GNU Linux-libre 4.9.296-gnu1
[releases.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_dmabuf.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include <linux/reservation.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/slab.h>
41 #include <linux/swap.h>
42 #include <linux/pci.h>
43 #include <linux/dma-buf.h>
44
45 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
46 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
47
48 static bool cpu_cache_is_coherent(struct drm_device *dev,
49                                   enum i915_cache_level level)
50 {
51         return HAS_LLC(dev) || level != I915_CACHE_NONE;
52 }
53
54 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
55 {
56         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
57                 return false;
58
59         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
60                 return true;
61
62         return obj->pin_display;
63 }
64
65 static int
66 insert_mappable_node(struct drm_i915_private *i915,
67                      struct drm_mm_node *node, u32 size)
68 {
69         memset(node, 0, sizeof(*node));
70         return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
71                                                    size, 0, 0, 0,
72                                                    i915->ggtt.mappable_end,
73                                                    DRM_MM_SEARCH_DEFAULT,
74                                                    DRM_MM_CREATE_DEFAULT);
75 }
76
77 static void
78 remove_mappable_node(struct drm_mm_node *node)
79 {
80         drm_mm_remove_node(node);
81 }
82
83 /* some bookkeeping */
84 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
85                                   size_t size)
86 {
87         spin_lock(&dev_priv->mm.object_stat_lock);
88         dev_priv->mm.object_count++;
89         dev_priv->mm.object_memory += size;
90         spin_unlock(&dev_priv->mm.object_stat_lock);
91 }
92
93 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
94                                      size_t size)
95 {
96         spin_lock(&dev_priv->mm.object_stat_lock);
97         dev_priv->mm.object_count--;
98         dev_priv->mm.object_memory -= size;
99         spin_unlock(&dev_priv->mm.object_stat_lock);
100 }
101
102 static int
103 i915_gem_wait_for_error(struct i915_gpu_error *error)
104 {
105         int ret;
106
107         if (!i915_reset_in_progress(error))
108                 return 0;
109
110         /*
111          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
112          * userspace. If it takes that long something really bad is going on and
113          * we should simply try to bail out and fail as gracefully as possible.
114          */
115         ret = wait_event_interruptible_timeout(error->reset_queue,
116                                                !i915_reset_in_progress(error),
117                                                10*HZ);
118         if (ret == 0) {
119                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
120                 return -EIO;
121         } else if (ret < 0) {
122                 return ret;
123         } else {
124                 return 0;
125         }
126 }
127
128 int i915_mutex_lock_interruptible(struct drm_device *dev)
129 {
130         struct drm_i915_private *dev_priv = to_i915(dev);
131         int ret;
132
133         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
134         if (ret)
135                 return ret;
136
137         ret = mutex_lock_interruptible(&dev->struct_mutex);
138         if (ret)
139                 return ret;
140
141         return 0;
142 }
143
144 int
145 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
146                             struct drm_file *file)
147 {
148         struct drm_i915_private *dev_priv = to_i915(dev);
149         struct i915_ggtt *ggtt = &dev_priv->ggtt;
150         struct drm_i915_gem_get_aperture *args = data;
151         struct i915_vma *vma;
152         size_t pinned;
153
154         pinned = 0;
155         mutex_lock(&dev->struct_mutex);
156         list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
157                 if (i915_vma_is_pinned(vma))
158                         pinned += vma->node.size;
159         list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
160                 if (i915_vma_is_pinned(vma))
161                         pinned += vma->node.size;
162         mutex_unlock(&dev->struct_mutex);
163
164         args->aper_size = ggtt->base.total;
165         args->aper_available_size = args->aper_size - pinned;
166
167         return 0;
168 }
169
170 static int
171 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
172 {
173         struct address_space *mapping = obj->base.filp->f_mapping;
174         char *vaddr = obj->phys_handle->vaddr;
175         struct sg_table *st;
176         struct scatterlist *sg;
177         int i;
178
179         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
180                 return -EINVAL;
181
182         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
183                 struct page *page;
184                 char *src;
185
186                 page = shmem_read_mapping_page(mapping, i);
187                 if (IS_ERR(page))
188                         return PTR_ERR(page);
189
190                 src = kmap_atomic(page);
191                 memcpy(vaddr, src, PAGE_SIZE);
192                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
193                 kunmap_atomic(src);
194
195                 put_page(page);
196                 vaddr += PAGE_SIZE;
197         }
198
199         i915_gem_chipset_flush(to_i915(obj->base.dev));
200
201         st = kmalloc(sizeof(*st), GFP_KERNEL);
202         if (st == NULL)
203                 return -ENOMEM;
204
205         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
206                 kfree(st);
207                 return -ENOMEM;
208         }
209
210         sg = st->sgl;
211         sg->offset = 0;
212         sg->length = obj->base.size;
213
214         sg_dma_address(sg) = obj->phys_handle->busaddr;
215         sg_dma_len(sg) = obj->base.size;
216
217         obj->pages = st;
218         return 0;
219 }
220
221 static void
222 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
223 {
224         int ret;
225
226         BUG_ON(obj->madv == __I915_MADV_PURGED);
227
228         ret = i915_gem_object_set_to_cpu_domain(obj, true);
229         if (WARN_ON(ret)) {
230                 /* In the event of a disaster, abandon all caches and
231                  * hope for the best.
232                  */
233                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
234         }
235
236         if (obj->madv == I915_MADV_DONTNEED)
237                 obj->dirty = 0;
238
239         if (obj->dirty) {
240                 struct address_space *mapping = obj->base.filp->f_mapping;
241                 char *vaddr = obj->phys_handle->vaddr;
242                 int i;
243
244                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245                         struct page *page;
246                         char *dst;
247
248                         page = shmem_read_mapping_page(mapping, i);
249                         if (IS_ERR(page))
250                                 continue;
251
252                         dst = kmap_atomic(page);
253                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
254                         memcpy(dst, vaddr, PAGE_SIZE);
255                         kunmap_atomic(dst);
256
257                         set_page_dirty(page);
258                         if (obj->madv == I915_MADV_WILLNEED)
259                                 mark_page_accessed(page);
260                         put_page(page);
261                         vaddr += PAGE_SIZE;
262                 }
263                 obj->dirty = 0;
264         }
265
266         sg_free_table(obj->pages);
267         kfree(obj->pages);
268 }
269
270 static void
271 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
272 {
273         drm_pci_free(obj->base.dev, obj->phys_handle);
274 }
275
276 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
277         .get_pages = i915_gem_object_get_pages_phys,
278         .put_pages = i915_gem_object_put_pages_phys,
279         .release = i915_gem_object_release_phys,
280 };
281
282 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
283 {
284         struct i915_vma *vma;
285         LIST_HEAD(still_in_list);
286         int ret;
287
288         lockdep_assert_held(&obj->base.dev->struct_mutex);
289
290         /* Closed vma are removed from the obj->vma_list - but they may
291          * still have an active binding on the object. To remove those we
292          * must wait for all rendering to complete to the object (as unbinding
293          * must anyway), and retire the requests.
294          */
295         ret = i915_gem_object_wait_rendering(obj, false);
296         if (ret)
297                 return ret;
298
299         i915_gem_retire_requests(to_i915(obj->base.dev));
300
301         while ((vma = list_first_entry_or_null(&obj->vma_list,
302                                                struct i915_vma,
303                                                obj_link))) {
304                 list_move_tail(&vma->obj_link, &still_in_list);
305                 ret = i915_vma_unbind(vma);
306                 if (ret)
307                         break;
308         }
309         list_splice(&still_in_list, &obj->vma_list);
310
311         return ret;
312 }
313
314 /**
315  * Ensures that all rendering to the object has completed and the object is
316  * safe to unbind from the GTT or access from the CPU.
317  * @obj: i915 gem object
318  * @readonly: waiting for just read access or read-write access
319  */
320 int
321 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
322                                bool readonly)
323 {
324         struct reservation_object *resv;
325         struct i915_gem_active *active;
326         unsigned long active_mask;
327         int idx;
328
329         lockdep_assert_held(&obj->base.dev->struct_mutex);
330
331         if (!readonly) {
332                 active = obj->last_read;
333                 active_mask = i915_gem_object_get_active(obj);
334         } else {
335                 active_mask = 1;
336                 active = &obj->last_write;
337         }
338
339         for_each_active(active_mask, idx) {
340                 int ret;
341
342                 ret = i915_gem_active_wait(&active[idx],
343                                            &obj->base.dev->struct_mutex);
344                 if (ret)
345                         return ret;
346         }
347
348         resv = i915_gem_object_get_dmabuf_resv(obj);
349         if (resv) {
350                 long err;
351
352                 err = reservation_object_wait_timeout_rcu(resv, !readonly, true,
353                                                           MAX_SCHEDULE_TIMEOUT);
354                 if (err < 0)
355                         return err;
356         }
357
358         return 0;
359 }
360
361 /* A nonblocking variant of the above wait. Must be called prior to
362  * acquiring the mutex for the object, as the object state may change
363  * during this call. A reference must be held by the caller for the object.
364  */
365 static __must_check int
366 __unsafe_wait_rendering(struct drm_i915_gem_object *obj,
367                         struct intel_rps_client *rps,
368                         bool readonly)
369 {
370         struct i915_gem_active *active;
371         unsigned long active_mask;
372         int idx;
373
374         active_mask = __I915_BO_ACTIVE(obj);
375         if (!active_mask)
376                 return 0;
377
378         if (!readonly) {
379                 active = obj->last_read;
380         } else {
381                 active_mask = 1;
382                 active = &obj->last_write;
383         }
384
385         for_each_active(active_mask, idx) {
386                 int ret;
387
388                 ret = i915_gem_active_wait_unlocked(&active[idx],
389                                                     I915_WAIT_INTERRUPTIBLE,
390                                                     NULL, rps);
391                 if (ret)
392                         return ret;
393         }
394
395         return 0;
396 }
397
398 static struct intel_rps_client *to_rps_client(struct drm_file *file)
399 {
400         struct drm_i915_file_private *fpriv = file->driver_priv;
401
402         return &fpriv->rps;
403 }
404
405 int
406 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
407                             int align)
408 {
409         drm_dma_handle_t *phys;
410         int ret;
411
412         if (obj->phys_handle) {
413                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
414                         return -EBUSY;
415
416                 return 0;
417         }
418
419         if (obj->madv != I915_MADV_WILLNEED)
420                 return -EFAULT;
421
422         if (obj->base.filp == NULL)
423                 return -EINVAL;
424
425         ret = i915_gem_object_unbind(obj);
426         if (ret)
427                 return ret;
428
429         ret = i915_gem_object_put_pages(obj);
430         if (ret)
431                 return ret;
432
433         /* create a new object */
434         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
435         if (!phys)
436                 return -ENOMEM;
437
438         obj->phys_handle = phys;
439         obj->ops = &i915_gem_phys_ops;
440
441         return i915_gem_object_get_pages(obj);
442 }
443
444 static int
445 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
446                      struct drm_i915_gem_pwrite *args,
447                      struct drm_file *file_priv)
448 {
449         struct drm_device *dev = obj->base.dev;
450         void *vaddr = obj->phys_handle->vaddr + args->offset;
451         char __user *user_data = u64_to_user_ptr(args->data_ptr);
452         int ret = 0;
453
454         /* We manually control the domain here and pretend that it
455          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
456          */
457         ret = i915_gem_object_wait_rendering(obj, false);
458         if (ret)
459                 return ret;
460
461         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
462         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
463                 unsigned long unwritten;
464
465                 /* The physical object once assigned is fixed for the lifetime
466                  * of the obj, so we can safely drop the lock and continue
467                  * to access vaddr.
468                  */
469                 mutex_unlock(&dev->struct_mutex);
470                 unwritten = copy_from_user(vaddr, user_data, args->size);
471                 mutex_lock(&dev->struct_mutex);
472                 if (unwritten) {
473                         ret = -EFAULT;
474                         goto out;
475                 }
476         }
477
478         drm_clflush_virt_range(vaddr, args->size);
479         i915_gem_chipset_flush(to_i915(dev));
480
481 out:
482         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
483         return ret;
484 }
485
486 void *i915_gem_object_alloc(struct drm_device *dev)
487 {
488         struct drm_i915_private *dev_priv = to_i915(dev);
489         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
490 }
491
492 void i915_gem_object_free(struct drm_i915_gem_object *obj)
493 {
494         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
495         kmem_cache_free(dev_priv->objects, obj);
496 }
497
498 static int
499 i915_gem_create(struct drm_file *file,
500                 struct drm_device *dev,
501                 uint64_t size,
502                 uint32_t *handle_p)
503 {
504         struct drm_i915_gem_object *obj;
505         int ret;
506         u32 handle;
507
508         size = roundup(size, PAGE_SIZE);
509         if (size == 0)
510                 return -EINVAL;
511
512         /* Allocate the new object */
513         obj = i915_gem_object_create(dev, size);
514         if (IS_ERR(obj))
515                 return PTR_ERR(obj);
516
517         ret = drm_gem_handle_create(file, &obj->base, &handle);
518         /* drop reference from allocate - handle holds it now */
519         i915_gem_object_put_unlocked(obj);
520         if (ret)
521                 return ret;
522
523         *handle_p = handle;
524         return 0;
525 }
526
527 int
528 i915_gem_dumb_create(struct drm_file *file,
529                      struct drm_device *dev,
530                      struct drm_mode_create_dumb *args)
531 {
532         /* have to work out size/pitch and return them */
533         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
534         args->size = args->pitch * args->height;
535         return i915_gem_create(file, dev,
536                                args->size, &args->handle);
537 }
538
539 /**
540  * Creates a new mm object and returns a handle to it.
541  * @dev: drm device pointer
542  * @data: ioctl data blob
543  * @file: drm file pointer
544  */
545 int
546 i915_gem_create_ioctl(struct drm_device *dev, void *data,
547                       struct drm_file *file)
548 {
549         struct drm_i915_gem_create *args = data;
550
551         return i915_gem_create(file, dev,
552                                args->size, &args->handle);
553 }
554
555 static inline int
556 __copy_to_user_swizzled(char __user *cpu_vaddr,
557                         const char *gpu_vaddr, int gpu_offset,
558                         int length)
559 {
560         int ret, cpu_offset = 0;
561
562         while (length > 0) {
563                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
564                 int this_length = min(cacheline_end - gpu_offset, length);
565                 int swizzled_gpu_offset = gpu_offset ^ 64;
566
567                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
568                                      gpu_vaddr + swizzled_gpu_offset,
569                                      this_length);
570                 if (ret)
571                         return ret + length;
572
573                 cpu_offset += this_length;
574                 gpu_offset += this_length;
575                 length -= this_length;
576         }
577
578         return 0;
579 }
580
581 static inline int
582 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
583                           const char __user *cpu_vaddr,
584                           int length)
585 {
586         int ret, cpu_offset = 0;
587
588         while (length > 0) {
589                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
590                 int this_length = min(cacheline_end - gpu_offset, length);
591                 int swizzled_gpu_offset = gpu_offset ^ 64;
592
593                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
594                                        cpu_vaddr + cpu_offset,
595                                        this_length);
596                 if (ret)
597                         return ret + length;
598
599                 cpu_offset += this_length;
600                 gpu_offset += this_length;
601                 length -= this_length;
602         }
603
604         return 0;
605 }
606
607 /*
608  * Pins the specified object's pages and synchronizes the object with
609  * GPU accesses. Sets needs_clflush to non-zero if the caller should
610  * flush the object from the CPU cache.
611  */
612 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
613                                     unsigned int *needs_clflush)
614 {
615         int ret;
616
617         *needs_clflush = 0;
618
619         if (!i915_gem_object_has_struct_page(obj))
620                 return -ENODEV;
621
622         ret = i915_gem_object_wait_rendering(obj, true);
623         if (ret)
624                 return ret;
625
626         ret = i915_gem_object_get_pages(obj);
627         if (ret)
628                 return ret;
629
630         i915_gem_object_pin_pages(obj);
631
632         i915_gem_object_flush_gtt_write_domain(obj);
633
634         /* If we're not in the cpu read domain, set ourself into the gtt
635          * read domain and manually flush cachelines (if required). This
636          * optimizes for the case when the gpu will dirty the data
637          * anyway again before the next pread happens.
638          */
639         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
640                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
641                                                         obj->cache_level);
642
643         if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
644                 ret = i915_gem_object_set_to_cpu_domain(obj, false);
645                 if (ret)
646                         goto err_unpin;
647
648                 *needs_clflush = 0;
649         }
650
651         /* return with the pages pinned */
652         return 0;
653
654 err_unpin:
655         i915_gem_object_unpin_pages(obj);
656         return ret;
657 }
658
659 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
660                                      unsigned int *needs_clflush)
661 {
662         int ret;
663
664         *needs_clflush = 0;
665         if (!i915_gem_object_has_struct_page(obj))
666                 return -ENODEV;
667
668         ret = i915_gem_object_wait_rendering(obj, false);
669         if (ret)
670                 return ret;
671
672         ret = i915_gem_object_get_pages(obj);
673         if (ret)
674                 return ret;
675
676         i915_gem_object_pin_pages(obj);
677
678         i915_gem_object_flush_gtt_write_domain(obj);
679
680         /* If we're not in the cpu write domain, set ourself into the
681          * gtt write domain and manually flush cachelines (as required).
682          * This optimizes for the case when the gpu will use the data
683          * right away and we therefore have to clflush anyway.
684          */
685         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
686                 *needs_clflush |= cpu_write_needs_clflush(obj) << 1;
687
688         /* Same trick applies to invalidate partially written cachelines read
689          * before writing.
690          */
691         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
692                 *needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
693                                                          obj->cache_level);
694
695         if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
696                 ret = i915_gem_object_set_to_cpu_domain(obj, true);
697                 if (ret)
698                         goto err_unpin;
699
700                 *needs_clflush = 0;
701         }
702
703         if ((*needs_clflush & CLFLUSH_AFTER) == 0)
704                 obj->cache_dirty = true;
705
706         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
707         obj->dirty = 1;
708         /* return with the pages pinned */
709         return 0;
710
711 err_unpin:
712         i915_gem_object_unpin_pages(obj);
713         return ret;
714 }
715
716 /* Per-page copy function for the shmem pread fastpath.
