GNU Linux-libre 4.9.317-gnu1
[releases.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_dmabuf.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include <linux/reservation.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/slab.h>
41 #include <linux/swap.h>
42 #include <linux/pci.h>
43 #include <linux/dma-buf.h>
44
45 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
46 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
47
48 static bool cpu_cache_is_coherent(struct drm_device *dev,
49                                   enum i915_cache_level level)
50 {
51         return HAS_LLC(dev) || level != I915_CACHE_NONE;
52 }
53
54 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
55 {
56         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
57                 return false;
58
59         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
60                 return true;
61
62         return obj->pin_display;
63 }
64
65 static int
66 insert_mappable_node(struct drm_i915_private *i915,
67                      struct drm_mm_node *node, u32 size)
68 {
69         memset(node, 0, sizeof(*node));
70         return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
71                                                    size, 0, 0, 0,
72                                                    i915->ggtt.mappable_end,
73                                                    DRM_MM_SEARCH_DEFAULT,
74                                                    DRM_MM_CREATE_DEFAULT);
75 }
76
77 static void
78 remove_mappable_node(struct drm_mm_node *node)
79 {
80         drm_mm_remove_node(node);
81 }
82
83 /* some bookkeeping */
84 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
85                                   size_t size)
86 {
87         spin_lock(&dev_priv->mm.object_stat_lock);
88         dev_priv->mm.object_count++;
89         dev_priv->mm.object_memory += size;
90         spin_unlock(&dev_priv->mm.object_stat_lock);
91 }
92
93 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
94                                      size_t size)
95 {
96         spin_lock(&dev_priv->mm.object_stat_lock);
97         dev_priv->mm.object_count--;
98         dev_priv->mm.object_memory -= size;
99         spin_unlock(&dev_priv->mm.object_stat_lock);
100 }
101
102 static int
103 i915_gem_wait_for_error(struct i915_gpu_error *error)
104 {
105         int ret;
106
107         if (!i915_reset_in_progress(error))
108                 return 0;
109
110         /*
111          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
112          * userspace. If it takes that long something really bad is going on and
113          * we should simply try to bail out and fail as gracefully as possible.
114          */
115         ret = wait_event_interruptible_timeout(error->reset_queue,
116                                                !i915_reset_in_progress(error),
117                                                10*HZ);
118         if (ret == 0) {
119                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
120                 return -EIO;
121         } else if (ret < 0) {
122                 return ret;
123         } else {
124                 return 0;
125         }
126 }
127
128 int i915_mutex_lock_interruptible(struct drm_device *dev)
129 {
130         struct drm_i915_private *dev_priv = to_i915(dev);
131         int ret;
132
133         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
134         if (ret)
135                 return ret;
136
137         ret = mutex_lock_interruptible(&dev->struct_mutex);
138         if (ret)
139                 return ret;
140
141         return 0;
142 }
143
144 int
145 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
146                             struct drm_file *file)
147 {
148         struct drm_i915_private *dev_priv = to_i915(dev);
149         struct i915_ggtt *ggtt = &dev_priv->ggtt;
150         struct drm_i915_gem_get_aperture *args = data;
151         struct i915_vma *vma;
152         size_t pinned;
153
154         pinned = 0;
155         mutex_lock(&dev->struct_mutex);
156         list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
157                 if (i915_vma_is_pinned(vma))
158                         pinned += vma->node.size;
159         list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
160                 if (i915_vma_is_pinned(vma))
161                         pinned += vma->node.size;
162         mutex_unlock(&dev->struct_mutex);
163
164         args->aper_size = ggtt->base.total;
165         args->aper_available_size = args->aper_size - pinned;
166
167         return 0;
168 }
169
170 static int
171 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
172 {
173         struct address_space *mapping = obj->base.filp->f_mapping;
174         char *vaddr = obj->phys_handle->vaddr;
175         struct sg_table *st;
176         struct scatterlist *sg;
177         int i;
178
179         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
180                 return -EINVAL;
181
182         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
183                 struct page *page;
184                 char *src;
185
186                 page = shmem_read_mapping_page(mapping, i);
187                 if (IS_ERR(page))
188                         return PTR_ERR(page);
189
190                 src = kmap_atomic(page);
191                 memcpy(vaddr, src, PAGE_SIZE);
192                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
193                 kunmap_atomic(src);
194
195                 put_page(page);
196                 vaddr += PAGE_SIZE;
197         }
198
199         i915_gem_chipset_flush(to_i915(obj->base.dev));
200
201         st = kmalloc(sizeof(*st), GFP_KERNEL);
202         if (st == NULL)
203                 return -ENOMEM;
204
205         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
206                 kfree(st);
207                 return -ENOMEM;
208         }
209
210         sg = st->sgl;
211         sg->offset = 0;
212         sg->length = obj->base.size;
213
214         sg_dma_address(sg) = obj->phys_handle->busaddr;
215         sg_dma_len(sg) = obj->base.size;
216
217         obj->pages = st;
218         return 0;
219 }
220
221 static void
222 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
223 {
224         int ret;
225
226         BUG_ON(obj->madv == __I915_MADV_PURGED);
227
228         ret = i915_gem_object_set_to_cpu_domain(obj, true);
229         if (WARN_ON(ret)) {
230                 /* In the event of a disaster, abandon all caches and
231                  * hope for the best.
232                  */
233                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
234         }
235
236         if (obj->madv == I915_MADV_DONTNEED)
237                 obj->dirty = 0;
238
239         if (obj->dirty) {
240                 struct address_space *mapping = obj->base.filp->f_mapping;
241                 char *vaddr = obj->phys_handle->vaddr;
242                 int i;
243
244                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245                         struct page *page;
246                         char *dst;
247
248                         page = shmem_read_mapping_page(mapping, i);
249                         if (IS_ERR(page))
250                                 continue;
251
252                         dst = kmap_atomic(page);
253                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
254                         memcpy(dst, vaddr, PAGE_SIZE);
255                         kunmap_atomic(dst);
256
257                         set_page_dirty(page);
258                         if (obj->madv == I915_MADV_WILLNEED)
259                                 mark_page_accessed(page);
260                         put_page(page);
261                         vaddr += PAGE_SIZE;
262                 }
263                 obj->dirty = 0;
264         }
265
266         sg_free_table(obj->pages);
267         kfree(obj->pages);
268 }
269
270 static void
271 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
272 {
273         drm_pci_free(obj->base.dev, obj->phys_handle);
274 }
275
276 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
277         .get_pages = i915_gem_object_get_pages_phys,
278         .put_pages = i915_gem_object_put_pages_phys,
279         .release = i915_gem_object_release_phys,
280 };
281
282 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
283 {
284         struct i915_vma *vma;
285         LIST_HEAD(still_in_list);
286         int ret;
287
288         lockdep_assert_held(&obj->base.dev->struct_mutex);
289
290         /* Closed vma are removed from the obj->vma_list - but they may
291          * still have an active binding on the object. To remove those we
292          * must wait for all rendering to complete to the object (as unbinding
293          * must anyway), and retire the requests.
294          */
295         ret = i915_gem_object_wait_rendering(obj, false);
296         if (ret)
297                 return ret;
298
299         i915_gem_retire_requests(to_i915(obj->base.dev));
300
301         while ((vma = list_first_entry_or_null(&obj->vma_list,
302                                                struct i915_vma,
303                                                obj_link))) {
304                 list_move_tail(&vma->obj_link, &still_in_list);
305                 ret = i915_vma_unbind(vma);
306                 if (ret)
307                         break;
308         }
309         list_splice(&still_in_list, &obj->vma_list);
310
311         return ret;
312 }
313
314 /**
315  * Ensures that all rendering to the object has completed and the object is
316  * safe to unbind from the GTT or access from the CPU.
317  * @obj: i915 gem object
318  * @readonly: waiting for just read access or read-write access
319  */
320 int
321 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
322                                bool readonly)
323 {
324         struct reservation_object *resv;
325         struct i915_gem_active *active;
326         unsigned long active_mask;
327         int idx;
328
329         lockdep_assert_held(&obj->base.dev->struct_mutex);
330
331         if (!readonly) {
332                 active = obj->last_read;
333                 active_mask = i915_gem_object_get_active(obj);
334         } else {
335                 active_mask = 1;
336                 active = &obj->last_write;
337         }
338
339         for_each_active(active_mask, idx) {
340                 int ret;
341
342                 ret = i915_gem_active_wait(&active[idx],
343                                            &obj->base.dev->struct_mutex);
344                 if (ret)
345                         return ret;
346         }
347
348         resv = i915_gem_object_get_dmabuf_resv(obj);
349         if (resv) {
350                 long err;
351
352                 err = reservation_object_wait_timeout_rcu(resv, !readonly, true,
353                                                           MAX_SCHEDULE_TIMEOUT);
354                 if (err < 0)
355                         return err;
356         }
357
358         return 0;
359 }
360
361 /* A nonblocking variant of the above wait. Must be called prior to
362  * acquiring the mutex for the object, as the object state may change
363  * during this call. A reference must be held by the caller for the object.
364  */
365 static __must_check int
366 __unsafe_wait_rendering(struct drm_i915_gem_object *obj,
367                         struct intel_rps_client *rps,
368                         bool readonly)
369 {
370         struct i915_gem_active *active;
371         unsigned long active_mask;
372         int idx;
373
374         active_mask = __I915_BO_ACTIVE(obj);
375         if (!active_mask)
376                 return 0;
377
378         if (!readonly) {
379                 active = obj->last_read;
380         } else {
381                 active_mask = 1;
382                 active = &obj->last_write;
383         }
384
385         for_each_active(active_mask, idx) {
386                 int ret;
387
388                 ret = i915_gem_active_wait_unlocked(&active[idx],
389                                                     I915_WAIT_INTERRUPTIBLE,
390                                                     NULL, rps);
391                 if (ret)
392                         return ret;
393         }
394
395         return 0;
396 }
397
398 static struct intel_rps_client *to_rps_client(struct drm_file *file)
399 {
400         struct drm_i915_file_private *fpriv = file->driver_priv;
401
402         return &fpriv->rps;
403 }
404
405 int
406 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
407                             int align)
408 {
409         drm_dma_handle_t *phys;
410         int ret;
411
412         if (obj->phys_handle) {
413                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
414                         return -EBUSY;
415
416                 return 0;
417         }
418
419         if (obj->madv != I915_MADV_WILLNEED)
420                 return -EFAULT;
421
422         if (obj->base.filp == NULL)
423                 return -EINVAL;
424
425         ret = i915_gem_object_unbind(obj);
426         if (ret)
427                 return ret;
428
429         ret = i915_gem_object_put_pages(obj);
430         if (ret)
431                 return ret;
432
433         /* create a new object */
434         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
435         if (!phys)
436                 return -ENOMEM;
437
438         obj->phys_handle = phys;
439         obj->ops = &i915_gem_phys_ops;
440
441         return i915_gem_object_get_pages(obj);
442 }
443
444 static int
445 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
446                      struct drm_i915_gem_pwrite *args,
447                      struct drm_file *file_priv)
448 {
449         struct drm_device *dev = obj->base.dev;
450         void *vaddr = obj->phys_handle->vaddr + args->offset;
451         char __user *user_data = u64_to_user_ptr(args->data_ptr);
452         int ret = 0;
453
454         /* We manually control the domain here and pretend that it
455          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
456          */
457         ret = i915_gem_object_wait_rendering(obj, false);
458         if (ret)
459                 return ret;
460
461         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
462         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
463                 unsigned long unwritten;
464
465                 /* The physical object once assigned is fixed for the lifetime
466                  * of the obj, so we can safely drop the lock and continue
467                  * to access vaddr.
468                  */
469                 mutex_unlock(&dev->struct_mutex);
470                 unwritten = copy_from_user(vaddr, user_data, args->size);
471                 mutex_lock(&dev->struct_mutex);
472                 if (unwritten) {
473                         ret = -EFAULT;
474                         goto out;
475                 }
476         }
477
478         drm_clflush_virt_range(vaddr, args->size);
479         i915_gem_chipset_flush(to_i915(dev));
480
481 out:
482         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
483         return ret;
484 }
485
486 void *i915_gem_object_alloc(struct drm_device *dev)
487 {
488         struct drm_i915_private *dev_priv = to_i915(dev);
489         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
490 }
491
492 void i915_gem_object_free(struct drm_i915_gem_object *obj)
493 {
494         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
495         kmem_cache_free(dev_priv->objects, obj);
496 }
497
498 static int
499 i915_gem_create(struct drm_file *file,
500                 struct drm_device *dev,
501                 uint64_t size,
502                 uint32_t *handle_p)
503 {
504         struct drm_i915_gem_object *obj;
505         int ret;
506         u32 handle;
507
508         size = roundup(size, PAGE_SIZE);
509         if (size == 0)
510                 return -EINVAL;
511
512         /* Allocate the new object */
513         obj = i915_gem_object_create(dev, size);
514         if (IS_ERR(obj))
515                 return PTR_ERR(obj);
516
517         ret = drm_gem_handle_create(file, &obj->base, &handle);
518         /* drop reference from allocate - handle holds it now */
519         i915_gem_object_put_unlocked(obj);
520         if (ret)
521                 return ret;
522
523         *handle_p = handle;
524         return 0;
525 }
526
527 int
528 i915_gem_dumb_create(struct drm_file *file,
529                      struct drm_device *dev,
530                      struct drm_mode_create_dumb *args)
531 {
532         /* have to work out size/pitch and return them */
533         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
534         args->size = args->pitch * args->height;
535         return i915_gem_create(file, dev,
536                                args->size, &args->handle);
537 }
538
539 /**
540  * Creates a new mm object and returns a handle to it.
541  * @dev: drm device pointer
542  * @data: ioctl data blob
543  * @file: drm file pointer
544  */
545 int
546 i915_gem_create_ioctl(struct drm_device *dev, void *data,
547                       struct drm_file *file)
548 {
549         struct drm_i915_gem_create *args = data;
550
551         return i915_gem_create(file, dev,
552                                args->size, &args->handle);
553 }
554
555 static inline int
556 __copy_to_user_swizzled(char __user *cpu_vaddr,
557                         const char *gpu_vaddr, int gpu_offset,
558                         int length)
559 {
560         int ret, cpu_offset = 0;
561
562         while (length > 0) {
563                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
564                 int this_length = min(cacheline_end - gpu_offset, length);
565                 int swizzled_gpu_offset = gpu_offset ^ 64;
566
567                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
568                                      gpu_vaddr + swizzled_gpu_offset,
569                                      this_length);
570                 if (ret)
571                         return ret + length;
572
573                 cpu_offset += this_length;
574                 gpu_offset += this_length;
575                 length -= this_length;
576         }
577
578         return 0;
579 }
580
581 static inline int
582 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
583                           const char __user *cpu_vaddr,
584                           int length)
585 {
586         int ret, cpu_offset = 0;
587
588         while (length > 0) {
589                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
590                 int this_length = min(cacheline_end - gpu_offset, length);
591                 int swizzled_gpu_offset = gpu_offset ^ 64;
592
593                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
594                                        cpu_vaddr + cpu_offset,
595                                        this_length);
596                 if (ret)
597                         return ret + length;
598
599                 cpu_offset += this_length;
600                 gpu_offset += this_length;
601                 length -= this_length;
602         }
603
604         return 0;
605 }
606
607 /*
608  * Pins the specified object's pages and synchronizes the object with
609  * GPU accesses. Sets needs_clflush to non-zero if the caller should
610  * flush the object from the CPU cache.
611  */
612 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
613                                     unsigned int *needs_clflush)
614 {
615         int ret;
616
617         *needs_clflush = 0;
618
619         if (!i915_gem_object_has_struct_page(obj))
620                 return -ENODEV;
621
622         ret = i915_gem_object_wait_rendering(obj, true);
623         if (ret)
624                 return ret;
625
626         ret = i915_gem_object_get_pages(obj);
627         if (ret)
628                 return ret;
629
630         i915_gem_object_pin_pages(obj);
631
632         i915_gem_object_flush_gtt_write_domain(obj);
633
634         /* If we're not in the cpu read domain, set ourself into the gtt
635          * read domain and manually flush cachelines (if required). This
636          * optimizes for the case when the gpu will dirty the data
637          * anyway again before the next pread happens.
638          */
639         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
640                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
641                                                         obj->cache_level);
642
643         if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
644                 ret = i915_gem_object_set_to_cpu_domain(obj, false);
645                 if (ret)
646                         goto err_unpin;
647
648                 *needs_clflush = 0;
649         }
650
651         /* return with the pages pinned */
652         return 0;
653
654 err_unpin:
655         i915_gem_object_unpin_pages(obj);
656         return ret;
657 }
658
659 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
660                                      unsigned int *needs_clflush)
661 {
662         int ret;
663
664         *needs_clflush = 0;
665         if (!i915_gem_object_has_struct_page(obj))
666                 return -ENODEV;
667
668         ret = i915_gem_object_wait_rendering(obj, false);
669         if (ret)
670                 return ret;
671
672         ret = i915_gem_object_get_pages(obj);
673         if (ret)
674                 return ret;
675
676         i915_gem_object_pin_pages(obj);
677
678         i915_gem_object_flush_gtt_write_domain(obj);
679
680         /* If we're not in the cpu write domain, set ourself into the
681          * gtt write domain and manually flush cachelines (as required).
682          * This optimizes for the case when the gpu will use the data
683          * right away and we therefore have to clflush anyway.
684          */
685         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
686                 *needs_clflush |= cpu_write_needs_clflush(obj) << 1;
687
688         /* Same trick applies to invalidate partially written cachelines read
689          * before writing.
690          */
691         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
692                 *needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
693                                                          obj->cache_level);
694
695         if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
696                 ret = i915_gem_object_set_to_cpu_domain(obj, true);
697                 if (ret)
698                         goto err_unpin;
699
700                 *needs_clflush = 0;
701         }
702
703         if ((*needs_clflush & CLFLUSH_AFTER) == 0)
704                 obj->cache_dirty = true;
705
706         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
707         obj->dirty = 1;
708         /* return with the pages pinned */
709         return 0;
710
711 err_unpin:
712         i915_gem_object_unpin_pages(obj);
713         return ret;
714 }
715
716 /* Per-page copy function for the shmem pread fastpath.
