1409                         continue;
1410
1411                 seq_printf(m, "\tPDPE #%d\n", pdpe);
1412                 gen8_for_each_pde(pt, pd, pd_start, pd_len, temp, pde) {
1413                         uint32_t  pte;
1414                         gen8_pte_t *pt_vaddr;
1415
1416                         if (!test_bit(pde, pd->used_pdes))
1417                                 continue;
1418
1419                         pt_vaddr = kmap_px(pt);
1420                         for (pte = 0; pte < GEN8_PTES; pte += 4) {
1421                                 uint64_t va =
1422                                         (pdpe << GEN8_PDPE_SHIFT) |
1423                                         (pde << GEN8_PDE_SHIFT) |
1424                                         (pte << GEN8_PTE_SHIFT);
1425                                 int i;
1426                                 bool found = false;
1427
1428                                 for (i = 0; i < 4; i++)
1429                                         if (pt_vaddr[pte + i] != scratch_pte)
1430                                                 found = true;
1431                                 if (!found)
1432                                         continue;
1433
1434                                 seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1435                                 for (i = 0; i < 4; i++) {
1436                                         if (pt_vaddr[pte + i] != scratch_pte)
1437                                                 seq_printf(m, " %llx", pt_vaddr[pte + i]);
1438                                         else
1439                                                 seq_puts(m, "  SCRATCH ");
1440                                 }
1441                                 seq_puts(m, "\n");
1442                         }
1443                         /* don't use kunmap_px, it could trigger
1444                          * an unnecessary flush.
1445                          */
1446                         kunmap_atomic(pt_vaddr);
1447                 }
1448         }
1449 }
1450
1451 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1452 {
1453         struct i915_address_space *vm = &ppgtt->base;
1454         uint64_t start = ppgtt->base.start;
1455         uint64_t length = ppgtt->base.total;
1456         gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
1457                                                  I915_CACHE_LLC, true, 0);
1458
1459         if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
1460                 gen8_dump_pdp(&ppgtt->pdp, start, length, scratch_pte, m);
1461         } else {
1462                 uint64_t templ4, pml4e;
1463                 struct i915_pml4 *pml4 = &ppgtt->pml4;
1464                 struct i915_page_directory_pointer *pdp;
1465
1466                 gen8_for_each_pml4e(pdp, pml4, start, length, templ4, pml4e) {
1467                         if (!test_bit(pml4e, pml4->used_pml4es))
1468                                 continue;
1469
1470                         seq_printf(m, "    PML4E #%llu\n", pml4e);
1471                         gen8_dump_pdp(pdp, start, length, scratch_pte, m);
1472                 }
1473         }
1474 }
1475
1476 static int gen8_preallocate_top_level_pdps(struct i915_hw_ppgtt *ppgtt)
1477 {
1478         unsigned long *new_page_dirs, *new_page_tables;
1479         uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1480         int ret;
1481
1482         /* We allocate temp bitmap for page tables for no gain
1483          * but as this is for init only, lets keep the things simple
1484          */
1485         ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1486         if (ret)
1487                 return ret;
1488
1489         /* Allocate for all pdps regardless of how the ppgtt
1490          * was defined.
1491          */
1492         ret = gen8_ppgtt_alloc_page_directories(&ppgtt->base, &ppgtt->pdp,
1493                                                 0, 1ULL << 32,
1494                                                 new_page_dirs);
1495         if (!ret)
1496                 *ppgtt->pdp.used_pdpes = *new_page_dirs;
1497
1498         free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1499
1500         return ret;
1501 }
1502
1503 /*
1504  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1505  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1506  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1507  * space.
1508  *
1509  */
1510 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1511 {
1512         int ret;
1513
1514         ret = gen8_init_scratch(&ppgtt->base);
1515         if (ret)
1516                 return ret;
1517
1518         ppgtt->base.start = 0;
1519         ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1520         ppgtt->base.allocate_va_range = gen8_alloc_va_range;
1521         ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
1522         ppgtt->base.clear_range = gen8_ppgtt_clear_range;
1523         ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1524         ppgtt->base.bind_vma = ppgtt_bind_vma;
1525
1526         /*
1527          * From bdw, there is support for read-only pages in the PPGTT.
1528          *
1529          * XXX GVT is not honouring the lack of RW in the PTE bits.
1530          */
1531         ppgtt->base.has_read_only = !intel_vgpu_active(ppgtt->base.dev);
1532
1533         ppgtt->debug_dump = gen8_dump_ppgtt;
1534
1535         if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
1536                 ret = setup_px(ppgtt->base.dev, &ppgtt->pml4);
1537                 if (ret)
1538                         goto free_scratch;
1539
1540                 gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1541
1542                 ppgtt->base.total = 1ULL << 48;
1543                 ppgtt->switch_mm = gen8_48b_mm_switch;
1544         } else {
1545                 ret = __pdp_init(ppgtt->base.dev, &ppgtt->pdp);
1546                 if (ret)
1547                         goto free_scratch;
1548
1549                 ppgtt->base.total = 1ULL << 32;
1550                 ppgtt->switch_mm = gen8_legacy_mm_switch;
1551                 trace_i915_page_directory_pointer_entry_alloc(&ppgtt->base,
1552                                                               0, 0,
1553                                                               GEN8_PML4E_SHIFT);
1554
1555                 if (intel_vgpu_active(ppgtt->base.dev)) {
1556                         ret = gen8_preallocate_top_level_pdps(ppgtt);
1557                         if (ret)
1558                                 goto free_scratch;
1559                 }
1560         }
1561
1562         if (intel_vgpu_active(ppgtt->base.dev))
1563                 gen8_ppgtt_notify_vgt(ppgtt, true);
1564
1565         return 0;
1566
1567 free_scratch:
1568         gen8_free_scratch(&ppgtt->base);
1569         return ret;
1570 }
1571
1572 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1573 {
1574         struct i915_address_space *vm = &ppgtt->base;
1575         struct i915_page_table *unused;
1576         gen6_pte_t scratch_pte;
1577         uint32_t pd_entry;
1578         uint32_t  pte, pde, temp;
1579         uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
1580
1581         scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1582                                      I915_CACHE_LLC, true, 0);
1583
1584         gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde) {
1585                 u32 expected;
1586                 gen6_pte_t *pt_vaddr;
1587                 const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1588                 pd_entry = readl(ppgtt->pd_addr + pde);
1589                 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1590
1591                 if (pd_entry != expected)
1592                         seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1593                                    pde,
1594                                    pd_entry,
1595                                    expected);
1596                 seq_printf(m, "\tPDE: %x\n", pd_entry);
1597
1598                 pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
1599
1600                 for (pte = 0; pte < GEN6_PTES; pte+=4) {
1601                         unsigned long va =
1602                                 (pde * PAGE_SIZE * GEN6_PTES) +
1603                                 (pte * PAGE_SIZE);
1604                         int i;
1605                         bool found = false;
1606                         for (i = 0; i < 4; i++)
1607                                 if (pt_vaddr[pte + i] != scratch_pte)
1608                                         found = true;
1609                         if (!found)
1610                                 continue;
1611
1612                         seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1613                         for (i = 0; i < 4; i++) {
1614                                 if (pt_vaddr[pte + i] != scratch_pte)
1615                                         seq_printf(m, " %08x", pt_vaddr[pte + i]);
1616                                 else
1617                                         seq_puts(m, "  SCRATCH ");
1618                         }
1619                         seq_puts(m, "\n");
1620                 }
1621                 kunmap_px(ppgtt, pt_vaddr);
1622         }
1623 }
1624
1625 /* Write pde (index) from the page directory @pd to the page table @pt */
1626 static void gen6_write_pde(struct i915_page_directory *pd,
1627                             const int pde, struct i915_page_table *pt)
1628 {
1629         /* Caller needs to make sure the write completes if necessary */
1630         struct i915_hw_ppgtt *ppgtt =
1631                 container_of(pd, struct i915_hw_ppgtt, pd);
1632         u32 pd_entry;
1633
1634         pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt));
1635         pd_entry |= GEN6_PDE_VALID;
1636
1637         writel(pd_entry, ppgtt->pd_addr + pde);
1638 }
1639
1640 /* Write all the page tables found in the ppgtt structure to incrementing page
1641  * directories. */