717  * Flushes invalid cachelines before reading the target if
718  * needs_clflush is set. */
719 static int
720 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
721                  char __user *user_data,
722                  bool page_do_bit17_swizzling, bool needs_clflush)
723 {
724         char *vaddr;
725         int ret;
726
727         if (unlikely(page_do_bit17_swizzling))
728                 return -EINVAL;
729
730         vaddr = kmap_atomic(page);
731         if (needs_clflush)
732                 drm_clflush_virt_range(vaddr + shmem_page_offset,
733                                        page_length);
734         ret = __copy_to_user_inatomic(user_data,
735                                       vaddr + shmem_page_offset,
736                                       page_length);
737         kunmap_atomic(vaddr);
738
739         return ret ? -EFAULT : 0;
740 }
741
742 static void
743 shmem_clflush_swizzled_range(char *addr, unsigned long length,
744                              bool swizzled)
745 {
746         if (unlikely(swizzled)) {
747                 unsigned long start = (unsigned long) addr;
748                 unsigned long end = (unsigned long) addr + length;
749
750                 /* For swizzling simply ensure that we always flush both
751                  * channels. Lame, but simple and it works. Swizzled
752                  * pwrite/pread is far from a hotpath - current userspace
753                  * doesn't use it at all. */
754                 start = round_down(start, 128);
755                 end = round_up(end, 128);
756
757                 drm_clflush_virt_range((void *)start, end - start);
758         } else {
759                 drm_clflush_virt_range(addr, length);
760         }
761
762 }
763
764 /* Only difference to the fast-path function is that this can handle bit17
765  * and uses non-atomic copy and kmap functions. */
766 static int
767 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
768                  char __user *user_data,
769                  bool page_do_bit17_swizzling, bool needs_clflush)
770 {
771         char *vaddr;
772         int ret;
773
774         vaddr = kmap(page);
775         if (needs_clflush)
776                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
777                                              page_length,
778                                              page_do_bit17_swizzling);
779
780         if (page_do_bit17_swizzling)
781                 ret = __copy_to_user_swizzled(user_data,
782                                               vaddr, shmem_page_offset,
783                                               page_length);
784         else
785                 ret = __copy_to_user(user_data,
786                                      vaddr + shmem_page_offset,
787                                      page_length);
788         kunmap(page);
789
790         return ret ? - EFAULT : 0;
791 }
792
793 static inline unsigned long
794 slow_user_access(struct io_mapping *mapping,
795                  uint64_t page_base, int page_offset,
796                  char __user *user_data,
797                  unsigned long length, bool pwrite)
798 {
799         void __iomem *ioaddr;
800         void *vaddr;
801         uint64_t unwritten;
802
803         ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
804         /* We can use the cpu mem copy function because this is X86. */
805         vaddr = (void __force *)ioaddr + page_offset;
806         if (pwrite)
807                 unwritten = __copy_from_user(vaddr, user_data, length);
808         else
809                 unwritten = __copy_to_user(user_data, vaddr, length);
810
811         io_mapping_unmap(ioaddr);
812         return unwritten;
813 }
814
815 static int
816 i915_gem_gtt_pread(struct drm_device *dev,
817                    struct drm_i915_gem_object *obj, uint64_t size,
818                    uint64_t data_offset, uint64_t data_ptr)
819 {
820         struct drm_i915_private *dev_priv = to_i915(dev);
821         struct i915_ggtt *ggtt = &dev_priv->ggtt;
822         struct i915_vma *vma;
823         struct drm_mm_node node;
824         char __user *user_data;
825         uint64_t remain;
826         uint64_t offset;
827         int ret;
828
829         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE);
830         if (!IS_ERR(vma)) {
831                 node.start = i915_ggtt_offset(vma);
832                 node.allocated = false;
833                 ret = i915_vma_put_fence(vma);
834                 if (ret) {
835                         i915_vma_unpin(vma);
836                         vma = ERR_PTR(ret);
837                 }
838         }
839         if (IS_ERR(vma)) {
840                 ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
841                 if (ret)
842                         goto out;
843
844                 ret = i915_gem_object_get_pages(obj);
845                 if (ret) {
846                         remove_mappable_node(&node);
847                         goto out;
848                 }
849
850                 i915_gem_object_pin_pages(obj);
851         }
852
853         ret = i915_gem_object_set_to_gtt_domain(obj, false);
854         if (ret)
855                 goto out_unpin;
856
857         user_data = u64_to_user_ptr(data_ptr);
858         remain = size;
859         offset = data_offset;
860
861         mutex_unlock(&dev->struct_mutex);
862         if (likely(!i915.prefault_disable)) {
863                 ret = fault_in_pages_writeable(user_data, remain);
864                 if (ret) {
865                         mutex_lock(&dev->struct_mutex);
866                         goto out_unpin;
867                 }
868         }
869
870         while (remain > 0) {
871                 /* Operation in this page
872                  *
873                  * page_base = page offset within aperture
874                  * page_offset = offset within page
875                  * page_length = bytes to copy for this page
876                  */
877                 u32 page_base = node.start;
878                 unsigned page_offset = offset_in_page(offset);
879                 unsigned page_length = PAGE_SIZE - page_offset;
880                 page_length = remain < page_length ? remain : page_length;
881                 if (node.allocated) {
882                         wmb();
883                         ggtt->base.insert_page(&ggtt->base,
884                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
885                                                node.start,
886                                                I915_CACHE_NONE, 0);
887                         wmb();
888                 } else {
889                         page_base += offset & PAGE_MASK;
890                 }
891                 /* This is a slow read/write as it tries to read from
892                  * and write to user memory which may result into page
893                  * faults, and so we cannot perform this under struct_mutex.
894                  */
895                 if (slow_user_access(&ggtt->mappable, page_base,
896                                      page_offset, user_data,
897                                      page_length, false)) {
898                         ret = -EFAULT;
899                         break;
900                 }
901
902                 remain -= page_length;
903                 user_data += page_length;
904                 offset += page_length;
905         }
906
907         mutex_lock(&dev->struct_mutex);
908         if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
909                 /* The user has modified the object whilst we tried
910                  * reading from it, and we now have no idea what domain
911                  * the pages should be in. As we have just been touching
912                  * them directly, flush everything back to the GTT
913                  * domain.
914                  */
915                 ret = i915_gem_object_set_to_gtt_domain(obj, false);
916         }
917
918 out_unpin:
919         if (node.allocated) {
920                 wmb();
921                 ggtt->base.clear_range(&ggtt->base,
922                                        node.start, node.size,
923                                        true);
924                 i915_gem_object_unpin_pages(obj);
925                 remove_mappable_node(&node);
926         } else {
927                 i915_vma_unpin(vma);
928         }
929 out:
930         return ret;
931 }
932
933 static int
934 i915_gem_shmem_pread(struct drm_device *dev,
935                      struct drm_i915_gem_object *obj,
936                      struct drm_i915_gem_pread *args,
937                      struct drm_file *file)
938 {
939         char __user *user_data;
940         ssize_t remain;
941         loff_t offset;
942         int shmem_page_offset, page_length, ret = 0;
943         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
944         int prefaulted = 0;
945         int needs_clflush = 0;
946         struct sg_page_iter sg_iter;
947
948         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
949         if (ret)
950                 return ret;
951
952         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
953         user_data = u64_to_user_ptr(args->data_ptr);
954         offset = args->offset;
955         remain = args->size;
956
957         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
958                          offset >> PAGE_SHIFT) {
959                 struct page *page = sg_page_iter_page(&sg_iter);
960
961                 if (remain <= 0)
962                         break;
963
964                 /* Operation in this page
965                  *
966                  * shmem_page_offset = offset within page in shmem file
967                  * page_length = bytes to copy for this page
968                  */
969                 shmem_page_offset = offset_in_page(offset);
970                 page_length = remain;
971                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
972                         page_length = PAGE_SIZE - shmem_page_offset;
973
974                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
975                         (page_to_phys(page) & (1 << 17)) != 0;
976
977                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
978                                        user_data, page_do_bit17_swizzling,
979                                        needs_clflush);
980                 if (ret == 0)
981                         goto next_page;
982
983                 mutex_unlock(&dev->struct_mutex);
984
985                 if (likely(!i915.prefault_disable) && !prefaulted) {
986                         ret = fault_in_pages_writeable(user_data, remain);
987                         /* Userspace is tricking us, but we've already clobbered
988                          * its pages with the prefault and promised to write the
989                          * data up to the first fault. Hence ignore any errors
990                          * and just continue. */
991                         (void)ret;
992                         prefaulted = 1;
993                 }
994
995                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
996                                        user_data, page_do_bit17_swizzling,
997                                        needs_clflush);
998
999                 mutex_lock(&dev->struct_mutex);
1000
1001                 if (ret)
1002                         goto out;
1003
1004 next_page:
1005                 remain -= page_length;
1006                 user_data += page_length;
1007                 offset += page_length;
1008         }
1009
1010 out:
1011         i915_gem_obj_finish_shmem_access(obj);
1012
1013         return ret;
1014 }
1015
1016 /**
1017  * Reads data from the object referenced by handle.
1018  * @dev: drm device pointer
1019  * @data: ioctl data blob
1020  * @file: drm file pointer
1021  *
1022  * On error, the contents of *data are undefined.
1023  */
1024 int
1025 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1026                      struct drm_file *file)
1027 {
1028         struct drm_i915_gem_pread *args = data;
1029         struct drm_i915_gem_object *obj;
1030         int ret = 0;
1031
1032         if (args->size == 0)
1033                 return 0;
1034
1035         if (!access_ok(VERIFY_WRITE,
1036                        u64_to_user_ptr(args->data_ptr),
1037                        args->size))
1038                 return -EFAULT;
1039
1040         obj = i915_gem_object_lookup(file, args->handle);
1041         if (!obj)
1042                 return -ENOENT;
1043
1044         /* Bounds check source.  */
1045         if (args->offset > obj->base.size ||
1046             args->size > obj->base.size - args->offset) {
1047                 ret = -EINVAL;
1048                 goto err;
1049         }
1050
1051         trace_i915_gem_object_pread(obj, args->offset, args->size);
1052
1053         ret = __unsafe_wait_rendering(obj, to_rps_client(file), true);
1054         if (ret)
1055                 goto err;
1056
1057         ret = i915_mutex_lock_interruptible(dev);
1058         if (ret)
1059                 goto err;
1060
1061         ret = i915_gem_shmem_pread(dev, obj, args, file);
1062
1063         /* pread for non shmem backed objects */
1064         if (ret == -EFAULT || ret == -ENODEV) {
1065                 intel_runtime_pm_get(to_i915(dev));
1066                 ret = i915_gem_gtt_pread(dev, obj, args->size,
1067                                         args->offset, args->data_ptr);
1068                 intel_runtime_pm_put(to_i915(dev));
1069         }
1070
1071         i915_gem_object_put(obj);
1072         mutex_unlock(&dev->struct_mutex);
1073
1074         return ret;
1075
1076 err:
1077         i915_gem_object_put_unlocked(obj);
1078         return ret;
1079 }
1080
1081 /* This is the fast write path which cannot handle
1082  * page faults in the source data
1083  */
1084
1085 static inline int
1086 fast_user_write(struct io_mapping *mapping,
1087                 loff_t page_base, int page_offset,
1088                 char __user *user_data,
1089                 int length)
1090 {
1091         void __iomem *vaddr_atomic;
1092         void *vaddr;
1093         unsigned long unwritten;
1094
1095         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
1096         /* We can use the cpu mem copy function because this is X86. */
1097         vaddr = (void __force*)vaddr_atomic + page_offset;
1098         unwritten = __copy_from_user_inatomic_nocache(vaddr,
1099                                                       user_data, length);
1100         io_mapping_unmap_atomic(vaddr_atomic);
1101         return unwritten;
1102 }
1103
1104 /**
1105  * This is the fast pwrite path, where we copy the data directly from the
1106  * user into the GTT, uncached.
1107  * @i915: i915 device private data
1108  * @obj: i915 gem object
1109  * @args: pwrite arguments structure
1110  * @file: drm file pointer
1111  */
1112 static int
1113 i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
1114                          struct drm_i915_gem_object *obj,
1115                          struct drm_i915_gem_pwrite *args,
1116                          struct drm_file *file)
1117 {
1118         struct i915_ggtt *ggtt = &i915->ggtt;
1119         struct drm_device *dev = obj->base.dev;
1120         struct i915_vma *vma;
1121         struct drm_mm_node node;
1122         uint64_t remain, offset;
1123         char __user *user_data;
1124         int ret;
1125         bool hit_slow_path = false;
1126
1127         if (i915_gem_object_is_tiled(obj))
1128                 return -EFAULT;
1129
1130         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1131                                        PIN_MAPPABLE | PIN_NONBLOCK);
1132         if (!IS_ERR(vma)) {
1133                 node.start = i915_ggtt_offset(vma);
1134                 node.allocated = false;
1135                 ret = i915_vma_put_fence(vma);
1136                 if (ret) {
1137                         i915_vma_unpin(vma);
1138                         vma = ERR_PTR(ret);
1139                 }
1140         }
1141         if (IS_ERR(vma)) {
1142                 ret = insert_mappable_node(i915, &node, PAGE_SIZE);
1143                 if (ret)
1144                         goto out;
1145
1146                 ret = i915_gem_object_get_pages(obj);
1147                 if (ret) {
1148                         remove_mappable_node(&node);
1149                         goto out;
1150                 }
1151
1152                 i915_gem_object_pin_pages(obj);
1153         }
1154
1155         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1156         if (ret)
1157                 goto out_unpin;
1158
1159         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1160         obj->dirty = true;
1161
1162         user_data = u64_to_user_ptr(args->data_ptr);
1163         offset = args->offset;
1164         remain = args->size;
1165         while (remain) {
1166                 /* Operation in this page
1167                  *
1168                  * page_base = page offset within aperture
1169                  * page_offset = offset within page
1170                  * page_length = bytes to copy for this page
1171                  */
1172                 u32 page_base = node.start;
1173                 unsigned page_offset = offset_in_page(offset);
1174                 unsigned page_length = PAGE_SIZE - page_offset;
1175                 page_length = remain < page_length ? remain : page_length;
1176                 if (node.allocated) {
1177                         wmb(); /* flush the write before we modify the GGTT */
1178                         ggtt->base.insert_page(&ggtt->base,
1179                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1180                                                node.start, I915_CACHE_NONE, 0);
1181                         wmb(); /* flush modifications to the GGTT (insert_page) */
1182                 } else {
1183                         page_base += offset & PAGE_MASK;
1184                 }
1185                 /* If we get a fault while copying data, then (presumably) our
1186                  * source page isn't available.  Return the error and we'll
1187                  * retry in the slow path.
1188                  * If the object is non-shmem backed, we retry again with the
1189                  * path that handles page fault.
1190                  */
1191                 if (fast_user_write(&ggtt->mappable, page_base,
1192                                     page_offset, user_data, page_length)) {
1193                         hit_slow_path = true;
1194                         mutex_unlock(&dev->struct_mutex);
1195                         if (slow_user_access(&ggtt->mappable,
1196                                              page_base,
1197                                              page_offset, user_data,
1198                                              page_length, true)) {
1199                                 ret = -EFAULT;
1200                                 mutex_lock(&dev->struct_mutex);
1201                                 goto out_flush;
1202                         }
1203
1204                         mutex_lock(&dev->struct_mutex);
1205                 }
1206
1207                 remain -= page_length;
1208                 user_data += page_length;
1209                 offset += page_length;
1210         }
1211
1212 out_flush:
1213         if (hit_slow_path) {
1214                 if (ret == 0 &&
1215                     (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
1216                         /* The user has modified the object whilst we tried
1217                          * reading from it, and we now have no idea what domain
1218                          * the pages should be in. As we have just been touching
1219                          * them directly, flush everything back to the GTT
1220                          * domain.
1221                          */
1222                         ret = i915_gem_object_set_to_gtt_domain(obj, false);
1223                 }
1224         }
1225
1226         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1227 out_unpin:
1228         if (node.allocated) {
1229                 wmb();
1230                 ggtt->base.clear_range(&ggtt->base,
1231                                        node.start, node.size,
1232                                        true);
1233                 i915_gem_object_unpin_pages(obj);
1234                 remove_mappable_node(&node);
1235         } else {
1236                 i915_vma_unpin(vma);
1237         }
1238 out:
1239         return ret;
1240 }
1241
1242 /* Per-page copy function for the shmem pwrite fastpath.
1243  * Flushes invalid cachelines before writing to the target if
1244  * needs_clflush_before is set and flushes out any written cachelines after
1245  * writing if needs_clflush is set. */
1246 static int
1247 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
1248                   char __user *user_data,
1249                   bool page_do_bit17_swizzling,
1250                   bool needs_clflush_before,
1251                   bool needs_clflush_after)
1252 {
1253         char *vaddr;
1254         int ret;
1255
1256         if (unlikely(page_do_bit17_swizzling))
1257                 return -EINVAL;
1258
1259         vaddr = kmap_atomic(page);
1260         if (needs_clflush_before)
1261                 drm_clflush_virt_range(vaddr + shmem_page_offset,
1262                                        page_length);
1263         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
1264                                         user_data, page_length);
1265         if (needs_clflush_after)
1266                 drm_clflush_virt_range(vaddr + shmem_page_offset,
1267                                        page_length);
1268         kunmap_atomic(vaddr);
1269
1270         return ret ? -EFAULT : 0;
1271 }
1272
1273 /* Only difference to the fast-path function is that this can handle bit17
1274  * and uses non-atomic copy and kmap functions. */
1275 static int
1276 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
1277                   char __user *user_data,
1278                   bool page_do_bit17_swizzling,
1279                   bool needs_clflush_before,
1280                   bool needs_clflush_after)
1281 {
1282         char *vaddr;
1283         int ret;
1284
1285         vaddr = kmap(page);
1286         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1287                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1288                                              page_length,
1289                                              page_do_bit17_swizzling);
1290         if (page_do_bit17_swizzling)
1291                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1292                                                 user_data,
1293                                                 page_length);
1294         else
1295                 ret = __copy_from_user(vaddr + shmem_page_offset,
1296                                        user_data,
1297                                        page_length);
1298         if (needs_clflush_after)
1299                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1300                                              page_length,
1301                                              page_do_bit17_swizzling);
1302         kunmap(page);
1303
1304         return ret ? -EFAULT : 0;
1305 }
1306
1307 static int
1308 i915_gem_shmem_pwrite(struct drm_device *dev,
1309                       struct drm_i915_gem_object *obj,
1310                       struct drm_i915_gem_pwrite *args,
1311                       struct drm_file *file)
1312 {
1313         ssize_t remain;
1314         loff_t offset;
1315         char __user *user_data;
1316         int shmem_page_offset, page_length, ret = 0;
1317         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1318         int hit_slowpath = 0;
1319         unsigned int needs_clflush;
1320         struct sg_page_iter sg_iter;
1321
1322         ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1323         if (ret)
1324                 return ret;
1325
1326         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1327         user_data = u64_to_user_ptr(args->data_ptr);
1328         offset = args->offset;
1329         remain = args->size;
1330
1331         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
1332                          offset >> PAGE_SHIFT) {
1333                 struct page *page = sg_page_iter_page(&sg_iter);
1334                 int partial_cacheline_write;
1335
1336                 if (remain <= 0)
1337                         break;
1338
1339                 /* Operation in this page
1340                  *
1341                  * shmem_page_offset = offset within page in shmem file
1342                  * page_length = bytes to copy for this page
1343                  */
1344                 shmem_page_offset = offset_in_page(offset);
1345
1346                 page_length = remain;
1347                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
1348                         page_length = PAGE_SIZE - shmem_page_offset;
1349
1350                 /* If we don't overwrite a cacheline completely we need to be
1351                  * careful to have up-to-date data by first clflushing. Don't
1352                  * overcomplicate things and flush the entire patch. */
1353                 partial_cacheline_write = needs_clflush & CLFLUSH_BEFORE &&
1354                         ((shmem_page_offset | page_length)
1355                                 & (boot_cpu_data.x86_clflush_size - 1));
1356
1357                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
1358                         (page_to_phys(page) & (1 << 17)) != 0;
1359
1360                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1361                                         user_data, page_do_bit17_swizzling,
1362                                         partial_cacheline_write,
1363                                         needs_clflush & CLFLUSH_AFTER);
1364                 if (ret == 0)
1365                         goto next_page;
1366
1367                 hit_slowpath = 1;
1368                 mutex_unlock(&dev->struct_mutex);
1369                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1370                                         user_data, page_do_bit17_swizzling,
1371                                         partial_cacheline_write,
1372                                         needs_clflush & CLFLUSH_AFTER);
1373
1374                 mutex_lock(&dev->struct_mutex);
1375
1376                 if (ret)
1377                         goto out;
1378
1379 next_page:
1380                 remain -= page_length;
1381                 user_data += page_length;
1382                 offset += page_length;
1383         }
1384
1385 out:
1386         i915_gem_obj_finish_shmem_access(obj);
1387
1388         if (hit_slowpath) {
1389                 /*
1390                  * Fixup: Flush cpu caches in case we didn't flush the dirty
1391                  * cachelines in-line while writing and the object moved
1392                  * out of the cpu write domain while we've dropped the lock.