717  * Flushes invalid cachelines before reading the target if
718  * needs_clflush is set. */
719 static int
720 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
721                  char __user *user_data,
722                  bool page_do_bit17_swizzling, bool needs_clflush)
723 {
724         char *vaddr;
725         int ret;
726
727         if (unlikely(page_do_bit17_swizzling))
728                 return -EINVAL;
729
730         vaddr = kmap_atomic(page);
731         if (needs_clflush)
732                 drm_clflush_virt_range(vaddr + shmem_page_offset,
733                                        page_length);
734         ret = __copy_to_user_inatomic(user_data,
735                                       vaddr + shmem_page_offset,
736                                       page_length);
737         kunmap_atomic(vaddr);
738
739         return ret ? -EFAULT : 0;
740 }
741
742 static void
743 shmem_clflush_swizzled_range(char *addr, unsigned long length,
744                              bool swizzled)
745 {
746         if (unlikely(swizzled)) {
747                 unsigned long start = (unsigned long) addr;
748                 unsigned long end = (unsigned long) addr + length;
749
750                 /* For swizzling simply ensure that we always flush both
751                  * channels. Lame, but simple and it works. Swizzled
752                  * pwrite/pread is far from a hotpath - current userspace
753                  * doesn't use it at all. */
754                 start = round_down(start, 128);
755                 end = round_up(end, 128);
756
757                 drm_clflush_virt_range((void *)start, end - start);
758         } else {
759                 drm_clflush_virt_range(addr, length);
760         }
761
762 }
763
764 /* Only difference to the fast-path function is that this can handle bit17
765  * and uses non-atomic copy and kmap functions. */
766 static int
767 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
768                  char __user *user_data,
769                  bool page_do_bit17_swizzling, bool needs_clflush)
770 {
771         char *vaddr;
772         int ret;
773
774         vaddr = kmap(page);
775         if (needs_clflush)
776                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
777                                              page_length,
778                                              page_do_bit17_swizzling);
779
780         if (page_do_bit17_swizzling)
781                 ret = __copy_to_user_swizzled(user_data,
782                                               vaddr, shmem_page_offset,
783                                               page_length);
784         else
785                 ret = __copy_to_user(user_data,
786                                      vaddr + shmem_page_offset,
787                                      page_length);
788         kunmap(page);
789
790         return ret ? - EFAULT : 0;
791 }
792
793 static inline unsigned long
794 slow_user_access(struct io_mapping *mapping,
795                  uint64_t page_base, int page_offset,
796                  char __user *user_data,
797                  unsigned long length, bool pwrite)
798 {
799         void __iomem *ioaddr;
800         void *vaddr;
801         uint64_t unwritten;
802
803         ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
804         /* We can use the cpu mem copy function because this is X86. */
805         vaddr = (void __force *)ioaddr + page_offset;
806         if (pwrite)
807                 unwritten = __copy_from_user(vaddr, user_data, length);
808         else
809                 unwritten = __copy_to_user(user_data, vaddr, length);
810
811         io_mapping_unmap(ioaddr);
812         return unwritten;
813 }
814
815 static int
816 i915_gem_gtt_pread(struct drm_device *dev,
817                    struct drm_i915_gem_object *obj, uint64_t size,
818                    uint64_t data_offset, uint64_t data_ptr)
819 {
820         struct drm_i915_private *dev_priv = to_i915(dev);
821         struct i915_ggtt *ggtt = &dev_priv->ggtt;
822         struct i915_vma *vma;
823         struct drm_mm_node node;
824         char __user *user_data;
825         uint64_t remain;
826         uint64_t offset;
827         int ret;
828
829         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE);
830         if (!IS_ERR(vma)) {
831                 node.start = i915_ggtt_offset(vma);
832                 node.allocated = false;
833                 ret = i915_vma_put_fence(vma);
834                 if (ret) {
835                         i915_vma_unpin(vma);
836                         vma = ERR_PTR(ret);
837                 }
838         }
839         if (IS_ERR(vma)) {
840                 ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
841                 if (ret)
842                         goto out;
843
844                 ret = i915_gem_object_get_pages(obj);
845                 if (ret) {
846                         remove_mappable_node(&node);
847                         goto out;
848                 }
849
850                 i915_gem_object_pin_pages(obj);
851         }
852
853         ret = i915_gem_object_set_to_gtt_domain(obj, false);
854         if (ret)
855                 goto out_unpin;
856
857         user_data = u64_to_user_ptr(data_ptr);
858         remain = size;
859         offset = data_offset;
860
861         mutex_unlock(&dev->struct_mutex);
862         if (likely(!i915.prefault_disable)) {
863                 ret = fault_in_pages_writeable(user_data, remain);
864                 if (ret) {
865                         mutex_lock(&dev->struct_mutex);
866                         goto out_unpin;
867                 }
868         }
869
870         while (remain > 0) {
871                 /* Operation in this page
872                  *
873                  * page_base = page offset within aperture
874                  * page_offset = offset within page
875                  * page_length = bytes to copy for this page
876                  */
877                 u32 page_base = node.start;
878                 unsigned page_offset = offset_in_page(offset);
879                 unsigned page_length = PAGE_SIZE - page_offset;
880                 page_length = remain < page_length ? remain : page_length;
881                 if (node.allocated) {
882                         wmb();
883                         ggtt->base.insert_page(&ggtt->base,
884                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
885                                                node.start,
886                                                I915_CACHE_NONE, 0);
887                         wmb();
888                 } else {
889                         page_base += offset & PAGE_MASK;
890                 }
891                 /* This is a slow read/write as it tries to read from
892                  * and write to user memory which may result into page
893                  * faults, and so we cannot perform this under struct_mutex.
894                  */
895                 if (slow_user_access(&ggtt->mappable, page_base,
896                                      page_offset, user_data,
897                                      page_length, false)) {
898                         ret = -EFAULT;
899                         break;
900                 }
901
902                 remain -= page_length;
903                 user_data += page_length;
904                 offset += page_length;
905         }
906
907         mutex_lock(&dev->struct_mutex);
908         if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
909                 /* The user has modified the object whilst we tried
910                  * reading from it, and we now have no idea what domain
911                  * the pages should be in. As we have just been touching
912                  * them directly, flush everything back to the GTT
913                  * domain.
914                  */
915                 ret = i915_gem_object_set_to_gtt_domain(obj, false);
916         }
917
918 out_unpin:
919         if (node.allocated) {
920                 wmb();
921                 ggtt->base.clear_range(&ggtt->base,
922                                        node.start, node.size,
923                                        true);
924                 i915_gem_object_unpin_pages(obj);
925                 remove_mappable_node(&node);
926         } else {
927                 i915_vma_unpin(vma);
928         }
929 out:
930         return ret;
931 }
932
933 static int
934 i915_gem_shmem_pread(struct drm_device *dev,
935                      struct drm_i915_gem_object *obj,
936                      struct drm_i915_gem_pread *args,
937                      struct drm_file *file)
938 {
939         char __user *user_data;
940         ssize_t remain;
941         loff_t offset;
942         int shmem_page_offset, page_length, ret = 0;
943         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
944         int prefaulted = 0;
945         int needs_clflush = 0;
946         struct sg_page_iter sg_iter;
947
948         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
949         if (ret)
950                 return ret;
951
952         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
953         user_data = u64_to_user_ptr(args->data_ptr);
954         offset = args->offset;
955         remain = args->size;
956
957         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
958                          offset >> PAGE_SHIFT) {
959                 struct page *page = sg_page_iter_page(&sg_iter);
960
961                 if (remain <= 0)
962                         break;
963
964                 /* Operation in this page
965                  *
966                  * shmem_page_offset = offset within page in shmem file
967                  * page_length = bytes to copy for this page
968                  */
969                 shmem_page_offset = offset_in_page(offset);
970                 page_length = remain;
971                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
972                         page_length = PAGE_SIZE - shmem_page_offset;
973
974                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
975                         (page_to_phys(page) & (1 << 17)) != 0;
976
977                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
978                                        user_data, page_do_bit17_swizzling,
979                                        needs_clflush);
980                 if (ret == 0)
981                         goto next_page;
982
983                 mutex_unlock(&dev->struct_mutex);
984
985                 if (likely(!i915.prefault_disable) && !prefaulted) {
986                         ret = fault_in_pages_writeable(user_data, remain);
987                         /* Userspace is tricking us, but we've already clobbered
988                          * its pages with the prefault and promised to write the
989                          * data up to the first fault. Hence ignore any errors
990                          * and just continue. */
991                         (void)ret;
992                         prefaulted = 1;
993                 }
994
995                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
996                                        user_data, page_do_bit17_swizzling,
997                                        needs_clflush);
998
999                 mutex_lock(&dev->struct_mutex);
1000
1001                 if (ret)
1002                         goto out;
1003
1004 next_page:
1005                 remain -= page_length;
1006                 user_data += page_length;
1007                 offset += page_length;
1008         }
1009
1010 out:
1011         i915_gem_obj_finish_shmem_access(obj);
1012
1013         return ret;
1014 }
1015
1016 /**
1017  * Reads data from the object referenced by handle.
1018  * @dev: drm device pointer
1019  * @data: ioctl data blob
1020  * @file: drm file pointer
1021  *
1022  * On error, the contents of *data are undefined.
1023  */
1024 int
1025 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1026                      struct drm_file *file)
1027 {
1028         struct drm_i915_gem_pread *args = data;
1029         struct drm_i915_gem_object *obj;
1030         int ret = 0;
1031
1032         if (args->size == 0)
1033                 return 0;
1034
1035         if (!access_ok(VERIFY_WRITE,
1036                        u64_to_user_ptr(args->data_ptr),
1037                        args->size))
1038                 return -EFAULT;
1039
1040         obj = i915_gem_object_lookup(file, args->handle);
1041         if (!obj)
1042                 return -ENOENT;
1043
1044         /* Bounds check source.  */
1045         if (args->offset > obj->base.size ||
1046             args->size > obj->base.size - args->offset) {
1047                 ret = -EINVAL;
1048                 goto err;
1049         }
1050
1051         trace_i915_gem_object_pread(obj, args->offset, args->size);
1052
1053         ret = __unsafe_wait_rendering(obj, to_rps_client(file), true);
1054         if (ret)
1055                 goto err;
1056
1057         ret = i915_mutex_lock_interruptible(dev);
1058         if (ret)
1059                 goto err;
1060
1061         ret = i915_gem_shmem_pread(dev, obj, args, file);
1062
1063         /* pread for non shmem backed objects */
1064         if (ret == -EFAULT || ret == -ENODEV) {
1065                 intel_runtime_pm_get(to_i915(dev));
1066                 ret = i915_gem_gtt_pread(dev, obj, args->size,
1067                                         args->offset, args->data_ptr);
1068                 intel_runtime_pm_put(to_i915(dev));
1069         }
1070
1071         i915_gem_object_put(obj);
1072         mutex_unlock(&dev->struct_mutex);
1073
1074         return ret;
1075
1076 err:
1077         i915_gem_object_put_unlocked(obj);
1078         return ret;
1079 }
1080
1081 /* This is the fast write path which cannot handle
1082  * page faults in the source data
1083  */
1084
1085 static inline int
1086 fast_user_write(struct io_mapping *mapping,
1087                 loff_t page_base, int page_offset,
1088                 char __user *user_data,
1089                 int length)
1090 {
1091         void __iomem *vaddr_atomic;
1092         void *vaddr;
1093         unsigned long unwritten;
1094
1095         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
1096         /* We can use the cpu mem copy function because this is X86. */
1097         vaddr = (void __force*)vaddr_atomic + page_offset;
1098         unwritten = __copy_from_user_inatomic_nocache(vaddr,
1099                                                       user_data, length);
1100         io_mapping_unmap_atomic(vaddr_atomic);
1101         return unwritten;
1102 }
1103
1104 /**
1105  * This is the fast pwrite path, where we copy the data directly from the
1106  * user into the GTT, uncached.
1107  * @i915: i915 device private data
1108  * @obj: i915 gem object
1109  * @args: pwrite arguments structure
1110  * @file: drm file pointer
1111  */
1112 static int
1113 i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
1114                          struct drm_i915_gem_object *obj,
1115                          struct drm_i915_gem_pwrite *args,
1116                          struct drm_file *file)
1117 {
1118         struct i915_ggtt *ggtt = &i915->ggtt;
1119         struct drm_device *dev = obj->base.dev;
1120         struct i915_vma *vma;
1121         struct drm_mm_node node;
1122         uint64_t remain, offset;
1123         char __user *user_data;
1124         int ret;
1125         bool hit_slow_path = false;
1126
1127         if (i915_gem_object_is_tiled(obj))
1128                 return -EFAULT;
1129
1130         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1131                                        PIN_MAPPABLE | PIN_NONBLOCK);
1132         if (!IS_ERR(vma)) {
1133                 node.start = i915_ggtt_offset(vma);
1134                 node.allocated = false;
1135                 ret = i915_vma_put_fence(vma);
1136                 if (ret) {
1137                         i915_vma_unpin(vma);
1138                         vma = ERR_PTR(ret);
1139                 }
1140         }
1141         if (IS_ERR(vma)) {
1142                 ret = insert_mappable_node(i915, &node, PAGE_SIZE);
1143                 if (ret)
1144                         goto out;
1145
1146                 ret = i915_gem_object_get_pages(obj);
1147                 if (ret) {
1148                         remove_mappable_node(&node);
1149                         goto out;
1150                 }
1151
1152                 i915_gem_object_pin_pages(obj);
1153         }
1154
1155         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1156         if (ret)
1157                 goto out_unpin;
1158
1159         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1160         obj->dirty = true;
1161
1162         user_data = u64_to_user_ptr(args->data_ptr);
1163         offset = args->offset;
1164         remain = args->size;
1165         while (remain) {
1166                 /* Operation in this page
1167                  *
1168                  * page_base = page offset within aperture
1169                  * page_offset = offset within page
1170                  * page_length = bytes to copy for this page
1171                  */
1172                 u32 page_base = node.start;
1173                 unsigned page_offset = offset_in_page(offset);
1174                 unsigned page_length = PAGE_SIZE - page_offset;
1175                 page_length = remain < page_length ? remain : page_length;
1176                 if (node.allocated) {
1177                         wmb(); /* flush the write before we modify the GGTT */
1178                         ggtt->base.insert_page(&ggtt->base,
1179                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1180                                                node.start, I915_CACHE_NONE, 0);
1181                         wmb(); /* flush modifications to the GGTT (insert_page) */
1182                 } else {
1183                         page_base += offset & PAGE_MASK;
1184                 }
1185                 /* If we get a fault while copying data, then (presumably) our
1186                  * source page isn't available.  Return the error and we'll
1187                  * retry in the slow path.
1188                  * If the object is non-shmem backed, we retry again with the
1189                  * path that handles page fault.
1190                  */
1191                 if (fast_user_write(&ggtt->mappable, page_base,
1192                                     page_offset, user_data, page_length)) {
1193                         hit_slow_path = true;
1194                         mutex_unlock(&dev->struct_mutex);
1195                         if (slow_user_access(&ggtt->mappable,
1196                                              page_base,
1197                                              page_offset, user_data,
1198                                              page_length, true)) {
1199                                 ret = -EFAULT;
1200                                 mutex_lock(&dev->struct_mutex);
1201                                 goto out_flush;
1202                         }
1203
1204                         mutex_lock(&dev->struct_mutex);
1205                 }
1206
1207                 remain -= page_length;
1208                 user_data += page_length;
1209                 offset += page_length;
1210         }
1211
1212 out_flush:
1213         if (hit_slow_path) {
1214                 if (ret == 0 &&
1215                     (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
1216                         /* The user has modified the object whilst we tried
1217                          * reading from it, and we now have no idea what domain
1218                          * the pages should be in. As we have just been touching
1219                          * them directly, flush everything back to the GTT
1220                          * domain.
1221                          */
1222                         ret = i915_gem_object_set_to_gtt_domain(obj, false);
1223                 }
1224         }
1225
1226         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1227 out_unpin:
1228         if (node.allocated) {
1229                 wmb();
1230                 ggtt->base.clear_range(&ggtt->base,
1231                                        node.start, node.size,
1232                                        true);
1233                 i915_gem_object_unpin_pages(obj);
1234                 remove_mappable_node(&node);
1235         } else {
1236                 i915_vma_unpin(vma);
1237         }
1238 out:
1239         return ret;
1240 }
1241
1242 /* Per-page copy function for the shmem pwrite fastpath.
1243  * Flushes invalid cachelines before writing to the target if
1244  * needs_clflush_before is set and flushes out any written cachelines after
1245  * writing if needs_clflush is set. */
1246 static int
1247 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
1248                   char __user *user_data,
1249                   bool page_do_bit17_swizzling,
1250                   bool needs_clflush_before,
1251                   bool needs_clflush_after)
1252 {
1253         char *vaddr;
1254         int ret;
1255
1256         if (unlikely(page_do_bit17_swizzling))
1257                 return -EINVAL;
1258
1259         vaddr = kmap_atomic(page);
1260         if (needs_clflush_before)
1261                 drm_clflush_virt_range(vaddr + shmem_page_offset,
1262                                        page_length);
1263         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
1264                                         user_data, page_length);
1265         if (needs_clflush_after)
1266                 drm_clflush_virt_range(vaddr + shmem_page_offset,
1267                                        page_length);
1268         kunmap_atomic(vaddr);
1269
1270         return ret ? -EFAULT : 0;
1271 }
1272
1273 /* Only difference to the fast-path function is that this can handle bit17
1274  * and uses non-atomic copy and kmap functions. */
1275 static int
1276 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
1277                   char __user *user_data,
1278                   bool page_do_bit17_swizzling,
1279                   bool needs_clflush_before,
1280                   bool needs_clflush_after)
1281 {
1282         char *vaddr;
1283         int ret;
1284
1285         vaddr = kmap(page);
1286         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1287                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1288                                              page_length,
1289                                              page_do_bit17_swizzling);
1290         if (page_do_bit17_swizzling)
1291                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1292                                                 user_data,
1293                                                 page_length);
1294         else
1295                 ret = __copy_from_user(vaddr + shmem_page_offset,
1296                                        user_data,
1297                                        page_length);
1298         if (needs_clflush_after)
1299                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1300                                              page_length,
1301                                              page_do_bit17_swizzling);
1302         kunmap(page);
1303
1304         return ret ? -EFAULT : 0;
1305 }
1306
1307 static int
1308 i915_gem_shmem_pwrite(struct drm_device *dev,
1309                       struct drm_i915_gem_object *obj,
1310                       struct drm_i915_gem_pwrite *args,
1311                       struct drm_file *file)
1312 {
1313         ssize_t remain;
1314         loff_t offset;
1315         char __user *user_data;
1316         int shmem_page_offset, page_length, ret = 0;
1317         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1318         int hit_slowpath = 0;
1319         unsigned int needs_clflush;
1320         struct sg_page_iter sg_iter;
1321
1322         ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1323         if (ret)
1324                 return ret;
1325
1326         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1327         user_data = u64_to_user_ptr(args->data_ptr);
1328         offset = args->offset;
1329         remain = args->size;
1330
1331         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
1332                          offset >> PAGE_SHIFT) {
1333                 struct page *page = sg_page_iter_page(&sg_iter);
1334                 int partial_cacheline_write;
1335
1336                 if (remain <= 0)
1337                         break;
1338
1339                 /* Operation in this page
1340                  *
1341                  * shmem_page_offset = offset within page in shmem file
1342                  * page_length = bytes to copy for this page
1343                  */
1344                 shmem_page_offset = offset_in_page(offset);
1345
1346                 page_length = remain;
1347                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
1348                         page_length = PAGE_SIZE - shmem_page_offset;
1349
1350                 /* If we don't overwrite a cacheline completely we need to be
1351                  * careful to have up-to-date data by first clflushing. Don't
1352                  * overcomplicate things and flush the entire patch. */
1353                 partial_cacheline_write = needs_clflush & CLFLUSH_BEFORE &&
1354                         ((shmem_page_offset | page_length)
1355                                 & (boot_cpu_data.x86_clflush_size - 1));
1356
1357                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
1358                         (page_to_phys(page) & (1 << 17)) != 0;
1359
1360                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1361                                         user_data, page_do_bit17_swizzling,
1362                                         partial_cacheline_write,
1363                                         needs_clflush & CLFLUSH_AFTER);
1364                 if (ret == 0)
1365                         goto next_page;
1366
1367                 hit_slowpath = 1;
1368                 mutex_unlock(&dev->struct_mutex);
1369                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1370                                         user_data, page_do_bit17_swizzling,
1371                                         partial_cacheline_write,
1372                                         needs_clflush & CLFLUSH_AFTER);
1373
1374                 mutex_lock(&dev->struct_mutex);
1375
1376                 if (ret)
1377                         goto out;
1378
1379 next_page:
1380                 remain -= page_length;
1381                 user_data += page_length;
1382                 offset += page_length;
1383         }
1384
1385 out:
1386         i915_gem_obj_finish_shmem_access(obj);
1387
1388         if (hit_slowpath) {
1389                 /*
1390                  * Fixup: Flush cpu caches in case we didn't flush the dirty
1391                  * cachelines in-line while writing and the object moved
1392                  * out of the cpu write domain while we've dropped the lock.