1642 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
1643                                   struct i915_page_directory *pd,
1644                                   uint32_t start, uint32_t length)
1645 {
1646         struct i915_page_table *pt;
1647         uint32_t pde, temp;
1648
1649         gen6_for_each_pde(pt, pd, start, length, temp, pde)
1650                 gen6_write_pde(pd, pde, pt);
1651
1652         /* Make sure write is complete before other code can use this page
1653          * table. Also require for WC mapped PTEs */
1654         readl(dev_priv->gtt.gsm);
1655 }
1656
1657 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1658 {
1659         BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1660
1661         return (ppgtt->pd.base.ggtt_offset / 64) << 16;
1662 }
1663
1664 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1665                          struct drm_i915_gem_request *req)
1666 {
1667         struct intel_engine_cs *ring = req->ring;
1668         int ret;
1669
1670         /* NB: TLBs must be flushed and invalidated before a switch */
1671         ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1672         if (ret)
1673                 return ret;
1674
1675         ret = intel_ring_begin(req, 6);
1676         if (ret)
1677                 return ret;
1678
1679         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1680         intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
1681         intel_ring_emit(ring, PP_DIR_DCLV_2G);
1682         intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
1683         intel_ring_emit(ring, get_pd_offset(ppgtt));
1684         intel_ring_emit(ring, MI_NOOP);
1685         intel_ring_advance(ring);
1686
1687         return 0;
1688 }
1689
1690 static int vgpu_mm_switch(struct i915_hw_ppgtt *ppgtt,
1691                           struct drm_i915_gem_request *req)
1692 {
1693         struct intel_engine_cs *ring = req->ring;
1694         struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
1695
1696         I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1697         I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1698         return 0;
1699 }
1700
1701 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1702                           struct drm_i915_gem_request *req)
1703 {
1704         struct intel_engine_cs *ring = req->ring;
1705         int ret;
1706
1707         /* NB: TLBs must be flushed and invalidated before a switch */
1708         ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1709         if (ret)
1710                 return ret;
1711
1712         ret = intel_ring_begin(req, 6);
1713         if (ret)
1714                 return ret;
1715
1716         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1717         intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
1718         intel_ring_emit(ring, PP_DIR_DCLV_2G);
1719         intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
1720         intel_ring_emit(ring, get_pd_offset(ppgtt));
1721         intel_ring_emit(ring, MI_NOOP);
1722         intel_ring_advance(ring);
1723
1724         /* XXX: RCS is the only one to auto invalidate the TLBs? */
1725         if (ring->id != RCS) {
1726                 ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1727                 if (ret)
1728                         return ret;
1729         }
1730
1731         return 0;
1732 }
1733
1734 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1735                           struct drm_i915_gem_request *req)
1736 {
1737         struct intel_engine_cs *ring = req->ring;
1738         struct drm_device *dev = ppgtt->base.dev;
1739         struct drm_i915_private *dev_priv = dev->dev_private;
1740
1741
1742         I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1743         I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1744
1745         POSTING_READ(RING_PP_DIR_DCLV(ring));
1746
1747         return 0;
1748 }
1749
1750 static void gen8_ppgtt_enable(struct drm_device *dev)
1751 {
1752         struct drm_i915_private *dev_priv = dev->dev_private;
1753         struct intel_engine_cs *ring;
1754         int j;
1755
1756         for_each_ring(ring, dev_priv, j) {
1757                 u32 four_level = USES_FULL_48BIT_PPGTT(dev) ? GEN8_GFX_PPGTT_48B : 0;
1758                 I915_WRITE(RING_MODE_GEN7(ring),
1759                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1760         }
1761 }
1762
1763 static void gen7_ppgtt_enable(struct drm_device *dev)
1764 {
1765         struct drm_i915_private *dev_priv = dev->dev_private;
1766         struct intel_engine_cs *ring;
1767         uint32_t ecochk, ecobits;
1768         int i;
1769
1770         ecobits = I915_READ(GAC_ECO_BITS);
1771         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1772
1773         ecochk = I915_READ(GAM_ECOCHK);
1774         if (IS_HASWELL(dev)) {
1775                 ecochk |= ECOCHK_PPGTT_WB_HSW;
1776         } else {
1777                 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1778                 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1779         }
1780         I915_WRITE(GAM_ECOCHK, ecochk);
1781
1782         for_each_ring(ring, dev_priv, i) {
1783                 /* GFX_MODE is per-ring on gen7+ */
1784                 I915_WRITE(RING_MODE_GEN7(ring),
1785                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1786         }
1787 }
1788
1789 static void gen6_ppgtt_enable(struct drm_device *dev)
1790 {
1791         struct drm_i915_private *dev_priv = dev->dev_private;
1792         uint32_t ecochk, gab_ctl, ecobits;
1793
1794         ecobits = I915_READ(GAC_ECO_BITS);
1795         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1796                    ECOBITS_PPGTT_CACHE64B);
1797
1798         gab_ctl = I915_READ(GAB_CTL);
1799         I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1800
1801         ecochk = I915_READ(GAM_ECOCHK);
1802         I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1803
1804         I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1805 }
1806
1807 /* PPGTT support for Sandybdrige/Gen6 and later */
1808 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1809                                    uint64_t start,
1810                                    uint64_t length,
1811                                    bool use_scratch)
1812 {
1813         struct i915_hw_ppgtt *ppgtt =
1814                 container_of(vm, struct i915_hw_ppgtt, base);
1815         gen6_pte_t *pt_vaddr, scratch_pte;
1816         unsigned first_entry = start >> PAGE_SHIFT;
1817         unsigned num_entries = length >> PAGE_SHIFT;
1818         unsigned act_pt = first_entry / GEN6_PTES;
1819         unsigned first_pte = first_entry % GEN6_PTES;
1820         unsigned last_pte, i;
1821
1822         scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1823                                      I915_CACHE_LLC, true, 0);
1824
1825         while (num_entries) {
1826                 last_pte = first_pte + num_entries;
1827                 if (last_pte > GEN6_PTES)
1828                         last_pte = GEN6_PTES;
1829
1830                 pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1831
1832                 for (i = first_pte; i < last_pte; i++)
1833                         pt_vaddr[i] = scratch_pte;
1834
1835                 kunmap_px(ppgtt, pt_vaddr);
1836
1837                 num_entries -= last_pte - first_pte;
1838                 first_pte = 0;
1839                 act_pt++;
1840         }
1841 }
1842
1843 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1844                                       struct sg_table *pages,
1845                                       uint64_t start,
1846                                       enum i915_cache_level cache_level, u32 flags)
1847 {
1848         struct i915_hw_ppgtt *ppgtt =
1849                 container_of(vm, struct i915_hw_ppgtt, base);
1850         gen6_pte_t *pt_vaddr;
1851         unsigned first_entry = start >> PAGE_SHIFT;
1852         unsigned act_pt = first_entry / GEN6_PTES;
1853         unsigned act_pte = first_entry % GEN6_PTES;
1854         struct sg_page_iter sg_iter;
1855
1856         pt_vaddr = NULL;
1857         for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
1858                 if (pt_vaddr == NULL)
1859                         pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1860
1861                 pt_vaddr[act_pte] =
1862                         vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
1863                                        cache_level, true, flags);
1864
1865                 if (++act_pte == GEN6_PTES) {
1866                         kunmap_px(ppgtt, pt_vaddr);
1867                         pt_vaddr = NULL;
1868                         act_pt++;
1869                         act_pte = 0;
1870                 }
1871         }
1872         if (pt_vaddr)
1873                 kunmap_px(ppgtt, pt_vaddr);
1874 }
1875
1876 static int gen6_alloc_va_range(struct i915_address_space *vm,
1877                                uint64_t start_in, uint64_t length_in)
1878 {
1879         DECLARE_BITMAP(new_page_tables, I915_PDES);
1880         struct drm_device *dev = vm->dev;
1881         struct drm_i915_private *dev_priv = dev->dev_private;
1882         struct i915_hw_ppgtt *ppgtt =
1883                                 container_of(vm, struct i915_hw_ppgtt, base);
1884         struct i915_page_table *pt;
1885         uint32_t start, length, start_save, length_save;
1886         uint32_t pde, temp;
1887         int ret;
1888
1889         if (WARN_ON(start_in + length_in > ppgtt->base.total))
1890                 return -ENODEV;
1891
1892         start = start_save = start_in;
1893         length = length_save = length_in;
1894
1895         bitmap_zero(new_page_tables, I915_PDES);
1896
1897         /* The allocation is done in two stages so that we can bail out with
1898          * minimal amount of pain. The first stage finds new page tables that
1899          * need allocation. The second stage marks use ptes within the page
1900          * tables.