1393                  */
1394                 if (!(needs_clflush & CLFLUSH_AFTER) &&
1395                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1396                         if (i915_gem_clflush_object(obj, obj->pin_display))
1397                                 needs_clflush |= CLFLUSH_AFTER;
1398                 }
1399         }
1400
1401         if (needs_clflush & CLFLUSH_AFTER)
1402                 i915_gem_chipset_flush(to_i915(dev));
1403
1404         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1405         return ret;
1406 }
1407
1408 /**
1409  * Writes data to the object referenced by handle.
1410  * @dev: drm device
1411  * @data: ioctl data blob
1412  * @file: drm file
1413  *
1414  * On error, the contents of the buffer that were to be modified are undefined.
1415  */
1416 int
1417 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1418                       struct drm_file *file)
1419 {
1420         struct drm_i915_private *dev_priv = to_i915(dev);
1421         struct drm_i915_gem_pwrite *args = data;
1422         struct drm_i915_gem_object *obj;
1423         int ret;
1424
1425         if (args->size == 0)
1426                 return 0;
1427
1428         if (!access_ok(VERIFY_READ,
1429                        u64_to_user_ptr(args->data_ptr),
1430                        args->size))
1431                 return -EFAULT;
1432
1433         if (likely(!i915.prefault_disable)) {
1434                 ret = fault_in_pages_readable(u64_to_user_ptr(args->data_ptr),
1435                                                    args->size);
1436                 if (ret)
1437                         return -EFAULT;
1438         }
1439
1440         obj = i915_gem_object_lookup(file, args->handle);
1441         if (!obj)
1442                 return -ENOENT;
1443
1444         /* Bounds check destination. */
1445         if (args->offset > obj->base.size ||
1446             args->size > obj->base.size - args->offset) {
1447                 ret = -EINVAL;
1448                 goto err;
1449         }
1450
1451         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1452
1453         ret = __unsafe_wait_rendering(obj, to_rps_client(file), false);
1454         if (ret)
1455                 goto err;
1456
1457         intel_runtime_pm_get(dev_priv);
1458
1459         ret = i915_mutex_lock_interruptible(dev);
1460         if (ret)
1461                 goto err_rpm;
1462
1463         ret = -EFAULT;
1464         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1465          * it would end up going through the fenced access, and we'll get
1466          * different detiling behavior between reading and writing.
1467          * pread/pwrite currently are reading and writing from the CPU
1468          * perspective, requiring manual detiling by the client.
1469          */
1470         if (!i915_gem_object_has_struct_page(obj) ||
1471             cpu_write_needs_clflush(obj)) {
1472                 ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
1473                 /* Note that the gtt paths might fail with non-page-backed user
1474                  * pointers (e.g. gtt mappings when moving data between
1475                  * textures). Fallback to the shmem path in that case. */
1476         }
1477
1478         if (ret == -EFAULT || ret == -ENOSPC) {
1479                 if (obj->phys_handle)
1480                         ret = i915_gem_phys_pwrite(obj, args, file);
1481                 else
1482                         ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1483         }
1484
1485         i915_gem_object_put(obj);
1486         mutex_unlock(&dev->struct_mutex);
1487         intel_runtime_pm_put(dev_priv);
1488
1489         return ret;
1490
1491 err_rpm:
1492         intel_runtime_pm_put(dev_priv);
1493 err:
1494         i915_gem_object_put_unlocked(obj);
1495         return ret;
1496 }
1497
1498 static inline enum fb_op_origin
1499 write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1500 {
1501         return (domain == I915_GEM_DOMAIN_GTT ?
1502                 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1503 }
1504
1505 /**
1506  * Called when user space prepares to use an object with the CPU, either
1507  * through the mmap ioctl's mapping or a GTT mapping.
1508  * @dev: drm device
1509  * @data: ioctl data blob
1510  * @file: drm file
1511  */
1512 int
1513 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1514                           struct drm_file *file)
1515 {
1516         struct drm_i915_gem_set_domain *args = data;
1517         struct drm_i915_gem_object *obj;
1518         uint32_t read_domains = args->read_domains;
1519         uint32_t write_domain = args->write_domain;
1520         int ret;
1521
1522         /* Only handle setting domains to types used by the CPU. */
1523         if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1524                 return -EINVAL;
1525
1526         /* Having something in the write domain implies it's in the read
1527          * domain, and only that read domain.  Enforce that in the request.
1528          */
1529         if (write_domain != 0 && read_domains != write_domain)
1530                 return -EINVAL;
1531
1532         obj = i915_gem_object_lookup(file, args->handle);
1533         if (!obj)
1534                 return -ENOENT;
1535
1536         /* Try to flush the object off the GPU without holding the lock.
1537          * We will repeat the flush holding the lock in the normal manner
1538          * to catch cases where we are gazumped.
1539          */
1540         ret = __unsafe_wait_rendering(obj, to_rps_client(file), !write_domain);
1541         if (ret)
1542                 goto err;
1543
1544         ret = i915_mutex_lock_interruptible(dev);
1545         if (ret)
1546                 goto err;
1547
1548         if (read_domains & I915_GEM_DOMAIN_GTT)
1549                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1550         else
1551                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1552
1553         if (write_domain != 0)
1554                 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1555
1556         i915_gem_object_put(obj);
1557         mutex_unlock(&dev->struct_mutex);
1558         return ret;
1559
1560 err:
1561         i915_gem_object_put_unlocked(obj);
1562         return ret;
1563 }
1564
1565 /**
1566  * Called when user space has done writes to this buffer
1567  * @dev: drm device
1568  * @data: ioctl data blob
1569  * @file: drm file
1570  */
1571 int
1572 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1573                          struct drm_file *file)
1574 {
1575         struct drm_i915_gem_sw_finish *args = data;
1576         struct drm_i915_gem_object *obj;
1577         int err = 0;
1578
1579         obj = i915_gem_object_lookup(file, args->handle);
1580         if (!obj)
1581                 return -ENOENT;
1582
1583         /* Pinned buffers may be scanout, so flush the cache */
1584         if (READ_ONCE(obj->pin_display)) {
1585                 err = i915_mutex_lock_interruptible(dev);
1586                 if (!err) {
1587                         i915_gem_object_flush_cpu_write_domain(obj);
1588                         mutex_unlock(&dev->struct_mutex);
1589                 }
1590         }
1591
1592         i915_gem_object_put_unlocked(obj);
1593         return err;
1594 }
1595
1596 static inline bool
1597 __vma_matches(struct vm_area_struct *vma, struct file *filp,
1598               unsigned long addr, unsigned long size)
1599 {
1600         if (vma->vm_file != filp)
1601                 return false;
1602
1603         return vma->vm_start == addr &&
1604                (vma->vm_end - vma->vm_start) == PAGE_ALIGN(size);
1605 }
1606
1607 /**
1608  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1609  *                       it is mapped to.
1610  * @dev: drm device
1611  * @data: ioctl data blob
1612  * @file: drm file
1613  *
1614  * While the mapping holds a reference on the contents of the object, it doesn't
1615  * imply a ref on the object itself.
1616  *
1617  * IMPORTANT:
1618  *
1619  * DRM driver writers who look a this function as an example for how to do GEM
1620  * mmap support, please don't implement mmap support like here. The modern way
1621  * to implement DRM mmap support is with an mmap offset ioctl (like
1622  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1623  * That way debug tooling like valgrind will understand what's going on, hiding
1624  * the mmap call in a driver private ioctl will break that. The i915 driver only
1625  * does cpu mmaps this way because we didn't know better.
1626  */
1627 int
1628 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1629                     struct drm_file *file)
1630 {
1631         struct drm_i915_gem_mmap *args = data;
1632         struct drm_i915_gem_object *obj;
1633         unsigned long addr;
1634
1635         if (args->flags & ~(I915_MMAP_WC))
1636                 return -EINVAL;
1637
1638         if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1639                 return -ENODEV;
1640
1641         obj = i915_gem_object_lookup(file, args->handle);
1642         if (!obj)
1643                 return -ENOENT;
1644
1645         /* prime objects have no backing filp to GEM mmap
1646          * pages from.
1647          */
1648         if (!obj->base.filp) {
1649                 i915_gem_object_put_unlocked(obj);
1650                 return -EINVAL;
1651         }
1652
1653         addr = vm_mmap(obj->base.filp, 0, args->size,
1654                        PROT_READ | PROT_WRITE, MAP_SHARED,
1655                        args->offset);
1656         if (args->flags & I915_MMAP_WC) {
1657                 struct mm_struct *mm = current->mm;
1658                 struct vm_area_struct *vma;
1659
1660                 if (down_write_killable(&mm->mmap_sem)) {
1661                         i915_gem_object_put_unlocked(obj);
1662                         return -EINTR;
1663                 }
1664                 vma = find_vma(mm, addr);
1665                 if (vma && __vma_matches(vma, obj->base.filp, addr, args->size))
1666                         vma->vm_page_prot =
1667                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1668                 else
1669                         addr = -ENOMEM;
1670                 up_write(&mm->mmap_sem);
1671
1672                 /* This may race, but that's ok, it only gets set */
1673                 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1674         }
1675         i915_gem_object_put_unlocked(obj);
1676         if (IS_ERR((void *)addr))
1677                 return addr;
1678
1679         args->addr_ptr = (uint64_t) addr;
1680
1681         return 0;
1682 }
1683
1684 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1685 {
1686         u64 size;
1687
1688         size = i915_gem_object_get_stride(obj);
1689         size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8;
1690
1691         return size >> PAGE_SHIFT;
1692 }
1693
1694 /**
1695  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1696  *
1697  * A history of the GTT mmap interface:
1698  *
1699  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1700  *     aligned and suitable for fencing, and still fit into the available
1701  *     mappable space left by the pinned display objects. A classic problem
1702  *     we called the page-fault-of-doom where we would ping-pong between
1703  *     two objects that could not fit inside the GTT and so the memcpy
1704  *     would page one object in at the expense of the other between every
1705  *     single byte.
1706  *
1707  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1708  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1709  *     object is too large for the available space (or simply too large
1710  *     for the mappable aperture!), a view is created instead and faulted
1711  *     into userspace. (This view is aligned and sized appropriately for
1712  *     fenced access.)
1713  *
1714  * Restrictions:
1715  *
1716  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1717  *    hangs on some architectures, corruption on others. An attempt to service
1718  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1719  *
1720  *  * the object must be able to fit into RAM (physical memory, though no
1721  *    limited to the mappable aperture).
1722  *
1723  *
1724  * Caveats:
1725  *
1726  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1727  *    all data to system memory. Subsequent access will not be synchronized.
1728  *
1729  *  * all mappings are revoked on runtime device suspend.
1730  *
1731  *  * there are only 8, 16 or 32 fence registers to share between all users
1732  *    (older machines require fence register for display and blitter access
1733  *    as well). Contention of the fence registers will cause the previous users
1734  *    to be unmapped and any new access will generate new page faults.
1735  *
1736  *  * running out of memory while servicing a fault may generate a SIGBUS,
1737  *    rather than the expected SIGSEGV.
1738  */
1739 int i915_gem_mmap_gtt_version(void)
1740 {
1741         return 1;
1742 }
1743
1744 /**
1745  * i915_gem_fault - fault a page into the GTT
1746  * @area: CPU VMA in question
1747  * @vmf: fault info
1748  *
1749  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1750  * from userspace.  The fault handler takes care of binding the object to
1751  * the GTT (if needed), allocating and programming a fence register (again,
1752  * only if needed based on whether the old reg is still valid or the object
1753  * is tiled) and inserting a new PTE into the faulting process.
1754  *
1755  * Note that the faulting process may involve evicting existing objects
1756  * from the GTT and/or fence registers to make room.  So performance may
1757  * suffer if the GTT working set is large or there are few fence registers
1758  * left.
1759  *
1760  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1761  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1762  */
1763 int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1764 {
1765 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1766         struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1767         struct drm_device *dev = obj->base.dev;
1768         struct drm_i915_private *dev_priv = to_i915(dev);
1769         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1770         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1771         struct i915_vma *vma;
1772         pgoff_t page_offset;
1773         unsigned int flags;
1774         int ret;
1775
1776         /* Sanity check that we allow writing into this object */
1777         if (i915_gem_object_is_readonly(obj) && write)
1778                 return VM_FAULT_SIGBUS;
1779
1780         /* We don't use vmf->pgoff since that has the fake offset */
1781         page_offset = ((unsigned long)vmf->virtual_address - area->vm_start) >>
1782                 PAGE_SHIFT;
1783
1784         trace_i915_gem_object_fault(obj, page_offset, true, write);
1785
1786         /* Try to flush the object off the GPU first without holding the lock.
1787          * Upon acquiring the lock, we will perform our sanity checks and then
1788          * repeat the flush holding the lock in the normal manner to catch cases
1789          * where we are gazumped.
1790          */
1791         ret = __unsafe_wait_rendering(obj, NULL, !write);
1792         if (ret)
1793                 goto err;
1794
1795         intel_runtime_pm_get(dev_priv);
1796
1797         ret = i915_mutex_lock_interruptible(dev);
1798         if (ret)
1799                 goto err_rpm;
1800
1801         /* Access to snoopable pages through the GTT is incoherent. */
1802         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1803                 ret = -EFAULT;
1804                 goto err_unlock;
1805         }
1806
1807         /* If the object is smaller than a couple of partial vma, it is
1808          * not worth only creating a single partial vma - we may as well
1809          * clear enough space for the full object.
1810          */
1811         flags = PIN_MAPPABLE;
1812         if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1813                 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1814
1815         /* Now pin it into the GTT as needed */
1816         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1817         if (IS_ERR(vma)) {
1818                 struct i915_ggtt_view view;
1819                 unsigned int chunk_size;
1820
1821                 /* Use a partial view if it is bigger than available space */
1822                 chunk_size = MIN_CHUNK_PAGES;
1823                 if (i915_gem_object_is_tiled(obj))
1824                         chunk_size = roundup(chunk_size, tile_row_pages(obj));
1825
1826                 memset(&view, 0, sizeof(view));
1827                 view.type = I915_GGTT_VIEW_PARTIAL;
1828                 view.params.partial.offset = rounddown(page_offset, chunk_size);
1829                 view.params.partial.size =
1830                         min_t(unsigned int, chunk_size,
1831                               (area->vm_end - area->vm_start) / PAGE_SIZE -
1832                               view.params.partial.offset);
1833
1834                 /* If the partial covers the entire object, just create a
1835                  * normal VMA.
1836                  */
1837                 if (chunk_size >= obj->base.size >> PAGE_SHIFT)
1838                         view.type = I915_GGTT_VIEW_NORMAL;
1839
1840                 /* Userspace is now writing through an untracked VMA, abandon
1841                  * all hope that the hardware is able to track future writes.
1842                  */
1843                 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1844
1845                 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1846         }
1847         if (IS_ERR(vma)) {
1848                 ret = PTR_ERR(vma);
1849                 goto err_unlock;
1850         }
1851
1852         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1853         if (ret)
1854                 goto err_unpin;
1855
1856         ret = i915_vma_get_fence(vma);
1857         if (ret)
1858                 goto err_unpin;
1859
1860         /* Finally, remap it using the new GTT offset */
1861         ret = remap_io_mapping(area,
1862                                area->vm_start + (vma->ggtt_view.params.partial.offset << PAGE_SHIFT),
1863                                (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1864                                min_t(u64, vma->size, area->vm_end - area->vm_start),
1865                                &ggtt->mappable);
1866         if (ret)
1867                 goto err_unpin;
1868
1869         obj->fault_mappable = true;
1870 err_unpin:
1871         __i915_vma_unpin(vma);
1872 err_unlock:
1873         mutex_unlock(&dev->struct_mutex);
1874 err_rpm:
1875         intel_runtime_pm_put(dev_priv);
1876 err:
1877         switch (ret) {
1878         case -EIO:
1879                 /*
1880                  * We eat errors when the gpu is terminally wedged to avoid
1881                  * userspace unduly crashing (gl has no provisions for mmaps to
1882                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1883                  * and so needs to be reported.
1884                  */
1885                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1886                         ret = VM_FAULT_SIGBUS;
1887                         break;
1888                 }
1889         case -EAGAIN:
1890                 /*
1891                  * EAGAIN means the gpu is hung and we'll wait for the error
1892                  * handler to reset everything when re-faulting in
1893                  * i915_mutex_lock_interruptible.
1894                  */
1895         case 0:
1896         case -ERESTARTSYS:
1897         case -EINTR:
1898         case -EBUSY:
1899                 /*
1900                  * EBUSY is ok: this just means that another thread
1901                  * already did the job.
1902                  */
1903                 ret = VM_FAULT_NOPAGE;
1904                 break;
1905         case -ENOMEM:
1906                 ret = VM_FAULT_OOM;
1907                 break;
1908         case -ENOSPC:
1909         case -EFAULT:
1910                 ret = VM_FAULT_SIGBUS;
1911                 break;
1912         default:
1913                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1914                 ret = VM_FAULT_SIGBUS;
1915                 break;
1916         }
1917         return ret;
1918 }
1919
1920 /**
1921  * i915_gem_release_mmap - remove physical page mappings
1922  * @obj: obj in question
1923  *
1924  * Preserve the reservation of the mmapping with the DRM core code, but
1925  * relinquish ownership of the pages back to the system.