1393                  */
1394                 if (!(needs_clflush & CLFLUSH_AFTER) &&
1395                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1396                         if (i915_gem_clflush_object(obj, obj->pin_display))
1397                                 needs_clflush |= CLFLUSH_AFTER;
1398                 }
1399         }
1400
1401         if (needs_clflush & CLFLUSH_AFTER)
1402                 i915_gem_chipset_flush(to_i915(dev));
1403
1404         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1405         return ret;
1406 }
1407
1408 /**
1409  * Writes data to the object referenced by handle.
1410  * @dev: drm device
1411  * @data: ioctl data blob
1412  * @file: drm file
1413  *
1414  * On error, the contents of the buffer that were to be modified are undefined.
1415  */
1416 int
1417 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1418                       struct drm_file *file)
1419 {
1420         struct drm_i915_private *dev_priv = to_i915(dev);
1421         struct drm_i915_gem_pwrite *args = data;
1422         struct drm_i915_gem_object *obj;
1423         int ret;
1424
1425         if (args->size == 0)
1426                 return 0;
1427
1428         if (!access_ok(VERIFY_READ,
1429                        u64_to_user_ptr(args->data_ptr),
1430                        args->size))
1431                 return -EFAULT;
1432
1433         if (likely(!i915.prefault_disable)) {
1434                 ret = fault_in_pages_readable(u64_to_user_ptr(args->data_ptr),
1435                                                    args->size);
1436                 if (ret)
1437                         return -EFAULT;
1438         }
1439
1440         obj = i915_gem_object_lookup(file, args->handle);
1441         if (!obj)
1442                 return -ENOENT;
1443
1444         /* Bounds check destination. */
1445         if (args->offset > obj->base.size ||
1446             args->size > obj->base.size - args->offset) {
1447                 ret = -EINVAL;
1448                 goto err;
1449         }
1450
1451         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1452
1453         ret = __unsafe_wait_rendering(obj, to_rps_client(file), false);
1454         if (ret)
1455                 goto err;
1456
1457         intel_runtime_pm_get(dev_priv);
1458
1459         ret = i915_mutex_lock_interruptible(dev);
1460         if (ret)
1461                 goto err_rpm;
1462
1463         ret = -EFAULT;
1464         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1465          * it would end up going through the fenced access, and we'll get
1466          * different detiling behavior between reading and writing.
1467          * pread/pwrite currently are reading and writing from the CPU
1468          * perspective, requiring manual detiling by the client.
1469          */
1470         if (!i915_gem_object_has_struct_page(obj) ||
1471             cpu_write_needs_clflush(obj)) {
1472                 ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
1473                 /* Note that the gtt paths might fail with non-page-backed user
1474                  * pointers (e.g. gtt mappings when moving data between
1475                  * textures). Fallback to the shmem path in that case. */
1476         }
1477
1478         if (ret == -EFAULT || ret == -ENOSPC) {
1479                 if (obj->phys_handle)
1480                         ret = i915_gem_phys_pwrite(obj, args, file);
1481                 else
1482                         ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1483         }
1484
1485         i915_gem_object_put(obj);
1486         mutex_unlock(&dev->struct_mutex);
1487         intel_runtime_pm_put(dev_priv);
1488
1489         return ret;
1490
1491 err_rpm:
1492         intel_runtime_pm_put(dev_priv);
1493 err:
1494         i915_gem_object_put_unlocked(obj);
1495         return ret;
1496 }
1497
1498 static inline enum fb_op_origin
1499 write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1500 {
1501         return (domain == I915_GEM_DOMAIN_GTT ?
1502                 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1503 }
1504
1505 /**
1506  * Called when user space prepares to use an object with the CPU, either
1507  * through the mmap ioctl's mapping or a GTT mapping.
1508  * @dev: drm device
1509  * @data: ioctl data blob
1510  * @file: drm file
1511  */
1512 int
1513 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1514                           struct drm_file *file)
1515 {
1516         struct drm_i915_gem_set_domain *args = data;
1517         struct drm_i915_gem_object *obj;
1518         uint32_t read_domains = args->read_domains;
1519         uint32_t write_domain = args->write_domain;
1520         int ret;
1521
1522         /* Only handle setting domains to types used by the CPU. */
1523         if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1524                 return -EINVAL;
1525
1526         /* Having something in the write domain implies it's in the read
1527          * domain, and only that read domain.  Enforce that in the request.
1528          */
1529         if (write_domain != 0 && read_domains != write_domain)
1530                 return -EINVAL;
1531
1532         obj = i915_gem_object_lookup(file, args->handle);
1533         if (!obj)
1534                 return -ENOENT;
1535
1536         /* Try to flush the object off the GPU without holding the lock.
1537          * We will repeat the flush holding the lock in the normal manner
1538          * to catch cases where we are gazumped.
1539          */
1540         ret = __unsafe_wait_rendering(obj, to_rps_client(file), !write_domain);
1541         if (ret)
1542                 goto err;
1543
1544         ret = i915_mutex_lock_interruptible(dev);
1545         if (ret)
1546                 goto err;
1547
1548         if (read_domains & I915_GEM_DOMAIN_GTT)
1549                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1550         else
1551                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1552
1553         if (write_domain != 0)
1554                 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1555
1556         i915_gem_object_put(obj);
1557         mutex_unlock(&dev->struct_mutex);
1558         return ret;
1559
1560 err:
1561         i915_gem_object_put_unlocked(obj);
1562         return ret;
1563 }
1564
1565 /**
1566  * Called when user space has done writes to this buffer
1567  * @dev: drm device
1568  * @data: ioctl data blob
1569  * @file: drm file
1570  */
1571 int
1572 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1573                          struct drm_file *file)
1574 {
1575         struct drm_i915_gem_sw_finish *args = data;
1576         struct drm_i915_gem_object *obj;
1577         int err = 0;
1578
1579         obj = i915_gem_object_lookup(file, args->handle);
1580         if (!obj)
1581                 return -ENOENT;
1582
1583         /* Pinned buffers may be scanout, so flush the cache */
1584         if (READ_ONCE(obj->pin_display)) {
1585                 err = i915_mutex_lock_interruptible(dev);
1586                 if (!err) {
1587                         i915_gem_object_flush_cpu_write_domain(obj);
1588                         mutex_unlock(&dev->struct_mutex);
1589                 }
1590         }
1591
1592         i915_gem_object_put_unlocked(obj);
1593         return err;
1594 }
1595
1596 static inline bool
1597 __vma_matches(struct vm_area_struct *vma, struct file *filp,
1598               unsigned long addr, unsigned long size)
1599 {
1600         if (vma->vm_file != filp)
1601                 return false;
1602
1603         return vma->vm_start == addr &&
1604                (vma->vm_end - vma->vm_start) == PAGE_ALIGN(size);
1605 }
1606
1607 /**
1608  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1609  *                       it is mapped to.
1610  * @dev: drm device
1611  * @data: ioctl data blob
1612  * @file: drm file
1613  *
1614  * While the mapping holds a reference on the contents of the object, it doesn't
1615  * imply a ref on the object itself.
1616  *
1617  * IMPORTANT:
1618  *
1619  * DRM driver writers who look a this function as an example for how to do GEM
1620  * mmap support, please don't implement mmap support like here. The modern way
1621  * to implement DRM mmap support is with an mmap offset ioctl (like
1622  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1623  * That way debug tooling like valgrind will understand what's going on, hiding
1624  * the mmap call in a driver private ioctl will break that. The i915 driver only
1625  * does cpu mmaps this way because we didn't know better.
1626  */
1627 int
1628 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1629                     struct drm_file *file)
1630 {
1631         struct drm_i915_gem_mmap *args = data;
1632         struct drm_i915_gem_object *obj;
1633         unsigned long addr;
1634
1635         if (args->flags & ~(I915_MMAP_WC))
1636                 return -EINVAL;
1637
1638         if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1639                 return -ENODEV;
1640
1641         obj = i915_gem_object_lookup(file, args->handle);
1642         if (!obj)
1643                 return -ENOENT;
1644
1645         /* prime objects have no backing filp to GEM mmap
1646          * pages from.
1647          */
1648         if (!obj->base.filp) {
1649                 i915_gem_object_put_unlocked(obj);
1650                 return -EINVAL;
1651         }
1652
1653         addr = vm_mmap(obj->base.filp, 0, args->size,
1654                        PROT_READ | PROT_WRITE, MAP_SHARED,
1655                        args->offset);
1656         if (args->flags & I915_MMAP_WC) {
1657                 struct mm_struct *mm = current->mm;
1658                 struct vm_area_struct *vma;
1659
1660                 if (down_write_killable(&mm->mmap_sem)) {
1661                         i915_gem_object_put_unlocked(obj);
1662                         return -EINTR;
1663                 }
1664                 vma = find_vma(mm, addr);
1665                 if (vma && __vma_matches(vma, obj->base.filp, addr, args->size))
1666                         vma->vm_page_prot =
1667                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1668                 else
1669                         addr = -ENOMEM;
1670                 up_write(&mm->mmap_sem);
1671
1672                 /* This may race, but that's ok, it only gets set */
1673                 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1674         }
1675         i915_gem_object_put_unlocked(obj);
1676         if (IS_ERR((void *)addr))
1677                 return addr;
1678
1679         args->addr_ptr = (uint64_t) addr;
1680
1681         return 0;
1682 }
1683
1684 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1685 {
1686         u64 size;
1687
1688         size = i915_gem_object_get_stride(obj);
1689         size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8;
1690
1691         return size >> PAGE_SHIFT;
1692 }
1693
1694 /**
1695  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1696  *
1697  * A history of the GTT mmap interface:
1698  *
1699  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1700  *     aligned and suitable for fencing, and still fit into the available
1701  *     mappable space left by the pinned display objects. A classic problem
1702  *     we called the page-fault-of-doom where we would ping-pong between
1703  *     two objects that could not fit inside the GTT and so the memcpy
1704  *     would page one object in at the expense of the other between every
1705  *     single byte.
1706  *
1707  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1708  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1709  *     object is too large for the available space (or simply too large
1710  *     for the mappable aperture!), a view is created instead and faulted
1711  *     into userspace. (This view is aligned and sized appropriately for
1712  *     fenced access.)
1713  *
1714  * Restrictions:
1715  *
1716  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1717  *    hangs on some architectures, corruption on others. An attempt to service
1718  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1719  *
1720  *  * the object must be able to fit into RAM (physical memory, though no
1721  *    limited to the mappable aperture).
1722  *
1723  *
1724  * Caveats:
1725  *
1726  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1727  *    all data to system memory. Subsequent access will not be synchronized.
1728  *
1729  *  * all mappings are revoked on runtime device suspend.
1730  *
1731  *  * there are only 8, 16 or 32 fence registers to share between all users
1732  *    (older machines require fence register for display and blitter access
1733  *    as well). Contention of the fence registers will cause the previous users
1734  *    to be unmapped and any new access will generate new page faults.
1735  *
1736  *  * running out of memory while servicing a fault may generate a SIGBUS,
1737  *    rather than the expected SIGSEGV.
1738  */
1739 int i915_gem_mmap_gtt_version(void)
1740 {
1741         return 1;
1742 }
1743
1744 /**
1745  * i915_gem_fault - fault a page into the GTT
1746  * @area: CPU VMA in question
1747  * @vmf: fault info
1748  *
1749  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1750  * from userspace.  The fault handler takes care of binding the object to
1751  * the GTT (if needed), allocating and programming a fence register (again,
1752  * only if needed based on whether the old reg is still valid or the object
1753  * is tiled) and inserting a new PTE into the faulting process.
1754  *
1755  * Note that the faulting process may involve evicting existing objects
1756  * from the GTT and/or fence registers to make room.  So performance may
1757  * suffer if the GTT working set is large or there are few fence registers
1758  * left.
1759  *
1760  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1761  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1762  */
1763 int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1764 {
1765 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1766         struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1767         struct drm_device *dev = obj->base.dev;
1768         struct drm_i915_private *dev_priv = to_i915(dev);
1769         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1770         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1771         struct i915_vma *vma;
1772         pgoff_t page_offset;
1773         unsigned int flags;
1774         int ret;
1775
1776         /* Sanity check that we allow writing into this object */
1777         if (i915_gem_object_is_readonly(obj) && write)
1778                 return VM_FAULT_SIGBUS;
1779
1780         /* We don't use vmf->pgoff since that has the fake offset */
1781         page_offset = ((unsigned long)vmf->virtual_address - area->vm_start) >>
1782                 PAGE_SHIFT;
1783
1784         trace_i915_gem_object_fault(obj, page_offset, true, write);
1785
1786         /* Try to flush the object off the GPU first without holding the lock.
1787          * Upon acquiring the lock, we will perform our sanity checks and then
1788          * repeat the flush holding the lock in the normal manner to catch cases
1789          * where we are gazumped.
1790          */
1791         ret = __unsafe_wait_rendering(obj, NULL, !write);
1792         if (ret)
1793                 goto err;
1794
1795         intel_runtime_pm_get(dev_priv);
1796
1797         ret = i915_mutex_lock_interruptible(dev);
1798         if (ret)
1799                 goto err_rpm;
1800
1801         /* Access to snoopable pages through the GTT is incoherent. */
1802         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1803                 ret = -EFAULT;
1804                 goto err_unlock;
1805         }
1806
1807         /* If the object is smaller than a couple of partial vma, it is
1808          * not worth only creating a single partial vma - we may as well
1809          * clear enough space for the full object.
1810          */
1811         flags = PIN_MAPPABLE;
1812         if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1813                 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1814
1815         /* Now pin it into the GTT as needed */
1816         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1817         if (IS_ERR(vma)) {
1818                 struct i915_ggtt_view view;
1819                 unsigned int chunk_size;
1820
1821                 /* Use a partial view if it is bigger than available space */
1822                 chunk_size = MIN_CHUNK_PAGES;
1823                 if (i915_gem_object_is_tiled(obj))
1824                         chunk_size = roundup(chunk_size, tile_row_pages(obj));
1825
1826                 memset(&view, 0, sizeof(view));
1827                 view.type = I915_GGTT_VIEW_PARTIAL;
1828                 view.params.partial.offset = rounddown(page_offset, chunk_size);
1829                 view.params.partial.size =
1830                         min_t(unsigned int, chunk_size,
1831                               (area->vm_end - area->vm_start) / PAGE_SIZE -
1832                               view.params.partial.offset);
1833
1834                 /* If the partial covers the entire object, just create a
1835                  * normal VMA.
1836                  */
1837                 if (chunk_size >= obj->base.size >> PAGE_SHIFT)
1838                         view.type = I915_GGTT_VIEW_NORMAL;
1839
1840                 /* Userspace is now writing through an untracked VMA, abandon
1841                  * all hope that the hardware is able to track future writes.
1842                  */
1843                 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1844
1845                 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1846         }
1847         if (IS_ERR(vma)) {
1848                 ret = PTR_ERR(vma);
1849                 goto err_unlock;
1850         }
1851
1852         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1853         if (ret)
1854                 goto err_unpin;
1855
1856         ret = i915_vma_get_fence(vma);
1857         if (ret)
1858                 goto err_unpin;
1859
1860         /* Finally, remap it using the new GTT offset */
1861         ret = remap_io_mapping(area,
1862                                area->vm_start + (vma->ggtt_view.params.partial.offset << PAGE_SHIFT),
1863                                (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1864                                min_t(u64, vma->size, area->vm_end - area->vm_start),
1865                                &ggtt->mappable);
1866         if (ret)
1867                 goto err_unpin;
1868
1869         obj->fault_mappable = true;
1870 err_unpin:
1871         __i915_vma_unpin(vma);
1872 err_unlock:
1873         mutex_unlock(&dev->struct_mutex);
1874 err_rpm:
1875         intel_runtime_pm_put(dev_priv);
1876 err:
1877         switch (ret) {
1878         case -EIO:
1879                 /*
1880                  * We eat errors when the gpu is terminally wedged to avoid
1881                  * userspace unduly crashing (gl has no provisions for mmaps to
1882                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1883                  * and so needs to be reported.
1884                  */
1885                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1886                         ret = VM_FAULT_SIGBUS;
1887                         break;
1888                 }
1889         case -EAGAIN:
1890                 /*
1891                  * EAGAIN means the gpu is hung and we'll wait for the error
1892                  * handler to reset everything when re-faulting in
1893                  * i915_mutex_lock_interruptible.
1894                  */
1895         case 0:
1896         case -ERESTARTSYS:
1897         case -EINTR:
1898         case -EBUSY:
1899                 /*
1900                  * EBUSY is ok: this just means that another thread
1901                  * already did the job.
1902                  */
1903                 ret = VM_FAULT_NOPAGE;
1904                 break;
1905         case -ENOMEM:
1906                 ret = VM_FAULT_OOM;
1907                 break;
1908         case -ENOSPC:
1909         case -EFAULT:
1910                 ret = VM_FAULT_SIGBUS;
1911                 break;
1912         default:
1913                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1914                 ret = VM_FAULT_SIGBUS;
1915                 break;
1916         }
1917         return ret;
1918 }
1919
1920 /**
1921  * i915_gem_release_mmap - remove physical page mappings
1922  * @obj: obj in question
1923  *
1924  * Preserve the reservation of the mmapping with the DRM core code, but
1925  * relinquish ownership of the pages back to the system.
1926  *
1927  * It is vital that we remove the page mapping if we have mapped a tiled
1928  * object through the GTT and then lose the fence register due to
1929  * resource pressure. Similarly if the object has been moved out of the
1930  * aperture, than pages mapped into userspace must be revoked. Removing the
1931  * mapping will then trigger a page fault on the next user access, allowing
1932  * fixup by i915_gem_fault().
1933  */
1934 void
1935 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1936 {
1937         /* Serialisation between user GTT access and our code depends upon
1938          * revoking the CPU's PTE whilst the mutex is held. The next user
1939          * pagefault then has to wait until we release the mutex.
