GNU Linux-libre 4.19.263-gnu1
[releases.git] / drivers / gpu / drm / i915 / gvt / scheduler.c
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Zhi Wang <zhi.a.wang@intel.com>
25  *
26  * Contributors:
27  *    Ping Gao <ping.a.gao@intel.com>
28  *    Tina Zhang <tina.zhang@intel.com>
29  *    Chanbin Du <changbin.du@intel.com>
30  *    Min He <min.he@intel.com>
31  *    Bing Niu <bing.niu@intel.com>
32  *    Zhenyu Wang <zhenyuw@linux.intel.com>
33  *
34  */
35
36 #include <linux/kthread.h>
37
38 #include "i915_drv.h"
39 #include "gvt.h"
40
41 #define RING_CTX_OFF(x) \
42         offsetof(struct execlist_ring_context, x)
43
44 static void set_context_pdp_root_pointer(
45                 struct execlist_ring_context *ring_context,
46                 u32 pdp[8])
47 {
48         int i;
49
50         for (i = 0; i < 8; i++)
51                 ring_context->pdps[i].val = pdp[7 - i];
52 }
53
54 static void update_shadow_pdps(struct intel_vgpu_workload *workload)
55 {
56         struct drm_i915_gem_object *ctx_obj =
57                 workload->req->hw_context->state->obj;
58         struct execlist_ring_context *shadow_ring_context;
59         struct page *page;
60
61         if (WARN_ON(!workload->shadow_mm))
62                 return;
63
64         if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
65                 return;
66
67         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
68         shadow_ring_context = kmap(page);
69         set_context_pdp_root_pointer(shadow_ring_context,
70                         (void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
71         kunmap(page);
72 }
73
74 /*
75  * when populating shadow ctx from guest, we should not overrride oa related
76  * registers, so that they will not be overlapped by guest oa configs. Thus
77  * made it possible to capture oa data from host for both host and guests.
78  */
79 static void sr_oa_regs(struct intel_vgpu_workload *workload,
80                 u32 *reg_state, bool save)
81 {
82         struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv;
83         u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset;
84         u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset;
85         int i = 0;
86         u32 flex_mmio[] = {
87                 i915_mmio_reg_offset(EU_PERF_CNTL0),
88                 i915_mmio_reg_offset(EU_PERF_CNTL1),
89                 i915_mmio_reg_offset(EU_PERF_CNTL2),
90                 i915_mmio_reg_offset(EU_PERF_CNTL3),
91                 i915_mmio_reg_offset(EU_PERF_CNTL4),
92                 i915_mmio_reg_offset(EU_PERF_CNTL5),
93                 i915_mmio_reg_offset(EU_PERF_CNTL6),
94         };
95
96         if (workload->ring_id != RCS)
97                 return;
98
99         if (save) {
100                 workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
101
102                 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
103                         u32 state_offset = ctx_flexeu0 + i * 2;
104
105                         workload->flex_mmio[i] = reg_state[state_offset + 1];
106                 }
107         } else {
108                 reg_state[ctx_oactxctrl] =
109                         i915_mmio_reg_offset(GEN8_OACTXCONTROL);
110                 reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
111
112                 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
113                         u32 state_offset = ctx_flexeu0 + i * 2;
114                         u32 mmio = flex_mmio[i];
115
116                         reg_state[state_offset] = mmio;
117                         reg_state[state_offset + 1] = workload->flex_mmio[i];
118                 }
119         }
120 }
121
122 static int populate_shadow_context(struct intel_vgpu_workload *workload)
123 {
124         struct intel_vgpu *vgpu = workload->vgpu;
125         struct intel_gvt *gvt = vgpu->gvt;
126         int ring_id = workload->ring_id;
127         struct drm_i915_gem_object *ctx_obj =
128                 workload->req->hw_context->state->obj;
129         struct execlist_ring_context *shadow_ring_context;
130         struct page *page;
131         void *dst;
132         unsigned long context_gpa, context_page_num;
133         int i;
134
135         gvt_dbg_sched("ring id %d workload lrca %x", ring_id,
136                         workload->ctx_desc.lrca);
137
138         context_page_num = gvt->dev_priv->engine[ring_id]->context_size;
139
140         context_page_num = context_page_num >> PAGE_SHIFT;
141
142         if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS)
143                 context_page_num = 19;