1926  *
1927  * It is vital that we remove the page mapping if we have mapped a tiled
1928  * object through the GTT and then lose the fence register due to
1929  * resource pressure. Similarly if the object has been moved out of the
1930  * aperture, than pages mapped into userspace must be revoked. Removing the
1931  * mapping will then trigger a page fault on the next user access, allowing
1932  * fixup by i915_gem_fault().
1933  */
1934 void
1935 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1936 {
1937         /* Serialisation between user GTT access and our code depends upon
1938          * revoking the CPU's PTE whilst the mutex is held. The next user
1939          * pagefault then has to wait until we release the mutex.
1940          */
1941         lockdep_assert_held(&obj->base.dev->struct_mutex);
1942
1943         if (!obj->fault_mappable)
1944                 return;
1945
1946         drm_vma_node_unmap(&obj->base.vma_node,
1947                            obj->base.dev->anon_inode->i_mapping);
1948
1949         /* Ensure that the CPU's PTE are revoked and there are not outstanding
1950          * memory transactions from userspace before we return. The TLB
1951          * flushing implied above by changing the PTE above *should* be
1952          * sufficient, an extra barrier here just provides us with a bit
1953          * of paranoid documentation about our requirement to serialise
1954          * memory writes before touching registers / GSM.
1955          */
1956         wmb();
1957
1958         obj->fault_mappable = false;
1959 }
1960
1961 void
1962 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1963 {
1964         struct drm_i915_gem_object *obj;
1965
1966         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1967                 i915_gem_release_mmap(obj);
1968 }
1969
1970 /**
1971  * i915_gem_get_ggtt_size - return required global GTT size for an object
1972  * @dev_priv: i915 device
1973  * @size: object size
1974  * @tiling_mode: tiling mode
1975  *
1976  * Return the required global GTT size for an object, taking into account
1977  * potential fence register mapping.
1978  */
1979 u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
1980                            u64 size, int tiling_mode)
1981 {
1982         u64 ggtt_size;
1983
1984         GEM_BUG_ON(size == 0);
1985
1986         if (INTEL_GEN(dev_priv) >= 4 ||
1987             tiling_mode == I915_TILING_NONE)
1988                 return size;
1989
1990         /* Previous chips need a power-of-two fence region when tiling */
1991         if (IS_GEN3(dev_priv))
1992                 ggtt_size = 1024*1024;
1993         else
1994                 ggtt_size = 512*1024;
1995
1996         while (ggtt_size < size)
1997                 ggtt_size <<= 1;
1998
1999         return ggtt_size;
2000 }
2001
2002 /**
2003  * i915_gem_get_ggtt_alignment - return required global GTT alignment
2004  * @dev_priv: i915 device
2005  * @size: object size
2006  * @tiling_mode: tiling mode
2007  * @fenced: is fenced alignment required or not
2008  *
2009  * Return the required global GTT alignment for an object, taking into account
2010  * potential fence register mapping.
2011  */
2012 u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
2013                                 int tiling_mode, bool fenced)
2014 {
2015         GEM_BUG_ON(size == 0);
2016
2017         /*
2018          * Minimum alignment is 4k (GTT page size), but might be greater
2019          * if a fence register is needed for the object.
2020          */
2021         if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
2022             tiling_mode == I915_TILING_NONE)
2023                 return 4096;
2024
2025         /*
2026          * Previous chips need to be aligned to the size of the smallest
2027          * fence register that can contain the object.
2028          */
2029         return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
2030 }
2031
2032 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2033 {
2034         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2035         int err;
2036
2037         err = drm_gem_create_mmap_offset(&obj->base);
2038         if (!err)
2039                 return 0;
2040
2041         /* We can idle the GPU locklessly to flush stale objects, but in order
2042          * to claim that space for ourselves, we need to take the big
2043          * struct_mutex to free the requests+objects and allocate our slot.
2044          */
2045         err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2046         if (err)
2047                 return err;
2048
2049         err = i915_mutex_lock_interruptible(&dev_priv->drm);
2050         if (!err) {
2051                 i915_gem_retire_requests(dev_priv);
2052                 err = drm_gem_create_mmap_offset(&obj->base);
2053                 mutex_unlock(&dev_priv->drm.struct_mutex);
2054         }
2055
2056         return err;
2057 }
2058
2059 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2060 {
2061         drm_gem_free_mmap_offset(&obj->base);
2062 }
2063
2064 int
2065 i915_gem_mmap_gtt(struct drm_file *file,
2066                   struct drm_device *dev,
2067                   uint32_t handle,
2068                   uint64_t *offset)
2069 {
2070         struct drm_i915_gem_object *obj;
2071         int ret;
2072
2073         obj = i915_gem_object_lookup(file, handle);
2074         if (!obj)
2075                 return -ENOENT;
2076
2077         ret = i915_gem_object_create_mmap_offset(obj);
2078         if (ret == 0)
2079                 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2080
2081         i915_gem_object_put_unlocked(obj);
2082         return ret;
2083 }
2084
2085 /**
2086  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2087  * @dev: DRM device
2088  * @data: GTT mapping ioctl data
2089  * @file: GEM object info
2090  *
2091  * Simply returns the fake offset to userspace so it can mmap it.
2092  * The mmap call will end up in drm_gem_mmap(), which will set things
2093  * up so we can get faults in the handler above.
2094  *
2095  * The fault handler will take care of binding the object into the GTT
2096  * (since it may have been evicted to make room for something), allocating
2097  * a fence register, and mapping the appropriate aperture address into
2098  * userspace.
2099  */
2100 int
2101 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2102                         struct drm_file *file)
2103 {
2104         struct drm_i915_gem_mmap_gtt *args = data;
2105
2106         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2107 }
2108
2109 /* Immediately discard the backing storage */
2110 static void
2111 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2112 {
2113         i915_gem_object_free_mmap_offset(obj);
2114
2115         if (obj->base.filp == NULL)
2116                 return;
2117
2118         /* Our goal here is to return as much of the memory as
2119          * is possible back to the system as we are called from OOM.
2120          * To do this we must instruct the shmfs to drop all of its
2121          * backing pages, *now*.
2122          */
2123         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2124         obj->madv = __I915_MADV_PURGED;
2125 }
2126
2127 /* Try to discard unwanted pages */
2128 static void
2129 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2130 {
2131         struct address_space *mapping;
2132
2133         switch (obj->madv) {
2134         case I915_MADV_DONTNEED:
2135                 i915_gem_object_truncate(obj);
2136         case __I915_MADV_PURGED:
2137                 return;
2138         }
2139
2140         if (obj->base.filp == NULL)
2141                 return;
2142
2143         mapping = obj->base.filp->f_mapping,
2144         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2145 }
2146
2147 static void
2148 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2149 {
2150         struct sgt_iter sgt_iter;
2151         struct page *page;
2152         int ret;
2153
2154         BUG_ON(obj->madv == __I915_MADV_PURGED);
2155
2156         ret = i915_gem_object_set_to_cpu_domain(obj, true);
2157         if (WARN_ON(ret)) {
2158                 /* In the event of a disaster, abandon all caches and
2159                  * hope for the best.
2160                  */
2161                 i915_gem_clflush_object(obj, true);
2162                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2163         }
2164
2165         i915_gem_gtt_finish_object(obj);
2166
2167         if (i915_gem_object_needs_bit17_swizzle(obj))
2168                 i915_gem_object_save_bit_17_swizzle(obj);
2169
2170         if (obj->madv == I915_MADV_DONTNEED)
2171                 obj->dirty = 0;
2172
2173         for_each_sgt_page(page, sgt_iter, obj->pages) {
2174                 if (obj->dirty)
2175                         set_page_dirty(page);
2176
2177                 if (obj->madv == I915_MADV_WILLNEED)
2178                         mark_page_accessed(page);
2179
2180                 put_page(page);
2181         }
2182         obj->dirty = 0;
2183
2184         sg_free_table(obj->pages);
2185         kfree(obj->pages);
2186 }
2187
2188 int
2189 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2190 {
2191         const struct drm_i915_gem_object_ops *ops = obj->ops;
2192
2193         if (obj->pages == NULL)
2194                 return 0;
2195
2196         if (obj->pages_pin_count)
2197                 return -EBUSY;
2198
2199         GEM_BUG_ON(obj->bind_count);
2200
2201         /* ->put_pages might need to allocate memory for the bit17 swizzle
2202          * array, hence protect them from being reaped by removing them from gtt
2203          * lists early. */
2204         list_del(&obj->global_list);
2205
2206         if (obj->mapping) {
2207                 void *ptr;
2208
2209                 ptr = ptr_mask_bits(obj->mapping);
2210                 if (is_vmalloc_addr(ptr))
2211                         vunmap(ptr);
2212                 else
2213                         kunmap(kmap_to_page(ptr));
2214
2215                 obj->mapping = NULL;
2216         }
2217
2218         ops->put_pages(obj);
2219         obj->pages = NULL;
2220
2221         i915_gem_object_invalidate(obj);
2222
2223         return 0;
2224 }
2225
2226 static int
2227 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2228 {
2229         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2230         int page_count, i;
2231         struct address_space *mapping;
2232         struct sg_table *st;
2233         struct scatterlist *sg;
2234         struct sgt_iter sgt_iter;
2235         struct page *page;
2236         unsigned long last_pfn = 0;     /* suppress gcc warning */
2237         int ret;
2238         gfp_t gfp;
2239
2240         /* Assert that the object is not currently in any GPU domain. As it
2241          * wasn't in the GTT, there shouldn't be any way it could have been in
2242          * a GPU cache
2243          */
2244         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2245         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2246
2247         st = kmalloc(sizeof(*st), GFP_KERNEL);
2248         if (st == NULL)
2249                 return -ENOMEM;
2250
2251         page_count = obj->base.size / PAGE_SIZE;
2252         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2253                 kfree(st);
2254                 return -ENOMEM;
2255         }
2256
2257         /* Get the list of pages out of our struct file.  They'll be pinned
2258          * at this point until we release them.
2259          *
2260          * Fail silently without starting the shrinker
2261          */
2262         mapping = obj->base.filp->f_mapping;
2263         gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2264         gfp |= __GFP_NORETRY | __GFP_NOWARN;
2265         sg = st->sgl;
2266         st->nents = 0;
2267         for (i = 0; i < page_count; i++) {
2268                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2269                 if (IS_ERR(page)) {
2270                         i915_gem_shrink(dev_priv,
2271                                         page_count,
2272                                         I915_SHRINK_BOUND |
2273                                         I915_SHRINK_UNBOUND |
2274                                         I915_SHRINK_PURGEABLE);
2275                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2276                 }
2277                 if (IS_ERR(page)) {
2278                         /* We've tried hard to allocate the memory by reaping
2279                          * our own buffer, now let the real VM do its job and
2280                          * go down in flames if truly OOM.
2281                          */
2282                         i915_gem_shrink_all(dev_priv);
2283                         page = shmem_read_mapping_page(mapping, i);
2284                         if (IS_ERR(page)) {
2285                                 ret = PTR_ERR(page);
2286                                 goto err_sg;
2287                         }
2288                 }
2289 #ifdef CONFIG_SWIOTLB
2290                 if (swiotlb_nr_tbl()) {
2291                         st->nents++;
2292                         sg_set_page(sg, page, PAGE_SIZE, 0);
2293                         sg = sg_next(sg);
2294                         continue;
2295                 }
2296 #endif
2297                 if (!i || page_to_pfn(page) != last_pfn + 1) {
2298                         if (i)
2299                                 sg = sg_next(sg);
2300                         st->nents++;
2301                         sg_set_page(sg, page, PAGE_SIZE, 0);
2302                 } else {
2303                         sg->length += PAGE_SIZE;
2304                 }
2305                 last_pfn = page_to_pfn(page);
2306
2307                 /* Check that the i965g/gm workaround works. */
2308                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2309         }
2310 #ifdef CONFIG_SWIOTLB
2311         if (!swiotlb_nr_tbl())
2312 #endif
2313                 sg_mark_end(sg);
2314         obj->pages = st;
2315
2316         ret = i915_gem_gtt_prepare_object(obj);
2317         if (ret)
2318                 goto err_pages;
2319
2320         if (i915_gem_object_needs_bit17_swizzle(obj))
2321                 i915_gem_object_do_bit_17_swizzle(obj);
2322
2323         if (i915_gem_object_is_tiled(obj) &&
2324             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2325                 i915_gem_object_pin_pages(obj);
2326
2327         return 0;
2328
2329 err_sg:
2330         sg_mark_end(sg);
2331 err_pages:
2332         for_each_sgt_page(page, sgt_iter, st)
2333                 put_page(page);
2334         sg_free_table(st);
2335         kfree(st);
2336
2337         /* shmemfs first checks if there is enough memory to allocate the page
2338          * and reports ENOSPC should there be insufficient, along with the usual
2339          * ENOMEM for a genuine allocation failure.
2340          *
2341          * We use ENOSPC in our driver to mean that we have run out of aperture
2342          * space and so want to translate the error from shmemfs back to our
2343          * usual understanding of ENOMEM.
2344          */
2345         if (ret == -ENOSPC)
2346                 ret = -ENOMEM;
2347
2348         return ret;
2349 }
2350
2351 /* Ensure that the associated pages are gathered from the backing storage
2352  * and pinned into our object. i915_gem_object_get_pages() may be called
2353  * multiple times before they are released by a single call to
2354  * i915_gem_object_put_pages() - once the pages are no longer referenced
2355  * either as a result of memory pressure (reaping pages under the shrinker)
2356  * or as the object is itself released.
2357  */
2358 int
2359 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2360 {
2361         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2362         const struct drm_i915_gem_object_ops *ops = obj->ops;
2363         int ret;
2364
2365         if (obj->pages)
2366                 return 0;
2367
2368         if (obj->madv != I915_MADV_WILLNEED) {
2369                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2370                 return -EFAULT;
2371         }
2372
2373         BUG_ON(obj->pages_pin_count);
2374
2375         ret = ops->get_pages(obj);
2376         if (ret)
2377                 return ret;
2378
2379         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2380
2381         obj->get_page.sg = obj->pages->sgl;
2382         obj->get_page.last = 0;
2383
2384         return 0;
2385 }
2386
2387 /* The 'mapping' part of i915_gem_object_pin_map() below */
2388 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2389                                  enum i915_map_type type)
2390 {
2391         unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2392         struct sg_table *sgt = obj->pages;
2393         struct sgt_iter sgt_iter;
2394         struct page *page;
2395         struct page *stack_pages[32];
2396         struct page **pages = stack_pages;
2397         unsigned long i = 0;
2398         pgprot_t pgprot;
2399         void *addr;
2400
2401         /* A single page can always be kmapped */
2402         if (n_pages == 1 && type == I915_MAP_WB)
2403                 return kmap(sg_page(sgt->sgl));
2404
2405         if (n_pages > ARRAY_SIZE(stack_pages)) {
2406                 /* Too big for stack -- allocate temporary array instead */
2407                 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2408                 if (!pages)
2409                         return NULL;
2410         }
2411
2412         for_each_sgt_page(page, sgt_iter, sgt)
2413                 pages[i++] = page;
2414
2415         /* Check that we have the expected number of pages */
2416         GEM_BUG_ON(i != n_pages);
2417
2418         switch (type) {
2419         case I915_MAP_WB:
2420                 pgprot = PAGE_KERNEL;
2421                 break;
2422         case I915_MAP_WC:
2423                 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2424                 break;
2425         }
2426         addr = vmap(pages, n_pages, 0, pgprot);
2427
2428         if (pages != stack_pages)
2429                 drm_free_large(pages);
2430
2431         return addr;
2432 }
2433
2434 /* get, pin, and map the pages of the object into kernel space */
2435 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2436                               enum i915_map_type type)
2437 {
2438         enum i915_map_type has_type;
2439         bool pinned;
2440         void *ptr;
2441         int ret;
2442
2443         lockdep_assert_held(&obj->base.dev->struct_mutex);
2444         GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2445
2446         ret = i915_gem_object_get_pages(obj);
2447         if (ret)
2448                 return ERR_PTR(ret);
2449
2450         i915_gem_object_pin_pages(obj);
2451         pinned = obj->pages_pin_count > 1;
2452
2453         ptr = ptr_unpack_bits(obj->mapping, has_type);
2454         if (ptr && has_type != type) {
2455                 if (pinned) {
2456                         ret = -EBUSY;
2457                         goto err;
2458                 }
2459
2460                 if (is_vmalloc_addr(ptr))
2461                         vunmap(ptr);
2462                 else
2463                         kunmap(kmap_to_page(ptr));
2464
2465                 ptr = obj->mapping = NULL;
2466         }
2467
2468         if (!ptr) {
2469                 ptr = i915_gem_object_map(obj, type);
2470                 if (!ptr) {
2471                         ret = -ENOMEM;
2472                         goto err;
2473                 }
2474
2475                 obj->mapping = ptr_pack_bits(ptr, type);
2476         }
2477
2478         return ptr;
2479
2480 err:
2481         i915_gem_object_unpin_pages(obj);
2482         return ERR_PTR(ret);
2483 }
2484
2485 static void
2486 i915_gem_object_retire__write(struct i915_gem_active *active,
2487                               struct drm_i915_gem_request *request)
2488 {
2489         struct drm_i915_gem_object *obj =
2490                 container_of(active, struct drm_i915_gem_object, last_write);
2491
2492         intel_fb_obj_flush(obj, true, ORIGIN_CS);
2493 }
2494
2495 static void
2496 i915_gem_object_retire__read(struct i915_gem_active *active,
2497                              struct drm_i915_gem_request *request)
2498 {
2499         int idx = request->engine->id;
2500         struct drm_i915_gem_object *obj =
2501                 container_of(active, struct drm_i915_gem_object, last_read[idx]);
2502
2503         GEM_BUG_ON(!i915_gem_object_has_active_engine(obj, idx));
2504
2505         i915_gem_object_clear_active(obj, idx);
2506         if (i915_gem_object_is_active(obj))
2507                 return;
2508
2509         /* Bump our place on the bound list to keep it roughly in LRU order
2510          * so that we don't steal from recently used but inactive objects
2511          * (unless we are forced to ofc!)