1940          */
1941         lockdep_assert_held(&obj->base.dev->struct_mutex);
1942
1943         if (!obj->fault_mappable)
1944                 return;
1945
1946         drm_vma_node_unmap(&obj->base.vma_node,
1947                            obj->base.dev->anon_inode->i_mapping);
1948
1949         /* Ensure that the CPU's PTE are revoked and there are not outstanding
1950          * memory transactions from userspace before we return. The TLB
1951          * flushing implied above by changing the PTE above *should* be
1952          * sufficient, an extra barrier here just provides us with a bit
1953          * of paranoid documentation about our requirement to serialise
1954          * memory writes before touching registers / GSM.
1955          */
1956         wmb();
1957
1958         obj->fault_mappable = false;
1959 }
1960
1961 void
1962 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1963 {
1964         struct drm_i915_gem_object *obj;
1965
1966         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1967                 i915_gem_release_mmap(obj);
1968 }
1969
1970 /**
1971  * i915_gem_get_ggtt_size - return required global GTT size for an object
1972  * @dev_priv: i915 device
1973  * @size: object size
1974  * @tiling_mode: tiling mode
1975  *
1976  * Return the required global GTT size for an object, taking into account
1977  * potential fence register mapping.
1978  */
1979 u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
1980                            u64 size, int tiling_mode)
1981 {
1982         u64 ggtt_size;
1983
1984         GEM_BUG_ON(size == 0);
1985
1986         if (INTEL_GEN(dev_priv) >= 4 ||
1987             tiling_mode == I915_TILING_NONE)
1988                 return size;
1989
1990         /* Previous chips need a power-of-two fence region when tiling */
1991         if (IS_GEN3(dev_priv))
1992                 ggtt_size = 1024*1024;
1993         else
1994                 ggtt_size = 512*1024;
1995
1996         while (ggtt_size < size)
1997                 ggtt_size <<= 1;
1998
1999         return ggtt_size;
2000 }
2001
2002 /**
2003  * i915_gem_get_ggtt_alignment - return required global GTT alignment
2004  * @dev_priv: i915 device
2005  * @size: object size
2006  * @tiling_mode: tiling mode
2007  * @fenced: is fenced alignment required or not
2008  *
2009  * Return the required global GTT alignment for an object, taking into account
2010  * potential fence register mapping.
2011  */
2012 u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
2013                                 int tiling_mode, bool fenced)
2014 {
2015         GEM_BUG_ON(size == 0);
2016
2017         /*
2018          * Minimum alignment is 4k (GTT page size), but might be greater
2019          * if a fence register is needed for the object.
2020          */
2021         if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
2022             tiling_mode == I915_TILING_NONE)
2023                 return 4096;
2024
2025         /*
2026          * Previous chips need to be aligned to the size of the smallest
2027          * fence register that can contain the object.
2028          */
2029         return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
2030 }
2031
2032 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2033 {
2034         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2035         int err;
2036
2037         err = drm_gem_create_mmap_offset(&obj->base);
2038         if (!err)
2039                 return 0;
2040
2041         /* We can idle the GPU locklessly to flush stale objects, but in order
2042          * to claim that space for ourselves, we need to take the big
2043          * struct_mutex to free the requests+objects and allocate our slot.
2044          */
2045         err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2046         if (err)
2047                 return err;
2048
2049         err = i915_mutex_lock_interruptible(&dev_priv->drm);
2050         if (!err) {
2051                 i915_gem_retire_requests(dev_priv);
2052                 err = drm_gem_create_mmap_offset(&obj->base);
2053                 mutex_unlock(&dev_priv->drm.struct_mutex);
2054         }
2055
2056         return err;
2057 }
2058
2059 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2060 {
2061         drm_gem_free_mmap_offset(&obj->base);
2062 }
2063
2064 int
2065 i915_gem_mmap_gtt(struct drm_file *file,
2066                   struct drm_device *dev,
2067                   uint32_t handle,
2068                   uint64_t *offset)
2069 {
2070         struct drm_i915_gem_object *obj;
2071         int ret;
2072
2073         obj = i915_gem_object_lookup(file, handle);
2074         if (!obj)
2075                 return -ENOENT;
2076
2077         ret = i915_gem_object_create_mmap_offset(obj);
2078         if (ret == 0)
2079                 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2080
2081         i915_gem_object_put_unlocked(obj);
2082         return ret;
2083 }
2084
2085 /**
2086  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2087  * @dev: DRM device
2088  * @data: GTT mapping ioctl data
2089  * @file: GEM object info
2090  *
2091  * Simply returns the fake offset to userspace so it can mmap it.
2092  * The mmap call will end up in drm_gem_mmap(), which will set things
2093  * up so we can get faults in the handler above.
2094  *
2095  * The fault handler will take care of binding the object into the GTT
2096  * (since it may have been evicted to make room for something), allocating
2097  * a fence register, and mapping the appropriate aperture address into
2098  * userspace.
2099  */
2100 int
2101 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2102                         struct drm_file *file)
2103 {
2104         struct drm_i915_gem_mmap_gtt *args = data;
2105
2106         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2107 }
2108
2109 /* Immediately discard the backing storage */
2110 static void
2111 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2112 {
2113         i915_gem_object_free_mmap_offset(obj);
2114
2115         if (obj->base.filp == NULL)
2116                 return;
2117
2118         /* Our goal here is to return as much of the memory as
2119          * is possible back to the system as we are called from OOM.
2120          * To do this we must instruct the shmfs to drop all of its
2121          * backing pages, *now*.
2122          */
2123         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2124         obj->madv = __I915_MADV_PURGED;
2125 }
2126
2127 /* Try to discard unwanted pages */
2128 static void
2129 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2130 {
2131         struct address_space *mapping;
2132
2133         switch (obj->madv) {
2134         case I915_MADV_DONTNEED:
2135                 i915_gem_object_truncate(obj);
2136         case __I915_MADV_PURGED:
2137                 return;
2138         }
2139
2140         if (obj->base.filp == NULL)
2141                 return;
2142
2143         mapping = obj->base.filp->f_mapping,
2144         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2145 }
2146
2147 static void
2148 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2149 {
2150         struct sgt_iter sgt_iter;
2151         struct page *page;
2152         int ret;
2153
2154         BUG_ON(obj->madv == __I915_MADV_PURGED);
2155
2156         ret = i915_gem_object_set_to_cpu_domain(obj, true);
2157         if (WARN_ON(ret)) {
2158                 /* In the event of a disaster, abandon all caches and
2159                  * hope for the best.
2160                  */
2161                 i915_gem_clflush_object(obj, true);
2162                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2163         }
2164
2165         i915_gem_gtt_finish_object(obj);
2166
2167         if (i915_gem_object_needs_bit17_swizzle(obj))
2168                 i915_gem_object_save_bit_17_swizzle(obj);
2169
2170         if (obj->madv == I915_MADV_DONTNEED)
2171                 obj->dirty = 0;
2172
2173         for_each_sgt_page(page, sgt_iter, obj->pages) {
2174                 if (obj->dirty)
2175                         set_page_dirty(page);
2176
2177                 if (obj->madv == I915_MADV_WILLNEED)
2178                         mark_page_accessed(page);
2179
2180                 put_page(page);
2181         }
2182         obj->dirty = 0;
2183
2184         sg_free_table(obj->pages);
2185         kfree(obj->pages);
2186 }
2187
2188 static int
2189 __intel_wait_for_register_fw(struct drm_i915_private *dev_priv,
2190                              i915_reg_t reg,
2191                              const u32 mask,
2192                              const u32 value,
2193                              const unsigned int timeout_us,
2194                              const unsigned int timeout_ms)
2195 {
2196 #define done ((I915_READ_FW(reg) & mask) == value)
2197         int ret = wait_for_us(done, timeout_us);
2198         if (ret)
2199                 ret = wait_for(done, timeout_ms);
2200         return ret;
2201 #undef done
2202 }
2203
2204 static void invalidate_tlbs(struct drm_i915_private *dev_priv)
2205 {
2206         static const i915_reg_t gen8_regs[] = {
2207                 [RCS]  = GEN8_RTCR,
2208                 [VCS]  = GEN8_M1TCR,
2209                 [VCS2] = GEN8_M2TCR,
2210                 [VECS] = GEN8_VTCR,
2211                 [BCS]  = GEN8_BTCR,
2212         };
2213         struct intel_engine_cs *engine;
2214
2215         if (INTEL_GEN(dev_priv) < 8)
2216                 return;
2217
2218         assert_rpm_wakelock_held(dev_priv);
2219
2220         mutex_lock(&dev_priv->tlb_invalidate_lock);
2221         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2222
2223         for_each_engine(engine, dev_priv) {
2224                 /*
2225                  * HW architecture suggest typical invalidation time at 40us,
2226                  * with pessimistic cases up to 100us and a recommendation to
2227                  * cap at 1ms. We go a bit higher just in case.
2228                  */
2229                 const unsigned int timeout_us = 100;
2230                 const unsigned int timeout_ms = 4;
2231                 const enum intel_engine_id id = engine->id;
2232
2233                 if (WARN_ON_ONCE(id >= ARRAY_SIZE(gen8_regs) ||
2234                                  !i915_mmio_reg_offset(gen8_regs[id])))
2235                         continue;
2236
2237                 I915_WRITE_FW(gen8_regs[id], 1);
2238                 if (__intel_wait_for_register_fw(dev_priv,
2239                                                  gen8_regs[id], 1, 0,
2240                                                  timeout_us, timeout_ms))
2241                         DRM_ERROR_RATELIMITED("%s TLB invalidation did not complete in %ums!\n",
2242                                               engine->name, timeout_ms);
2243         }
2244
2245         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2246         mutex_unlock(&dev_priv->tlb_invalidate_lock);
2247 }
2248
2249 int
2250 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2251 {
2252         const struct drm_i915_gem_object_ops *ops = obj->ops;
2253
2254         if (obj->pages == NULL)
2255                 return 0;
2256
2257         if (obj->pages_pin_count)
2258                 return -EBUSY;
2259
2260         GEM_BUG_ON(obj->bind_count);
2261
2262         /* ->put_pages might need to allocate memory for the bit17 swizzle
2263          * array, hence protect them from being reaped by removing them from gtt
2264          * lists early. */
2265         list_del(&obj->global_list);
2266
2267         if (obj->mapping) {
2268                 void *ptr;
2269
2270                 ptr = ptr_mask_bits(obj->mapping);
2271                 if (is_vmalloc_addr(ptr))
2272                         vunmap(ptr);
2273                 else
2274                         kunmap(kmap_to_page(ptr));
2275
2276                 obj->mapping = NULL;
2277         }
2278
2279         if (test_and_clear_bit(I915_BO_WAS_BOUND_BIT, &obj->flags)) {
2280                 struct drm_i915_private *i915 = to_i915(obj->base.dev);
2281
2282                 if (intel_runtime_pm_get_if_in_use(i915)) {
2283                         invalidate_tlbs(i915);
2284                         intel_runtime_pm_put(i915);
2285                 }
2286         }
2287
2288         ops->put_pages(obj);
2289         obj->pages = NULL;
2290
2291         i915_gem_object_invalidate(obj);
2292
2293         return 0;
2294 }
2295
2296 static int
2297 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2298 {
2299         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2300         int page_count, i;
2301         struct address_space *mapping;
2302         struct sg_table *st;
2303         struct scatterlist *sg;
2304         struct sgt_iter sgt_iter;
2305         struct page *page;
2306         unsigned long last_pfn = 0;     /* suppress gcc warning */
2307         int ret;
2308         gfp_t gfp;
2309
2310         /* Assert that the object is not currently in any GPU domain. As it
2311          * wasn't in the GTT, there shouldn't be any way it could have been in
2312          * a GPU cache
2313          */
2314         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2315         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2316
2317         st = kmalloc(sizeof(*st), GFP_KERNEL);
2318         if (st == NULL)
2319                 return -ENOMEM;
2320
2321         page_count = obj->base.size / PAGE_SIZE;
2322         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2323                 kfree(st);
2324                 return -ENOMEM;
2325         }
2326
2327         /* Get the list of pages out of our struct file.  They'll be pinned
2328          * at this point until we release them.
2329          *
2330          * Fail silently without starting the shrinker
2331          */
2332         mapping = obj->base.filp->f_mapping;
2333         gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2334         gfp |= __GFP_NORETRY | __GFP_NOWARN;
2335         sg = st->sgl;
2336         st->nents = 0;
2337         for (i = 0; i < page_count; i++) {
2338                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2339                 if (IS_ERR(page)) {
2340                         i915_gem_shrink(dev_priv,
2341                                         page_count,
2342                                         I915_SHRINK_BOUND |
2343                                         I915_SHRINK_UNBOUND |
2344                                         I915_SHRINK_PURGEABLE);
2345                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2346                 }
2347                 if (IS_ERR(page)) {
2348                         /* We've tried hard to allocate the memory by reaping
2349                          * our own buffer, now let the real VM do its job and
2350                          * go down in flames if truly OOM.
2351                          */
2352                         i915_gem_shrink_all(dev_priv);
2353                         page = shmem_read_mapping_page(mapping, i);
2354                         if (IS_ERR(page)) {
2355                                 ret = PTR_ERR(page);
2356                                 goto err_sg;
2357                         }
2358                 }
2359 #ifdef CONFIG_SWIOTLB
2360                 if (swiotlb_nr_tbl()) {
2361                         st->nents++;
2362                         sg_set_page(sg, page, PAGE_SIZE, 0);
2363                         sg = sg_next(sg);
2364                         continue;
2365                 }
2366 #endif
2367                 if (!i || page_to_pfn(page) != last_pfn + 1) {
2368                         if (i)
2369                                 sg = sg_next(sg);
2370                         st->nents++;
2371                         sg_set_page(sg, page, PAGE_SIZE, 0);
2372                 } else {
2373                         sg->length += PAGE_SIZE;
2374                 }
2375                 last_pfn = page_to_pfn(page);
2376
2377                 /* Check that the i965g/gm workaround works. */
2378                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2379         }
2380 #ifdef CONFIG_SWIOTLB
2381         if (!swiotlb_nr_tbl())
2382 #endif
2383                 sg_mark_end(sg);
2384         obj->pages = st;
2385
2386         ret = i915_gem_gtt_prepare_object(obj);
2387         if (ret)
2388                 goto err_pages;
2389
2390         if (i915_gem_object_needs_bit17_swizzle(obj))
2391                 i915_gem_object_do_bit_17_swizzle(obj);
2392
2393         if (i915_gem_object_is_tiled(obj) &&
2394             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2395                 i915_gem_object_pin_pages(obj);
2396
2397         return 0;
2398
2399 err_sg:
2400         sg_mark_end(sg);
2401 err_pages:
2402         for_each_sgt_page(page, sgt_iter, st)
2403                 put_page(page);
2404         sg_free_table(st);
2405         kfree(st);
2406
2407         /* shmemfs first checks if there is enough memory to allocate the page
2408          * and reports ENOSPC should there be insufficient, along with the usual
2409          * ENOMEM for a genuine allocation failure.
2410          *
2411          * We use ENOSPC in our driver to mean that we have run out of aperture
2412          * space and so want to translate the error from shmemfs back to our
2413          * usual understanding of ENOMEM.
2414          */
2415         if (ret == -ENOSPC)
2416                 ret = -ENOMEM;
2417
2418         return ret;
2419 }
2420
2421 /* Ensure that the associated pages are gathered from the backing storage
2422  * and pinned into our object. i915_gem_object_get_pages() may be called
2423  * multiple times before they are released by a single call to
2424  * i915_gem_object_put_pages() - once the pages are no longer referenced
2425  * either as a result of memory pressure (reaping pages under the shrinker)
2426  * or as the object is itself released.
2427  */
2428 int
2429 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2430 {
2431         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2432         const struct drm_i915_gem_object_ops *ops = obj->ops;
2433         int ret;
2434
2435         if (obj->pages)
2436                 return 0;
2437
2438         if (obj->madv != I915_MADV_WILLNEED) {
2439                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2440                 return -EFAULT;
2441         }
2442
2443         BUG_ON(obj->pages_pin_count);
2444
2445         ret = ops->get_pages(obj);
2446         if (ret)
2447                 return ret;
2448
2449         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2450
2451         obj->get_page.sg = obj->pages->sgl;
2452         obj->get_page.last = 0;
2453
2454         return 0;
2455 }
2456
2457 /* The 'mapping' part of i915_gem_object_pin_map() below */
2458 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2459                                  enum i915_map_type type)
2460 {
2461         unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2462         struct sg_table *sgt = obj->pages;
2463         struct sgt_iter sgt_iter;
2464         struct page *page;
2465         struct page *stack_pages[32];
2466         struct page **pages = stack_pages;
2467         unsigned long i = 0;
2468         pgprot_t pgprot;
2469         void *addr;
2470
2471         /* A single page can always be kmapped */
2472         if (n_pages == 1 && type == I915_MAP_WB)
2473                 return kmap(sg_page(sgt->sgl));
2474
2475         if (n_pages > ARRAY_SIZE(stack_pages)) {
2476                 /* Too big for stack -- allocate temporary array instead */
2477                 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2478                 if (!pages)
2479                         return NULL;
2480         }
2481
2482         for_each_sgt_page(page, sgt_iter, sgt)
2483                 pages[i++] = page;
2484
2485         /* Check that we have the expected number of pages */
2486         GEM_BUG_ON(i != n_pages);
2487
2488         switch (type) {
2489         case I915_MAP_WB:
2490                 pgprot = PAGE_KERNEL;
2491                 break;
2492         case I915_MAP_WC:
2493                 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2494                 break;
2495         }
2496         addr = vmap(pages, n_pages, 0, pgprot);
2497
2498         if (pages != stack_pages)
2499                 drm_free_large(pages);
2500
2501         return addr;
2502 }
2503
2504 /* get, pin, and map the pages of the object into kernel space */
2505 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2506                               enum i915_map_type type)
2507 {
2508         enum i915_map_type has_type;
2509         bool pinned;
2510         void *ptr;
2511         int ret;
2512
2513         lockdep_assert_held(&obj->base.dev->struct_mutex);
2514         GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2515
2516         ret = i915_gem_object_get_pages(obj);
2517         if (ret)
2518                 return ERR_PTR(ret);
2519
2520         i915_gem_object_pin_pages(obj);
2521         pinned = obj->pages_pin_count > 1;
2522
2523         ptr = ptr_unpack_bits(obj->mapping, has_type);
2524         if (ptr && has_type != type) {
2525                 if (pinned) {
2526                         ret = -EBUSY;
2527                         goto err;
2528                 }
2529
2530                 if (is_vmalloc_addr(ptr))
2531                         vunmap(ptr);
2532                 else
2533                         kunmap(kmap_to_page(ptr));
2534
2535                 ptr = obj->mapping = NULL;
2536         }
2537
2538         if (!ptr) {
2539                 ptr = i915_gem_object_map(obj, type);
2540                 if (!ptr) {
2541                         ret = -ENOMEM;
2542                         goto err;
2543                 }
2544
2545                 obj->mapping = ptr_pack_bits(ptr, type);
2546         }
2547
2548         return ptr;
2549
2550 err:
2551         i915_gem_object_unpin_pages(obj);
2552         return ERR_PTR(ret);
2553 }
2554
2555 static void
2556 i915_gem_object_retire__write(struct i915_gem_active *active,
2557                               struct drm_i915_gem_request *request)
2558 {
2559         struct drm_i915_gem_object *obj =
2560                 container_of(active, struct drm_i915_gem_object, last_write);
2561
2562         intel_fb_obj_flush(obj, true, ORIGIN_CS);
2563 }
2564
2565 static void
2566 i915_gem_object_retire__read(struct i915_gem_active *active,
2567                              struct drm_i915_gem_request *request)
2568 {
2569         int idx = request->engine->id;
2570         struct drm_i915_gem_object *obj =
2571                 container_of(active, struct drm_i915_gem_object, last_read[idx]);
2572
2573         GEM_BUG_ON(!i915_gem_object_has_active_engine(obj, idx));
2574
2575         i915_gem_object_clear_active(obj, idx);
2576         if (i915_gem_object_is_active(obj))
2577                 return;
2578
2579         /* Bump our place on the bound list to keep it roughly in LRU order
2580          * so that we don't steal from recently used but inactive objects
2581          * (unless we are forced to ofc!)