1901          */
1902         gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1903                 if (pt != vm->scratch_pt) {
1904                         WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1905                         continue;
1906                 }
1907
1908                 /* We've already allocated a page table */
1909                 WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1910
1911                 pt = alloc_pt(dev);
1912                 if (IS_ERR(pt)) {
1913                         ret = PTR_ERR(pt);
1914                         goto unwind_out;
1915                 }
1916
1917                 gen6_initialize_pt(vm, pt);
1918
1919                 ppgtt->pd.page_table[pde] = pt;
1920                 __set_bit(pde, new_page_tables);
1921                 trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1922         }
1923
1924         start = start_save;
1925         length = length_save;
1926
1927         gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1928                 DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1929
1930                 bitmap_zero(tmp_bitmap, GEN6_PTES);
1931                 bitmap_set(tmp_bitmap, gen6_pte_index(start),
1932                            gen6_pte_count(start, length));
1933
1934                 if (__test_and_clear_bit(pde, new_page_tables))
1935                         gen6_write_pde(&ppgtt->pd, pde, pt);
1936
1937                 trace_i915_page_table_entry_map(vm, pde, pt,
1938                                          gen6_pte_index(start),
1939                                          gen6_pte_count(start, length),
1940                                          GEN6_PTES);
1941                 bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1942                                 GEN6_PTES);
1943         }
1944
1945         WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1946
1947         /* Make sure write is complete before other code can use this page
1948          * table. Also require for WC mapped PTEs */
1949         readl(dev_priv->gtt.gsm);
1950
1951         mark_tlbs_dirty(ppgtt);
1952         return 0;
1953
1954 unwind_out:
1955         for_each_set_bit(pde, new_page_tables, I915_PDES) {
1956                 struct i915_page_table *pt = ppgtt->pd.page_table[pde];
1957
1958                 ppgtt->pd.page_table[pde] = vm->scratch_pt;
1959                 free_pt(vm->dev, pt);
1960         }
1961
1962         mark_tlbs_dirty(ppgtt);
1963         return ret;
1964 }
1965
1966 static int gen6_init_scratch(struct i915_address_space *vm)
1967 {
1968         struct drm_device *dev = vm->dev;
1969
1970         vm->scratch_page = alloc_scratch_page(dev);
1971         if (IS_ERR(vm->scratch_page))
1972                 return PTR_ERR(vm->scratch_page);
1973
1974         vm->scratch_pt = alloc_pt(dev);
1975         if (IS_ERR(vm->scratch_pt)) {
1976                 free_scratch_page(dev, vm->scratch_page);
1977                 return PTR_ERR(vm->scratch_pt);
1978         }
1979
1980         gen6_initialize_pt(vm, vm->scratch_pt);
1981
1982         return 0;
1983 }
1984
1985 static void gen6_free_scratch(struct i915_address_space *vm)
1986 {
1987         struct drm_device *dev = vm->dev;
1988
1989         free_pt(dev, vm->scratch_pt);
1990         free_scratch_page(dev, vm->scratch_page);
1991 }
1992
1993 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1994 {
1995         struct i915_hw_ppgtt *ppgtt =
1996                 container_of(vm, struct i915_hw_ppgtt, base);
1997         struct i915_page_table *pt;
1998         uint32_t pde;
1999
2000         drm_mm_remove_node(&ppgtt->node);
2001
2002         gen6_for_all_pdes(pt, ppgtt, pde) {
2003                 if (pt != vm->scratch_pt)
2004                         free_pt(ppgtt->base.dev, pt);
2005         }
2006
2007         gen6_free_scratch(vm);
2008 }
2009
2010 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
2011 {
2012         struct i915_address_space *vm = &ppgtt->base;
2013         struct drm_device *dev = ppgtt->base.dev;
2014         struct drm_i915_private *dev_priv = dev->dev_private;
2015         bool retried = false;
2016         int ret;
2017
2018         /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
2019          * allocator works in address space sizes, so it's multiplied by page
2020          * size. We allocate at the top of the GTT to avoid fragmentation.
2021          */
2022         BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
2023
2024         ret = gen6_init_scratch(vm);
2025         if (ret)
2026                 return ret;
2027
2028 alloc:
2029         ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
2030                                                   &ppgtt->node, GEN6_PD_SIZE,
2031                                                   GEN6_PD_ALIGN, 0,
2032                                                   0, dev_priv->gtt.base.total,
2033                                                   DRM_MM_TOPDOWN);
2034         if (ret == -ENOSPC && !retried) {
2035                 ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
2036                                                GEN6_PD_SIZE, GEN6_PD_ALIGN,
2037                                                I915_CACHE_NONE,
2038                                                0, dev_priv->gtt.base.total,
2039                                                0);
2040                 if (ret)
2041                         goto err_out;
2042
2043                 retried = true;
2044                 goto alloc;
2045         }
2046
2047         if (ret)
2048                 goto err_out;
2049
2050
2051         if (ppgtt->node.start < dev_priv->gtt.mappable_end)
2052                 DRM_DEBUG("Forced to use aperture for PDEs\n");
2053
2054         return 0;
2055
2056 err_out:
2057         gen6_free_scratch(vm);
2058         return ret;
2059 }
2060
2061 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
2062 {
2063         return gen6_ppgtt_allocate_page_directories(ppgtt);
2064 }
2065
2066 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
2067                                   uint64_t start, uint64_t length)
2068 {
2069         struct i915_page_table *unused;
2070         uint32_t pde, temp;
2071
2072         gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde)
2073                 ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
2074 }
2075
2076 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
2077 {
2078         struct drm_device *dev = ppgtt->base.dev;
2079         struct drm_i915_private *dev_priv = dev->dev_private;
2080         int ret;
2081
2082         ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
2083         if (IS_GEN6(dev)) {
2084                 ppgtt->switch_mm = gen6_mm_switch;
2085         } else if (IS_HASWELL(dev)) {
2086                 ppgtt->switch_mm = hsw_mm_switch;
2087         } else if (IS_GEN7(dev)) {
2088                 ppgtt->switch_mm = gen7_mm_switch;
2089         } else
2090                 BUG();
2091
2092         if (intel_vgpu_active(dev))
2093                 ppgtt->switch_mm = vgpu_mm_switch;
2094
2095         ret = gen6_ppgtt_alloc(ppgtt);
2096         if (ret)
2097                 return ret;
2098
2099         ppgtt->base.allocate_va_range = gen6_alloc_va_range;
2100         ppgtt->base.clear_range = gen6_ppgtt_clear_range;
2101         ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
2102         ppgtt->base.unbind_vma = ppgtt_unbind_vma;
2103         ppgtt->base.bind_vma = ppgtt_bind_vma;
2104         ppgtt->base.cleanup = gen6_ppgtt_cleanup;
2105         ppgtt->base.start = 0;
2106         ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2107         ppgtt->debug_dump = gen6_dump_ppgtt;
2108
2109         ppgtt->pd.base.ggtt_offset =
2110                 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
2111
2112         ppgtt->pd_addr = (gen6_pte_t __iomem *)dev_priv->gtt.gsm +
2113                 ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
2114
2115         gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
2116
2117         gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
2118
2119         DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
2120                          ppgtt->node.size >> 20,
2121                          ppgtt->node.start / PAGE_SIZE);
2122
2123         DRM_DEBUG("Adding PPGTT at offset %x\n",
2124                   ppgtt->pd.base.ggtt_offset << 10);
2125
2126         return 0;
2127 }
2128
2129 static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
2130 {
2131         ppgtt->base.dev = dev;
2132
2133         if (INTEL_INFO(dev)->gen < 8)
2134                 return gen6_ppgtt_init(ppgtt);
2135         else
2136                 return gen8_ppgtt_init(ppgtt);
2137 }
2138
2139 static void i915_address_space_init(struct i915_address_space *vm,
2140                                     struct drm_i915_private *dev_priv)
2141 {
2142         drm_mm_init(&vm->mm, vm->start, vm->total);
2143         vm->dev = dev_priv->dev;
2144         INIT_LIST_HEAD(&vm->active_list);
2145         INIT_LIST_HEAD(&vm->inactive_list);
2146         list_add_tail(&vm->global_link, &dev_priv->vm_list);
2147 }
2148
2149 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
2150 {
2151         struct drm_i915_private *dev_priv = dev->dev_private;
2152         int ret = 0;
2153
2154         ret = __hw_ppgtt_init(dev, ppgtt);
2155         if (ret == 0) {
2156                 kref_init(&ppgtt->ref);
2157                 i915_address_space_init(&ppgtt->base, dev_priv);
2158         }
2159
2160         return ret;
2161 }
2162
2163 int i915_ppgtt_init_hw(struct drm_device *dev)
2164 {
2165         /* In the case of execlists, PPGTT is enabled by the context descriptor
2166          * and the PDPs are contained within the context itself.  We don't
2167          * need to do anything here. */
2168         if (i915.enable_execlists)
2169                 return 0;
2170
2171         if (!USES_PPGTT(dev))
2172                 return 0;
2173
2174         if (IS_GEN6(dev))
2175                 gen6_ppgtt_enable(dev);
2176         else if (IS_GEN7(dev))
2177                 gen7_ppgtt_enable(dev);
2178         else if (INTEL_INFO(dev)->gen >= 8)
2179                 gen8_ppgtt_enable(dev);
2180         else
2181                 MISSING_CASE(INTEL_INFO(dev)->gen);
2182
2183         return 0;
2184 }
2185
2186 int i915_ppgtt_init_ring(struct drm_i915_gem_request *req)
2187 {
2188         struct drm_i915_private *dev_priv = req->ring->dev->dev_private;
2189         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2190
2191         if (i915.enable_execlists)
2192                 return 0;
2193
2194         if (!ppgtt)
2195                 return 0;
2196
2197         return ppgtt->switch_mm(ppgtt, req);
2198 }
2199
2200 struct i915_hw_ppgtt *
2201 i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
2202 {
2203         struct i915_hw_ppgtt *ppgtt;
2204         int ret;
2205
2206         ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2207         if (!ppgtt)
2208                 return ERR_PTR(-ENOMEM);
2209
2210         ret = i915_ppgtt_init(dev, ppgtt);
2211         if (ret) {
2212                 kfree(ppgtt);
2213                 return ERR_PTR(ret);
2214         }
2215
2216         ppgtt->file_priv = fpriv;
2217
2218         trace_i915_ppgtt_create(&ppgtt->base);
2219
2220         return ppgtt;
2221 }
2222
2223 void  i915_ppgtt_release(struct kref *kref)
2224 {
2225         struct i915_hw_ppgtt *ppgtt =
2226                 container_of(kref, struct i915_hw_ppgtt, ref);
2227
2228         trace_i915_ppgtt_release(&ppgtt->base);
2229
2230         /* vmas should already be unbound */
2231         WARN_ON(!list_empty(&ppgtt->base.active_list));
2232         WARN_ON(!list_empty(&ppgtt->base.inactive_list));
2233
2234         list_del(&ppgtt->base.global_link);
2235         drm_mm_takedown(&ppgtt->base.mm);
2236
2237         ppgtt->base.cleanup(&ppgtt->base);
2238         kfree(ppgtt);
2239 }
2240
2241 extern int intel_iommu_gfx_mapped;
2242 /* Certain Gen5 chipsets require require idling the GPU before
2243  * unmapping anything from the GTT when VT-d is enabled.