2512          */
2513         if (obj->bind_count)
2514                 list_move_tail(&obj->global_list,
2515                                &request->i915->mm.bound_list);
2516
2517         i915_gem_object_put(obj);
2518 }
2519
2520 static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2521 {
2522         unsigned long elapsed;
2523
2524         if (ctx->hang_stats.banned)
2525                 return true;
2526
2527         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2528         if (ctx->hang_stats.ban_period_seconds &&
2529             elapsed <= ctx->hang_stats.ban_period_seconds) {
2530                 DRM_DEBUG("context hanging too fast, banning!\n");
2531                 return true;
2532         }
2533
2534         return false;
2535 }
2536
2537 static void i915_set_reset_status(struct i915_gem_context *ctx,
2538                                   const bool guilty)
2539 {
2540         struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2541
2542         if (guilty) {
2543                 hs->banned = i915_context_is_banned(ctx);
2544                 hs->batch_active++;
2545                 hs->guilty_ts = get_seconds();
2546         } else {
2547                 hs->batch_pending++;
2548         }
2549 }
2550
2551 struct drm_i915_gem_request *
2552 i915_gem_find_active_request(struct intel_engine_cs *engine)
2553 {
2554         struct drm_i915_gem_request *request;
2555
2556         /* We are called by the error capture and reset at a random
2557          * point in time. In particular, note that neither is crucially
2558          * ordered with an interrupt. After a hang, the GPU is dead and we
2559          * assume that no more writes can happen (we waited long enough for
2560          * all writes that were in transaction to be flushed) - adding an
2561          * extra delay for a recent interrupt is pointless. Hence, we do
2562          * not need an engine->irq_seqno_barrier() before the seqno reads.
2563          */
2564         list_for_each_entry(request, &engine->request_list, link) {
2565                 if (i915_gem_request_completed(request))
2566                         continue;
2567
2568                 if (!i915_sw_fence_done(&request->submit))
2569                         break;
2570
2571                 return request;
2572         }
2573
2574         return NULL;
2575 }
2576
2577 static void reset_request(struct drm_i915_gem_request *request)
2578 {
2579         void *vaddr = request->ring->vaddr;
2580         u32 head;
2581
2582         /* As this request likely depends on state from the lost
2583          * context, clear out all the user operations leaving the
2584          * breadcrumb at the end (so we get the fence notifications).
2585          */
2586         head = request->head;
2587         if (request->postfix < head) {
2588                 memset(vaddr + head, 0, request->ring->size - head);
2589                 head = 0;
2590         }
2591         memset(vaddr + head, 0, request->postfix - head);
2592 }
2593
2594 static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2595 {
2596         struct drm_i915_gem_request *request;
2597         struct i915_gem_context *incomplete_ctx;
2598         bool ring_hung;
2599
2600         /* Ensure irq handler finishes, and not run again. */
2601         tasklet_kill(&engine->irq_tasklet);
2602         if (engine->irq_seqno_barrier)
2603                 engine->irq_seqno_barrier(engine);
2604
2605         request = i915_gem_find_active_request(engine);
2606         if (!request)
2607                 return;
2608
2609         ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2610         i915_set_reset_status(request->ctx, ring_hung);
2611         if (!ring_hung)
2612                 return;
2613
2614         DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2615                          engine->name, request->fence.seqno);
2616
2617         /* Setup the CS to resume from the breadcrumb of the hung request */
2618         engine->reset_hw(engine, request);
2619
2620         /* Users of the default context do not rely on logical state
2621          * preserved between batches. They have to emit full state on
2622          * every batch and so it is safe to execute queued requests following
2623          * the hang.
2624          *
2625          * Other contexts preserve state, now corrupt. We want to skip all
2626          * queued requests that reference the corrupt context.
2627          */
2628         incomplete_ctx = request->ctx;
2629         if (i915_gem_context_is_default(incomplete_ctx))
2630                 return;
2631
2632         list_for_each_entry_continue(request, &engine->request_list, link)
2633                 if (request->ctx == incomplete_ctx)
2634                         reset_request(request);
2635 }
2636
2637 void i915_gem_reset(struct drm_i915_private *dev_priv)
2638 {
2639         struct intel_engine_cs *engine;
2640
2641         i915_gem_retire_requests(dev_priv);
2642
2643         for_each_engine(engine, dev_priv)
2644                 i915_gem_reset_engine(engine);
2645
2646         i915_gem_restore_fences(&dev_priv->drm);
2647
2648         if (dev_priv->gt.awake) {
2649                 intel_sanitize_gt_powersave(dev_priv);
2650                 intel_enable_gt_powersave(dev_priv);
2651                 if (INTEL_GEN(dev_priv) >= 6)
2652                         gen6_rps_busy(dev_priv);
2653         }
2654 }
2655
2656 static void nop_submit_request(struct drm_i915_gem_request *request)
2657 {
2658 }
2659
2660 static void i915_gem_cleanup_engine(struct intel_engine_cs *engine)
2661 {
2662         engine->submit_request = nop_submit_request;
2663
2664         /* Mark all pending requests as complete so that any concurrent
2665          * (lockless) lookup doesn't try and wait upon the request as we
2666          * reset it.
2667          */
2668         intel_engine_init_seqno(engine, engine->last_submitted_seqno);
2669
2670         /*
2671          * Clear the execlists queue up before freeing the requests, as those
2672          * are the ones that keep the context and ringbuffer backing objects
2673          * pinned in place.
2674          */
2675
2676         if (i915.enable_execlists) {
2677                 spin_lock(&engine->execlist_lock);
2678                 INIT_LIST_HEAD(&engine->execlist_queue);
2679                 i915_gem_request_put(engine->execlist_port[0].request);
2680                 i915_gem_request_put(engine->execlist_port[1].request);
2681                 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2682                 spin_unlock(&engine->execlist_lock);
2683         }
2684
2685         engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
2686 }
2687
2688 void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
2689 {
2690         struct intel_engine_cs *engine;
2691
2692         lockdep_assert_held(&dev_priv->drm.struct_mutex);
2693         set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2694
2695         i915_gem_context_lost(dev_priv);
2696         for_each_engine(engine, dev_priv)
2697                 i915_gem_cleanup_engine(engine);
2698         mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2699
2700         i915_gem_retire_requests(dev_priv);
2701 }
2702
2703 static void
2704 i915_gem_retire_work_handler(struct work_struct *work)
2705 {
2706         struct drm_i915_private *dev_priv =
2707                 container_of(work, typeof(*dev_priv), gt.retire_work.work);
2708         struct drm_device *dev = &dev_priv->drm;
2709
2710         /* Come back later if the device is busy... */
2711         if (mutex_trylock(&dev->struct_mutex)) {
2712                 i915_gem_retire_requests(dev_priv);
2713                 mutex_unlock(&dev->struct_mutex);
2714         }
2715
2716         /* Keep the retire handler running until we are finally idle.
2717          * We do not need to do this test under locking as in the worst-case
2718          * we queue the retire worker once too often.
2719          */
2720         if (READ_ONCE(dev_priv->gt.awake)) {
2721                 i915_queue_hangcheck(dev_priv);
2722                 queue_delayed_work(dev_priv->wq,
2723                                    &dev_priv->gt.retire_work,
2724                                    round_jiffies_up_relative(HZ));
2725         }
2726 }
2727
2728 static void
2729 i915_gem_idle_work_handler(struct work_struct *work)
2730 {
2731         struct drm_i915_private *dev_priv =
2732                 container_of(work, typeof(*dev_priv), gt.idle_work.work);
2733         struct drm_device *dev = &dev_priv->drm;
2734         struct intel_engine_cs *engine;
2735         bool rearm_hangcheck;
2736
2737         if (!READ_ONCE(dev_priv->gt.awake))
2738                 return;
2739
2740         if (READ_ONCE(dev_priv->gt.active_engines))
2741                 return;
2742
2743         rearm_hangcheck =
2744                 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
2745
2746         if (!mutex_trylock(&dev->struct_mutex)) {
2747                 /* Currently busy, come back later */
2748                 mod_delayed_work(dev_priv->wq,
2749                                  &dev_priv->gt.idle_work,
2750                                  msecs_to_jiffies(50));
2751                 goto out_rearm;
2752         }
2753
2754         if (dev_priv->gt.active_engines)
2755                 goto out_unlock;
2756
2757         for_each_engine(engine, dev_priv)
2758                 i915_gem_batch_pool_fini(&engine->batch_pool);
2759
2760         GEM_BUG_ON(!dev_priv->gt.awake);
2761         dev_priv->gt.awake = false;
2762         rearm_hangcheck = false;
2763
2764         if (INTEL_GEN(dev_priv) >= 6)
2765                 gen6_rps_idle(dev_priv);
2766
2767         if (NEEDS_RC6_CTX_CORRUPTION_WA(dev_priv)) {
2768                 i915_rc6_ctx_wa_check(dev_priv);
2769                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2770         }
2771
2772         intel_runtime_pm_put(dev_priv);
2773 out_unlock:
2774         mutex_unlock(&dev->struct_mutex);
2775
2776 out_rearm:
2777         if (rearm_hangcheck) {
2778                 GEM_BUG_ON(!dev_priv->gt.awake);
2779                 i915_queue_hangcheck(dev_priv);
2780         }
2781 }
2782
2783 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
2784 {
2785         struct drm_i915_gem_object *obj = to_intel_bo(gem);
2786         struct drm_i915_file_private *fpriv = file->driver_priv;
2787         struct i915_vma *vma, *vn;
2788
2789         mutex_lock(&obj->base.dev->struct_mutex);
2790         list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
2791                 if (vma->vm->file == fpriv)
2792                         i915_vma_close(vma);
2793         mutex_unlock(&obj->base.dev->struct_mutex);
2794 }
2795
2796 /**
2797  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2798  * @dev: drm device pointer
2799  * @data: ioctl data blob
2800  * @file: drm file pointer
2801  *
2802  * Returns 0 if successful, else an error is returned with the remaining time in
2803  * the timeout parameter.
2804  *  -ETIME: object is still busy after timeout
2805  *  -ERESTARTSYS: signal interrupted the wait
2806  *  -ENONENT: object doesn't exist
2807  * Also possible, but rare:
2808  *  -EAGAIN: GPU wedged
2809  *  -ENOMEM: damn
2810  *  -ENODEV: Internal IRQ fail
2811  *  -E?: The add request failed
2812  *
2813  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2814  * non-zero timeout parameter the wait ioctl will wait for the given number of
2815  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2816  * without holding struct_mutex the object may become re-busied before this
2817  * function completes. A similar but shorter * race condition exists in the busy
2818  * ioctl
2819  */
2820 int
2821 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2822 {
2823         struct drm_i915_gem_wait *args = data;
2824         struct intel_rps_client *rps = to_rps_client(file);
2825         struct drm_i915_gem_object *obj;
2826         unsigned long active;
2827         int idx, ret = 0;
2828
2829         if (args->flags != 0)
2830                 return -EINVAL;
2831
2832         obj = i915_gem_object_lookup(file, args->bo_handle);
2833         if (!obj)
2834                 return -ENOENT;
2835
2836         active = __I915_BO_ACTIVE(obj);
2837         for_each_active(active, idx) {
2838                 s64 *timeout = args->timeout_ns >= 0 ? &args->timeout_ns : NULL;
2839                 ret = i915_gem_active_wait_unlocked(&obj->last_read[idx],
2840                                                     I915_WAIT_INTERRUPTIBLE,
2841                                                     timeout, rps);
2842                 if (ret)
2843                         break;
2844         }
2845
2846         i915_gem_object_put_unlocked(obj);
2847         return ret;
2848 }
2849
2850 static void __i915_vma_iounmap(struct i915_vma *vma)
2851 {
2852         GEM_BUG_ON(i915_vma_is_pinned(vma));
2853
2854         if (vma->iomap == NULL)
2855                 return;
2856
2857         io_mapping_unmap(vma->iomap);
2858         vma->iomap = NULL;
2859 }
2860
2861 int i915_vma_unbind(struct i915_vma *vma)
2862 {
2863         struct drm_i915_gem_object *obj = vma->obj;
2864         unsigned long active;
2865         int ret;
2866
2867         /* First wait upon any activity as retiring the request may
2868          * have side-effects such as unpinning or even unbinding this vma.
2869          */
2870         active = i915_vma_get_active(vma);
2871         if (active) {
2872                 int idx;
2873
2874                 /* When a closed VMA is retired, it is unbound - eek.
2875                  * In order to prevent it from being recursively closed,
2876                  * take a pin on the vma so that the second unbind is
2877                  * aborted.
2878                  */
2879                 __i915_vma_pin(vma);
2880
2881                 for_each_active(active, idx) {
2882                         ret = i915_gem_active_retire(&vma->last_read[idx],
2883                                                    &vma->vm->dev->struct_mutex);
2884                         if (ret)
2885                                 break;
2886                 }
2887
2888                 __i915_vma_unpin(vma);
2889                 if (ret)
2890                         return ret;
2891
2892                 GEM_BUG_ON(i915_vma_is_active(vma));
2893         }
2894
2895         if (i915_vma_is_pinned(vma))
2896                 return -EBUSY;
2897
2898         if (!drm_mm_node_allocated(&vma->node))
2899                 goto destroy;
2900
2901         GEM_BUG_ON(obj->bind_count == 0);
2902         GEM_BUG_ON(!obj->pages);
2903
2904         if (i915_vma_is_map_and_fenceable(vma)) {
2905                 /* release the fence reg _after_ flushing */
2906                 ret = i915_vma_put_fence(vma);
2907                 if (ret)
2908                         return ret;
2909
2910                 /* Force a pagefault for domain tracking on next user access */
2911                 i915_gem_release_mmap(obj);
2912
2913                 __i915_vma_iounmap(vma);
2914                 vma->flags &= ~I915_VMA_CAN_FENCE;
2915         }
2916
2917         if (likely(!vma->vm->closed)) {
2918                 trace_i915_vma_unbind(vma);
2919                 vma->vm->unbind_vma(vma);
2920         }
2921         vma->flags &= ~(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND);
2922
2923         drm_mm_remove_node(&vma->node);
2924         list_move_tail(&vma->vm_link, &vma->vm->unbound_list);
2925
2926         if (vma->pages != obj->pages) {
2927                 GEM_BUG_ON(!vma->pages);
2928                 sg_free_table(vma->pages);
2929                 kfree(vma->pages);
2930         }
2931         vma->pages = NULL;
2932
2933         /* Since the unbound list is global, only move to that list if
2934          * no more VMAs exist. */
2935         if (--obj->bind_count == 0)
2936                 list_move_tail(&obj->global_list,
2937                                &to_i915(obj->base.dev)->mm.unbound_list);
2938
2939         /* And finally now the object is completely decoupled from this vma,
2940          * we can drop its hold on the backing storage and allow it to be
2941          * reaped by the shrinker.
2942          */
2943         i915_gem_object_unpin_pages(obj);
2944
2945 destroy:
2946         if (unlikely(i915_vma_is_closed(vma)))
2947                 i915_vma_destroy(vma);
2948
2949         return 0;
2950 }
2951
2952 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
2953                            unsigned int flags)
2954 {
2955         struct intel_engine_cs *engine;
2956         int ret;
2957
2958         for_each_engine(engine, dev_priv) {
2959                 if (engine->last_context == NULL)
2960                         continue;
2961
2962                 ret = intel_engine_idle(engine, flags);
2963                 if (ret)
2964                         return ret;
2965         }
2966
2967         return 0;
2968 }
2969
2970 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
2971                                      unsigned long cache_level)
2972 {
2973         struct drm_mm_node *gtt_space = &vma->node;
2974         struct drm_mm_node *other;
2975
2976         /*
2977          * On some machines we have to be careful when putting differing types
2978          * of snoopable memory together to avoid the prefetcher crossing memory
2979          * domains and dying. During vm initialisation, we decide whether or not
2980          * these constraints apply and set the drm_mm.color_adjust
2981          * appropriately.
2982          */
2983         if (vma->vm->mm.color_adjust == NULL)
2984                 return true;
2985
2986         if (!drm_mm_node_allocated(gtt_space))
2987                 return true;
2988
2989         if (list_empty(&gtt_space->node_list))
2990                 return true;
2991
2992         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2993         if (other->allocated && !other->hole_follows && other->color != cache_level)
2994                 return false;
2995
2996         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2997         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2998                 return false;
2999
3000         return true;
3001 }
3002
3003 /**
3004  * i915_vma_insert - finds a slot for the vma in its address space
3005  * @vma: the vma
3006  * @size: requested size in bytes (can be larger than the VMA)
3007  * @alignment: required alignment
3008  * @flags: mask of PIN_* flags to use
3009  *
3010  * First we try to allocate some free space that meets the requirements for
3011  * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
3012  * preferrably the oldest idle entry to make room for the new VMA.
3013  *
3014  * Returns:
3015  * 0 on success, negative error code otherwise.
3016  */
3017 static int
3018 i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
3019 {
3020         struct drm_i915_private *dev_priv = to_i915(vma->vm->dev);
3021         struct drm_i915_gem_object *obj = vma->obj;
3022         u64 start, end;
3023         int ret;
3024
3025         GEM_BUG_ON(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
3026         GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
3027
3028         size = max(size, vma->size);
3029         if (flags & PIN_MAPPABLE)
3030                 size = i915_gem_get_ggtt_size(dev_priv, size,
3031                                               i915_gem_object_get_tiling(obj));
3032
3033         alignment = max(max(alignment, vma->display_alignment),
3034                         i915_gem_get_ggtt_alignment(dev_priv, size,
3035                                                     i915_gem_object_get_tiling(obj),
3036                                                     flags & PIN_MAPPABLE));
3037
3038         start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3039
3040         end = vma->vm->total;
3041         if (flags & PIN_MAPPABLE)
3042                 end = min_t(u64, end, dev_priv->ggtt.mappable_end);
3043         if (flags & PIN_ZONE_4G)
3044                 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3045
3046         /* If binding the object/GGTT view requires more space than the entire
3047          * aperture has, reject it early before evicting everything in a vain
3048          * attempt to find space.
3049          */
3050         if (size > end) {
3051                 DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu [object=%zd] > %s aperture=%llu\n",
3052                           size, obj->base.size,
3053                           flags & PIN_MAPPABLE ? "mappable" : "total",
3054                           end);
3055                 return -E2BIG;
3056         }
3057
3058         ret = i915_gem_object_get_pages(obj);
3059         if (ret)
3060                 return ret;
3061
3062         i915_gem_object_pin_pages(obj);
3063
3064         if (flags & PIN_OFFSET_FIXED) {
3065                 u64 offset = flags & PIN_OFFSET_MASK;
3066                 if (offset & (alignment - 1) || offset > end - size) {
3067                         ret = -EINVAL;
3068                         goto err_unpin;
3069                 }
3070
3071                 vma->node.start = offset;
3072                 vma->node.size = size;
3073                 vma->node.color = obj->cache_level;
3074                 ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3075                 if (ret) {
3076                         ret = i915_gem_evict_for_vma(vma);
3077                         if (ret == 0)
3078                                 ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3079                         if (ret)
3080                                 goto err_unpin;
3081                 }
3082         } else {
3083                 u32 search_flag, alloc_flag;
3084
3085                 if (flags & PIN_HIGH) {
3086                         search_flag = DRM_MM_SEARCH_BELOW;
3087                         alloc_flag = DRM_MM_CREATE_TOP;
3088                 } else {
3089                         search_flag = DRM_MM_SEARCH_DEFAULT;
3090                         alloc_flag = DRM_MM_CREATE_DEFAULT;
3091                 }
3092
3093                 /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3094                  * so we know that we always have a minimum alignment of 4096.