2582          */
2583         if (obj->bind_count)
2584                 list_move_tail(&obj->global_list,
2585                                &request->i915->mm.bound_list);
2586
2587         i915_gem_object_put(obj);
2588 }
2589
2590 static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2591 {
2592         unsigned long elapsed;
2593
2594         if (ctx->hang_stats.banned)
2595                 return true;
2596
2597         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2598         if (ctx->hang_stats.ban_period_seconds &&
2599             elapsed <= ctx->hang_stats.ban_period_seconds) {
2600                 DRM_DEBUG("context hanging too fast, banning!\n");
2601                 return true;
2602         }
2603
2604         return false;
2605 }
2606
2607 static void i915_set_reset_status(struct i915_gem_context *ctx,
2608                                   const bool guilty)
2609 {
2610         struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2611
2612         if (guilty) {
2613                 hs->banned = i915_context_is_banned(ctx);
2614                 hs->batch_active++;
2615                 hs->guilty_ts = get_seconds();
2616         } else {
2617                 hs->batch_pending++;
2618         }
2619 }
2620
2621 struct drm_i915_gem_request *
2622 i915_gem_find_active_request(struct intel_engine_cs *engine)
2623 {
2624         struct drm_i915_gem_request *request;
2625
2626         /* We are called by the error capture and reset at a random
2627          * point in time. In particular, note that neither is crucially
2628          * ordered with an interrupt. After a hang, the GPU is dead and we
2629          * assume that no more writes can happen (we waited long enough for
2630          * all writes that were in transaction to be flushed) - adding an
2631          * extra delay for a recent interrupt is pointless. Hence, we do
2632          * not need an engine->irq_seqno_barrier() before the seqno reads.
2633          */
2634         list_for_each_entry(request, &engine->request_list, link) {
2635                 if (i915_gem_request_completed(request))
2636                         continue;
2637
2638                 if (!i915_sw_fence_done(&request->submit))
2639                         break;
2640
2641                 return request;
2642         }
2643
2644         return NULL;
2645 }
2646
2647 static void reset_request(struct drm_i915_gem_request *request)
2648 {
2649         void *vaddr = request->ring->vaddr;
2650         u32 head;
2651
2652         /* As this request likely depends on state from the lost
2653          * context, clear out all the user operations leaving the
2654          * breadcrumb at the end (so we get the fence notifications).
2655          */
2656         head = request->head;
2657         if (request->postfix < head) {
2658                 memset(vaddr + head, 0, request->ring->size - head);
2659                 head = 0;
2660         }
2661         memset(vaddr + head, 0, request->postfix - head);
2662 }
2663
2664 static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2665 {
2666         struct drm_i915_gem_request *request;
2667         struct i915_gem_context *incomplete_ctx;
2668         bool ring_hung;
2669
2670         /* Ensure irq handler finishes, and not run again. */
2671         tasklet_kill(&engine->irq_tasklet);
2672         if (engine->irq_seqno_barrier)
2673                 engine->irq_seqno_barrier(engine);
2674
2675         request = i915_gem_find_active_request(engine);
2676         if (!request)
2677                 return;
2678
2679         ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2680         i915_set_reset_status(request->ctx, ring_hung);
2681         if (!ring_hung)
2682                 return;
2683
2684         DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2685                          engine->name, request->fence.seqno);
2686
2687         /* Setup the CS to resume from the breadcrumb of the hung request */
2688         engine->reset_hw(engine, request);
2689
2690         /* Users of the default context do not rely on logical state
2691          * preserved between batches. They have to emit full state on
2692          * every batch and so it is safe to execute queued requests following
2693          * the hang.
2694          *
2695          * Other contexts preserve state, now corrupt. We want to skip all
2696          * queued requests that reference the corrupt context.
2697          */
2698         incomplete_ctx = request->ctx;
2699         if (i915_gem_context_is_default(incomplete_ctx))
2700                 return;
2701
2702         list_for_each_entry_continue(request, &engine->request_list, link)
2703                 if (request->ctx == incomplete_ctx)
2704                         reset_request(request);
2705 }
2706
2707 void i915_gem_reset(struct drm_i915_private *dev_priv)
2708 {
2709         struct intel_engine_cs *engine;
2710
2711         i915_gem_retire_requests(dev_priv);
2712
2713         for_each_engine(engine, dev_priv)
2714                 i915_gem_reset_engine(engine);
2715
2716         i915_gem_restore_fences(&dev_priv->drm);
2717
2718         if (dev_priv->gt.awake) {
2719                 intel_sanitize_gt_powersave(dev_priv);
2720                 intel_enable_gt_powersave(dev_priv);
2721                 if (INTEL_GEN(dev_priv) >= 6)
2722                         gen6_rps_busy(dev_priv);
2723         }
2724 }
2725
2726 static void nop_submit_request(struct drm_i915_gem_request *request)
2727 {
2728 }
2729
2730 static void i915_gem_cleanup_engine(struct intel_engine_cs *engine)
2731 {
2732         engine->submit_request = nop_submit_request;
2733
2734         /* Mark all pending requests as complete so that any concurrent
2735          * (lockless) lookup doesn't try and wait upon the request as we
2736          * reset it.
2737          */
2738         intel_engine_init_seqno(engine, engine->last_submitted_seqno);
2739
2740         /*
2741          * Clear the execlists queue up before freeing the requests, as those
2742          * are the ones that keep the context and ringbuffer backing objects
2743          * pinned in place.
2744          */
2745
2746         if (i915.enable_execlists) {
2747                 spin_lock(&engine->execlist_lock);
2748                 INIT_LIST_HEAD(&engine->execlist_queue);
2749                 i915_gem_request_put(engine->execlist_port[0].request);
2750                 i915_gem_request_put(engine->execlist_port[1].request);
2751                 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2752                 spin_unlock(&engine->execlist_lock);
2753         }
2754
2755         engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
2756 }
2757
2758 void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
2759 {
2760         struct intel_engine_cs *engine;
2761
2762         lockdep_assert_held(&dev_priv->drm.struct_mutex);
2763         set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2764
2765         i915_gem_context_lost(dev_priv);
2766         for_each_engine(engine, dev_priv)
2767                 i915_gem_cleanup_engine(engine);
2768         mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2769
2770         i915_gem_retire_requests(dev_priv);
2771 }
2772
2773 static void
2774 i915_gem_retire_work_handler(struct work_struct *work)
2775 {
2776         struct drm_i915_private *dev_priv =
2777                 container_of(work, typeof(*dev_priv), gt.retire_work.work);
2778         struct drm_device *dev = &dev_priv->drm;
2779
2780         /* Come back later if the device is busy... */
2781         if (mutex_trylock(&dev->struct_mutex)) {
2782                 i915_gem_retire_requests(dev_priv);
2783                 mutex_unlock(&dev->struct_mutex);
2784         }
2785
2786         /* Keep the retire handler running until we are finally idle.
2787          * We do not need to do this test under locking as in the worst-case
2788          * we queue the retire worker once too often.
2789          */
2790         if (READ_ONCE(dev_priv->gt.awake)) {
2791                 i915_queue_hangcheck(dev_priv);
2792                 queue_delayed_work(dev_priv->wq,
2793                                    &dev_priv->gt.retire_work,
2794                                    round_jiffies_up_relative(HZ));
2795         }
2796 }
2797
2798 static void
2799 i915_gem_idle_work_handler(struct work_struct *work)
2800 {
2801         struct drm_i915_private *dev_priv =
2802                 container_of(work, typeof(*dev_priv), gt.idle_work.work);
2803         struct drm_device *dev = &dev_priv->drm;
2804         struct intel_engine_cs *engine;
2805         bool rearm_hangcheck;
2806
2807         if (!READ_ONCE(dev_priv->gt.awake))
2808                 return;
2809
2810         if (READ_ONCE(dev_priv->gt.active_engines))
2811                 return;
2812
2813         rearm_hangcheck =
2814                 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
2815
2816         if (!mutex_trylock(&dev->struct_mutex)) {
2817                 /* Currently busy, come back later */
2818                 mod_delayed_work(dev_priv->wq,
2819                                  &dev_priv->gt.idle_work,
2820                                  msecs_to_jiffies(50));
2821                 goto out_rearm;
2822         }
2823
2824         if (dev_priv->gt.active_engines)
2825                 goto out_unlock;
2826
2827         for_each_engine(engine, dev_priv)
2828                 i915_gem_batch_pool_fini(&engine->batch_pool);
2829
2830         GEM_BUG_ON(!dev_priv->gt.awake);
2831         dev_priv->gt.awake = false;
2832         rearm_hangcheck = false;
2833
2834         if (INTEL_GEN(dev_priv) >= 6)
2835                 gen6_rps_idle(dev_priv);
2836
2837         if (NEEDS_RC6_CTX_CORRUPTION_WA(dev_priv)) {
2838                 i915_rc6_ctx_wa_check(dev_priv);
2839                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2840         }
2841
2842         intel_runtime_pm_put(dev_priv);
2843 out_unlock:
2844         mutex_unlock(&dev->struct_mutex);
2845
2846 out_rearm:
2847         if (rearm_hangcheck) {
2848                 GEM_BUG_ON(!dev_priv->gt.awake);
2849                 i915_queue_hangcheck(dev_priv);
2850         }
2851 }
2852
2853 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
2854 {
2855         struct drm_i915_gem_object *obj = to_intel_bo(gem);
2856         struct drm_i915_file_private *fpriv = file->driver_priv;
2857         struct i915_vma *vma, *vn;
2858
2859         mutex_lock(&obj->base.dev->struct_mutex);
2860         list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
2861                 if (vma->vm->file == fpriv)
2862                         i915_vma_close(vma);
2863         mutex_unlock(&obj->base.dev->struct_mutex);
2864 }
2865
2866 /**
2867  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2868  * @dev: drm device pointer
2869  * @data: ioctl data blob
2870  * @file: drm file pointer
2871  *
2872  * Returns 0 if successful, else an error is returned with the remaining time in
2873  * the timeout parameter.
2874  *  -ETIME: object is still busy after timeout
2875  *  -ERESTARTSYS: signal interrupted the wait
2876  *  -ENONENT: object doesn't exist
2877  * Also possible, but rare:
2878  *  -EAGAIN: GPU wedged
2879  *  -ENOMEM: damn
2880  *  -ENODEV: Internal IRQ fail
2881  *  -E?: The add request failed
2882  *
2883  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2884  * non-zero timeout parameter the wait ioctl will wait for the given number of
2885  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2886  * without holding struct_mutex the object may become re-busied before this
2887  * function completes. A similar but shorter * race condition exists in the busy
2888  * ioctl
2889  */
2890 int
2891 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2892 {
2893         struct drm_i915_gem_wait *args = data;
2894         struct intel_rps_client *rps = to_rps_client(file);
2895         struct drm_i915_gem_object *obj;
2896         unsigned long active;
2897         int idx, ret = 0;
2898
2899         if (args->flags != 0)
2900                 return -EINVAL;
2901
2902         obj = i915_gem_object_lookup(file, args->bo_handle);
2903         if (!obj)
2904                 return -ENOENT;
2905
2906         active = __I915_BO_ACTIVE(obj);
2907         for_each_active(active, idx) {
2908                 s64 *timeout = args->timeout_ns >= 0 ? &args->timeout_ns : NULL;
2909                 ret = i915_gem_active_wait_unlocked(&obj->last_read[idx],
2910                                                     I915_WAIT_INTERRUPTIBLE,
2911                                                     timeout, rps);
2912                 if (ret)
2913                         break;
2914         }
2915
2916         i915_gem_object_put_unlocked(obj);
2917         return ret;
2918 }
2919
2920 static void __i915_vma_iounmap(struct i915_vma *vma)
2921 {
2922         GEM_BUG_ON(i915_vma_is_pinned(vma));
2923
2924         if (vma->iomap == NULL)
2925                 return;
2926
2927         io_mapping_unmap(vma->iomap);
2928         vma->iomap = NULL;
2929 }
2930
2931 int i915_vma_unbind(struct i915_vma *vma)
2932 {
2933         struct drm_i915_gem_object *obj = vma->obj;
2934         unsigned long active;
2935         int ret;
2936
2937         /* First wait upon any activity as retiring the request may
2938          * have side-effects such as unpinning or even unbinding this vma.
2939          */
2940         active = i915_vma_get_active(vma);
2941         if (active) {
2942                 int idx;
2943
2944                 /* When a closed VMA is retired, it is unbound - eek.
2945                  * In order to prevent it from being recursively closed,
2946                  * take a pin on the vma so that the second unbind is
2947                  * aborted.
2948                  */
2949                 __i915_vma_pin(vma);
2950
2951                 for_each_active(active, idx) {
2952                         ret = i915_gem_active_retire(&vma->last_read[idx],
2953                                                    &vma->vm->dev->struct_mutex);
2954                         if (ret)
2955                                 break;
2956                 }
2957
2958                 __i915_vma_unpin(vma);
2959                 if (ret)
2960                         return ret;
2961
2962                 GEM_BUG_ON(i915_vma_is_active(vma));
2963         }
2964
2965         if (i915_vma_is_pinned(vma))
2966                 return -EBUSY;
2967
2968         if (!drm_mm_node_allocated(&vma->node))
2969                 goto destroy;
2970
2971         GEM_BUG_ON(obj->bind_count == 0);
2972         GEM_BUG_ON(!obj->pages);
2973
2974         if (i915_vma_is_map_and_fenceable(vma)) {
2975                 /* release the fence reg _after_ flushing */
2976                 ret = i915_vma_put_fence(vma);
2977                 if (ret)
2978                         return ret;
2979
2980                 /* Force a pagefault for domain tracking on next user access */
2981                 i915_gem_release_mmap(obj);
2982
2983                 __i915_vma_iounmap(vma);
2984                 vma->flags &= ~I915_VMA_CAN_FENCE;
2985         }
2986
2987         if (likely(!vma->vm->closed)) {
2988                 trace_i915_vma_unbind(vma);
2989                 vma->vm->unbind_vma(vma);
2990         }
2991         vma->flags &= ~(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND);
2992
2993         drm_mm_remove_node(&vma->node);
2994         list_move_tail(&vma->vm_link, &vma->vm->unbound_list);
2995
2996         if (vma->pages != obj->pages) {
2997                 GEM_BUG_ON(!vma->pages);
2998                 sg_free_table(vma->pages);
2999                 kfree(vma->pages);
3000         }
3001         vma->pages = NULL;
3002
3003         /* Since the unbound list is global, only move to that list if
3004          * no more VMAs exist. */
3005         if (--obj->bind_count == 0)
3006                 list_move_tail(&obj->global_list,
3007                                &to_i915(obj->base.dev)->mm.unbound_list);
3008
3009         /* And finally now the object is completely decoupled from this vma,
3010          * we can drop its hold on the backing storage and allow it to be
3011          * reaped by the shrinker.
3012          */
3013         i915_gem_object_unpin_pages(obj);
3014
3015 destroy:
3016         if (unlikely(i915_vma_is_closed(vma)))
3017                 i915_vma_destroy(vma);
3018
3019         return 0;
3020 }
3021
3022 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3023                            unsigned int flags)
3024 {
3025         struct intel_engine_cs *engine;
3026         int ret;
3027
3028         for_each_engine(engine, dev_priv) {
3029                 if (engine->last_context == NULL)
3030                         continue;
3031
3032                 ret = intel_engine_idle(engine, flags);
3033                 if (ret)
3034                         return ret;
3035         }
3036
3037         return 0;
3038 }
3039
3040 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3041                                      unsigned long cache_level)
3042 {
3043         struct drm_mm_node *gtt_space = &vma->node;
3044         struct drm_mm_node *other;
3045
3046         /*
3047          * On some machines we have to be careful when putting differing types
3048          * of snoopable memory together to avoid the prefetcher crossing memory
3049          * domains and dying. During vm initialisation, we decide whether or not
3050          * these constraints apply and set the drm_mm.color_adjust
3051          * appropriately.
3052          */
3053         if (vma->vm->mm.color_adjust == NULL)
3054                 return true;
3055
3056         if (!drm_mm_node_allocated(gtt_space))
3057                 return true;
3058
3059         if (list_empty(&gtt_space->node_list))
3060                 return true;
3061
3062         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3063         if (other->allocated && !other->hole_follows && other->color != cache_level)
3064                 return false;
3065
3066         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3067         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3068                 return false;
3069
3070         return true;
3071 }
3072
3073 /**
3074  * i915_vma_insert - finds a slot for the vma in its address space
3075  * @vma: the vma
3076  * @size: requested size in bytes (can be larger than the VMA)
3077  * @alignment: required alignment
3078  * @flags: mask of PIN_* flags to use
3079  *
3080  * First we try to allocate some free space that meets the requirements for
3081  * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
3082  * preferrably the oldest idle entry to make room for the new VMA.
3083  *
3084  * Returns:
3085  * 0 on success, negative error code otherwise.
3086  */
3087 static int
3088 i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
3089 {
3090         struct drm_i915_private *dev_priv = to_i915(vma->vm->dev);
3091         struct drm_i915_gem_object *obj = vma->obj;
3092         u64 start, end;
3093         int ret;
3094
3095         GEM_BUG_ON(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
3096         GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
3097
3098         size = max(size, vma->size);
3099         if (flags & PIN_MAPPABLE)
3100                 size = i915_gem_get_ggtt_size(dev_priv, size,
3101                                               i915_gem_object_get_tiling(obj));
3102
3103         alignment = max(max(alignment, vma->display_alignment),
3104                         i915_gem_get_ggtt_alignment(dev_priv, size,
3105                                                     i915_gem_object_get_tiling(obj),
3106                                                     flags & PIN_MAPPABLE));
3107
3108         start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3109
3110         end = vma->vm->total;
3111         if (flags & PIN_MAPPABLE)
3112                 end = min_t(u64, end, dev_priv->ggtt.mappable_end);
3113         if (flags & PIN_ZONE_4G)
3114                 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3115
3116         /* If binding the object/GGTT view requires more space than the entire
3117          * aperture has, reject it early before evicting everything in a vain
3118          * attempt to find space.