144
145         i = 2;
146
147         while (i < context_page_num) {
148                 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
149                                 (u32)((workload->ctx_desc.lrca + i) <<
150                                 I915_GTT_PAGE_SHIFT));
151                 if (context_gpa == INTEL_GVT_INVALID_ADDR) {
152                         gvt_vgpu_err("Invalid guest context descriptor\n");
153                         return -EFAULT;
154                 }
155
156                 page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
157                 dst = kmap(page);
158                 intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst,
159                                 I915_GTT_PAGE_SIZE);
160                 kunmap(page);
161                 i++;
162         }
163
164         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
165         shadow_ring_context = kmap(page);
166
167         sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
168 #define COPY_REG(name) \
169         intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
170                 + RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
171 #define COPY_REG_MASKED(name) {\
172                 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
173                                               + RING_CTX_OFF(name.val),\
174                                               &shadow_ring_context->name.val, 4);\
175                 shadow_ring_context->name.val |= 0xffff << 16;\
176         }
177
178         COPY_REG_MASKED(ctx_ctrl);
179         COPY_REG(ctx_timestamp);
180
181         if (ring_id == RCS) {
182                 COPY_REG(bb_per_ctx_ptr);
183                 COPY_REG(rcs_indirect_ctx);
184                 COPY_REG(rcs_indirect_ctx_offset);
185         }
186 #undef COPY_REG
187 #undef COPY_REG_MASKED
188
189         intel_gvt_hypervisor_read_gpa(vgpu,
190                         workload->ring_context_gpa +
191                         sizeof(*shadow_ring_context),
192                         (void *)shadow_ring_context +
193                         sizeof(*shadow_ring_context),
194                         I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
195
196         sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
197         kunmap(page);
198         return 0;
199 }
200
201 static inline bool is_gvt_request(struct i915_request *req)
202 {
203         return i915_gem_context_force_single_submission(req->gem_context);
204 }
205
206 static void save_ring_hw_state(struct intel_vgpu *vgpu, int ring_id)
207 {
208         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
209         u32 ring_base = dev_priv->engine[ring_id]->mmio_base;
210         i915_reg_t reg;
211
212         reg = RING_INSTDONE(ring_base);
213         vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
214         reg = RING_ACTHD(ring_base);
215         vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
216         reg = RING_ACTHD_UDW(ring_base);
217         vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
218 }
219
220 static int shadow_context_status_change(struct notifier_block *nb,
221                 unsigned long action, void *data)
222 {
223         struct i915_request *req = data;
224         struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
225                                 shadow_ctx_notifier_block[req->engine->id]);
226         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
227         enum intel_engine_id ring_id = req->engine->id;
228         struct intel_vgpu_workload *workload;
229         unsigned long flags;
230
231         if (!is_gvt_request(req)) {
232                 spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
233                 if (action == INTEL_CONTEXT_SCHEDULE_IN &&
234                     scheduler->engine_owner[ring_id]) {
235                         /* Switch ring from vGPU to host. */
236                         intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
237                                               NULL, ring_id);
238                         scheduler->engine_owner[ring_id] = NULL;
239                 }
240                 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
241
242                 return NOTIFY_OK;
243         }
244
245         workload = scheduler->current_workload[ring_id];
246         if (unlikely(!workload))
247                 return NOTIFY_OK;
248
249         switch (action) {
250         case INTEL_CONTEXT_SCHEDULE_IN:
251                 spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