3095                  * The drm_mm range manager is optimised to return results
3096                  * with zero alignment, so where possible use the optimal
3097                  * path.
3098                  */
3099                 if (alignment <= 4096)
3100                         alignment = 0;
3101
3102 search_free:
3103                 ret = drm_mm_insert_node_in_range_generic(&vma->vm->mm,
3104                                                           &vma->node,
3105                                                           size, alignment,
3106                                                           obj->cache_level,
3107                                                           start, end,
3108                                                           search_flag,
3109                                                           alloc_flag);
3110                 if (ret) {
3111                         ret = i915_gem_evict_something(vma->vm, size, alignment,
3112                                                        obj->cache_level,
3113                                                        start, end,
3114                                                        flags);
3115                         if (ret == 0)
3116                                 goto search_free;
3117
3118                         goto err_unpin;
3119                 }
3120         }
3121         GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level));
3122
3123         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3124         list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3125         obj->bind_count++;
3126
3127         return 0;
3128
3129 err_unpin:
3130         i915_gem_object_unpin_pages(obj);
3131         return ret;
3132 }
3133
3134 bool
3135 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3136                         bool force)
3137 {
3138         /* If we don't have a page list set up, then we're not pinned
3139          * to GPU, and we can ignore the cache flush because it'll happen
3140          * again at bind time.
3141          */
3142         if (obj->pages == NULL)
3143                 return false;
3144
3145         /*
3146          * Stolen memory is always coherent with the GPU as it is explicitly
3147          * marked as wc by the system, or the system is cache-coherent.
3148          */
3149         if (obj->stolen || obj->phys_handle)
3150                 return false;
3151
3152         /* If the GPU is snooping the contents of the CPU cache,
3153          * we do not need to manually clear the CPU cache lines.  However,
3154          * the caches are only snooped when the render cache is
3155          * flushed/invalidated.  As we always have to emit invalidations
3156          * and flushes when moving into and out of the RENDER domain, correct
3157          * snooping behaviour occurs naturally as the result of our domain
3158          * tracking.
3159          */
3160         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3161                 obj->cache_dirty = true;
3162                 return false;
3163         }
3164
3165         trace_i915_gem_object_clflush(obj);
3166         drm_clflush_sg(obj->pages);
3167         obj->cache_dirty = false;
3168
3169         return true;
3170 }
3171
3172 /** Flushes the GTT write domain for the object if it's dirty. */
3173 static void
3174 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3175 {
3176         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3177
3178         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3179                 return;
3180
3181         /* No actual flushing is required for the GTT write domain.  Writes
3182          * to it "immediately" go to main memory as far as we know, so there's
3183          * no chipset flush.  It also doesn't land in render cache.
3184          *
3185          * However, we do have to enforce the order so that all writes through
3186          * the GTT land before any writes to the device, such as updates to
3187          * the GATT itself.
3188          *
3189          * We also have to wait a bit for the writes to land from the GTT.
3190          * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3191          * timing. This issue has only been observed when switching quickly
3192          * between GTT writes and CPU reads from inside the kernel on recent hw,
3193          * and it appears to only affect discrete GTT blocks (i.e. on LLC
3194          * system agents we cannot reproduce this behaviour).
3195          */
3196         wmb();
3197         if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3198                 POSTING_READ(RING_ACTHD(dev_priv->engine[RCS].mmio_base));
3199
3200         intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3201
3202         obj->base.write_domain = 0;
3203         trace_i915_gem_object_change_domain(obj,
3204                                             obj->base.read_domains,
3205                                             I915_GEM_DOMAIN_GTT);
3206 }
3207
3208 /** Flushes the CPU write domain for the object if it's dirty. */
3209 static void
3210 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3211 {
3212         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3213                 return;
3214
3215         if (i915_gem_clflush_object(obj, obj->pin_display))
3216                 i915_gem_chipset_flush(to_i915(obj->base.dev));
3217
3218         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3219
3220         obj->base.write_domain = 0;
3221         trace_i915_gem_object_change_domain(obj,
3222                                             obj->base.read_domains,
3223                                             I915_GEM_DOMAIN_CPU);
3224 }
3225
3226 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
3227 {
3228         struct i915_vma *vma;
3229
3230         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3231                 if (!i915_vma_is_ggtt(vma))
3232                         continue;
3233
3234                 if (i915_vma_is_active(vma))
3235                         continue;
3236
3237                 if (!drm_mm_node_allocated(&vma->node))
3238                         continue;
3239
3240                 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3241         }
3242 }
3243
3244 /**
3245  * Moves a single object to the GTT read, and possibly write domain.
3246  * @obj: object to act on
3247  * @write: ask for write access or read only
3248  *
3249  * This function returns when the move is complete, including waiting on
3250  * flushes to occur.
3251  */
3252 int
3253 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3254 {
3255         uint32_t old_write_domain, old_read_domains;
3256         int ret;
3257
3258         ret = i915_gem_object_wait_rendering(obj, !write);
3259         if (ret)
3260                 return ret;
3261
3262         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3263                 return 0;
3264
3265         /* Flush and acquire obj->pages so that we are coherent through
3266          * direct access in memory with previous cached writes through
3267          * shmemfs and that our cache domain tracking remains valid.
3268          * For example, if the obj->filp was moved to swap without us
3269          * being notified and releasing the pages, we would mistakenly
3270          * continue to assume that the obj remained out of the CPU cached
3271          * domain.
3272          */
3273         ret = i915_gem_object_get_pages(obj);
3274         if (ret)
3275                 return ret;
3276
3277         i915_gem_object_flush_cpu_write_domain(obj);
3278
3279         /* Serialise direct access to this object with the barriers for
3280          * coherent writes from the GPU, by effectively invalidating the
3281          * GTT domain upon first access.
3282          */
3283         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3284                 mb();
3285
3286         old_write_domain = obj->base.write_domain;
3287         old_read_domains = obj->base.read_domains;
3288
3289         /* It should now be out of any other write domains, and we can update
3290          * the domain values for our changes.
3291          */
3292         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3293         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3294         if (write) {
3295                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3296                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3297                 obj->dirty = 1;
3298         }
3299
3300         trace_i915_gem_object_change_domain(obj,
3301                                             old_read_domains,
3302                                             old_write_domain);
3303
3304         /* And bump the LRU for this access */
3305         i915_gem_object_bump_inactive_ggtt(obj);
3306
3307         return 0;
3308 }
3309
3310 /**
3311  * Changes the cache-level of an object across all VMA.
3312  * @obj: object to act on
3313  * @cache_level: new cache level to set for the object
3314  *
3315  * After this function returns, the object will be in the new cache-level
3316  * across all GTT and the contents of the backing storage will be coherent,
3317  * with respect to the new cache-level. In order to keep the backing storage
3318  * coherent for all users, we only allow a single cache level to be set
3319  * globally on the object and prevent it from being changed whilst the
3320  * hardware is reading from the object. That is if the object is currently
3321  * on the scanout it will be set to uncached (or equivalent display
3322  * cache coherency) and all non-MOCS GPU access will also be uncached so
3323  * that all direct access to the scanout remains coherent.
3324  */
3325 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3326                                     enum i915_cache_level cache_level)
3327 {
3328         struct i915_vma *vma;
3329         int ret = 0;
3330
3331         if (obj->cache_level == cache_level)
3332                 goto out;
3333
3334         /* Inspect the list of currently bound VMA and unbind any that would
3335          * be invalid given the new cache-level. This is principally to
3336          * catch the issue of the CS prefetch crossing page boundaries and
3337          * reading an invalid PTE on older architectures.
3338          */
3339 restart:
3340         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3341                 if (!drm_mm_node_allocated(&vma->node))
3342                         continue;
3343
3344                 if (i915_vma_is_pinned(vma)) {
3345                         DRM_DEBUG("can not change the cache level of pinned objects\n");
3346                         return -EBUSY;
3347                 }
3348
3349                 if (i915_gem_valid_gtt_space(vma, cache_level))
3350                         continue;
3351
3352                 ret = i915_vma_unbind(vma);
3353                 if (ret)
3354                         return ret;
3355
3356                 /* As unbinding may affect other elements in the
3357                  * obj->vma_list (due to side-effects from retiring
3358                  * an active vma), play safe and restart the iterator.
3359                  */
3360                 goto restart;
3361         }
3362
3363         /* We can reuse the existing drm_mm nodes but need to change the
3364          * cache-level on the PTE. We could simply unbind them all and
3365          * rebind with the correct cache-level on next use. However since
3366          * we already have a valid slot, dma mapping, pages etc, we may as
3367          * rewrite the PTE in the belief that doing so tramples upon less
3368          * state and so involves less work.
3369          */
3370         if (obj->bind_count) {
3371                 /* Before we change the PTE, the GPU must not be accessing it.
3372                  * If we wait upon the object, we know that all the bound
3373                  * VMA are no longer active.
3374                  */
3375                 ret = i915_gem_object_wait_rendering(obj, false);
3376                 if (ret)
3377                         return ret;
3378
3379                 if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) {
3380                         /* Access to snoopable pages through the GTT is
3381                          * incoherent and on some machines causes a hard
3382                          * lockup. Relinquish the CPU mmaping to force
3383                          * userspace to refault in the pages and we can
3384                          * then double check if the GTT mapping is still
3385                          * valid for that pointer access.
3386                          */
3387                         i915_gem_release_mmap(obj);
3388
3389                         /* As we no longer need a fence for GTT access,
3390                          * we can relinquish it now (and so prevent having
3391                          * to steal a fence from someone else on the next
3392                          * fence request). Note GPU activity would have
3393                          * dropped the fence as all snoopable access is
3394                          * supposed to be linear.
3395                          */
3396                         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3397                                 ret = i915_vma_put_fence(vma);
3398                                 if (ret)
3399                                         return ret;
3400                         }
3401                 } else {
3402                         /* We either have incoherent backing store and
3403                          * so no GTT access or the architecture is fully
3404                          * coherent. In such cases, existing GTT mmaps
3405                          * ignore the cache bit in the PTE and we can
3406                          * rewrite it without confusing the GPU or having
3407                          * to force userspace to fault back in its mmaps.
3408                          */
3409                 }
3410
3411                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3412                         if (!drm_mm_node_allocated(&vma->node))
3413                                 continue;
3414
3415                         ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3416                         if (ret)
3417                                 return ret;
3418                 }
3419         }
3420
3421         list_for_each_entry(vma, &obj->vma_list, obj_link)
3422                 vma->node.color = cache_level;
3423         obj->cache_level = cache_level;
3424
3425 out:
3426         /* Flush the dirty CPU caches to the backing storage so that the
3427          * object is now coherent at its new cache level (with respect
3428          * to the access domain).
3429          */
3430         if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
3431                 if (i915_gem_clflush_object(obj, true))
3432                         i915_gem_chipset_flush(to_i915(obj->base.dev));
3433         }
3434
3435         return 0;
3436 }
3437
3438 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3439                                struct drm_file *file)
3440 {
3441         struct drm_i915_gem_caching *args = data;
3442         struct drm_i915_gem_object *obj;
3443
3444         obj = i915_gem_object_lookup(file, args->handle);
3445         if (!obj)
3446                 return -ENOENT;
3447
3448         switch (obj->cache_level) {
3449         case I915_CACHE_LLC:
3450         case I915_CACHE_L3_LLC:
3451                 args->caching = I915_CACHING_CACHED;
3452                 break;
3453
3454         case I915_CACHE_WT:
3455                 args->caching = I915_CACHING_DISPLAY;
3456                 break;
3457
3458         default:
3459                 args->caching = I915_CACHING_NONE;
3460                 break;
3461         }
3462
3463         i915_gem_object_put_unlocked(obj);
3464         return 0;
3465 }
3466
3467 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3468                                struct drm_file *file)
3469 {
3470         struct drm_i915_private *dev_priv = to_i915(dev);
3471         struct drm_i915_gem_caching *args = data;
3472         struct drm_i915_gem_object *obj;
3473         enum i915_cache_level level;
3474         int ret;
3475
3476         switch (args->caching) {
3477         case I915_CACHING_NONE:
3478                 level = I915_CACHE_NONE;
3479                 break;
3480         case I915_CACHING_CACHED:
3481                 /*
3482                  * Due to a HW issue on BXT A stepping, GPU stores via a
3483                  * snooped mapping may leave stale data in a corresponding CPU
3484                  * cacheline, whereas normally such cachelines would get
3485                  * invalidated.
3486                  */
3487                 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3488                         return -ENODEV;
3489
3490                 level = I915_CACHE_LLC;
3491                 break;
3492         case I915_CACHING_DISPLAY:
3493                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3494                 break;
3495         default:
3496                 return -EINVAL;
3497         }
3498
3499         intel_runtime_pm_get(dev_priv);
3500
3501         ret = i915_mutex_lock_interruptible(dev);
3502         if (ret)
3503                 goto rpm_put;
3504
3505         obj = i915_gem_object_lookup(file, args->handle);
3506         if (!obj) {
3507                 ret = -ENOENT;
3508                 goto unlock;
3509         }
3510
3511         ret = i915_gem_object_set_cache_level(obj, level);
3512
3513         i915_gem_object_put(obj);
3514 unlock:
3515         mutex_unlock(&dev->struct_mutex);
3516 rpm_put:
3517         intel_runtime_pm_put(dev_priv);
3518
3519         return ret;
3520 }
3521
3522 /*
3523  * Prepare buffer for display plane (scanout, cursors, etc).
3524  * Can be called from an uninterruptible phase (modesetting) and allows
3525  * any flushes to be pipelined (for pageflips).
3526  */
3527 struct i915_vma *
3528 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3529                                      u32 alignment,
3530                                      const struct i915_ggtt_view *view)
3531 {
3532         struct i915_vma *vma;
3533         u32 old_read_domains, old_write_domain;
3534         int ret;
3535
3536         /* Mark the pin_display early so that we account for the
3537          * display coherency whilst setting up the cache domains.
3538          */
3539         obj->pin_display++;
3540
3541         /* The display engine is not coherent with the LLC cache on gen6.  As
3542          * a result, we make sure that the pinning that is about to occur is
3543          * done with uncached PTEs. This is lowest common denominator for all
3544          * chipsets.
3545          *
3546          * However for gen6+, we could do better by using the GFDT bit instead
3547          * of uncaching, which would allow us to flush all the LLC-cached data
3548          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3549          */
3550         ret = i915_gem_object_set_cache_level(obj,
3551                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3552         if (ret) {
3553                 vma = ERR_PTR(ret);
3554                 goto err_unpin_display;
3555         }
3556
3557         /* As the user may map the buffer once pinned in the display plane
3558          * (e.g. libkms for the bootup splash), we have to ensure that we
3559          * always use map_and_fenceable for all scanout buffers. However,
3560          * it may simply be too big to fit into mappable, in which case
3561          * put it anyway and hope that userspace can cope (but always first
3562          * try to preserve the existing ABI).
3563          */
3564         vma = ERR_PTR(-ENOSPC);
3565         if (view->type == I915_GGTT_VIEW_NORMAL)
3566                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3567                                                PIN_MAPPABLE | PIN_NONBLOCK);
3568         if (IS_ERR(vma)) {
3569                 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3570                 unsigned int flags;
3571
3572                 /* Valleyview is definitely limited to scanning out the first
3573                  * 512MiB. Lets presume this behaviour was inherited from the
3574                  * g4x display engine and that all earlier gen are similarly
3575                  * limited. Testing suggests that it is a little more
3576                  * complicated than this. For example, Cherryview appears quite
3577                  * happy to scanout from anywhere within its global aperture.
3578                  */
3579                 flags = 0;
3580                 if (HAS_GMCH_DISPLAY(i915))
3581                         flags = PIN_MAPPABLE;
3582                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3583         }
3584         if (IS_ERR(vma))
3585                 goto err_unpin_display;
3586
3587         vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3588
3589         i915_gem_object_flush_cpu_write_domain(obj);
3590
3591         old_write_domain = obj->base.write_domain;
3592         old_read_domains = obj->base.read_domains;
3593
3594         /* It should now be out of any other write domains, and we can update
3595          * the domain values for our changes.
3596          */
3597         obj->base.write_domain = 0;
3598         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3599
3600         trace_i915_gem_object_change_domain(obj,
3601                                             old_read_domains,
3602                                             old_write_domain);
3603
3604         return vma;
3605
3606 err_unpin_display:
3607         obj->pin_display--;
3608         return vma;
3609 }
3610
3611 void
3612 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3613 {
3614         if (WARN_ON(vma->obj->pin_display == 0))
3615                 return;
3616
3617         if (--vma->obj->pin_display == 0)
3618                 vma->display_alignment = 0;
3619
3620         /* Bump the LRU to try and avoid premature eviction whilst flipping  */
3621         if (!i915_vma_is_active(vma))
3622                 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3623
3624         i915_vma_unpin(vma);
3625 }
3626
3627 /**
3628  * Moves a single object to the CPU read, and possibly write domain.
3629  * @obj: object to act on
3630  * @write: requesting write or read-only access
3631  *
3632  * This function returns when the move is complete, including waiting on
3633  * flushes to occur.
3634  */
3635 int
3636 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3637 {
3638         uint32_t old_write_domain, old_read_domains;
3639         int ret;
3640
3641         ret = i915_gem_object_wait_rendering(obj, !write);
3642         if (ret)
3643                 return ret;
3644
3645         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3646                 return 0;
3647
3648         i915_gem_object_flush_gtt_write_domain(obj);
3649
3650         old_write_domain = obj->base.write_domain;
3651         old_read_domains = obj->base.read_domains;
3652
3653         /* Flush the CPU cache if it's still invalid. */
3654         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3655                 i915_gem_clflush_object(obj, false);
3656
3657                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3658         }
3659
3660         /* It should now be out of any other write domains, and we can update
3661          * the domain values for our changes.
3662          */
3663         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3664
3665         /* If we're writing through the CPU, then the GPU read domains will
3666          * need to be invalidated at next use.
3667          */
3668         if (write) {
3669                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3670                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3671         }
3672
3673         trace_i915_gem_object_change_domain(obj,
3674                                             old_read_domains,
3675                                             old_write_domain);
3676
3677         return 0;
3678 }
3679
3680 /* Throttle our rendering by waiting until the ring has completed our requests
3681  * emitted over 20 msec ago.
3682  *
3683  * Note that if we were to use the current jiffies each time around the loop,
3684  * we wouldn't escape the function with any frames outstanding if the time to
3685  * render a frame was over 20ms.