3119          */
3120         if (size > end) {
3121                 DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu [object=%zd] > %s aperture=%llu\n",
3122                           size, obj->base.size,
3123                           flags & PIN_MAPPABLE ? "mappable" : "total",
3124                           end);
3125                 return -E2BIG;
3126         }
3127
3128         ret = i915_gem_object_get_pages(obj);
3129         if (ret)
3130                 return ret;
3131
3132         i915_gem_object_pin_pages(obj);
3133
3134         if (flags & PIN_OFFSET_FIXED) {
3135                 u64 offset = flags & PIN_OFFSET_MASK;
3136                 if (offset & (alignment - 1) || offset > end - size) {
3137                         ret = -EINVAL;
3138                         goto err_unpin;
3139                 }
3140
3141                 vma->node.start = offset;
3142                 vma->node.size = size;
3143                 vma->node.color = obj->cache_level;
3144                 ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3145                 if (ret) {
3146                         ret = i915_gem_evict_for_vma(vma);
3147                         if (ret == 0)
3148                                 ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3149                         if (ret)
3150                                 goto err_unpin;
3151                 }
3152         } else {
3153                 u32 search_flag, alloc_flag;
3154
3155                 if (flags & PIN_HIGH) {
3156                         search_flag = DRM_MM_SEARCH_BELOW;
3157                         alloc_flag = DRM_MM_CREATE_TOP;
3158                 } else {
3159                         search_flag = DRM_MM_SEARCH_DEFAULT;
3160                         alloc_flag = DRM_MM_CREATE_DEFAULT;
3161                 }
3162
3163                 /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3164                  * so we know that we always have a minimum alignment of 4096.
3165                  * The drm_mm range manager is optimised to return results
3166                  * with zero alignment, so where possible use the optimal
3167                  * path.
3168                  */
3169                 if (alignment <= 4096)
3170                         alignment = 0;
3171
3172 search_free:
3173                 ret = drm_mm_insert_node_in_range_generic(&vma->vm->mm,
3174                                                           &vma->node,
3175                                                           size, alignment,
3176                                                           obj->cache_level,
3177                                                           start, end,
3178                                                           search_flag,
3179                                                           alloc_flag);
3180                 if (ret) {
3181                         ret = i915_gem_evict_something(vma->vm, size, alignment,
3182                                                        obj->cache_level,
3183                                                        start, end,
3184                                                        flags);
3185                         if (ret == 0)
3186                                 goto search_free;
3187
3188                         goto err_unpin;
3189                 }
3190         }
3191         GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level));
3192
3193         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3194         list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3195         obj->bind_count++;
3196
3197         return 0;
3198
3199 err_unpin:
3200         i915_gem_object_unpin_pages(obj);
3201         return ret;
3202 }
3203
3204 bool
3205 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3206                         bool force)
3207 {
3208         /* If we don't have a page list set up, then we're not pinned
3209          * to GPU, and we can ignore the cache flush because it'll happen
3210          * again at bind time.
3211          */
3212         if (obj->pages == NULL)
3213                 return false;
3214
3215         /*
3216          * Stolen memory is always coherent with the GPU as it is explicitly
3217          * marked as wc by the system, or the system is cache-coherent.
3218          */
3219         if (obj->stolen || obj->phys_handle)
3220                 return false;
3221
3222         /* If the GPU is snooping the contents of the CPU cache,
3223          * we do not need to manually clear the CPU cache lines.  However,
3224          * the caches are only snooped when the render cache is
3225          * flushed/invalidated.  As we always have to emit invalidations
3226          * and flushes when moving into and out of the RENDER domain, correct
3227          * snooping behaviour occurs naturally as the result of our domain
3228          * tracking.
3229          */
3230         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3231                 obj->cache_dirty = true;
3232                 return false;
3233         }
3234
3235         trace_i915_gem_object_clflush(obj);
3236         drm_clflush_sg(obj->pages);
3237         obj->cache_dirty = false;
3238
3239         return true;
3240 }
3241
3242 /** Flushes the GTT write domain for the object if it's dirty. */
3243 static void
3244 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3245 {
3246         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3247
3248         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3249                 return;
3250
3251         /* No actual flushing is required for the GTT write domain.  Writes
3252          * to it "immediately" go to main memory as far as we know, so there's
3253          * no chipset flush.  It also doesn't land in render cache.
3254          *
3255          * However, we do have to enforce the order so that all writes through
3256          * the GTT land before any writes to the device, such as updates to
3257          * the GATT itself.
3258          *
3259          * We also have to wait a bit for the writes to land from the GTT.
3260          * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3261          * timing. This issue has only been observed when switching quickly
3262          * between GTT writes and CPU reads from inside the kernel on recent hw,
3263          * and it appears to only affect discrete GTT blocks (i.e. on LLC
3264          * system agents we cannot reproduce this behaviour).
3265          */
3266         wmb();
3267         if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3268                 POSTING_READ(RING_ACTHD(dev_priv->engine[RCS].mmio_base));
3269
3270         intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3271
3272         obj->base.write_domain = 0;
3273         trace_i915_gem_object_change_domain(obj,
3274                                             obj->base.read_domains,
3275                                             I915_GEM_DOMAIN_GTT);
3276 }
3277
3278 /** Flushes the CPU write domain for the object if it's dirty. */
3279 static void
3280 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3281 {
3282         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3283                 return;
3284
3285         if (i915_gem_clflush_object(obj, obj->pin_display))
3286                 i915_gem_chipset_flush(to_i915(obj->base.dev));
3287
3288         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3289
3290         obj->base.write_domain = 0;
3291         trace_i915_gem_object_change_domain(obj,
3292                                             obj->base.read_domains,
3293                                             I915_GEM_DOMAIN_CPU);
3294 }
3295
3296 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
3297 {
3298         struct i915_vma *vma;
3299
3300         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3301                 if (!i915_vma_is_ggtt(vma))
3302                         continue;
3303
3304                 if (i915_vma_is_active(vma))
3305                         continue;
3306
3307                 if (!drm_mm_node_allocated(&vma->node))
3308                         continue;
3309
3310                 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3311         }
3312 }
3313
3314 /**
3315  * Moves a single object to the GTT read, and possibly write domain.
3316  * @obj: object to act on
3317  * @write: ask for write access or read only
3318  *
3319  * This function returns when the move is complete, including waiting on
3320  * flushes to occur.
3321  */
3322 int
3323 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3324 {
3325         uint32_t old_write_domain, old_read_domains;
3326         int ret;
3327
3328         ret = i915_gem_object_wait_rendering(obj, !write);
3329         if (ret)
3330                 return ret;
3331
3332         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3333                 return 0;
3334
3335         /* Flush and acquire obj->pages so that we are coherent through
3336          * direct access in memory with previous cached writes through
3337          * shmemfs and that our cache domain tracking remains valid.
3338          * For example, if the obj->filp was moved to swap without us
3339          * being notified and releasing the pages, we would mistakenly
3340          * continue to assume that the obj remained out of the CPU cached
3341          * domain.
3342          */
3343         ret = i915_gem_object_get_pages(obj);
3344         if (ret)
3345                 return ret;
3346
3347         i915_gem_object_flush_cpu_write_domain(obj);
3348
3349         /* Serialise direct access to this object with the barriers for
3350          * coherent writes from the GPU, by effectively invalidating the
3351          * GTT domain upon first access.
3352          */
3353         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3354                 mb();
3355
3356         old_write_domain = obj->base.write_domain;
3357         old_read_domains = obj->base.read_domains;
3358
3359         /* It should now be out of any other write domains, and we can update
3360          * the domain values for our changes.
3361          */
3362         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3363         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3364         if (write) {
3365                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3366                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3367                 obj->dirty = 1;
3368         }
3369
3370         trace_i915_gem_object_change_domain(obj,
3371                                             old_read_domains,
3372                                             old_write_domain);
3373
3374         /* And bump the LRU for this access */
3375         i915_gem_object_bump_inactive_ggtt(obj);
3376
3377         return 0;
3378 }
3379
3380 /**
3381  * Changes the cache-level of an object across all VMA.
3382  * @obj: object to act on
3383  * @cache_level: new cache level to set for the object
3384  *
3385  * After this function returns, the object will be in the new cache-level
3386  * across all GTT and the contents of the backing storage will be coherent,
3387  * with respect to the new cache-level. In order to keep the backing storage
3388  * coherent for all users, we only allow a single cache level to be set
3389  * globally on the object and prevent it from being changed whilst the
3390  * hardware is reading from the object. That is if the object is currently
3391  * on the scanout it will be set to uncached (or equivalent display
3392  * cache coherency) and all non-MOCS GPU access will also be uncached so
3393  * that all direct access to the scanout remains coherent.
3394  */
3395 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3396                                     enum i915_cache_level cache_level)
3397 {
3398         struct i915_vma *vma;
3399         int ret = 0;
3400
3401         if (obj->cache_level == cache_level)
3402                 goto out;
3403
3404         /* Inspect the list of currently bound VMA and unbind any that would
3405          * be invalid given the new cache-level. This is principally to
3406          * catch the issue of the CS prefetch crossing page boundaries and
3407          * reading an invalid PTE on older architectures.
3408          */
3409 restart:
3410         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3411                 if (!drm_mm_node_allocated(&vma->node))
3412                         continue;
3413
3414                 if (i915_vma_is_pinned(vma)) {
3415                         DRM_DEBUG("can not change the cache level of pinned objects\n");
3416                         return -EBUSY;
3417                 }
3418
3419                 if (i915_gem_valid_gtt_space(vma, cache_level))
3420                         continue;
3421
3422                 ret = i915_vma_unbind(vma);
3423                 if (ret)
3424                         return ret;
3425
3426                 /* As unbinding may affect other elements in the
3427                  * obj->vma_list (due to side-effects from retiring
3428                  * an active vma), play safe and restart the iterator.
3429                  */
3430                 goto restart;
3431         }
3432
3433         /* We can reuse the existing drm_mm nodes but need to change the
3434          * cache-level on the PTE. We could simply unbind them all and
3435          * rebind with the correct cache-level on next use. However since
3436          * we already have a valid slot, dma mapping, pages etc, we may as
3437          * rewrite the PTE in the belief that doing so tramples upon less
3438          * state and so involves less work.
3439          */
3440         if (obj->bind_count) {
3441                 /* Before we change the PTE, the GPU must not be accessing it.
3442                  * If we wait upon the object, we know that all the bound
3443                  * VMA are no longer active.
3444                  */
3445                 ret = i915_gem_object_wait_rendering(obj, false);
3446                 if (ret)
3447                         return ret;
3448
3449                 if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) {
3450                         /* Access to snoopable pages through the GTT is
3451                          * incoherent and on some machines causes a hard
3452                          * lockup. Relinquish the CPU mmaping to force
3453                          * userspace to refault in the pages and we can
3454                          * then double check if the GTT mapping is still
3455                          * valid for that pointer access.
3456                          */
3457                         i915_gem_release_mmap(obj);
3458
3459                         /* As we no longer need a fence for GTT access,
3460                          * we can relinquish it now (and so prevent having
3461                          * to steal a fence from someone else on the next
3462                          * fence request). Note GPU activity would have
3463                          * dropped the fence as all snoopable access is
3464                          * supposed to be linear.
3465                          */
3466                         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3467                                 ret = i915_vma_put_fence(vma);
3468                                 if (ret)
3469                                         return ret;
3470                         }
3471                 } else {
3472                         /* We either have incoherent backing store and
3473                          * so no GTT access or the architecture is fully
3474                          * coherent. In such cases, existing GTT mmaps
3475                          * ignore the cache bit in the PTE and we can
3476                          * rewrite it without confusing the GPU or having
3477                          * to force userspace to fault back in its mmaps.
3478                          */
3479                 }
3480
3481                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3482                         if (!drm_mm_node_allocated(&vma->node))
3483                                 continue;
3484
3485                         ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3486                         if (ret)
3487                                 return ret;
3488                 }
3489         }
3490
3491         list_for_each_entry(vma, &obj->vma_list, obj_link)
3492                 vma->node.color = cache_level;
3493         obj->cache_level = cache_level;
3494
3495 out:
3496         /* Flush the dirty CPU caches to the backing storage so that the
3497          * object is now coherent at its new cache level (with respect
3498          * to the access domain).
3499          */
3500         if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
3501                 if (i915_gem_clflush_object(obj, true))
3502                         i915_gem_chipset_flush(to_i915(obj->base.dev));
3503         }
3504
3505         return 0;
3506 }
3507
3508 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3509                                struct drm_file *file)
3510 {
3511         struct drm_i915_gem_caching *args = data;
3512         struct drm_i915_gem_object *obj;
3513
3514         obj = i915_gem_object_lookup(file, args->handle);
3515         if (!obj)
3516                 return -ENOENT;
3517
3518         switch (obj->cache_level) {
3519         case I915_CACHE_LLC:
3520         case I915_CACHE_L3_LLC:
3521                 args->caching = I915_CACHING_CACHED;
3522                 break;
3523
3524         case I915_CACHE_WT:
3525                 args->caching = I915_CACHING_DISPLAY;
3526                 break;
3527
3528         default:
3529                 args->caching = I915_CACHING_NONE;
3530                 break;
3531         }
3532
3533         i915_gem_object_put_unlocked(obj);
3534         return 0;
3535 }
3536
3537 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3538                                struct drm_file *file)
3539 {
3540         struct drm_i915_private *dev_priv = to_i915(dev);
3541         struct drm_i915_gem_caching *args = data;
3542         struct drm_i915_gem_object *obj;
3543         enum i915_cache_level level;
3544         int ret;
3545
3546         switch (args->caching) {
3547         case I915_CACHING_NONE:
3548                 level = I915_CACHE_NONE;
3549                 break;
3550         case I915_CACHING_CACHED:
3551                 /*
3552                  * Due to a HW issue on BXT A stepping, GPU stores via a
3553                  * snooped mapping may leave stale data in a corresponding CPU
3554                  * cacheline, whereas normally such cachelines would get
3555                  * invalidated.
3556                  */
3557                 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3558                         return -ENODEV;
3559
3560                 level = I915_CACHE_LLC;
3561                 break;
3562         case I915_CACHING_DISPLAY:
3563                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3564                 break;
3565         default:
3566                 return -EINVAL;
3567         }
3568
3569         intel_runtime_pm_get(dev_priv);
3570
3571         ret = i915_mutex_lock_interruptible(dev);
3572         if (ret)
3573                 goto rpm_put;
3574
3575         obj = i915_gem_object_lookup(file, args->handle);
3576         if (!obj) {
3577                 ret = -ENOENT;
3578                 goto unlock;
3579         }
3580
3581         ret = i915_gem_object_set_cache_level(obj, level);
3582
3583         i915_gem_object_put(obj);
3584 unlock:
3585         mutex_unlock(&dev->struct_mutex);
3586 rpm_put:
3587         intel_runtime_pm_put(dev_priv);
3588
3589         return ret;
3590 }
3591
3592 /*
3593  * Prepare buffer for display plane (scanout, cursors, etc).
3594  * Can be called from an uninterruptible phase (modesetting) and allows
3595  * any flushes to be pipelined (for pageflips).
3596  */
3597 struct i915_vma *
3598 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3599                                      u32 alignment,
3600                                      const struct i915_ggtt_view *view)
3601 {
3602         struct i915_vma *vma;
3603         u32 old_read_domains, old_write_domain;
3604         int ret;
3605
3606         /* Mark the pin_display early so that we account for the
3607          * display coherency whilst setting up the cache domains.
3608          */
3609         obj->pin_display++;
3610
3611         /* The display engine is not coherent with the LLC cache on gen6.  As
3612          * a result, we make sure that the pinning that is about to occur is
3613          * done with uncached PTEs. This is lowest common denominator for all
3614          * chipsets.
3615          *
3616          * However for gen6+, we could do better by using the GFDT bit instead
3617          * of uncaching, which would allow us to flush all the LLC-cached data
3618          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3619          */
3620         ret = i915_gem_object_set_cache_level(obj,
3621                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3622         if (ret) {
3623                 vma = ERR_PTR(ret);
3624                 goto err_unpin_display;
3625         }
3626
3627         /* As the user may map the buffer once pinned in the display plane
3628          * (e.g. libkms for the bootup splash), we have to ensure that we
3629          * always use map_and_fenceable for all scanout buffers. However,
3630          * it may simply be too big to fit into mappable, in which case
3631          * put it anyway and hope that userspace can cope (but always first
3632          * try to preserve the existing ABI).
3633          */
3634         vma = ERR_PTR(-ENOSPC);
3635         if (view->type == I915_GGTT_VIEW_NORMAL)
3636                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3637                                                PIN_MAPPABLE | PIN_NONBLOCK);
3638         if (IS_ERR(vma)) {
3639                 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3640                 unsigned int flags;
3641
3642                 /* Valleyview is definitely limited to scanning out the first
3643                  * 512MiB. Lets presume this behaviour was inherited from the
3644                  * g4x display engine and that all earlier gen are similarly
3645                  * limited. Testing suggests that it is a little more
3646                  * complicated than this. For example, Cherryview appears quite
3647                  * happy to scanout from anywhere within its global aperture.
3648                  */
3649                 flags = 0;
3650                 if (HAS_GMCH_DISPLAY(i915))
3651                         flags = PIN_MAPPABLE;
3652                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3653         }
3654         if (IS_ERR(vma))
3655                 goto err_unpin_display;
3656
3657         vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3658
3659         i915_gem_object_flush_cpu_write_domain(obj);
3660
3661         old_write_domain = obj->base.write_domain;
3662         old_read_domains = obj->base.read_domains;
3663
3664         /* It should now be out of any other write domains, and we can update
3665          * the domain values for our changes.
3666          */
3667         obj->base.write_domain = 0;
3668         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3669
3670         trace_i915_gem_object_change_domain(obj,
3671                                             old_read_domains,
3672                                             old_write_domain);
3673
3674         return vma;
3675
3676 err_unpin_display:
3677         obj->pin_display--;
3678         return vma;
3679 }
3680
3681 void
3682 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3683 {
3684         if (WARN_ON(vma->obj->pin_display == 0))
3685                 return;
3686
3687         if (--vma->obj->pin_display == 0)
3688                 vma->display_alignment = 0;
3689
3690         /* Bump the LRU to try and avoid premature eviction whilst flipping  */
3691         if (!i915_vma_is_active(vma))
3692                 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3693
3694         i915_vma_unpin(vma);
3695 }
3696
3697 /**
3698  * Moves a single object to the CPU read, and possibly write domain.
3699  * @obj: object to act on
3700  * @write: requesting write or read-only access
3701  *
3702  * This function returns when the move is complete, including waiting on
3703  * flushes to occur.
3704  */
3705 int
3706 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3707 {
3708         uint32_t old_write_domain, old_read_domains;
3709         int ret;
3710
3711         ret = i915_gem_object_wait_rendering(obj, !write);
3712         if (ret)
3713                 return ret;
3714
3715         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3716                 return 0;
3717
3718         i915_gem_object_flush_gtt_write_domain(obj);
3719
3720         old_write_domain = obj->base.write_domain;
3721         old_read_domains = obj->base.read_domains;
3722
3723         /* Flush the CPU cache if it's still invalid. */
3724         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3725                 i915_gem_clflush_object(obj, false);
3726
3727                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3728         }
3729
3730         /* It should now be out of any other write domains, and we can update
3731          * the domain values for our changes.