2244  */
2245 static bool needs_idle_maps(struct drm_device *dev)
2246 {
2247 #ifdef CONFIG_INTEL_IOMMU
2248         /* Query intel_iommu to see if we need the workaround. Presumably that
2249          * was loaded first.
2250          */
2251         if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
2252                 return true;
2253 #endif
2254         return false;
2255 }
2256
2257 static bool do_idling(struct drm_i915_private *dev_priv)
2258 {
2259         bool ret = dev_priv->mm.interruptible;
2260
2261         if (unlikely(dev_priv->gtt.do_idle_maps)) {
2262                 dev_priv->mm.interruptible = false;
2263                 if (i915_gpu_idle(dev_priv->dev)) {
2264                         DRM_ERROR("Couldn't idle GPU\n");
2265                         /* Wait a bit, in hopes it avoids the hang */
2266                         udelay(10);
2267                 }
2268         }
2269
2270         return ret;
2271 }
2272
2273 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
2274 {
2275         if (unlikely(dev_priv->gtt.do_idle_maps))
2276                 dev_priv->mm.interruptible = interruptible;
2277 }
2278
2279 void i915_check_and_clear_faults(struct drm_device *dev)
2280 {
2281         struct drm_i915_private *dev_priv = dev->dev_private;
2282         struct intel_engine_cs *ring;
2283         int i;
2284
2285         if (INTEL_INFO(dev)->gen < 6)
2286                 return;
2287
2288         for_each_ring(ring, dev_priv, i) {
2289                 u32 fault_reg;
2290                 fault_reg = I915_READ(RING_FAULT_REG(ring));
2291                 if (fault_reg & RING_FAULT_VALID) {
2292                         DRM_DEBUG_DRIVER("Unexpected fault\n"
2293                                          "\tAddr: 0x%08lx\n"
2294                                          "\tAddress space: %s\n"
2295                                          "\tSource ID: %d\n"
2296                                          "\tType: %d\n",
2297                                          fault_reg & PAGE_MASK,
2298                                          fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2299                                          RING_FAULT_SRCID(fault_reg),
2300                                          RING_FAULT_FAULT_TYPE(fault_reg));
2301                         I915_WRITE(RING_FAULT_REG(ring),
2302                                    fault_reg & ~RING_FAULT_VALID);
2303                 }
2304         }
2305         POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
2306 }
2307
2308 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
2309 {
2310         if (INTEL_INFO(dev_priv->dev)->gen < 6) {
2311                 intel_gtt_chipset_flush();
2312         } else {
2313                 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2314                 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2315         }
2316 }
2317
2318 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
2319 {
2320         struct drm_i915_private *dev_priv = dev->dev_private;
2321
2322         /* Don't bother messing with faults pre GEN6 as we have little
2323          * documentation supporting that it's a good idea.
2324          */
2325         if (INTEL_INFO(dev)->gen < 6)
2326                 return;
2327
2328         i915_check_and_clear_faults(dev);
2329
2330         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
2331                                        dev_priv->gtt.base.start,
2332                                        dev_priv->gtt.base.total,
2333                                        true);
2334
2335         i915_ggtt_flush(dev_priv);
2336 }
2337
2338 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
2339 {
2340         if (!dma_map_sg(&obj->base.dev->pdev->dev,
2341                         obj->pages->sgl, obj->pages->nents,
2342                         PCI_DMA_BIDIRECTIONAL))
2343                 return -ENOSPC;
2344
2345         return 0;
2346 }
2347
2348 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2349 {
2350 #ifdef writeq
2351         writeq(pte, addr);
2352 #else
2353         iowrite32((u32)pte, addr);
2354         iowrite32(pte >> 32, addr + 4);
2355 #endif
2356 }
2357
2358 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2359                                      struct sg_table *st,
2360                                      uint64_t start,
2361                                      enum i915_cache_level level, u32 flags)
2362 {
2363         struct drm_i915_private *dev_priv = vm->dev->dev_private;
2364         unsigned first_entry = start >> PAGE_SHIFT;
2365         gen8_pte_t __iomem *gtt_entries =
2366                 (gen8_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
2367         int i = 0;
2368         struct sg_page_iter sg_iter;
2369         dma_addr_t addr = 0; /* shut up gcc */
2370
2371         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
2372                 addr = sg_dma_address(sg_iter.sg) +
2373                         (sg_iter.sg_pgoffset << PAGE_SHIFT);
2374                 gen8_set_pte(&gtt_entries[i],
2375                              gen8_pte_encode(addr, level, true, flags));
2376                 i++;
2377         }
2378
2379         /*
2380          * XXX: This serves as a posting read to make sure that the PTE has
2381          * actually been updated. There is some concern that even though
2382          * registers and PTEs are within the same BAR that they are potentially
2383          * of NUMA access patterns. Therefore, even with the way we assume
2384          * hardware should work, we must keep this posting read for paranoia.
2385          */
2386         if (i != 0)
2387                 WARN_ON(readq(&gtt_entries[i-1])
2388                         != gen8_pte_encode(addr, level, true, flags));
2389
2390         /* This next bit makes the above posting read even more important. We
2391          * want to flush the TLBs only after we're certain all the PTE updates
2392          * have finished.
2393          */
2394         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2395         POSTING_READ(GFX_FLSH_CNTL_GEN6);
2396 }
2397
2398 /*
2399  * Binds an object into the global gtt with the specified cache level. The object
2400  * will be accessible to the GPU via commands whose operands reference offsets
2401  * within the global GTT as well as accessible by the GPU through the GMADR
2402  * mapped BAR (dev_priv->mm.gtt->gtt).
2403  */
2404 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2405                                      struct sg_table *st,
2406                                      uint64_t start,
2407                                      enum i915_cache_level level, u32 flags)
2408 {
2409         struct drm_i915_private *dev_priv = vm->dev->dev_private;
2410         unsigned first_entry = start >> PAGE_SHIFT;
2411         gen6_pte_t __iomem *gtt_entries =
2412                 (gen6_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
2413         int i = 0;
2414         struct sg_page_iter sg_iter;
2415         dma_addr_t addr = 0;
2416
2417         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
2418                 addr = sg_page_iter_dma_address(&sg_iter);
2419                 iowrite32(vm->pte_encode(addr, level, true, flags), &gtt_entries[i]);
2420                 i++;
2421         }
2422
2423         /* XXX: This serves as a posting read to make sure that the PTE has
2424          * actually been updated. There is some concern that even though
2425          * registers and PTEs are within the same BAR that they are potentially
2426          * of NUMA access patterns. Therefore, even with the way we assume
2427          * hardware should work, we must keep this posting read for paranoia.
2428          */
2429         if (i != 0) {
2430                 unsigned long gtt = readl(&gtt_entries[i-1]);
2431                 WARN_ON(gtt != vm->pte_encode(addr, level, true, flags));
2432         }
2433
2434         /* This next bit makes the above posting read even more important. We
2435          * want to flush the TLBs only after we're certain all the PTE updates
2436          * have finished.