252                 if (workload->vgpu != scheduler->engine_owner[ring_id]) {
253                         /* Switch ring from host to vGPU or vGPU to vGPU. */
254                         intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
255                                               workload->vgpu, ring_id);
256                         scheduler->engine_owner[ring_id] = workload->vgpu;
257                 } else
258                         gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
259                                       ring_id, workload->vgpu->id);
260                 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
261                 atomic_set(&workload->shadow_ctx_active, 1);
262                 break;
263         case INTEL_CONTEXT_SCHEDULE_OUT:
264                 save_ring_hw_state(workload->vgpu, ring_id);
265                 atomic_set(&workload->shadow_ctx_active, 0);
266                 break;
267         case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
268                 save_ring_hw_state(workload->vgpu, ring_id);
269                 break;
270         default:
271                 WARN_ON(1);
272                 return NOTIFY_OK;
273         }
274         wake_up(&workload->shadow_ctx_status_wq);
275         return NOTIFY_OK;
276 }
277
278 static void shadow_context_descriptor_update(struct intel_context *ce)
279 {
280         u64 desc = 0;
281
282         desc = ce->lrc_desc;
283
284         /* Update bits 0-11 of the context descriptor which includes flags
285          * like GEN8_CTX_* cached in desc_template
286          */
287         desc &= U64_MAX << 12;
288         desc |= ce->gem_context->desc_template & ((1ULL << 12) - 1);
289
290         ce->lrc_desc = desc;
291 }
292
293 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
294 {
295         struct intel_vgpu *vgpu = workload->vgpu;
296         struct i915_request *req = workload->req;
297         void *shadow_ring_buffer_va;
298         u32 *cs;
299
300         if ((IS_KABYLAKE(req->i915) || IS_BROXTON(req->i915))
301                 && is_inhibit_context(req->hw_context))
302                 intel_vgpu_restore_inhibit_context(vgpu, req);
303
304         /* allocate shadow ring buffer */
305         cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
306         if (IS_ERR(cs)) {
307                 gvt_vgpu_err("fail to alloc size =%ld shadow  ring buffer\n",
308                         workload->rb_len);
309                 return PTR_ERR(cs);
310         }
311
312         shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
313
314         /* get shadow ring buffer va */
315         workload->shadow_ring_buffer_va = cs;
316
317         memcpy(cs, shadow_ring_buffer_va,
318                         workload->rb_len);
319
320         cs += workload->rb_len / sizeof(u32);
321         intel_ring_advance(workload->req, cs);
322
323         return 0;
324 }
325
326 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
327 {
328         if (!wa_ctx->indirect_ctx.obj)
329                 return;
330
331         i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
332         i915_gem_object_put(wa_ctx->indirect_ctx.obj);
333 }
334
335 /**
336  * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
337  * shadow it as well, include ringbuffer,wa_ctx and ctx.
338  * @workload: an abstract entity for each execlist submission.
339  *
340  * This function is called before the workload submitting to i915, to make
341  * sure the content of the workload is valid.
342  */
343 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
344 {
345         struct intel_vgpu *vgpu = workload->vgpu;
346         struct intel_vgpu_submission *s = &vgpu->submission;
347         struct i915_gem_context *shadow_ctx = s->shadow_ctx;
348         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
349         struct intel_engine_cs *engine = dev_priv->engine[workload->ring_id];
350         struct intel_context *ce;
351         struct i915_request *rq;
352         int ret;
353
354         lockdep_assert_held(&dev_priv->drm.struct_mutex);
355
356         if (workload->req)
357                 return 0;
358
359         /* pin shadow context by gvt even the shadow context will be pinned
360          * when i915 alloc request. That is because gvt will update the guest
361          * context from shadow context when workload is completed, and at that
362          * moment, i915 may already unpined the shadow context to make the
363          * shadow_ctx pages invalid. So gvt need to pin itself. After update
364          * the guest context, gvt can unpin the shadow_ctx safely.