3732          */
3733         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3734
3735         /* If we're writing through the CPU, then the GPU read domains will
3736          * need to be invalidated at next use.
3737          */
3738         if (write) {
3739                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3740                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3741         }
3742
3743         trace_i915_gem_object_change_domain(obj,
3744                                             old_read_domains,
3745                                             old_write_domain);
3746
3747         return 0;
3748 }
3749
3750 /* Throttle our rendering by waiting until the ring has completed our requests
3751  * emitted over 20 msec ago.
3752  *
3753  * Note that if we were to use the current jiffies each time around the loop,
3754  * we wouldn't escape the function with any frames outstanding if the time to
3755  * render a frame was over 20ms.
3756  *
3757  * This should get us reasonable parallelism between CPU and GPU but also
3758  * relatively low latency when blocking on a particular request to finish.
3759  */
3760 static int
3761 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3762 {
3763         struct drm_i915_private *dev_priv = to_i915(dev);
3764         struct drm_i915_file_private *file_priv = file->driver_priv;
3765         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3766         struct drm_i915_gem_request *request, *target = NULL;
3767         int ret;
3768
3769         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3770         if (ret)
3771                 return ret;
3772
3773         /* ABI: return -EIO if already wedged */
3774         if (i915_terminally_wedged(&dev_priv->gpu_error))
3775                 return -EIO;
3776
3777         spin_lock(&file_priv->mm.lock);
3778         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3779                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3780                         break;
3781
3782                 /*
3783                  * Note that the request might not have been submitted yet.
3784                  * In which case emitted_jiffies will be zero.
3785                  */
3786                 if (!request->emitted_jiffies)
3787                         continue;
3788
3789                 target = request;
3790         }
3791         if (target)
3792                 i915_gem_request_get(target);
3793         spin_unlock(&file_priv->mm.lock);
3794
3795         if (target == NULL)
3796                 return 0;
3797
3798         ret = i915_wait_request(target, I915_WAIT_INTERRUPTIBLE, NULL, NULL);
3799         i915_gem_request_put(target);
3800
3801         return ret;
3802 }
3803
3804 static bool
3805 i915_vma_misplaced(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
3806 {
3807         if (!drm_mm_node_allocated(&vma->node))
3808                 return false;
3809
3810         if (vma->node.size < size)
3811                 return true;
3812
3813         if (alignment && vma->node.start & (alignment - 1))
3814                 return true;
3815
3816         if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma))
3817                 return true;
3818
3819         if (flags & PIN_OFFSET_BIAS &&
3820             vma->node.start < (flags & PIN_OFFSET_MASK))
3821                 return true;
3822
3823         if (flags & PIN_OFFSET_FIXED &&
3824             vma->node.start != (flags & PIN_OFFSET_MASK))
3825                 return true;
3826
3827         return false;
3828 }
3829
3830 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
3831 {
3832         struct drm_i915_gem_object *obj = vma->obj;
3833         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3834         bool mappable, fenceable;
3835         u32 fence_size, fence_alignment;
3836
3837         fence_size = i915_gem_get_ggtt_size(dev_priv,
3838                                             vma->size,
3839                                             i915_gem_object_get_tiling(obj));
3840         fence_alignment = i915_gem_get_ggtt_alignment(dev_priv,
3841                                                       vma->size,
3842                                                       i915_gem_object_get_tiling(obj),
3843                                                       true);
3844
3845         fenceable = (vma->node.size == fence_size &&
3846                      (vma->node.start & (fence_alignment - 1)) == 0);
3847
3848         mappable = (vma->node.start + fence_size <=
3849                     dev_priv->ggtt.mappable_end);
3850
3851         /*
3852          * Explicitly disable for rotated VMA since the display does not
3853          * need the fence and the VMA is not accessible to other users.
3854          */
3855         if (mappable && fenceable &&
3856             vma->ggtt_view.type != I915_GGTT_VIEW_ROTATED)
3857                 vma->flags |= I915_VMA_CAN_FENCE;
3858         else
3859                 vma->flags &= ~I915_VMA_CAN_FENCE;
3860 }
3861
3862 int __i915_vma_do_pin(struct i915_vma *vma,
3863                       u64 size, u64 alignment, u64 flags)
3864 {
3865         unsigned int bound = vma->flags;
3866         int ret;
3867
3868         GEM_BUG_ON((flags & (PIN_GLOBAL | PIN_USER)) == 0);
3869         GEM_BUG_ON((flags & PIN_GLOBAL) && !i915_vma_is_ggtt(vma));
3870
3871         if (WARN_ON(bound & I915_VMA_PIN_OVERFLOW)) {
3872                 ret = -EBUSY;
3873                 goto err;
3874         }
3875
3876         if ((bound & I915_VMA_BIND_MASK) == 0) {
3877                 ret = i915_vma_insert(vma, size, alignment, flags);
3878                 if (ret)
3879                         goto err;
3880         }
3881
3882         ret = i915_vma_bind(vma, vma->obj->cache_level, flags);
3883         if (ret)
3884                 goto err;
3885
3886         if ((bound ^ vma->flags) & I915_VMA_GLOBAL_BIND)
3887                 __i915_vma_set_map_and_fenceable(vma);
3888
3889         GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
3890         return 0;
3891
3892 err:
3893         __i915_vma_unpin(vma);
3894         return ret;
3895 }
3896
3897 struct i915_vma *
3898 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3899                          const struct i915_ggtt_view *view,
3900                          u64 size,
3901                          u64 alignment,
3902                          u64 flags)
3903 {
3904         struct i915_address_space *vm = &to_i915(obj->base.dev)->ggtt.base;
3905
3906         return i915_gem_object_pin(obj, vm, view, size, alignment,
3907                                    flags | PIN_GLOBAL);
3908 }
3909
3910 struct i915_vma *
3911 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3912                     struct i915_address_space *vm,
3913                     const struct i915_ggtt_view *view,
3914                     u64 size,
3915                     u64 alignment,
3916                     u64 flags)
3917 {
3918         struct i915_vma *vma;
3919         int ret;
3920
3921         vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
3922         if (IS_ERR(vma))
3923                 return vma;
3924
3925         if (i915_vma_misplaced(vma, size, alignment, flags)) {
3926                 if (flags & PIN_NONBLOCK &&
3927                     (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
3928                         return ERR_PTR(-ENOSPC);
3929
3930                 WARN(i915_vma_is_pinned(vma),
3931                      "bo is already pinned in ggtt with incorrect alignment:"
3932                      " offset=%08x, req.alignment=%llx,"
3933                      " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3934                      i915_ggtt_offset(vma), alignment,
3935                      !!(flags & PIN_MAPPABLE),
3936                      i915_vma_is_map_and_fenceable(vma));
3937                 ret = i915_vma_unbind(vma);
3938                 if (ret)
3939                         return ERR_PTR(ret);
3940         }
3941
3942         ret = i915_vma_pin(vma, size, alignment, flags);
3943         if (ret)
3944                 return ERR_PTR(ret);
3945
3946         return vma;
3947 }
3948
3949 static __always_inline unsigned int __busy_read_flag(unsigned int id)
3950 {
3951         /* Note that we could alias engines in the execbuf API, but
3952          * that would be very unwise as it prevents userspace from
3953          * fine control over engine selection. Ahem.
3954          *
3955          * This should be something like EXEC_MAX_ENGINE instead of
3956          * I915_NUM_ENGINES.
3957          */
3958         BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3959         return 0x10000 << id;
3960 }
3961
3962 static __always_inline unsigned int __busy_write_id(unsigned int id)
3963 {
3964         /* The uABI guarantees an active writer is also amongst the read
3965          * engines. This would be true if we accessed the activity tracking
3966          * under the lock, but as we perform the lookup of the object and
3967          * its activity locklessly we can not guarantee that the last_write
3968          * being active implies that we have set the same engine flag from
3969          * last_read - hence we always set both read and write busy for
3970          * last_write.
3971          */
3972         return id | __busy_read_flag(id);
3973 }
3974
3975 static __always_inline unsigned int
3976 __busy_set_if_active(const struct i915_gem_active *active,
3977                      unsigned int (*flag)(unsigned int id))
3978 {
3979         struct drm_i915_gem_request *request;
3980
3981         request = rcu_dereference(active->request);
3982         if (!request || i915_gem_request_completed(request))
3983                 return 0;
3984
3985         /* This is racy. See __i915_gem_active_get_rcu() for an in detail
3986          * discussion of how to handle the race correctly, but for reporting
3987          * the busy state we err on the side of potentially reporting the
3988          * wrong engine as being busy (but we guarantee that the result
3989          * is at least self-consistent).
3990          *
3991          * As we use SLAB_DESTROY_BY_RCU, the request may be reallocated
3992          * whilst we are inspecting it, even under the RCU read lock as we are.
3993          * This means that there is a small window for the engine and/or the
3994          * seqno to have been overwritten. The seqno will always be in the
3995          * future compared to the intended, and so we know that if that
3996          * seqno is idle (on whatever engine) our request is idle and the
3997          * return 0 above is correct.
3998          *
3999          * The issue is that if the engine is switched, it is just as likely
4000          * to report that it is busy (but since the switch happened, we know
4001          * the request should be idle). So there is a small chance that a busy
4002          * result is actually the wrong engine.
4003          *
4004          * So why don't we care?
4005          *
4006          * For starters, the busy ioctl is a heuristic that is by definition
4007          * racy. Even with perfect serialisation in the driver, the hardware
4008          * state is constantly advancing - the state we report to the user
4009          * is stale.
4010          *
4011          * The critical information for the busy-ioctl is whether the object
4012          * is idle as userspace relies on that to detect whether its next
4013          * access will stall, or if it has missed submitting commands to
4014          * the hardware allowing the GPU to stall. We never generate a
4015          * false-positive for idleness, thus busy-ioctl is reliable at the
4016          * most fundamental level, and we maintain the guarantee that a
4017          * busy object left to itself will eventually become idle (and stay
4018          * idle!).
4019          *
4020          * We allow ourselves the leeway of potentially misreporting the busy
4021          * state because that is an optimisation heuristic that is constantly
4022          * in flux. Being quickly able to detect the busy/idle state is much
4023          * more important than accurate logging of exactly which engines were
4024          * busy.
4025          *
4026          * For accuracy in reporting the engine, we could use
4027          *
4028          *      result = 0;
4029          *      request = __i915_gem_active_get_rcu(active);
4030          *      if (request) {
4031          *              if (!i915_gem_request_completed(request))
4032          *                      result = flag(request->engine->exec_id);
4033          *              i915_gem_request_put(request);
4034          *      }
4035          *
4036          * but that still remains susceptible to both hardware and userspace
4037          * races. So we accept making the result of that race slightly worse,
4038          * given the rarity of the race and its low impact on the result.
4039          */
4040         return flag(READ_ONCE(request->engine->exec_id));
4041 }
4042
4043 static __always_inline unsigned int
4044 busy_check_reader(const struct i915_gem_active *active)
4045 {
4046         return __busy_set_if_active(active, __busy_read_flag);
4047 }
4048
4049 static __always_inline unsigned int
4050 busy_check_writer(const struct i915_gem_active *active)
4051 {
4052         return __busy_set_if_active(active, __busy_write_id);
4053 }
4054
4055 int
4056 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4057                     struct drm_file *file)
4058 {
4059         struct drm_i915_gem_busy *args = data;
4060         struct drm_i915_gem_object *obj;
4061         unsigned long active;
4062
4063         obj = i915_gem_object_lookup(file, args->handle);
4064         if (!obj)
4065                 return -ENOENT;
4066
4067         args->busy = 0;
4068         active = __I915_BO_ACTIVE(obj);
4069         if (active) {
4070                 int idx;
4071
4072                 /* Yes, the lookups are intentionally racy.
4073                  *
4074                  * First, we cannot simply rely on __I915_BO_ACTIVE. We have
4075                  * to regard the value as stale and as our ABI guarantees
4076                  * forward progress, we confirm the status of each active
4077                  * request with the hardware.
4078                  *
4079                  * Even though we guard the pointer lookup by RCU, that only
4080                  * guarantees that the pointer and its contents remain
4081                  * dereferencable and does *not* mean that the request we
4082                  * have is the same as the one being tracked by the object.
4083                  *
4084                  * Consider that we lookup the request just as it is being
4085                  * retired and freed. We take a local copy of the pointer,
4086                  * but before we add its engine into the busy set, the other
4087                  * thread reallocates it and assigns it to a task on another
4088                  * engine with a fresh and incomplete seqno. Guarding against
4089                  * that requires careful serialisation and reference counting,
4090                  * i.e. using __i915_gem_active_get_request_rcu(). We don't,
4091                  * instead we expect that if the result is busy, which engines
4092                  * are busy is not completely reliable - we only guarantee
4093                  * that the object was busy.
4094                  */
4095                 rcu_read_lock();
4096
4097                 for_each_active(active, idx)
4098                         args->busy |= busy_check_reader(&obj->last_read[idx]);
4099
4100                 /* For ABI sanity, we only care that the write engine is in
4101                  * the set of read engines. This should be ensured by the
4102                  * ordering of setting last_read/last_write in
4103                  * i915_vma_move_to_active(), and then in reverse in retire.
4104                  * However, for good measure, we always report the last_write
4105                  * request as a busy read as well as being a busy write.
4106                  *
4107                  * We don't care that the set of active read/write engines
4108                  * may change during construction of the result, as it is
4109                  * equally liable to change before userspace can inspect
4110                  * the result.
4111                  */
4112                 args->busy |= busy_check_writer(&obj->last_write);
4113
4114                 rcu_read_unlock();
4115         }
4116
4117         i915_gem_object_put_unlocked(obj);
4118         return 0;
4119 }
4120
4121 int
4122 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4123                         struct drm_file *file_priv)
4124 {
4125         return i915_gem_ring_throttle(dev, file_priv);
4126 }
4127
4128 int
4129 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4130                        struct drm_file *file_priv)
4131 {
4132         struct drm_i915_private *dev_priv = to_i915(dev);
4133         struct drm_i915_gem_madvise *args = data;
4134         struct drm_i915_gem_object *obj;
4135         int ret;
4136
4137         switch (args->madv) {
4138         case I915_MADV_DONTNEED:
4139         case I915_MADV_WILLNEED:
4140             break;
4141         default:
4142             return -EINVAL;
4143         }
4144
4145         ret = i915_mutex_lock_interruptible(dev);
4146         if (ret)
4147                 return ret;
4148
4149         obj = i915_gem_object_lookup(file_priv, args->handle);
4150         if (!obj) {
4151                 ret = -ENOENT;
4152                 goto unlock;
4153         }
4154
4155         if (obj->pages &&
4156             i915_gem_object_is_tiled(obj) &&
4157             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4158                 if (obj->madv == I915_MADV_WILLNEED)
4159                         i915_gem_object_unpin_pages(obj);
4160                 if (args->madv == I915_MADV_WILLNEED)
4161                         i915_gem_object_pin_pages(obj);
4162         }
4163
4164         if (obj->madv != __I915_MADV_PURGED)
4165                 obj->madv = args->madv;
4166
4167         /* if the object is no longer attached, discard its backing storage */
4168         if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4169                 i915_gem_object_truncate(obj);
4170
4171         args->retained = obj->madv != __I915_MADV_PURGED;
4172
4173         i915_gem_object_put(obj);
4174 unlock:
4175         mutex_unlock(&dev->struct_mutex);
4176         return ret;
4177 }
4178
4179 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4180                           const struct drm_i915_gem_object_ops *ops)
4181 {
4182         int i;
4183
4184         INIT_LIST_HEAD(&obj->global_list);
4185         for (i = 0; i < I915_NUM_ENGINES; i++)
4186                 init_request_active(&obj->last_read[i],
4187                                     i915_gem_object_retire__read);
4188         init_request_active(&obj->last_write,
4189                             i915_gem_object_retire__write);
4190         INIT_LIST_HEAD(&obj->obj_exec_link);
4191         INIT_LIST_HEAD(&obj->vma_list);
4192         INIT_LIST_HEAD(&obj->batch_pool_link);
4193
4194         obj->ops = ops;
4195
4196         obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4197         obj->madv = I915_MADV_WILLNEED;
4198
4199         i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4200 }
4201
4202 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4203         .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4204         .get_pages = i915_gem_object_get_pages_gtt,
4205         .put_pages = i915_gem_object_put_pages_gtt,
4206 };
4207
4208 struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4209                                                   size_t size)
4210 {
4211         struct drm_i915_gem_object *obj;
4212         struct address_space *mapping;
4213         gfp_t mask;
4214         int ret;
4215
4216         obj = i915_gem_object_alloc(dev);
4217         if (obj == NULL)
4218                 return ERR_PTR(-ENOMEM);
4219
4220         ret = drm_gem_object_init(dev, &obj->base, size);
4221         if (ret)
4222                 goto fail;
4223
4224         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4225         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4226                 /* 965gm cannot relocate objects above 4GiB. */
4227                 mask &= ~__GFP_HIGHMEM;
4228                 mask |= __GFP_DMA32;
4229         }
4230
4231         mapping = obj->base.filp->f_mapping;
4232         mapping_set_gfp_mask(mapping, mask);
4233
4234         i915_gem_object_init(obj, &i915_gem_object_ops);
4235
4236         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4237         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4238
4239         if (HAS_LLC(dev)) {
4240                 /* On some devices, we can have the GPU use the LLC (the CPU
4241                  * cache) for about a 10% performance improvement
4242                  * compared to uncached.  Graphics requests other than
4243                  * display scanout are coherent with the CPU in
4244                  * accessing this cache.  This means in this mode we
4245                  * don't need to clflush on the CPU side, and on the
4246                  * GPU side we only need to flush internal caches to
4247                  * get data visible to the CPU.
4248                  *
4249                  * However, we maintain the display planes as UC, and so
4250                  * need to rebind when first used as such.
4251                  */
4252                 obj->cache_level = I915_CACHE_LLC;
4253         } else
4254                 obj->cache_level = I915_CACHE_NONE;
4255
4256         trace_i915_gem_object_create(obj);
4257
4258         return obj;
4259
4260 fail:
4261         i915_gem_object_free(obj);
4262
4263         return ERR_PTR(ret);
4264 }
4265
4266 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4267 {
4268         /* If we are the last user of the backing storage (be it shmemfs
4269          * pages or stolen etc), we know that the pages are going to be
4270          * immediately released. In this case, we can then skip copying
4271          * back the contents from the GPU.
4272          */
4273
4274         if (obj->madv != I915_MADV_WILLNEED)
4275                 return false;
4276
4277         if (obj->base.filp == NULL)
4278                 return true;
4279
4280         /* At first glance, this looks racy, but then again so would be
4281          * userspace racing mmap against close. However, the first external
4282          * reference to the filp can only be obtained through the
4283          * i915_gem_mmap_ioctl() which safeguards us against the user
4284          * acquiring such a reference whilst we are in the middle of
4285          * freeing the object.
4286          */
4287         return atomic_long_read(&obj->base.filp->f_count) == 1;
4288 }
4289
4290 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4291 {
4292         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4293         struct drm_device *dev = obj->base.dev;
4294         struct drm_i915_private *dev_priv = to_i915(dev);
4295         struct i915_vma *vma, *next;
4296
4297         intel_runtime_pm_get(dev_priv);
4298
4299         trace_i915_gem_object_destroy(obj);
4300
4301         /* All file-owned VMA should have been released by this point through
4302          * i915_gem_close_object(), or earlier by i915_gem_context_close().