2437          */
2438         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2439         POSTING_READ(GFX_FLSH_CNTL_GEN6);
2440 }
2441
2442 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2443                                   uint64_t start,
2444                                   uint64_t length,
2445                                   bool use_scratch)
2446 {
2447         struct drm_i915_private *dev_priv = vm->dev->dev_private;
2448         unsigned first_entry = start >> PAGE_SHIFT;
2449         unsigned num_entries = length >> PAGE_SHIFT;
2450         gen8_pte_t scratch_pte, __iomem *gtt_base =
2451                 (gen8_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
2452         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
2453         int i;
2454
2455         if (WARN(num_entries > max_entries,
2456                  "First entry = %d; Num entries = %d (max=%d)\n",
2457                  first_entry, num_entries, max_entries))
2458                 num_entries = max_entries;
2459
2460         scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
2461                                       I915_CACHE_LLC,
2462                                       use_scratch, 0);
2463         for (i = 0; i < num_entries; i++)
2464                 gen8_set_pte(&gtt_base[i], scratch_pte);
2465         readl(gtt_base);
2466 }
2467
2468 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2469                                   uint64_t start,
2470                                   uint64_t length,
2471                                   bool use_scratch)
2472 {
2473         struct drm_i915_private *dev_priv = vm->dev->dev_private;
2474         unsigned first_entry = start >> PAGE_SHIFT;
2475         unsigned num_entries = length >> PAGE_SHIFT;
2476         gen6_pte_t scratch_pte, __iomem *gtt_base =
2477                 (gen6_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
2478         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
2479         int i;
2480
2481         if (WARN(num_entries > max_entries,
2482                  "First entry = %d; Num entries = %d (max=%d)\n",
2483                  first_entry, num_entries, max_entries))
2484                 num_entries = max_entries;
2485
2486         scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
2487                                      I915_CACHE_LLC, use_scratch, 0);
2488
2489         for (i = 0; i < num_entries; i++)
2490                 iowrite32(scratch_pte, &gtt_base[i]);
2491         readl(gtt_base);
2492 }
2493
2494 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2495                                      struct sg_table *pages,
2496                                      uint64_t start,
2497                                      enum i915_cache_level cache_level, u32 unused)
2498 {
2499         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2500                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2501
2502         intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
2503
2504 }
2505
2506 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2507                                   uint64_t start,
2508                                   uint64_t length,
2509                                   bool unused)
2510 {
2511         unsigned first_entry = start >> PAGE_SHIFT;
2512         unsigned num_entries = length >> PAGE_SHIFT;
2513         intel_gtt_clear_range(first_entry, num_entries);
2514 }
2515
2516 static int ggtt_bind_vma(struct i915_vma *vma,
2517                          enum i915_cache_level cache_level,
2518                          u32 flags)
2519 {
2520         struct drm_i915_gem_object *obj = vma->obj;
2521         u32 pte_flags = 0;
2522         int ret;
2523
2524         ret = i915_get_ggtt_vma_pages(vma);
2525         if (ret)
2526                 return ret;
2527
2528         /* Applicable to VLV (gen8+ do not support RO in the GGTT) */
2529         pte_flags = 0;
2530         if (obj->gt_ro)
2531                 pte_flags |= PTE_READ_ONLY;
2532
2533         vma->vm->insert_entries(vma->vm, vma->ggtt_view.pages,
2534                                 vma->node.start,
2535                                 cache_level, pte_flags);
2536
2537         /*
2538          * Without aliasing PPGTT there's no difference between
2539          * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2540          * upgrade to both bound if we bind either to avoid double-binding.
2541          */
2542         vma->bound |= GLOBAL_BIND | LOCAL_BIND;
2543
2544         return 0;
2545 }
2546
2547 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2548                                  enum i915_cache_level cache_level,
2549                                  u32 flags)
2550 {
2551         struct drm_device *dev = vma->vm->dev;
2552         struct drm_i915_private *dev_priv = dev->dev_private;
2553         struct drm_i915_gem_object *obj = vma->obj;
2554         struct sg_table *pages = obj->pages;
2555         u32 pte_flags = 0;
2556         int ret;
2557
2558         ret = i915_get_ggtt_vma_pages(vma);
2559         if (ret)
2560                 return ret;
2561         pages = vma->ggtt_view.pages;
2562
2563         /* Currently applicable only to VLV */
2564         if (obj->gt_ro)
2565                 pte_flags |= PTE_READ_ONLY;
2566
2567
2568         if (flags & GLOBAL_BIND) {
2569                 vma->vm->insert_entries(vma->vm, pages,
2570                                         vma->node.start,
2571                                         cache_level, pte_flags);
2572         }
2573
2574         if (flags & LOCAL_BIND) {
2575                 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
2576                 appgtt->base.insert_entries(&appgtt->base, pages,
2577                                             vma->node.start,
2578                                             cache_level, pte_flags);
2579         }
2580
2581         return 0;
2582 }
2583
2584 static void ggtt_unbind_vma(struct i915_vma *vma)
2585 {
2586         struct drm_device *dev = vma->vm->dev;
2587         struct drm_i915_private *dev_priv = dev->dev_private;
2588         struct drm_i915_gem_object *obj = vma->obj;
2589         const uint64_t size = min_t(uint64_t,
2590                                     obj->base.size,
2591                                     vma->node.size);
2592
2593         if (vma->bound & GLOBAL_BIND) {
2594                 vma->vm->clear_range(vma->vm,
2595                                      vma->node.start,
2596                                      size,
2597                                      true);
2598         }
2599
2600         if (dev_priv->mm.aliasing_ppgtt && vma->bound & LOCAL_BIND) {
2601                 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
2602
2603                 appgtt->base.clear_range(&appgtt->base,
2604                                          vma->node.start,
2605                                          size,
2606                                          true);
2607         }
2608 }
2609
2610 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
2611 {
2612         struct drm_device *dev = obj->base.dev;
2613         struct drm_i915_private *dev_priv = dev->dev_private;
2614         bool interruptible;
2615
2616         interruptible = do_idling(dev_priv);
2617
2618         dma_unmap_sg(&dev->pdev->dev, obj->pages->sgl, obj->pages->nents,
2619                      PCI_DMA_BIDIRECTIONAL);
2620
2621         undo_idling(dev_priv, interruptible);
2622 }
2623
2624 static void i915_gtt_color_adjust(struct drm_mm_node *node,
2625                                   unsigned long color,
2626                                   u64 *start,
2627                                   u64 *end)
2628 {
2629         if (node->color != color)
2630                 *start += 4096;
2631
2632         if (!list_empty(&node->node_list)) {
2633                 node = list_entry(node->node_list.next,
2634                                   struct drm_mm_node,
2635                                   node_list);
2636                 if (node->allocated && node->color != color)
2637                         *end -= 4096;
2638         }
2639 }
2640
2641 static int i915_gem_setup_global_gtt(struct drm_device *dev,
2642                                      u64 start,
2643                                      u64 mappable_end,
2644                                      u64 end)
2645 {
2646         /* Let GEM Manage all of the aperture.
2647          *
2648          * However, leave one page at the end still bound to the scratch page.
2649          * There are a number of places where the hardware apparently prefetches
2650          * past the end of the object, and we've seen multiple hangs with the
2651          * GPU head pointer stuck in a batchbuffer bound at the last page of the
2652          * aperture.  One page should be enough to keep any prefetching inside
2653          * of the aperture.
2654          */
2655         struct drm_i915_private *dev_priv = dev->dev_private;
2656         struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
2657         struct drm_mm_node *entry;
2658         struct drm_i915_gem_object *obj;
2659         unsigned long hole_start, hole_end;
2660         int ret;
2661
2662         BUG_ON(mappable_end > end);
2663
2664         ggtt_vm->start = start;
2665
2666         /* Subtract the guard page before address space initialization to
2667          * shrink the range used by drm_mm */
2668         ggtt_vm->total = end - start - PAGE_SIZE;
2669         i915_address_space_init(ggtt_vm, dev_priv);
2670         ggtt_vm->total += PAGE_SIZE;
2671
2672         /* Only VLV supports read-only GGTT mappings */
2673         ggtt_vm->has_read_only = IS_VALLEYVIEW(dev_priv);
2674
2675         if (intel_vgpu_active(dev)) {
2676                 ret = intel_vgt_balloon(dev);
2677                 if (ret)
2678                         return ret;
2679         }
2680
2681         if (!HAS_LLC(dev))
2682                 ggtt_vm->mm.color_adjust = i915_gtt_color_adjust;
2683
2684         /* Mark any preallocated objects as occupied */
2685         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2686                 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
2687
2688                 DRM_DEBUG_KMS("reserving preallocated space: %llx + %zx\n",
2689                               i915_gem_obj_ggtt_offset(obj), obj->base.size);
2690
2691                 WARN_ON(i915_gem_obj_ggtt_bound(obj));
2692                 ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
2693                 if (ret) {
2694                         DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
2695                         return ret;
2696                 }
2697                 vma->bound |= GLOBAL_BIND;
2698                 __i915_vma_set_map_and_fenceable(vma);
2699                 list_add_tail(&vma->mm_list, &ggtt_vm->inactive_list);
2700         }
2701
2702         /* Clear any non-preallocated blocks */
2703         drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
2704                 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2705                               hole_start, hole_end);
2706                 ggtt_vm->clear_range(ggtt_vm, hole_start,
2707                                      hole_end - hole_start, true);
2708         }
2709
2710         /* And finally clear the reserved guard page */
2711         ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
2712
2713         if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
2714                 struct i915_hw_ppgtt *ppgtt;
2715
2716                 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2717                 if (!ppgtt)
2718                         return -ENOMEM;
2719
2720                 ret = __hw_ppgtt_init(dev, ppgtt);
2721                 if (ret) {
2722                         ppgtt->base.cleanup(&ppgtt->base);
2723                         kfree(ppgtt);
2724                         return ret;
2725                 }
2726
2727                 if (ppgtt->base.allocate_va_range)
2728                         ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
2729                                                             ppgtt->base.total);
2730                 if (ret) {
2731                         ppgtt->base.cleanup(&ppgtt->base);
2732                         kfree(ppgtt);
2733                         return ret;
2734                 }
2735