365          */
366         ce = intel_context_pin(shadow_ctx, engine);
367         if (IS_ERR(ce)) {
368                 gvt_vgpu_err("fail to pin shadow context\n");
369                 return PTR_ERR(ce);
370         }
371
372         shadow_ctx->desc_template &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT);
373         shadow_ctx->desc_template |= workload->ctx_desc.addressing_mode <<
374                                     GEN8_CTX_ADDRESSING_MODE_SHIFT;
375
376         if (!test_and_set_bit(workload->ring_id, s->shadow_ctx_desc_updated))
377                 shadow_context_descriptor_update(ce);
378
379         ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
380         if (ret)
381                 goto err_unpin;
382
383         if ((workload->ring_id == RCS) &&
384             (workload->wa_ctx.indirect_ctx.size != 0)) {
385                 ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
386                 if (ret)
387                         goto err_shadow;
388         }
389
390         rq = i915_request_alloc(engine, shadow_ctx);
391         if (IS_ERR(rq)) {
392                 gvt_vgpu_err("fail to allocate gem request\n");
393                 ret = PTR_ERR(rq);
394                 goto err_shadow;
395         }
396         workload->req = i915_request_get(rq);
397
398         ret = populate_shadow_context(workload);
399         if (ret)
400                 goto err_req;
401
402         return 0;
403 err_req:
404         rq = fetch_and_zero(&workload->req);
405         i915_request_put(rq);
406 err_shadow:
407         release_shadow_wa_ctx(&workload->wa_ctx);
408 err_unpin:
409         intel_context_unpin(ce);
410         return ret;
411 }
412
413 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
414
415 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
416 {
417         struct intel_gvt *gvt = workload->vgpu->gvt;
418         const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
419         struct intel_vgpu_shadow_bb *bb;
420         int ret;
421
422         list_for_each_entry(bb, &workload->shadow_bb, list) {
423                 /* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
424                  * is only updated into ring_scan_buffer, not real ring address
425                  * allocated in later copy_workload_to_ring_buffer. pls be noted
426                  * shadow_ring_buffer_va is now pointed to real ring buffer va
427                  * in copy_workload_to_ring_buffer.
428                  */
429
430                 if (bb->bb_offset)
431                         bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
432                                 + bb->bb_offset;
433
434                 if (bb->ppgtt) {
435                         /* for non-priv bb, scan&shadow is only for
436                          * debugging purpose, so the content of shadow bb
437                          * is the same as original bb. Therefore,
438                          * here, rather than switch to shadow bb's gma
439                          * address, we directly use original batch buffer's
440                          * gma address, and send original bb to hardware
441                          * directly
442                          */
443                         if (bb->clflush & CLFLUSH_AFTER) {
444                                 drm_clflush_virt_range(bb->va,
445                                                 bb->obj->base.size);
446                                 bb->clflush &= ~CLFLUSH_AFTER;
447                         }
448                         i915_gem_obj_finish_shmem_access(bb->obj);
449                         bb->accessing = false;
450
451                 } else {
452                         bb->vma = i915_gem_object_ggtt_pin(bb->obj,
453                                         NULL, 0, 0, 0);
454                         if (IS_ERR(bb->vma)) {
455                                 ret = PTR_ERR(bb->vma);
456                                 goto err;
457                         }
458
459                         /* relocate shadow batch buffer */
460                         bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
461                         if (gmadr_bytes == 8)
462                                 bb->bb_start_cmd_va[2] = 0;
463
464                         /* No one is going to touch shadow bb from now on. */
465                         if (bb->clflush & CLFLUSH_AFTER) {
466                                 drm_clflush_virt_range(bb->va,
467                                                 bb->obj->base.size);
468                                 bb->clflush &= ~CLFLUSH_AFTER;
469                         }
470
471                         ret = i915_gem_object_set_to_gtt_domain(bb->obj,
472                                         false);
473                         if (ret)
474                                 goto err;
475
476                         i915_gem_obj_finish_shmem_access(bb->obj);
477                         bb->accessing = false;
478
479                         ret = i915_vma_move_to_active(bb->vma,
480                                                       workload->req,
481                                                       0);
482                         if (ret)
483                                 goto err;
484                 }
485         }
486         return 0;
487 err:
488         release_shadow_batch_buffer(workload);
489         return ret;
490 }
491
492 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
493 {
494         struct intel_vgpu_workload *workload =
495                 container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx);
496         struct i915_request *rq = workload->req;
497         struct execlist_ring_context *shadow_ring_context =
498                 (struct execlist_ring_context *)rq->hw_context->lrc_reg_state;
499
500         shadow_ring_context->bb_per_ctx_ptr.val =
501                 (shadow_ring_context->bb_per_ctx_ptr.val &
502                 (~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
503         shadow_ring_context->rcs_indirect_ctx.val =
504                 (shadow_ring_context->rcs_indirect_ctx.val &
505                 (~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
506 }
507
508 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
509 {
510         struct i915_vma *vma;
511         unsigned char *per_ctx_va =
512                 (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
513                 wa_ctx->indirect_ctx.size;
514
515         if (wa_ctx->indirect_ctx.size == 0)
516                 return 0;
517
518         vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
519                                        0, CACHELINE_BYTES, 0);
520         if (IS_ERR(vma))
521                 return PTR_ERR(vma);
522
523         /* FIXME: we are not tracking our pinned VMA leaving it
524          * up to the core to fix up the stray pin_count upon
525          * free.