3686  *
3687  * This should get us reasonable parallelism between CPU and GPU but also
3688  * relatively low latency when blocking on a particular request to finish.
3689  */
3690 static int
3691 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3692 {
3693         struct drm_i915_private *dev_priv = to_i915(dev);
3694         struct drm_i915_file_private *file_priv = file->driver_priv;
3695         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3696         struct drm_i915_gem_request *request, *target = NULL;
3697         int ret;
3698
3699         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3700         if (ret)
3701                 return ret;
3702
3703         /* ABI: return -EIO if already wedged */
3704         if (i915_terminally_wedged(&dev_priv->gpu_error))
3705                 return -EIO;
3706
3707         spin_lock(&file_priv->mm.lock);
3708         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3709                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3710                         break;
3711
3712                 /*
3713                  * Note that the request might not have been submitted yet.
3714                  * In which case emitted_jiffies will be zero.
3715                  */
3716                 if (!request->emitted_jiffies)
3717                         continue;
3718
3719                 target = request;
3720         }
3721         if (target)
3722                 i915_gem_request_get(target);
3723         spin_unlock(&file_priv->mm.lock);
3724
3725         if (target == NULL)
3726                 return 0;
3727
3728         ret = i915_wait_request(target, I915_WAIT_INTERRUPTIBLE, NULL, NULL);
3729         i915_gem_request_put(target);
3730
3731         return ret;
3732 }
3733
3734 static bool
3735 i915_vma_misplaced(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
3736 {
3737         if (!drm_mm_node_allocated(&vma->node))
3738                 return false;
3739
3740         if (vma->node.size < size)
3741                 return true;
3742
3743         if (alignment && vma->node.start & (alignment - 1))
3744                 return true;
3745
3746         if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma))
3747                 return true;
3748
3749         if (flags & PIN_OFFSET_BIAS &&
3750             vma->node.start < (flags & PIN_OFFSET_MASK))
3751                 return true;
3752
3753         if (flags & PIN_OFFSET_FIXED &&
3754             vma->node.start != (flags & PIN_OFFSET_MASK))
3755                 return true;
3756
3757         return false;
3758 }
3759
3760 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
3761 {
3762         struct drm_i915_gem_object *obj = vma->obj;
3763         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3764         bool mappable, fenceable;
3765         u32 fence_size, fence_alignment;
3766
3767         fence_size = i915_gem_get_ggtt_size(dev_priv,
3768                                             vma->size,
3769                                             i915_gem_object_get_tiling(obj));
3770         fence_alignment = i915_gem_get_ggtt_alignment(dev_priv,
3771                                                       vma->size,
3772                                                       i915_gem_object_get_tiling(obj),
3773                                                       true);
3774
3775         fenceable = (vma->node.size == fence_size &&
3776                      (vma->node.start & (fence_alignment - 1)) == 0);
3777
3778         mappable = (vma->node.start + fence_size <=
3779                     dev_priv->ggtt.mappable_end);
3780
3781         /*
3782          * Explicitly disable for rotated VMA since the display does not
3783          * need the fence and the VMA is not accessible to other users.
3784          */
3785         if (mappable && fenceable &&
3786             vma->ggtt_view.type != I915_GGTT_VIEW_ROTATED)
3787                 vma->flags |= I915_VMA_CAN_FENCE;
3788         else
3789                 vma->flags &= ~I915_VMA_CAN_FENCE;
3790 }
3791
3792 int __i915_vma_do_pin(struct i915_vma *vma,
3793                       u64 size, u64 alignment, u64 flags)
3794 {
3795         unsigned int bound = vma->flags;
3796         int ret;
3797
3798         GEM_BUG_ON((flags & (PIN_GLOBAL | PIN_USER)) == 0);
3799         GEM_BUG_ON((flags & PIN_GLOBAL) && !i915_vma_is_ggtt(vma));
3800
3801         if (WARN_ON(bound & I915_VMA_PIN_OVERFLOW)) {
3802                 ret = -EBUSY;
3803                 goto err;
3804         }
3805
3806         if ((bound & I915_VMA_BIND_MASK) == 0) {
3807                 ret = i915_vma_insert(vma, size, alignment, flags);
3808                 if (ret)
3809                         goto err;
3810         }
3811
3812         ret = i915_vma_bind(vma, vma->obj->cache_level, flags);
3813         if (ret)
3814                 goto err;
3815
3816         if ((bound ^ vma->flags) & I915_VMA_GLOBAL_BIND)
3817                 __i915_vma_set_map_and_fenceable(vma);
3818
3819         GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
3820         return 0;
3821
3822 err:
3823         __i915_vma_unpin(vma);
3824         return ret;
3825 }
3826
3827 struct i915_vma *
3828 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3829                          const struct i915_ggtt_view *view,
3830                          u64 size,
3831                          u64 alignment,
3832                          u64 flags)
3833 {
3834         struct i915_address_space *vm = &to_i915(obj->base.dev)->ggtt.base;
3835
3836         return i915_gem_object_pin(obj, vm, view, size, alignment,
3837                                    flags | PIN_GLOBAL);
3838 }
3839
3840 struct i915_vma *
3841 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3842                     struct i915_address_space *vm,
3843                     const struct i915_ggtt_view *view,
3844                     u64 size,
3845                     u64 alignment,
3846                     u64 flags)
3847 {
3848         struct i915_vma *vma;
3849         int ret;
3850
3851         vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
3852         if (IS_ERR(vma))
3853                 return vma;
3854
3855         if (i915_vma_misplaced(vma, size, alignment, flags)) {
3856                 if (flags & PIN_NONBLOCK &&
3857                     (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
3858                         return ERR_PTR(-ENOSPC);
3859
3860                 WARN(i915_vma_is_pinned(vma),
3861                      "bo is already pinned in ggtt with incorrect alignment:"
3862                      " offset=%08x, req.alignment=%llx,"
3863                      " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3864                      i915_ggtt_offset(vma), alignment,
3865                      !!(flags & PIN_MAPPABLE),
3866                      i915_vma_is_map_and_fenceable(vma));
3867                 ret = i915_vma_unbind(vma);
3868                 if (ret)
3869                         return ERR_PTR(ret);
3870         }
3871
3872         ret = i915_vma_pin(vma, size, alignment, flags);
3873         if (ret)
3874                 return ERR_PTR(ret);
3875
3876         return vma;
3877 }
3878
3879 static __always_inline unsigned int __busy_read_flag(unsigned int id)
3880 {
3881         /* Note that we could alias engines in the execbuf API, but
3882          * that would be very unwise as it prevents userspace from
3883          * fine control over engine selection. Ahem.
3884          *
3885          * This should be something like EXEC_MAX_ENGINE instead of
3886          * I915_NUM_ENGINES.
3887          */
3888         BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3889         return 0x10000 << id;
3890 }
3891
3892 static __always_inline unsigned int __busy_write_id(unsigned int id)
3893 {
3894         /* The uABI guarantees an active writer is also amongst the read
3895          * engines. This would be true if we accessed the activity tracking
3896          * under the lock, but as we perform the lookup of the object and
3897          * its activity locklessly we can not guarantee that the last_write
3898          * being active implies that we have set the same engine flag from
3899          * last_read - hence we always set both read and write busy for
3900          * last_write.
3901          */
3902         return id | __busy_read_flag(id);
3903 }
3904
3905 static __always_inline unsigned int
3906 __busy_set_if_active(const struct i915_gem_active *active,
3907                      unsigned int (*flag)(unsigned int id))
3908 {
3909         struct drm_i915_gem_request *request;
3910
3911         request = rcu_dereference(active->request);
3912         if (!request || i915_gem_request_completed(request))
3913                 return 0;
3914
3915         /* This is racy. See __i915_gem_active_get_rcu() for an in detail
3916          * discussion of how to handle the race correctly, but for reporting
3917          * the busy state we err on the side of potentially reporting the
3918          * wrong engine as being busy (but we guarantee that the result
3919          * is at least self-consistent).
3920          *
3921          * As we use SLAB_DESTROY_BY_RCU, the request may be reallocated
3922          * whilst we are inspecting it, even under the RCU read lock as we are.
3923          * This means that there is a small window for the engine and/or the
3924          * seqno to have been overwritten. The seqno will always be in the
3925          * future compared to the intended, and so we know that if that
3926          * seqno is idle (on whatever engine) our request is idle and the
3927          * return 0 above is correct.
3928          *
3929          * The issue is that if the engine is switched, it is just as likely
3930          * to report that it is busy (but since the switch happened, we know
3931          * the request should be idle). So there is a small chance that a busy
3932          * result is actually the wrong engine.
3933          *
3934          * So why don't we care?
3935          *
3936          * For starters, the busy ioctl is a heuristic that is by definition
3937          * racy. Even with perfect serialisation in the driver, the hardware
3938          * state is constantly advancing - the state we report to the user
3939          * is stale.
3940          *
3941          * The critical information for the busy-ioctl is whether the object
3942          * is idle as userspace relies on that to detect whether its next
3943          * access will stall, or if it has missed submitting commands to
3944          * the hardware allowing the GPU to stall. We never generate a
3945          * false-positive for idleness, thus busy-ioctl is reliable at the
3946          * most fundamental level, and we maintain the guarantee that a
3947          * busy object left to itself will eventually become idle (and stay
3948          * idle!).
3949          *
3950          * We allow ourselves the leeway of potentially misreporting the busy
3951          * state because that is an optimisation heuristic that is constantly
3952          * in flux. Being quickly able to detect the busy/idle state is much
3953          * more important than accurate logging of exactly which engines were
3954          * busy.
3955          *
3956          * For accuracy in reporting the engine, we could use
3957          *
3958          *      result = 0;
3959          *      request = __i915_gem_active_get_rcu(active);
3960          *      if (request) {
3961          *              if (!i915_gem_request_completed(request))
3962          *                      result = flag(request->engine->exec_id);
3963          *              i915_gem_request_put(request);
3964          *      }
3965          *
3966          * but that still remains susceptible to both hardware and userspace
3967          * races. So we accept making the result of that race slightly worse,
3968          * given the rarity of the race and its low impact on the result.
3969          */
3970         return flag(READ_ONCE(request->engine->exec_id));
3971 }
3972
3973 static __always_inline unsigned int
3974 busy_check_reader(const struct i915_gem_active *active)
3975 {
3976         return __busy_set_if_active(active, __busy_read_flag);
3977 }
3978
3979 static __always_inline unsigned int
3980 busy_check_writer(const struct i915_gem_active *active)
3981 {
3982         return __busy_set_if_active(active, __busy_write_id);
3983 }
3984
3985 int
3986 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3987                     struct drm_file *file)
3988 {
3989         struct drm_i915_gem_busy *args = data;
3990         struct drm_i915_gem_object *obj;
3991         unsigned long active;
3992
3993         obj = i915_gem_object_lookup(file, args->handle);
3994         if (!obj)
3995                 return -ENOENT;
3996
3997         args->busy = 0;
3998         active = __I915_BO_ACTIVE(obj);
3999         if (active) {
4000                 int idx;
4001
4002                 /* Yes, the lookups are intentionally racy.
4003                  *
4004                  * First, we cannot simply rely on __I915_BO_ACTIVE. We have
4005                  * to regard the value as stale and as our ABI guarantees
4006                  * forward progress, we confirm the status of each active
4007                  * request with the hardware.
4008                  *
4009                  * Even though we guard the pointer lookup by RCU, that only
4010                  * guarantees that the pointer and its contents remain
4011                  * dereferencable and does *not* mean that the request we
4012                  * have is the same as the one being tracked by the object.
4013                  *
4014                  * Consider that we lookup the request just as it is being
4015                  * retired and freed. We take a local copy of the pointer,
4016                  * but before we add its engine into the busy set, the other
4017                  * thread reallocates it and assigns it to a task on another
4018                  * engine with a fresh and incomplete seqno. Guarding against
4019                  * that requires careful serialisation and reference counting,
4020                  * i.e. using __i915_gem_active_get_request_rcu(). We don't,
4021                  * instead we expect that if the result is busy, which engines
4022                  * are busy is not completely reliable - we only guarantee
4023                  * that the object was busy.
4024                  */
4025                 rcu_read_lock();
4026
4027                 for_each_active(active, idx)
4028                         args->busy |= busy_check_reader(&obj->last_read[idx]);
4029
4030                 /* For ABI sanity, we only care that the write engine is in
4031                  * the set of read engines. This should be ensured by the
4032                  * ordering of setting last_read/last_write in
4033                  * i915_vma_move_to_active(), and then in reverse in retire.
4034                  * However, for good measure, we always report the last_write
4035                  * request as a busy read as well as being a busy write.
4036                  *
4037                  * We don't care that the set of active read/write engines
4038                  * may change during construction of the result, as it is
4039                  * equally liable to change before userspace can inspect
4040                  * the result.
4041                  */
4042                 args->busy |= busy_check_writer(&obj->last_write);
4043
4044                 rcu_read_unlock();
4045         }
4046
4047         i915_gem_object_put_unlocked(obj);
4048         return 0;
4049 }
4050
4051 int
4052 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4053                         struct drm_file *file_priv)
4054 {
4055         return i915_gem_ring_throttle(dev, file_priv);
4056 }
4057
4058 int
4059 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4060                        struct drm_file *file_priv)
4061 {
4062         struct drm_i915_private *dev_priv = to_i915(dev);
4063         struct drm_i915_gem_madvise *args = data;
4064         struct drm_i915_gem_object *obj;
4065         int ret;
4066
4067         switch (args->madv) {
4068         case I915_MADV_DONTNEED:
4069         case I915_MADV_WILLNEED:
4070             break;
4071         default:
4072             return -EINVAL;
4073         }
4074
4075         ret = i915_mutex_lock_interruptible(dev);
4076         if (ret)
4077                 return ret;
4078
4079         obj = i915_gem_object_lookup(file_priv, args->handle);
4080         if (!obj) {
4081                 ret = -ENOENT;
4082                 goto unlock;
4083         }
4084
4085         if (obj->pages &&
4086             i915_gem_object_is_tiled(obj) &&
4087             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4088                 if (obj->madv == I915_MADV_WILLNEED)
4089                         i915_gem_object_unpin_pages(obj);
4090                 if (args->madv == I915_MADV_WILLNEED)
4091                         i915_gem_object_pin_pages(obj);
4092         }
4093
4094         if (obj->madv != __I915_MADV_PURGED)
4095                 obj->madv = args->madv;
4096
4097         /* if the object is no longer attached, discard its backing storage */
4098         if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4099                 i915_gem_object_truncate(obj);
4100
4101         args->retained = obj->madv != __I915_MADV_PURGED;
4102
4103         i915_gem_object_put(obj);
4104 unlock:
4105         mutex_unlock(&dev->struct_mutex);
4106         return ret;
4107 }
4108
4109 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4110                           const struct drm_i915_gem_object_ops *ops)
4111 {
4112         int i;
4113
4114         INIT_LIST_HEAD(&obj->global_list);
4115         for (i = 0; i < I915_NUM_ENGINES; i++)
4116                 init_request_active(&obj->last_read[i],
4117                                     i915_gem_object_retire__read);
4118         init_request_active(&obj->last_write,
4119                             i915_gem_object_retire__write);
4120         INIT_LIST_HEAD(&obj->obj_exec_link);
4121         INIT_LIST_HEAD(&obj->vma_list);
4122         INIT_LIST_HEAD(&obj->batch_pool_link);
4123
4124         obj->ops = ops;
4125
4126         obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4127         obj->madv = I915_MADV_WILLNEED;
4128
4129         i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4130 }
4131
4132 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4133         .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4134         .get_pages = i915_gem_object_get_pages_gtt,
4135         .put_pages = i915_gem_object_put_pages_gtt,
4136 };
4137
4138 struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4139                                                   size_t size)
4140 {
4141         struct drm_i915_gem_object *obj;
4142         struct address_space *mapping;
4143         gfp_t mask;
4144         int ret;
4145
4146         obj = i915_gem_object_alloc(dev);
4147         if (obj == NULL)
4148                 return ERR_PTR(-ENOMEM);
4149
4150         ret = drm_gem_object_init(dev, &obj->base, size);
4151         if (ret)
4152                 goto fail;
4153
4154         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4155         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4156                 /* 965gm cannot relocate objects above 4GiB. */
4157                 mask &= ~__GFP_HIGHMEM;
4158                 mask |= __GFP_DMA32;
4159         }
4160
4161         mapping = obj->base.filp->f_mapping;
4162         mapping_set_gfp_mask(mapping, mask);
4163
4164         i915_gem_object_init(obj, &i915_gem_object_ops);
4165
4166         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4167         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4168
4169         if (HAS_LLC(dev)) {
4170                 /* On some devices, we can have the GPU use the LLC (the CPU
4171                  * cache) for about a 10% performance improvement
4172                  * compared to uncached.  Graphics requests other than
4173                  * display scanout are coherent with the CPU in
4174                  * accessing this cache.  This means in this mode we
4175                  * don't need to clflush on the CPU side, and on the
4176                  * GPU side we only need to flush internal caches to
4177                  * get data visible to the CPU.
4178                  *
4179                  * However, we maintain the display planes as UC, and so
4180                  * need to rebind when first used as such.
4181                  */
4182                 obj->cache_level = I915_CACHE_LLC;
4183         } else
4184                 obj->cache_level = I915_CACHE_NONE;
4185
4186         trace_i915_gem_object_create(obj);
4187
4188         return obj;
4189
4190 fail:
4191         i915_gem_object_free(obj);
4192
4193         return ERR_PTR(ret);
4194 }
4195
4196 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4197 {
4198         /* If we are the last user of the backing storage (be it shmemfs
4199          * pages or stolen etc), we know that the pages are going to be
4200          * immediately released. In this case, we can then skip copying
4201          * back the contents from the GPU.
4202          */
4203
4204         if (obj->madv != I915_MADV_WILLNEED)
4205                 return false;
4206
4207         if (obj->base.filp == NULL)
4208                 return true;
4209
4210         /* At first glance, this looks racy, but then again so would be
4211          * userspace racing mmap against close. However, the first external
4212          * reference to the filp can only be obtained through the
4213          * i915_gem_mmap_ioctl() which safeguards us against the user
4214          * acquiring such a reference whilst we are in the middle of
4215          * freeing the object.
4216          */
4217         return atomic_long_read(&obj->base.filp->f_count) == 1;
4218 }
4219
4220 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4221 {
4222         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4223         struct drm_device *dev = obj->base.dev;
4224         struct drm_i915_private *dev_priv = to_i915(dev);
4225         struct i915_vma *vma, *next;
4226
4227         intel_runtime_pm_get(dev_priv);
4228
4229         trace_i915_gem_object_destroy(obj);
4230
4231         /* All file-owned VMA should have been released by this point through
4232          * i915_gem_close_object(), or earlier by i915_gem_context_close().
4233          * However, the object may also be bound into the global GTT (e.g.