2736                 ppgtt->base.clear_range(&ppgtt->base,
2737                                         ppgtt->base.start,
2738                                         ppgtt->base.total,
2739                                         true);
2740
2741                 dev_priv->mm.aliasing_ppgtt = ppgtt;
2742                 WARN_ON(dev_priv->gtt.base.bind_vma != ggtt_bind_vma);
2743                 dev_priv->gtt.base.bind_vma = aliasing_gtt_bind_vma;
2744         }
2745
2746         return 0;
2747 }
2748
2749 void i915_gem_init_global_gtt(struct drm_device *dev)
2750 {
2751         struct drm_i915_private *dev_priv = dev->dev_private;
2752         u64 gtt_size, mappable_size;
2753
2754         gtt_size = dev_priv->gtt.base.total;
2755         mappable_size = dev_priv->gtt.mappable_end;
2756
2757         i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
2758 }
2759
2760 void i915_global_gtt_cleanup(struct drm_device *dev)
2761 {
2762         struct drm_i915_private *dev_priv = dev->dev_private;
2763         struct i915_address_space *vm = &dev_priv->gtt.base;
2764
2765         if (dev_priv->mm.aliasing_ppgtt) {
2766                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2767
2768                 ppgtt->base.cleanup(&ppgtt->base);
2769                 kfree(ppgtt);
2770         }
2771
2772         if (drm_mm_initialized(&vm->mm)) {
2773                 if (intel_vgpu_active(dev))
2774                         intel_vgt_deballoon();
2775
2776                 drm_mm_takedown(&vm->mm);
2777                 list_del(&vm->global_link);
2778         }
2779
2780         vm->cleanup(vm);
2781 }
2782
2783 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2784 {
2785         snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2786         snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2787         return snb_gmch_ctl << 20;
2788 }
2789
2790 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2791 {
2792         bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2793         bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2794         if (bdw_gmch_ctl)
2795                 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2796
2797 #ifdef CONFIG_X86_32
2798         /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2799         if (bdw_gmch_ctl > 4)
2800                 bdw_gmch_ctl = 4;
2801 #endif
2802
2803         return bdw_gmch_ctl << 20;
2804 }
2805
2806 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2807 {
2808         gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2809         gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2810
2811         if (gmch_ctrl)
2812                 return 1 << (20 + gmch_ctrl);
2813
2814         return 0;
2815 }
2816
2817 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2818 {
2819         snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2820         snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2821         return snb_gmch_ctl << 25; /* 32 MB units */
2822 }
2823
2824 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2825 {
2826         bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2827         bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2828         return bdw_gmch_ctl << 25; /* 32 MB units */
2829 }
2830
2831 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2832 {
2833         gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2834         gmch_ctrl &= SNB_GMCH_GMS_MASK;
2835
2836         /*
2837          * 0x0  to 0x10: 32MB increments starting at 0MB
2838          * 0x11 to 0x16: 4MB increments starting at 8MB
2839          * 0x17 to 0x1d: 4MB increments start at 36MB
2840          */
2841         if (gmch_ctrl < 0x11)
2842                 return gmch_ctrl << 25;
2843         else if (gmch_ctrl < 0x17)
2844                 return (gmch_ctrl - 0x11 + 2) << 22;
2845         else
2846                 return (gmch_ctrl - 0x17 + 9) << 22;
2847 }
2848
2849 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2850 {
2851         gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2852         gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2853
2854         if (gen9_gmch_ctl < 0xf0)
2855                 return gen9_gmch_ctl << 25; /* 32 MB units */
2856         else
2857                 /* 4MB increments starting at 0xf0 for 4MB */
2858                 return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2859 }
2860
2861 static int ggtt_probe_common(struct drm_device *dev,
2862                              size_t gtt_size)
2863 {
2864         struct drm_i915_private *dev_priv = dev->dev_private;
2865         struct i915_page_scratch *scratch_page;
2866         phys_addr_t gtt_phys_addr;
2867
2868         /* For Modern GENs the PTEs and register space are split in the BAR */
2869         gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
2870                 (pci_resource_len(dev->pdev, 0) / 2);
2871
2872         /*
2873          * On BXT writes larger than 64 bit to the GTT pagetable range will be
2874          * dropped. For WC mappings in general we have 64 byte burst writes
2875          * when the WC buffer is flushed, so we can't use it, but have to
2876          * resort to an uncached mapping. The WC issue is easily caught by the
2877          * readback check when writing GTT PTE entries.
2878          */
2879         if (IS_BROXTON(dev))
2880                 dev_priv->gtt.gsm = ioremap_nocache(gtt_phys_addr, gtt_size);
2881         else
2882                 dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
2883         if (!dev_priv->gtt.gsm) {
2884                 DRM_ERROR("Failed to map the gtt page table\n");
2885                 return -ENOMEM;
2886         }
2887
2888         scratch_page = alloc_scratch_page(dev);
2889         if (IS_ERR(scratch_page)) {
2890                 DRM_ERROR("Scratch setup failed\n");
2891                 /* iounmap will also get called at remove, but meh */
2892                 iounmap(dev_priv->gtt.gsm);
2893                 return PTR_ERR(scratch_page);
2894         }
2895
2896         dev_priv->gtt.base.scratch_page = scratch_page;
2897
2898         return 0;
2899 }
2900
2901 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2902  * bits. When using advanced contexts each context stores its own PAT, but
2903  * writing this data shouldn't be harmful even in those cases. */
2904 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2905 {
2906         uint64_t pat;
2907
2908         pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
2909               GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2910               GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2911               GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
2912               GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2913               GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2914               GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2915               GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2916
2917         if (!USES_PPGTT(dev_priv->dev))
2918                 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2919                  * so RTL will always use the value corresponding to
2920                  * pat_sel = 000".
2921                  * So let's disable cache for GGTT to avoid screen corruptions.
2922                  * MOCS still can be used though.
2923                  * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2924                  * before this patch, i.e. the same uncached + snooping access
2925                  * like on gen6/7 seems to be in effect.
2926                  * - So this just fixes blitter/render access. Again it looks
2927                  * like it's not just uncached access, but uncached + snooping.
2928                  * So we can still hold onto all our assumptions wrt cpu
2929                  * clflushing on LLC machines.
2930                  */
2931                 pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2932
2933         /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2934          * write would work. */
2935         I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2936         I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2937 }
2938
2939 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2940 {
2941         uint64_t pat;
2942
2943         /*
2944          * Map WB on BDW to snooped on CHV.
2945          *
2946          * Only the snoop bit has meaning for CHV, the rest is
2947          * ignored.
2948          *
2949          * The hardware will never snoop for certain types of accesses:
2950          * - CPU GTT (GMADR->GGTT->no snoop->memory)
2951          * - PPGTT page tables
2952          * - some other special cycles
2953          *
2954          * As with BDW, we also need to consider the following for GT accesses:
2955          * "For GGTT, there is NO pat_sel[2:0] from the entry,
2956          * so RTL will always use the value corresponding to
2957          * pat_sel = 000".
2958          * Which means we must set the snoop bit in PAT entry 0
2959          * in order to keep the global status page working.
2960          */
2961         pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
2962               GEN8_PPAT(1, 0) |
2963               GEN8_PPAT(2, 0) |
2964               GEN8_PPAT(3, 0) |
2965               GEN8_PPAT(4, CHV_PPAT_SNOOP) |
2966               GEN8_PPAT(5, CHV_PPAT_SNOOP) |
2967               GEN8_PPAT(6, CHV_PPAT_SNOOP) |
2968               GEN8_PPAT(7, CHV_PPAT_SNOOP);
2969
2970         I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2971         I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2972 }
2973
2974 static int gen8_gmch_probe(struct drm_device *dev,
2975                            u64 *gtt_total,
2976                            size_t *stolen,
2977                            phys_addr_t *mappable_base,
2978                            u64 *mappable_end)
2979 {
2980         struct drm_i915_private *dev_priv = dev->dev_private;
2981         u64 gtt_size;
2982         u16 snb_gmch_ctl;
2983         int ret;
2984
2985         /* TODO: We're not aware of mappable constraints on gen8 yet */
2986         *mappable_base = pci_resource_start(dev->pdev, 2);
2987         *mappable_end = pci_resource_len(dev->pdev, 2);
2988
2989         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
2990                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
2991
2992         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2993
2994         if (INTEL_INFO(dev)->gen >= 9) {
2995                 *stolen = gen9_get_stolen_size(snb_gmch_ctl);
2996                 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2997         } else if (IS_CHERRYVIEW(dev)) {
2998                 *stolen = chv_get_stolen_size(snb_gmch_ctl);
2999                 gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
3000         } else {
3001                 *stolen = gen8_get_stolen_size(snb_gmch_ctl);
3002                 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
3003         }
3004
3005         *gtt_total = (gtt_size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
3006
3007         if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3008                 chv_setup_private_ppat(dev_priv);
3009         else
3010                 bdw_setup_private_ppat(dev_priv);
3011
3012         ret = ggtt_probe_common(dev, gtt_size);
3013
3014         dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
3015         dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
3016         dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
3017         dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
3018
3019         return ret;
3020 }
3021
3022 static int gen6_gmch_probe(struct drm_device *dev,
3023                            u64 *gtt_total,
3024                            size_t *stolen,
3025                            phys_addr_t *mappable_base,
3026                            u64 *mappable_end)
3027 {
3028         struct drm_i915_private *dev_priv = dev->dev_private;
3029         unsigned int gtt_size;
3030         u16 snb_gmch_ctl;
3031         int ret;
3032
3033         *mappable_base = pci_resource_start(dev->pdev, 2);
3034         *mappable_end = pci_resource_len(dev->pdev, 2);
3035
3036         /* 64/512MB is the current min/max we actually know of, but this is just
3037          * a coarse sanity check.