526          */
527
528         wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
529
530         wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
531         memset(per_ctx_va, 0, CACHELINE_BYTES);
532
533         update_wa_ctx_2_shadow_ctx(wa_ctx);
534         return 0;
535 }
536
537 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
538 {
539         struct intel_vgpu *vgpu = workload->vgpu;
540         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
541         struct intel_vgpu_shadow_bb *bb, *pos;
542
543         if (list_empty(&workload->shadow_bb))
544                 return;
545
546         bb = list_first_entry(&workload->shadow_bb,
547                         struct intel_vgpu_shadow_bb, list);
548
549         mutex_lock(&dev_priv->drm.struct_mutex);
550
551         list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
552                 if (bb->obj) {
553                         if (bb->accessing)
554                                 i915_gem_obj_finish_shmem_access(bb->obj);
555
556                         if (bb->va && !IS_ERR(bb->va))
557                                 i915_gem_object_unpin_map(bb->obj);
558
559                         if (bb->vma && !IS_ERR(bb->vma)) {
560                                 i915_vma_unpin(bb->vma);
561                                 i915_vma_close(bb->vma);
562                         }
563                         __i915_gem_object_release_unless_active(bb->obj);
564                 }
565                 list_del(&bb->list);
566                 kfree(bb);
567         }
568
569         mutex_unlock(&dev_priv->drm.struct_mutex);
570 }
571
572 static int prepare_workload(struct intel_vgpu_workload *workload)
573 {
574         struct intel_vgpu *vgpu = workload->vgpu;
575         int ret = 0;
576
577         ret = intel_vgpu_pin_mm(workload->shadow_mm);
578         if (ret) {
579                 gvt_vgpu_err("fail to vgpu pin mm\n");
580                 return ret;
581         }
582
583         update_shadow_pdps(workload);
584
585         ret = intel_vgpu_sync_oos_pages(workload->vgpu);
586         if (ret) {
587                 gvt_vgpu_err("fail to vgpu sync oos pages\n");
588                 goto err_unpin_mm;
589         }
590
591         ret = intel_vgpu_flush_post_shadow(workload->vgpu);
592         if (ret) {
593                 gvt_vgpu_err("fail to flush post shadow\n");
594                 goto err_unpin_mm;
595         }
596
597         ret = copy_workload_to_ring_buffer(workload);
598         if (ret) {
599                 gvt_vgpu_err("fail to generate request\n");
600                 goto err_unpin_mm;
601         }
602
603         ret = prepare_shadow_batch_buffer(workload);
604         if (ret) {
605                 gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
606                 goto err_unpin_mm;
607         }
608
609         ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
610         if (ret) {
611                 gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
612                 goto err_shadow_batch;
613         }
614
615         if (workload->prepare) {
616                 ret = workload->prepare(workload);
617                 if (ret)
618                         goto err_shadow_wa_ctx;
619         }
620
621         return 0;
622 err_shadow_wa_ctx:
623         release_shadow_wa_ctx(&workload->wa_ctx);
624 err_shadow_batch:
625         release_shadow_batch_buffer(workload);
626 err_unpin_mm:
627         intel_vgpu_unpin_mm(workload->shadow_mm);
628         return ret;
629 }
630
631 static int dispatch_workload(struct intel_vgpu_workload *workload)
632 {
633         struct intel_vgpu *vgpu = workload->vgpu;
634         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
635         int ring_id = workload->ring_id;
636         int ret;
637
638         gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n",
639                 ring_id, workload);
640
641         mutex_lock(&vgpu->vgpu_lock);
642         mutex_lock(&dev_priv->drm.struct_mutex);
643
644         ret = intel_gvt_scan_and_shadow_workload(workload);
645         if (ret)
646                 goto out;
647
648         ret = prepare_workload(workload);
649
650 out:
651         if (ret)
652                 workload->status = ret;
653
654         if (!IS_ERR_OR_NULL(workload->req)) {
655                 gvt_dbg_sched("ring id %d submit workload to i915 %p\n",
656                                 ring_id, workload->req);
657                 i915_request_add(workload->req);
658                 workload->dispatched = true;
659         }
660
661         mutex_unlock(&dev_priv->drm.struct_mutex);
662         mutex_unlock(&vgpu->vgpu_lock);
663         return ret;
664 }
665
666 static struct intel_vgpu_workload *pick_next_workload(
667                 struct intel_gvt *gvt, int ring_id)
668 {
669         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
670         struct intel_vgpu_workload *workload = NULL;
671
672         mutex_lock(&gvt->sched_lock);
673
674         /*
675          * no current vgpu / will be scheduled out / no workload
676          * bail out
677          */
678         if (!scheduler->current_vgpu) {
679                 gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id);
680                 goto out;
681         }
682
683         if (scheduler->need_reschedule) {
684                 gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id);
685                 goto out;
686         }
687
688         if (list_empty(workload_q_head(scheduler->current_vgpu, ring_id)))
689                 goto out;
690
691         /*
692          * still have current workload, maybe the workload disptacher
693          * fail to submit it for some reason, resubmit it.