4303          * However, the object may also be bound into the global GTT (e.g.
4304          * older GPUs without per-process support, or for direct access through
4305          * the GTT either for the user or for scanout). Those VMA still need to
4306          * unbound now.
4307          */
4308         list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4309                 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4310                 GEM_BUG_ON(i915_vma_is_active(vma));
4311                 vma->flags &= ~I915_VMA_PIN_MASK;
4312                 i915_vma_close(vma);
4313         }
4314         GEM_BUG_ON(obj->bind_count);
4315
4316         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4317          * before progressing. */
4318         if (obj->stolen)
4319                 i915_gem_object_unpin_pages(obj);
4320
4321         WARN_ON(atomic_read(&obj->frontbuffer_bits));
4322
4323         if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4324             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4325             i915_gem_object_is_tiled(obj))
4326                 i915_gem_object_unpin_pages(obj);
4327
4328         if (WARN_ON(obj->pages_pin_count))
4329                 obj->pages_pin_count = 0;
4330         if (discard_backing_storage(obj))
4331                 obj->madv = I915_MADV_DONTNEED;
4332         i915_gem_object_put_pages(obj);
4333
4334         BUG_ON(obj->pages);
4335
4336         if (obj->base.import_attach)
4337                 drm_prime_gem_destroy(&obj->base, NULL);
4338
4339         if (obj->ops->release)
4340                 obj->ops->release(obj);
4341
4342         drm_gem_object_release(&obj->base);
4343         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4344
4345         kfree(obj->bit_17);
4346         i915_gem_object_free(obj);
4347
4348         intel_runtime_pm_put(dev_priv);
4349 }
4350
4351 int i915_gem_suspend(struct drm_device *dev)
4352 {
4353         struct drm_i915_private *dev_priv = to_i915(dev);
4354         int ret;
4355
4356         intel_suspend_gt_powersave(dev_priv);
4357
4358         mutex_lock(&dev->struct_mutex);
4359
4360         /* We have to flush all the executing contexts to main memory so
4361          * that they can saved in the hibernation image. To ensure the last
4362          * context image is coherent, we have to switch away from it. That
4363          * leaves the dev_priv->kernel_context still active when
4364          * we actually suspend, and its image in memory may not match the GPU
4365          * state. Fortunately, the kernel_context is disposable and we do
4366          * not rely on its state.
4367          */
4368         ret = i915_gem_switch_to_kernel_context(dev_priv);
4369         if (ret)
4370                 goto err;
4371
4372         ret = i915_gem_wait_for_idle(dev_priv,
4373                                      I915_WAIT_INTERRUPTIBLE |
4374                                      I915_WAIT_LOCKED);
4375         if (ret)
4376                 goto err;
4377
4378         i915_gem_retire_requests(dev_priv);
4379
4380         i915_gem_context_lost(dev_priv);
4381         mutex_unlock(&dev->struct_mutex);
4382
4383         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4384         cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4385         flush_delayed_work(&dev_priv->gt.idle_work);
4386
4387         /* Assert that we sucessfully flushed all the work and
4388          * reset the GPU back to its idle, low power state.
4389          */
4390         WARN_ON(dev_priv->gt.awake);
4391
4392         return 0;
4393
4394 err:
4395         mutex_unlock(&dev->struct_mutex);
4396         return ret;
4397 }
4398
4399 void i915_gem_resume(struct drm_device *dev)
4400 {
4401         struct drm_i915_private *dev_priv = to_i915(dev);
4402
4403         mutex_lock(&dev->struct_mutex);
4404         i915_gem_restore_gtt_mappings(dev);
4405
4406         /* As we didn't flush the kernel context before suspend, we cannot
4407          * guarantee that the context image is complete. So let's just reset
4408          * it and start again.
4409          */
4410         dev_priv->gt.resume(dev_priv);
4411
4412         mutex_unlock(&dev->struct_mutex);
4413 }
4414
4415 void i915_gem_init_swizzling(struct drm_device *dev)
4416 {
4417         struct drm_i915_private *dev_priv = to_i915(dev);
4418
4419         if (INTEL_INFO(dev)->gen < 5 ||
4420             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4421                 return;
4422
4423         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4424                                  DISP_TILE_SURFACE_SWIZZLING);
4425
4426         if (IS_GEN5(dev))
4427                 return;
4428
4429         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4430         if (IS_GEN6(dev))
4431                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4432         else if (IS_GEN7(dev))
4433                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4434         else if (IS_GEN8(dev))
4435                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4436         else
4437                 BUG();
4438 }
4439
4440 static void init_unused_ring(struct drm_device *dev, u32 base)
4441 {
4442         struct drm_i915_private *dev_priv = to_i915(dev);
4443
4444         I915_WRITE(RING_CTL(base), 0);
4445         I915_WRITE(RING_HEAD(base), 0);
4446         I915_WRITE(RING_TAIL(base), 0);
4447         I915_WRITE(RING_START(base), 0);
4448 }
4449
4450 static void init_unused_rings(struct drm_device *dev)
4451 {
4452         if (IS_I830(dev)) {
4453                 init_unused_ring(dev, PRB1_BASE);
4454                 init_unused_ring(dev, SRB0_BASE);
4455                 init_unused_ring(dev, SRB1_BASE);
4456                 init_unused_ring(dev, SRB2_BASE);
4457                 init_unused_ring(dev, SRB3_BASE);
4458         } else if (IS_GEN2(dev)) {
4459                 init_unused_ring(dev, SRB0_BASE);
4460                 init_unused_ring(dev, SRB1_BASE);
4461         } else if (IS_GEN3(dev)) {
4462                 init_unused_ring(dev, PRB1_BASE);
4463                 init_unused_ring(dev, PRB2_BASE);
4464         }
4465 }
4466
4467 int
4468 i915_gem_init_hw(struct drm_device *dev)
4469 {
4470         struct drm_i915_private *dev_priv = to_i915(dev);
4471         struct intel_engine_cs *engine;
4472         int ret;
4473
4474         /* Double layer security blanket, see i915_gem_init() */
4475         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4476
4477         if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4478                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4479
4480         if (IS_HASWELL(dev))
4481                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4482                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4483
4484         if (HAS_PCH_NOP(dev)) {
4485                 if (IS_IVYBRIDGE(dev)) {
4486                         u32 temp = I915_READ(GEN7_MSG_CTL);
4487                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4488                         I915_WRITE(GEN7_MSG_CTL, temp);
4489                 } else if (INTEL_INFO(dev)->gen >= 7) {
4490                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4491                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4492                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4493                 }
4494         }
4495
4496         i915_gem_init_swizzling(dev);
4497
4498         /*
4499          * At least 830 can leave some of the unused rings
4500          * "active" (ie. head != tail) after resume which
4501          * will prevent c3 entry. Makes sure all unused rings
4502          * are totally idle.
4503          */
4504         init_unused_rings(dev);
4505
4506         BUG_ON(!dev_priv->kernel_context);
4507
4508         ret = i915_ppgtt_init_hw(dev);
4509         if (ret) {
4510                 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4511                 goto out;
4512         }
4513
4514         /* Need to do basic initialisation of all rings first: */
4515         for_each_engine(engine, dev_priv) {
4516                 ret = engine->init_hw(engine);
4517                 if (ret)
4518                         goto out;
4519         }
4520
4521         intel_mocs_init_l3cc_table(dev);
4522
4523         /* We can't enable contexts until all firmware is loaded */
4524         ret = intel_guc_setup(dev);
4525         if (ret)
4526                 goto out;
4527
4528 out:
4529         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4530         return ret;
4531 }
4532
4533 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4534 {
4535         if (INTEL_INFO(dev_priv)->gen < 6)
4536                 return false;
4537
4538         /* TODO: make semaphores and Execlists play nicely together */
4539         if (i915.enable_execlists)
4540                 return false;
4541
4542         if (value >= 0)
4543                 return value;
4544
4545 #ifdef CONFIG_INTEL_IOMMU
4546         /* Enable semaphores on SNB when IO remapping is off */
4547         if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4548                 return false;
4549 #endif
4550
4551         return true;
4552 }
4553
4554 int i915_gem_init(struct drm_device *dev)
4555 {
4556         struct drm_i915_private *dev_priv = to_i915(dev);
4557         int ret;
4558
4559         mutex_lock(&dev->struct_mutex);
4560
4561         if (!i915.enable_execlists) {
4562                 dev_priv->gt.resume = intel_legacy_submission_resume;
4563                 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4564         } else {
4565                 dev_priv->gt.resume = intel_lr_context_resume;
4566                 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4567         }
4568
4569         /* This is just a security blanket to placate dragons.
4570          * On some systems, we very sporadically observe that the first TLBs
4571          * used by the CS may be stale, despite us poking the TLB reset. If
4572          * we hold the forcewake during initialisation these problems
4573          * just magically go away.
4574          */
4575         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4576
4577         i915_gem_init_userptr(dev_priv);
4578
4579         ret = i915_gem_init_ggtt(dev_priv);
4580         if (ret)
4581                 goto out_unlock;
4582
4583         ret = i915_gem_context_init(dev);
4584         if (ret)
4585                 goto out_unlock;
4586
4587         ret = intel_engines_init(dev);
4588         if (ret)
4589                 goto out_unlock;
4590
4591         ret = i915_gem_init_hw(dev);
4592         if (ret == -EIO) {
4593                 /* Allow engine initialisation to fail by marking the GPU as
4594                  * wedged. But we only want to do this where the GPU is angry,
4595                  * for all other failure, such as an allocation failure, bail.
4596                  */
4597                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4598                 i915_gem_set_wedged(dev_priv);
4599                 ret = 0;
4600         }
4601
4602 out_unlock:
4603         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4604         mutex_unlock(&dev->struct_mutex);
4605
4606         return ret;
4607 }
4608
4609 void
4610 i915_gem_cleanup_engines(struct drm_device *dev)
4611 {
4612         struct drm_i915_private *dev_priv = to_i915(dev);
4613         struct intel_engine_cs *engine;
4614
4615         for_each_engine(engine, dev_priv)
4616                 dev_priv->gt.cleanup_engine(engine);
4617 }
4618
4619 static void
4620 init_engine_lists(struct intel_engine_cs *engine)
4621 {
4622         INIT_LIST_HEAD(&engine->request_list);
4623 }
4624
4625 void
4626 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4627 {
4628         struct drm_device *dev = &dev_priv->drm;
4629         int i;
4630
4631         if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4632             !IS_CHERRYVIEW(dev_priv))
4633                 dev_priv->num_fence_regs = 32;
4634         else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
4635                  IS_I945GM(dev_priv) || IS_G33(dev_priv))
4636                 dev_priv->num_fence_regs = 16;
4637         else
4638                 dev_priv->num_fence_regs = 8;
4639
4640         if (intel_vgpu_active(dev_priv))
4641                 dev_priv->num_fence_regs =
4642                                 I915_READ(vgtif_reg(avail_rs.fence_num));
4643
4644         /* Initialize fence registers to zero */
4645         for (i = 0; i < dev_priv->num_fence_regs; i++) {
4646                 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4647
4648                 fence->i915 = dev_priv;
4649                 fence->id = i;
4650                 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4651         }
4652         i915_gem_restore_fences(dev);
4653
4654         i915_gem_detect_bit_6_swizzle(dev);
4655 }
4656
4657 void
4658 i915_gem_load_init(struct drm_device *dev)
4659 {
4660         struct drm_i915_private *dev_priv = to_i915(dev);
4661         int i;
4662
4663         dev_priv->objects =
4664                 kmem_cache_create("i915_gem_object",
4665                                   sizeof(struct drm_i915_gem_object), 0,
4666                                   SLAB_HWCACHE_ALIGN,
4667                                   NULL);
4668         dev_priv->vmas =
4669                 kmem_cache_create("i915_gem_vma",
4670                                   sizeof(struct i915_vma), 0,
4671                                   SLAB_HWCACHE_ALIGN,
4672                                   NULL);
4673         dev_priv->requests =
4674                 kmem_cache_create("i915_gem_request",
4675                                   sizeof(struct drm_i915_gem_request), 0,
4676                                   SLAB_HWCACHE_ALIGN |
4677                                   SLAB_RECLAIM_ACCOUNT |
4678                                   SLAB_DESTROY_BY_RCU,
4679                                   NULL);
4680
4681         INIT_LIST_HEAD(&dev_priv->context_list);
4682         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4683         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4684         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4685         for (i = 0; i < I915_NUM_ENGINES; i++)
4686                 init_engine_lists(&dev_priv->engine[i]);
4687         INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4688                           i915_gem_retire_work_handler);
4689         INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4690                           i915_gem_idle_work_handler);
4691         init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4692         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4693
4694         init_waitqueue_head(&dev_priv->pending_flip_queue);
4695
4696         dev_priv->mm.interruptible = true;
4697
4698         atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4699
4700         mutex_init(&dev_priv->tlb_invalidate_lock);
4701
4702         spin_lock_init(&dev_priv->fb_tracking.lock);
4703 }
4704
4705 void i915_gem_load_cleanup(struct drm_device *dev)
4706 {
4707         struct drm_i915_private *dev_priv = to_i915(dev);
4708
4709         kmem_cache_destroy(dev_priv->requests);
4710         kmem_cache_destroy(dev_priv->vmas);
4711         kmem_cache_destroy(dev_priv->objects);
4712
4713         /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4714         rcu_barrier();
4715 }
4716
4717 int i915_gem_freeze(struct drm_i915_private *dev_priv)
4718 {
4719         intel_runtime_pm_get(dev_priv);
4720
4721         mutex_lock(&dev_priv->drm.struct_mutex);
4722         i915_gem_shrink_all(dev_priv);
4723         mutex_unlock(&dev_priv->drm.struct_mutex);
4724
4725         intel_runtime_pm_put(dev_priv);
4726
4727         return 0;
4728 }
4729
4730 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4731 {
4732         struct drm_i915_gem_object *obj;
4733         struct list_head *phases[] = {
4734                 &dev_priv->mm.unbound_list,
4735                 &dev_priv->mm.bound_list,
4736                 NULL
4737         }, **p;
4738
4739         /* Called just before we write the hibernation image.
4740          *
4741          * We need to update the domain tracking to reflect that the CPU
4742          * will be accessing all the pages to create and restore from the
4743          * hibernation, and so upon restoration those pages will be in the
4744          * CPU domain.
4745          *
4746          * To make sure the hibernation image contains the latest state,
4747          * we update that state just before writing out the image.
4748          *
4749          * To try and reduce the hibernation image, we manually shrink
4750          * the objects as well.
4751          */
4752
4753         mutex_lock(&dev_priv->drm.struct_mutex);
4754         i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4755
4756         for (p = phases; *p; p++) {
4757                 list_for_each_entry(obj, *p, global_list) {
4758                         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4759                         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4760                 }
4761         }
4762         mutex_unlock(&dev_priv->drm.struct_mutex);
4763
4764         return 0;
4765 }
4766
4767 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4768 {
4769         struct drm_i915_file_private *file_priv = file->driver_priv;
4770         struct drm_i915_gem_request *request;
4771
4772         /* Clean up our request list when the client is going away, so that
4773          * later retire_requests won't dereference our soon-to-be-gone
4774          * file_priv.
4775          */
4776         spin_lock(&file_priv->mm.lock);
4777         list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4778                 request->file_priv = NULL;
4779         spin_unlock(&file_priv->mm.lock);
4780
4781         if (!list_empty(&file_priv->rps.link)) {
4782                 spin_lock(&to_i915(dev)->rps.client_lock);
4783                 list_del(&file_priv->rps.link);
4784                 spin_unlock(&to_i915(dev)->rps.client_lock);
4785         }
4786 }
4787
4788 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4789 {
4790         struct drm_i915_file_private *file_priv;
4791         int ret;
4792
4793         DRM_DEBUG_DRIVER("\n");
4794
4795         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4796         if (!file_priv)
4797                 return -ENOMEM;
4798
4799         file->driver_priv = file_priv;
4800         file_priv->dev_priv = to_i915(dev);
4801         file_priv->file = file;
4802         INIT_LIST_HEAD(&file_priv->rps.link);
4803
4804         spin_lock_init(&file_priv->mm.lock);
4805         INIT_LIST_HEAD(&file_priv->mm.request_list);
4806
4807         file_priv->bsd_engine = -1;
4808
4809         ret = i915_gem_context_open(dev, file);
4810         if (ret)
4811                 kfree(file_priv);
4812
4813         return ret;
4814 }
4815
4816 /**
4817  * i915_gem_track_fb - update frontbuffer tracking
4818  * @old: current GEM buffer for the frontbuffer slots
4819  * @new: new GEM buffer for the frontbuffer slots
4820  * @frontbuffer_bits: bitmask of frontbuffer slots
4821  *
4822  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4823  * from @old and setting them in @new. Both @old and @new can be NULL.
4824  */
4825 void i915_gem_track_fb(struct drm_i915_gem_object *old,
4826                        struct drm_i915_gem_object *new,
4827                        unsigned frontbuffer_bits)
4828 {
4829         /* Control of individual bits within the mask are guarded by
4830          * the owning plane->mutex, i.e. we can never see concurrent
4831          * manipulation of individual bits. But since the bitfield as a whole
4832          * is updated using RMW, we need to use atomics in order to update
4833          * the bits.
4834          */
4835         BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4836                      sizeof(atomic_t) * BITS_PER_BYTE);
4837
4838         if (old) {
4839                 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4840                 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4841         }
4842
4843         if (new) {
4844                 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
4845                 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4846         }
4847 }
4848
4849 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
4850 struct page *
4851 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
4852 {
4853         struct page *page;
4854
4855         /* Only default objects have per-page dirty tracking */
4856         if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
4857                 return NULL;
4858
4859         page = i915_gem_object_get_page(obj, n);
4860         set_page_dirty(page);
4861         return page;
4862 }
4863
4864 /* Allocate a new GEM object and fill it with the supplied data */
4865 struct drm_i915_gem_object *
4866 i915_gem_object_create_from_data(struct drm_device *dev,
4867                                  const void *data, size_t size)
4868 {
4869         struct drm_i915_gem_object *obj;
4870         struct sg_table *sg;
4871         size_t bytes;
4872         int ret;
4873
4874         obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
4875         if (IS_ERR(obj))
4876                 return obj;
4877
4878         ret = i915_gem_object_set_to_cpu_domain(obj, true);
4879         if (ret)
4880                 goto fail;
4881
4882         ret = i915_gem_object_get_pages(obj);
4883         if (ret)
4884                 goto fail;
4885
4886         i915_gem_object_pin_pages(obj);
4887         sg = obj->pages;
4888         bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4889         obj->dirty = 1;         /* Backing store is now out of date */
4890         i915_gem_object_unpin_pages(obj);
4891
4892         if (WARN_ON(bytes != size)) {
4893                 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4894                 ret = -EFAULT;
4895                 goto fail;
4896         }
4897
4898         return obj;
4899
4900 fail:
4901         i915_gem_object_put(obj);
4902         return ERR_PTR(ret);
4903 }