3038          */
3039         if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
3040                 DRM_ERROR("Unknown GMADR size (%llx)\n",
3041                           dev_priv->gtt.mappable_end);
3042                 return -ENXIO;
3043         }
3044
3045         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
3046                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
3047         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3048
3049         *stolen = gen6_get_stolen_size(snb_gmch_ctl);
3050
3051         gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
3052         *gtt_total = (gtt_size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3053
3054         ret = ggtt_probe_common(dev, gtt_size);
3055
3056         dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
3057         dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
3058         dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
3059         dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
3060
3061         return ret;
3062 }
3063
3064 static void gen6_gmch_remove(struct i915_address_space *vm)
3065 {
3066
3067         struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
3068
3069         iounmap(gtt->gsm);
3070         free_scratch_page(vm->dev, vm->scratch_page);
3071 }
3072
3073 static int i915_gmch_probe(struct drm_device *dev,
3074                            u64 *gtt_total,
3075                            size_t *stolen,
3076                            phys_addr_t *mappable_base,
3077                            u64 *mappable_end)
3078 {
3079         struct drm_i915_private *dev_priv = dev->dev_private;
3080         int ret;
3081
3082         ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
3083         if (!ret) {
3084                 DRM_ERROR("failed to set up gmch\n");
3085                 return -EIO;
3086         }
3087
3088         intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
3089
3090         dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
3091         dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
3092         dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
3093         dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
3094         dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
3095
3096         if (unlikely(dev_priv->gtt.do_idle_maps))
3097                 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3098
3099         return 0;
3100 }
3101
3102 static void i915_gmch_remove(struct i915_address_space *vm)
3103 {
3104         intel_gmch_remove();
3105 }
3106
3107 int i915_gem_gtt_init(struct drm_device *dev)
3108 {
3109         struct drm_i915_private *dev_priv = dev->dev_private;
3110         struct i915_gtt *gtt = &dev_priv->gtt;
3111         int ret;
3112
3113         if (INTEL_INFO(dev)->gen <= 5) {
3114                 gtt->gtt_probe = i915_gmch_probe;
3115                 gtt->base.cleanup = i915_gmch_remove;
3116         } else if (INTEL_INFO(dev)->gen < 8) {
3117                 gtt->gtt_probe = gen6_gmch_probe;
3118                 gtt->base.cleanup = gen6_gmch_remove;
3119                 if (IS_HASWELL(dev) && dev_priv->ellc_size)
3120                         gtt->base.pte_encode = iris_pte_encode;
3121                 else if (IS_HASWELL(dev))
3122                         gtt->base.pte_encode = hsw_pte_encode;
3123                 else if (IS_VALLEYVIEW(dev))
3124                         gtt->base.pte_encode = byt_pte_encode;
3125                 else if (INTEL_INFO(dev)->gen >= 7)
3126                         gtt->base.pte_encode = ivb_pte_encode;
3127                 else
3128                         gtt->base.pte_encode = snb_pte_encode;
3129         } else {
3130                 dev_priv->gtt.gtt_probe = gen8_gmch_probe;
3131                 dev_priv->gtt.base.cleanup = gen6_gmch_remove;
3132         }
3133
3134         gtt->base.dev = dev;
3135
3136         ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
3137                              &gtt->mappable_base, &gtt->mappable_end);
3138         if (ret)
3139                 return ret;
3140
3141         /* GMADR is the PCI mmio aperture into the global GTT. */
3142         DRM_INFO("Memory usable by graphics device = %lluM\n",
3143                  gtt->base.total >> 20);
3144         DRM_DEBUG_DRIVER("GMADR size = %lldM\n", gtt->mappable_end >> 20);
3145         DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
3146 #ifdef CONFIG_INTEL_IOMMU
3147         if (intel_iommu_gfx_mapped)
3148                 DRM_INFO("VT-d active for gfx access\n");
3149 #endif
3150         /*
3151          * i915.enable_ppgtt is read-only, so do an early pass to validate the
3152          * user's requested state against the hardware/driver capabilities.  We
3153          * do this now so that we can print out any log messages once rather
3154          * than every time we check intel_enable_ppgtt().
3155          */
3156         i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
3157         DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
3158
3159         return 0;
3160 }
3161
3162 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
3163 {
3164         struct drm_i915_private *dev_priv = dev->dev_private;
3165         struct drm_i915_gem_object *obj;
3166         struct i915_address_space *vm;
3167         struct i915_vma *vma;
3168         bool flush;
3169
3170         i915_check_and_clear_faults(dev);
3171
3172         /* First fill our portion of the GTT with scratch pages */
3173         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
3174                                        dev_priv->gtt.base.start,
3175                                        dev_priv->gtt.base.total,
3176                                        true);
3177
3178         /* Cache flush objects bound into GGTT and rebind them. */
3179         vm = &dev_priv->gtt.base;
3180         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
3181                 flush = false;
3182                 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3183                         if (vma->vm != vm)
3184                                 continue;
3185
3186                         WARN_ON(i915_vma_bind(vma, obj->cache_level,
3187                                               PIN_UPDATE));
3188
3189                         flush = true;
3190                 }
3191
3192                 if (flush)
3193                         i915_gem_clflush_object(obj, obj->pin_display);
3194         }
3195
3196         if (INTEL_INFO(dev)->gen >= 8) {
3197                 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3198                         chv_setup_private_ppat(dev_priv);
3199                 else
3200                         bdw_setup_private_ppat(dev_priv);
3201
3202                 return;
3203         }
3204
3205         if (USES_PPGTT(dev)) {
3206                 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3207                         /* TODO: Perhaps it shouldn't be gen6 specific */
3208
3209                         struct i915_hw_ppgtt *ppgtt =
3210                                         container_of(vm, struct i915_hw_ppgtt,
3211                                                      base);
3212
3213                         if (i915_is_ggtt(vm))
3214                                 ppgtt = dev_priv->mm.aliasing_ppgtt;
3215
3216                         gen6_write_page_range(dev_priv, &ppgtt->pd,
3217                                               0, ppgtt->base.total);
3218                 }
3219         }
3220
3221         i915_ggtt_flush(dev_priv);
3222 }
3223
3224 static struct i915_vma *
3225 __i915_gem_vma_create(struct drm_i915_gem_object *obj,
3226                       struct i915_address_space *vm,
3227                       const struct i915_ggtt_view *ggtt_view)
3228 {
3229         struct i915_vma *vma;
3230
3231         if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
3232                 return ERR_PTR(-EINVAL);
3233
3234         vma = kmem_cache_zalloc(to_i915(obj->base.dev)->vmas, GFP_KERNEL);
3235         if (vma == NULL)
3236                 return ERR_PTR(-ENOMEM);
3237
3238         INIT_LIST_HEAD(&vma->vma_link);
3239         INIT_LIST_HEAD(&vma->mm_list);
3240         INIT_LIST_HEAD(&vma->exec_list);
3241         vma->vm = vm;
3242         vma->obj = obj;
3243
3244         if (i915_is_ggtt(vm))
3245                 vma->ggtt_view = *ggtt_view;
3246
3247         list_add_tail(&vma->vma_link, &obj->vma_list);
3248         if (!i915_is_ggtt(vm))
3249                 i915_ppgtt_get(i915_vm_to_ppgtt(vm));
3250
3251         return vma;
3252 }
3253
3254 struct i915_vma *
3255 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3256                                   struct i915_address_space *vm)
3257 {
3258         struct i915_vma *vma;
3259
3260         vma = i915_gem_obj_to_vma(obj, vm);
3261         if (!vma)
3262                 vma = __i915_gem_vma_create(obj, vm,
3263                                             i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL);
3264
3265         return vma;
3266 }
3267
3268 struct i915_vma *
3269 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
3270                                        const struct i915_ggtt_view *view)
3271 {
3272         struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
3273         struct i915_vma *vma;
3274
3275         if (WARN_ON(!view))
3276                 return ERR_PTR(-EINVAL);
3277
3278         vma = i915_gem_obj_to_ggtt_view(obj, view);
3279
3280         if (IS_ERR(vma))
3281                 return vma;
3282
3283         if (!vma)
3284                 vma = __i915_gem_vma_create(obj, ggtt, view);
3285
3286         return vma;
3287
3288 }
3289
3290 static struct scatterlist *
3291 rotate_pages(dma_addr_t *in, unsigned int offset,
3292              unsigned int width, unsigned int height,
3293              struct sg_table *st, struct scatterlist *sg)
3294 {
3295         unsigned int column, row;
3296         unsigned int src_idx;
3297
3298         if (!sg) {
3299                 st->nents = 0;
3300                 sg = st->sgl;
3301         }
3302
3303         for (column = 0; column < width; column++) {
3304                 src_idx = width * (height - 1) + column;
3305                 for (row = 0; row < height; row++) {
3306                         st->nents++;
3307                         /* We don't need the pages, but need to initialize
3308                          * the entries so the sg list can be happily traversed.