4234          * older GPUs without per-process support, or for direct access through
4235          * the GTT either for the user or for scanout). Those VMA still need to
4236          * unbound now.
4237          */
4238         list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4239                 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4240                 GEM_BUG_ON(i915_vma_is_active(vma));
4241                 vma->flags &= ~I915_VMA_PIN_MASK;
4242                 i915_vma_close(vma);
4243         }
4244         GEM_BUG_ON(obj->bind_count);
4245
4246         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4247          * before progressing. */
4248         if (obj->stolen)
4249                 i915_gem_object_unpin_pages(obj);
4250
4251         WARN_ON(atomic_read(&obj->frontbuffer_bits));
4252
4253         if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4254             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4255             i915_gem_object_is_tiled(obj))
4256                 i915_gem_object_unpin_pages(obj);
4257
4258         if (WARN_ON(obj->pages_pin_count))
4259                 obj->pages_pin_count = 0;
4260         if (discard_backing_storage(obj))
4261                 obj->madv = I915_MADV_DONTNEED;
4262         i915_gem_object_put_pages(obj);
4263
4264         BUG_ON(obj->pages);
4265
4266         if (obj->base.import_attach)
4267                 drm_prime_gem_destroy(&obj->base, NULL);
4268
4269         if (obj->ops->release)
4270                 obj->ops->release(obj);
4271
4272         drm_gem_object_release(&obj->base);
4273         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4274
4275         kfree(obj->bit_17);
4276         i915_gem_object_free(obj);
4277
4278         intel_runtime_pm_put(dev_priv);
4279 }
4280
4281 int i915_gem_suspend(struct drm_device *dev)
4282 {
4283         struct drm_i915_private *dev_priv = to_i915(dev);
4284         int ret;
4285
4286         intel_suspend_gt_powersave(dev_priv);
4287
4288         mutex_lock(&dev->struct_mutex);
4289
4290         /* We have to flush all the executing contexts to main memory so
4291          * that they can saved in the hibernation image. To ensure the last
4292          * context image is coherent, we have to switch away from it. That
4293          * leaves the dev_priv->kernel_context still active when
4294          * we actually suspend, and its image in memory may not match the GPU
4295          * state. Fortunately, the kernel_context is disposable and we do
4296          * not rely on its state.
4297          */
4298         ret = i915_gem_switch_to_kernel_context(dev_priv);
4299         if (ret)
4300                 goto err;
4301
4302         ret = i915_gem_wait_for_idle(dev_priv,
4303                                      I915_WAIT_INTERRUPTIBLE |
4304                                      I915_WAIT_LOCKED);
4305         if (ret)
4306                 goto err;
4307
4308         i915_gem_retire_requests(dev_priv);
4309
4310         i915_gem_context_lost(dev_priv);
4311         mutex_unlock(&dev->struct_mutex);
4312
4313         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4314         cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4315         flush_delayed_work(&dev_priv->gt.idle_work);
4316
4317         /* Assert that we sucessfully flushed all the work and
4318          * reset the GPU back to its idle, low power state.
4319          */
4320         WARN_ON(dev_priv->gt.awake);
4321
4322         return 0;
4323
4324 err:
4325         mutex_unlock(&dev->struct_mutex);
4326         return ret;
4327 }
4328
4329 void i915_gem_resume(struct drm_device *dev)
4330 {
4331         struct drm_i915_private *dev_priv = to_i915(dev);
4332
4333         mutex_lock(&dev->struct_mutex);
4334         i915_gem_restore_gtt_mappings(dev);
4335
4336         /* As we didn't flush the kernel context before suspend, we cannot
4337          * guarantee that the context image is complete. So let's just reset
4338          * it and start again.
4339          */
4340         dev_priv->gt.resume(dev_priv);
4341
4342         mutex_unlock(&dev->struct_mutex);
4343 }
4344
4345 void i915_gem_init_swizzling(struct drm_device *dev)
4346 {
4347         struct drm_i915_private *dev_priv = to_i915(dev);
4348
4349         if (INTEL_INFO(dev)->gen < 5 ||
4350             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4351                 return;
4352
4353         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4354                                  DISP_TILE_SURFACE_SWIZZLING);
4355
4356         if (IS_GEN5(dev))
4357                 return;
4358
4359         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4360         if (IS_GEN6(dev))
4361                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4362         else if (IS_GEN7(dev))
4363                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4364         else if (IS_GEN8(dev))
4365                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4366         else
4367                 BUG();
4368 }
4369
4370 static void init_unused_ring(struct drm_device *dev, u32 base)
4371 {
4372         struct drm_i915_private *dev_priv = to_i915(dev);
4373
4374         I915_WRITE(RING_CTL(base), 0);
4375         I915_WRITE(RING_HEAD(base), 0);
4376         I915_WRITE(RING_TAIL(base), 0);
4377         I915_WRITE(RING_START(base), 0);
4378 }
4379
4380 static void init_unused_rings(struct drm_device *dev)
4381 {
4382         if (IS_I830(dev)) {
4383                 init_unused_ring(dev, PRB1_BASE);
4384                 init_unused_ring(dev, SRB0_BASE);
4385                 init_unused_ring(dev, SRB1_BASE);
4386                 init_unused_ring(dev, SRB2_BASE);
4387                 init_unused_ring(dev, SRB3_BASE);
4388         } else if (IS_GEN2(dev)) {
4389                 init_unused_ring(dev, SRB0_BASE);
4390                 init_unused_ring(dev, SRB1_BASE);
4391         } else if (IS_GEN3(dev)) {
4392                 init_unused_ring(dev, PRB1_BASE);
4393                 init_unused_ring(dev, PRB2_BASE);
4394         }
4395 }
4396
4397 int
4398 i915_gem_init_hw(struct drm_device *dev)
4399 {
4400         struct drm_i915_private *dev_priv = to_i915(dev);
4401         struct intel_engine_cs *engine;
4402         int ret;
4403
4404         /* Double layer security blanket, see i915_gem_init() */
4405         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4406
4407         if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4408                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4409
4410         if (IS_HASWELL(dev))
4411                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4412                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4413
4414         if (HAS_PCH_NOP(dev)) {
4415                 if (IS_IVYBRIDGE(dev)) {
4416                         u32 temp = I915_READ(GEN7_MSG_CTL);
4417                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4418                         I915_WRITE(GEN7_MSG_CTL, temp);
4419                 } else if (INTEL_INFO(dev)->gen >= 7) {
4420                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4421                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4422                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4423                 }
4424         }
4425
4426         i915_gem_init_swizzling(dev);
4427
4428         /*
4429          * At least 830 can leave some of the unused rings
4430          * "active" (ie. head != tail) after resume which
4431          * will prevent c3 entry. Makes sure all unused rings
4432          * are totally idle.
4433          */
4434         init_unused_rings(dev);
4435
4436         BUG_ON(!dev_priv->kernel_context);
4437
4438         ret = i915_ppgtt_init_hw(dev);
4439         if (ret) {
4440                 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4441                 goto out;
4442         }
4443
4444         /* Need to do basic initialisation of all rings first: */
4445         for_each_engine(engine, dev_priv) {
4446                 ret = engine->init_hw(engine);
4447                 if (ret)
4448                         goto out;
4449         }
4450
4451         intel_mocs_init_l3cc_table(dev);
4452
4453         /* We can't enable contexts until all firmware is loaded */
4454         ret = intel_guc_setup(dev);
4455         if (ret)
4456                 goto out;
4457
4458 out:
4459         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4460         return ret;
4461 }
4462
4463 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4464 {
4465         if (INTEL_INFO(dev_priv)->gen < 6)
4466                 return false;
4467
4468         /* TODO: make semaphores and Execlists play nicely together */
4469         if (i915.enable_execlists)
4470                 return false;
4471
4472         if (value >= 0)
4473                 return value;
4474
4475 #ifdef CONFIG_INTEL_IOMMU
4476         /* Enable semaphores on SNB when IO remapping is off */
4477         if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4478                 return false;
4479 #endif
4480
4481         return true;
4482 }
4483
4484 int i915_gem_init(struct drm_device *dev)
4485 {
4486         struct drm_i915_private *dev_priv = to_i915(dev);
4487         int ret;
4488
4489         mutex_lock(&dev->struct_mutex);
4490
4491         if (!i915.enable_execlists) {
4492                 dev_priv->gt.resume = intel_legacy_submission_resume;
4493                 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4494         } else {
4495                 dev_priv->gt.resume = intel_lr_context_resume;
4496                 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4497         }
4498
4499         /* This is just a security blanket to placate dragons.
4500          * On some systems, we very sporadically observe that the first TLBs
4501          * used by the CS may be stale, despite us poking the TLB reset. If
4502          * we hold the forcewake during initialisation these problems
4503          * just magically go away.
4504          */
4505         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4506
4507         i915_gem_init_userptr(dev_priv);
4508
4509         ret = i915_gem_init_ggtt(dev_priv);
4510         if (ret)
4511                 goto out_unlock;
4512
4513         ret = i915_gem_context_init(dev);
4514         if (ret)
4515                 goto out_unlock;
4516
4517         ret = intel_engines_init(dev);
4518         if (ret)
4519                 goto out_unlock;
4520
4521         ret = i915_gem_init_hw(dev);
4522         if (ret == -EIO) {
4523                 /* Allow engine initialisation to fail by marking the GPU as
4524                  * wedged. But we only want to do this where the GPU is angry,
4525                  * for all other failure, such as an allocation failure, bail.
4526                  */
4527                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4528                 i915_gem_set_wedged(dev_priv);
4529                 ret = 0;
4530         }
4531
4532 out_unlock:
4533         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4534         mutex_unlock(&dev->struct_mutex);
4535
4536         return ret;
4537 }
4538
4539 void
4540 i915_gem_cleanup_engines(struct drm_device *dev)
4541 {
4542         struct drm_i915_private *dev_priv = to_i915(dev);
4543         struct intel_engine_cs *engine;
4544
4545         for_each_engine(engine, dev_priv)
4546                 dev_priv->gt.cleanup_engine(engine);
4547 }
4548
4549 static void
4550 init_engine_lists(struct intel_engine_cs *engine)
4551 {
4552         INIT_LIST_HEAD(&engine->request_list);
4553 }
4554
4555 void
4556 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4557 {
4558         struct drm_device *dev = &dev_priv->drm;
4559         int i;
4560
4561         if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4562             !IS_CHERRYVIEW(dev_priv))
4563                 dev_priv->num_fence_regs = 32;
4564         else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
4565                  IS_I945GM(dev_priv) || IS_G33(dev_priv))
4566                 dev_priv->num_fence_regs = 16;
4567         else
4568                 dev_priv->num_fence_regs = 8;
4569
4570         if (intel_vgpu_active(dev_priv))
4571                 dev_priv->num_fence_regs =
4572                                 I915_READ(vgtif_reg(avail_rs.fence_num));
4573
4574         /* Initialize fence registers to zero */
4575         for (i = 0; i < dev_priv->num_fence_regs; i++) {
4576                 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4577
4578                 fence->i915 = dev_priv;
4579                 fence->id = i;
4580                 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4581         }
4582         i915_gem_restore_fences(dev);
4583
4584         i915_gem_detect_bit_6_swizzle(dev);
4585 }
4586
4587 void
4588 i915_gem_load_init(struct drm_device *dev)
4589 {
4590         struct drm_i915_private *dev_priv = to_i915(dev);
4591         int i;
4592
4593         dev_priv->objects =
4594                 kmem_cache_create("i915_gem_object",
4595                                   sizeof(struct drm_i915_gem_object), 0,
4596                                   SLAB_HWCACHE_ALIGN,
4597                                   NULL);
4598         dev_priv->vmas =
4599                 kmem_cache_create("i915_gem_vma",
4600                                   sizeof(struct i915_vma), 0,
4601                                   SLAB_HWCACHE_ALIGN,
4602                                   NULL);
4603         dev_priv->requests =
4604                 kmem_cache_create("i915_gem_request",
4605                                   sizeof(struct drm_i915_gem_request), 0,
4606                                   SLAB_HWCACHE_ALIGN |
4607                                   SLAB_RECLAIM_ACCOUNT |
4608                                   SLAB_DESTROY_BY_RCU,
4609                                   NULL);
4610
4611         INIT_LIST_HEAD(&dev_priv->context_list);
4612         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4613         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4614         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4615         for (i = 0; i < I915_NUM_ENGINES; i++)
4616                 init_engine_lists(&dev_priv->engine[i]);
4617         INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4618                           i915_gem_retire_work_handler);
4619         INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4620                           i915_gem_idle_work_handler);
4621         init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4622         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4623
4624         init_waitqueue_head(&dev_priv->pending_flip_queue);
4625
4626         dev_priv->mm.interruptible = true;
4627
4628         atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4629
4630         spin_lock_init(&dev_priv->fb_tracking.lock);
4631 }
4632
4633 void i915_gem_load_cleanup(struct drm_device *dev)
4634 {
4635         struct drm_i915_private *dev_priv = to_i915(dev);
4636
4637         kmem_cache_destroy(dev_priv->requests);
4638         kmem_cache_destroy(dev_priv->vmas);
4639         kmem_cache_destroy(dev_priv->objects);
4640
4641         /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4642         rcu_barrier();
4643 }
4644
4645 int i915_gem_freeze(struct drm_i915_private *dev_priv)
4646 {
4647         intel_runtime_pm_get(dev_priv);
4648
4649         mutex_lock(&dev_priv->drm.struct_mutex);
4650         i915_gem_shrink_all(dev_priv);
4651         mutex_unlock(&dev_priv->drm.struct_mutex);
4652
4653         intel_runtime_pm_put(dev_priv);
4654
4655         return 0;
4656 }
4657
4658 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4659 {
4660         struct drm_i915_gem_object *obj;
4661         struct list_head *phases[] = {
4662                 &dev_priv->mm.unbound_list,
4663                 &dev_priv->mm.bound_list,
4664                 NULL
4665         }, **p;
4666
4667         /* Called just before we write the hibernation image.
4668          *
4669          * We need to update the domain tracking to reflect that the CPU
4670          * will be accessing all the pages to create and restore from the
4671          * hibernation, and so upon restoration those pages will be in the
4672          * CPU domain.
4673          *
4674          * To make sure the hibernation image contains the latest state,
4675          * we update that state just before writing out the image.
4676          *
4677          * To try and reduce the hibernation image, we manually shrink
4678          * the objects as well.
4679          */
4680
4681         mutex_lock(&dev_priv->drm.struct_mutex);
4682         i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4683
4684         for (p = phases; *p; p++) {
4685                 list_for_each_entry(obj, *p, global_list) {
4686                         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4687                         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4688                 }
4689         }
4690         mutex_unlock(&dev_priv->drm.struct_mutex);
4691
4692         return 0;
4693 }
4694
4695 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4696 {
4697         struct drm_i915_file_private *file_priv = file->driver_priv;
4698         struct drm_i915_gem_request *request;
4699
4700         /* Clean up our request list when the client is going away, so that
4701          * later retire_requests won't dereference our soon-to-be-gone
4702          * file_priv.
4703          */
4704         spin_lock(&file_priv->mm.lock);
4705         list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4706                 request->file_priv = NULL;
4707         spin_unlock(&file_priv->mm.lock);
4708
4709         if (!list_empty(&file_priv->rps.link)) {
4710                 spin_lock(&to_i915(dev)->rps.client_lock);
4711                 list_del(&file_priv->rps.link);
4712                 spin_unlock(&to_i915(dev)->rps.client_lock);
4713         }
4714 }
4715
4716 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4717 {
4718         struct drm_i915_file_private *file_priv;
4719         int ret;
4720
4721         DRM_DEBUG_DRIVER("\n");
4722
4723         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4724         if (!file_priv)
4725                 return -ENOMEM;
4726
4727         file->driver_priv = file_priv;
4728         file_priv->dev_priv = to_i915(dev);
4729         file_priv->file = file;
4730         INIT_LIST_HEAD(&file_priv->rps.link);
4731
4732         spin_lock_init(&file_priv->mm.lock);
4733         INIT_LIST_HEAD(&file_priv->mm.request_list);
4734
4735         file_priv->bsd_engine = -1;
4736
4737         ret = i915_gem_context_open(dev, file);
4738         if (ret)
4739                 kfree(file_priv);
4740
4741         return ret;
4742 }
4743
4744 /**
4745  * i915_gem_track_fb - update frontbuffer tracking
4746  * @old: current GEM buffer for the frontbuffer slots
4747  * @new: new GEM buffer for the frontbuffer slots
4748  * @frontbuffer_bits: bitmask of frontbuffer slots
4749  *
4750  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4751  * from @old and setting them in @new. Both @old and @new can be NULL.
4752  */
4753 void i915_gem_track_fb(struct drm_i915_gem_object *old,
4754                        struct drm_i915_gem_object *new,
4755                        unsigned frontbuffer_bits)
4756 {
4757         /* Control of individual bits within the mask are guarded by
4758          * the owning plane->mutex, i.e. we can never see concurrent
4759          * manipulation of individual bits. But since the bitfield as a whole
4760          * is updated using RMW, we need to use atomics in order to update
4761          * the bits.
4762          */
4763         BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4764                      sizeof(atomic_t) * BITS_PER_BYTE);
4765
4766         if (old) {
4767                 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4768                 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4769         }
4770
4771         if (new) {
4772                 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
4773                 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4774         }
4775 }
4776
4777 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
4778 struct page *
4779 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
4780 {
4781         struct page *page;
4782
4783         /* Only default objects have per-page dirty tracking */
4784         if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
4785                 return NULL;
4786
4787         page = i915_gem_object_get_page(obj, n);
4788         set_page_dirty(page);
4789         return page;
4790 }
4791
4792 /* Allocate a new GEM object and fill it with the supplied data */
4793 struct drm_i915_gem_object *
4794 i915_gem_object_create_from_data(struct drm_device *dev,
4795                                  const void *data, size_t size)
4796 {
4797         struct drm_i915_gem_object *obj;
4798         struct sg_table *sg;
4799         size_t bytes;
4800         int ret;
4801
4802         obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
4803         if (IS_ERR(obj))
4804                 return obj;
4805
4806         ret = i915_gem_object_set_to_cpu_domain(obj, true);
4807         if (ret)
4808                 goto fail;
4809
4810         ret = i915_gem_object_get_pages(obj);
4811         if (ret)
4812                 goto fail;
4813
4814         i915_gem_object_pin_pages(obj);
4815         sg = obj->pages;
4816         bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4817         obj->dirty = 1;         /* Backing store is now out of date */
4818         i915_gem_object_unpin_pages(obj);
4819
4820         if (WARN_ON(bytes != size)) {
4821                 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4822                 ret = -EFAULT;
4823                 goto fail;
4824         }
4825
4826         return obj;
4827
4828 fail:
4829         i915_gem_object_put(obj);
4830         return ERR_PTR(ret);
4831 }