3309                          * The only thing we need are DMA addresses.
3310                          */
3311                         sg_set_page(sg, NULL, PAGE_SIZE, 0);
3312                         sg_dma_address(sg) = in[offset + src_idx];
3313                         sg_dma_len(sg) = PAGE_SIZE;
3314                         sg = sg_next(sg);
3315                         src_idx -= width;
3316                 }
3317         }
3318
3319         return sg;
3320 }
3321
3322 static struct sg_table *
3323 intel_rotate_fb_obj_pages(struct i915_ggtt_view *ggtt_view,
3324                           struct drm_i915_gem_object *obj)
3325 {
3326         struct intel_rotation_info *rot_info = &ggtt_view->rotation_info;
3327         unsigned int size_pages = rot_info->size >> PAGE_SHIFT;
3328         unsigned int size_pages_uv;
3329         struct sg_page_iter sg_iter;
3330         unsigned long i;
3331         dma_addr_t *page_addr_list;
3332         struct sg_table *st;
3333         unsigned int uv_start_page;
3334         struct scatterlist *sg;
3335         int ret = -ENOMEM;
3336
3337         /* Allocate a temporary list of source pages for random access. */
3338         page_addr_list = drm_malloc_ab(obj->base.size / PAGE_SIZE,
3339                                        sizeof(dma_addr_t));
3340         if (!page_addr_list)
3341                 return ERR_PTR(ret);
3342
3343         /* Account for UV plane with NV12. */
3344         if (rot_info->pixel_format == DRM_FORMAT_NV12)
3345                 size_pages_uv = rot_info->size_uv >> PAGE_SHIFT;
3346         else
3347                 size_pages_uv = 0;
3348
3349         /* Allocate target SG list. */
3350         st = kmalloc(sizeof(*st), GFP_KERNEL);
3351         if (!st)
3352                 goto err_st_alloc;
3353
3354         ret = sg_alloc_table(st, size_pages + size_pages_uv, GFP_KERNEL);
3355         if (ret)
3356                 goto err_sg_alloc;
3357
3358         /* Populate source page list from the object. */
3359         i = 0;
3360         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
3361                 page_addr_list[i] = sg_page_iter_dma_address(&sg_iter);
3362                 i++;
3363         }
3364
3365         /* Rotate the pages. */
3366         sg = rotate_pages(page_addr_list, 0,
3367                      rot_info->width_pages, rot_info->height_pages,
3368                      st, NULL);
3369
3370         /* Append the UV plane if NV12. */
3371         if (rot_info->pixel_format == DRM_FORMAT_NV12) {
3372                 uv_start_page = size_pages;
3373
3374                 /* Check for tile-row un-alignment. */
3375                 if (offset_in_page(rot_info->uv_offset))
3376                         uv_start_page--;
3377
3378                 rot_info->uv_start_page = uv_start_page;
3379
3380                 rotate_pages(page_addr_list, uv_start_page,
3381                              rot_info->width_pages_uv,
3382                              rot_info->height_pages_uv,
3383                              st, sg);
3384         }
3385
3386         DRM_DEBUG_KMS(
3387                       "Created rotated page mapping for object size %zu (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages (%u plane 0)).\n",
3388                       obj->base.size, rot_info->pitch, rot_info->height,
3389                       rot_info->pixel_format, rot_info->width_pages,
3390                       rot_info->height_pages, size_pages + size_pages_uv,
3391                       size_pages);
3392
3393         drm_free_large(page_addr_list);
3394
3395         return st;
3396
3397 err_sg_alloc:
3398         kfree(st);
3399 err_st_alloc:
3400         drm_free_large(page_addr_list);
3401
3402         DRM_DEBUG_KMS(
3403                       "Failed to create rotated mapping for object size %zu! (%d) (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages (%u plane 0))\n",
3404                       obj->base.size, ret, rot_info->pitch, rot_info->height,
3405                       rot_info->pixel_format, rot_info->width_pages,
3406                       rot_info->height_pages, size_pages + size_pages_uv,
3407                       size_pages);
3408         return ERR_PTR(ret);
3409 }
3410
3411 static struct sg_table *
3412 intel_partial_pages(const struct i915_ggtt_view *view,
3413                     struct drm_i915_gem_object *obj)
3414 {
3415         struct sg_table *st;
3416         struct scatterlist *sg;
3417         struct sg_page_iter obj_sg_iter;
3418         int ret = -ENOMEM;
3419
3420         st = kmalloc(sizeof(*st), GFP_KERNEL);
3421         if (!st)
3422                 goto err_st_alloc;
3423
3424         ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL);
3425         if (ret)
3426                 goto err_sg_alloc;
3427
3428         sg = st->sgl;
3429         st->nents = 0;
3430         for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents,
3431                 view->params.partial.offset)
3432         {
3433                 if (st->nents >= view->params.partial.size)
3434                         break;
3435
3436                 sg_set_page(sg, NULL, PAGE_SIZE, 0);
3437                 sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter);
3438                 sg_dma_len(sg) = PAGE_SIZE;
3439
3440                 sg = sg_next(sg);
3441                 st->nents++;
3442         }
3443
3444         return st;
3445
3446 err_sg_alloc:
3447         kfree(st);
3448 err_st_alloc:
3449         return ERR_PTR(ret);
3450 }
3451
3452 static int
3453 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3454 {
3455         int ret = 0;
3456
3457         if (vma->ggtt_view.pages)
3458                 return 0;
3459
3460         if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
3461                 vma->ggtt_view.pages = vma->obj->pages;
3462         else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
3463                 vma->ggtt_view.pages =
3464                         intel_rotate_fb_obj_pages(&vma->ggtt_view, vma->obj);
3465         else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
3466                 vma->ggtt_view.pages =
3467                         intel_partial_pages(&vma->ggtt_view, vma->obj);
3468         else
3469                 WARN_ONCE(1, "GGTT view %u not implemented!\n",
3470                           vma->ggtt_view.type);
3471
3472         if (!vma->ggtt_view.pages) {
3473                 DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
3474                           vma->ggtt_view.type);
3475                 ret = -EINVAL;
3476         } else if (IS_ERR(vma->ggtt_view.pages)) {
3477                 ret = PTR_ERR(vma->ggtt_view.pages);
3478                 vma->ggtt_view.pages = NULL;
3479                 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3480                           vma->ggtt_view.type, ret);
3481         }
3482
3483         return ret;
3484 }
3485
3486 /**
3487  * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
3488  * @vma: VMA to map
3489  * @cache_level: mapping cache level
3490  * @flags: flags like global or local mapping
3491  *
3492  * DMA addresses are taken from the scatter-gather table of this object (or of
3493  * this VMA in case of non-default GGTT views) and PTE entries set up.
3494  * Note that DMA addresses are also the only part of the SG table we care about.
3495  */
3496 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
3497                   u32 flags)
3498 {
3499         int ret;
3500         u32 bind_flags;
3501
3502         if (WARN_ON(flags == 0))
3503                 return -EINVAL;
3504
3505         bind_flags = 0;
3506         if (flags & PIN_GLOBAL)
3507                 bind_flags |= GLOBAL_BIND;
3508         if (flags & PIN_USER)
3509                 bind_flags |= LOCAL_BIND;
3510
3511         if (flags & PIN_UPDATE)
3512                 bind_flags |= vma->bound;
3513         else
3514                 bind_flags &= ~vma->bound;
3515
3516         if (bind_flags == 0)
3517                 return 0;
3518
3519         if (vma->bound == 0 && vma->vm->allocate_va_range) {
3520                 trace_i915_va_alloc(vma->vm,
3521                                     vma->node.start,
3522                                     vma->node.size,
3523                                     VM_TO_TRACE_NAME(vma->vm));
3524
3525                 /* XXX: i915_vma_pin() will fix this +- hack */
3526                 vma->pin_count++;
3527                 ret = vma->vm->allocate_va_range(vma->vm,
3528                                                  vma->node.start,
3529                                                  vma->node.size);
3530                 vma->pin_count--;
3531                 if (ret)
3532                         return ret;
3533         }
3534
3535         ret = vma->vm->bind_vma(vma, cache_level, bind_flags);
3536         if (ret)
3537                 return ret;
3538
3539         vma->bound |= bind_flags;
3540
3541         return 0;
3542 }
3543
3544 /**
3545  * i915_ggtt_view_size - Get the size of a GGTT view.
3546  * @obj: Object the view is of.
3547  * @view: The view in question.
3548  *
3549  * @return The size of the GGTT view in bytes.
3550  */
3551 size_t
3552 i915_ggtt_view_size(struct drm_i915_gem_object *obj,
3553                     const struct i915_ggtt_view *view)
3554 {
3555         if (view->type == I915_GGTT_VIEW_NORMAL) {
3556                 return obj->base.size;
3557         } else if (view->type == I915_GGTT_VIEW_ROTATED) {
3558                 return view->rotation_info.size;
3559         } else if (view->type == I915_GGTT_VIEW_PARTIAL) {
3560                 return view->params.partial.size << PAGE_SHIFT;
3561         } else {
3562                 WARN_ONCE(1, "GGTT view %u not implemented!\n", view->type);
3563                 return obj->base.size;
3564         }
3565 }