694          */
695         if (scheduler->current_workload[ring_id]) {
696                 workload = scheduler->current_workload[ring_id];
697                 gvt_dbg_sched("ring id %d still have current workload %p\n",
698                                 ring_id, workload);
699                 goto out;
700         }
701
702         /*
703          * pick a workload as current workload
704          * once current workload is set, schedule policy routines
705          * will wait the current workload is finished when trying to
706          * schedule out a vgpu.
707          */
708         scheduler->current_workload[ring_id] = container_of(
709                         workload_q_head(scheduler->current_vgpu, ring_id)->next,
710                         struct intel_vgpu_workload, list);
711
712         workload = scheduler->current_workload[ring_id];
713
714         gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload);
715
716         atomic_inc(&workload->vgpu->submission.running_workload_num);
717 out:
718         mutex_unlock(&gvt->sched_lock);
719         return workload;
720 }
721
722 static void update_guest_context(struct intel_vgpu_workload *workload)
723 {
724         struct i915_request *rq = workload->req;
725         struct intel_vgpu *vgpu = workload->vgpu;
726         struct intel_gvt *gvt = vgpu->gvt;
727         struct drm_i915_gem_object *ctx_obj = rq->hw_context->state->obj;
728         struct execlist_ring_context *shadow_ring_context;
729         struct page *page;
730         void *src;
731         unsigned long context_gpa, context_page_num;
732         int i;
733
734         gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id,
735                       workload->ctx_desc.lrca);
736
737         context_page_num = rq->engine->context_size;
738         context_page_num = context_page_num >> PAGE_SHIFT;
739
740         if (IS_BROADWELL(gvt->dev_priv) && rq->engine->id == RCS)
741                 context_page_num = 19;
742
743         i = 2;
744
745         while (i < context_page_num) {
746                 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
747                                 (u32)((workload->ctx_desc.lrca + i) <<
748                                         I915_GTT_PAGE_SHIFT));
749                 if (context_gpa == INTEL_GVT_INVALID_ADDR) {
750                         gvt_vgpu_err("invalid guest context descriptor\n");
751                         return;
752                 }
753
754                 page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
755                 src = kmap(page);
756                 intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src,
757                                 I915_GTT_PAGE_SIZE);
758                 kunmap(page);
759                 i++;
760         }
761
762         intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
763                 RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
764
765         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
766         shadow_ring_context = kmap(page);
767
768 #define COPY_REG(name) \
769         intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
770                 RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
771
772         COPY_REG(ctx_ctrl);
773         COPY_REG(ctx_timestamp);
774
775 #undef COPY_REG
776
777         intel_gvt_hypervisor_write_gpa(vgpu,
778                         workload->ring_context_gpa +
779                         sizeof(*shadow_ring_context),
780                         (void *)shadow_ring_context +
781                         sizeof(*shadow_ring_context),
782                         I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
783
784         kunmap(page);
785 }
786
787 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu,
788                                 unsigned long engine_mask)
789 {
790         struct intel_vgpu_submission *s = &vgpu->submission;
791         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
792         struct intel_engine_cs *engine;
793         struct intel_vgpu_workload *pos, *n;
794         unsigned int tmp;
795
796         /* free the unsubmited workloads in the queues. */
797         for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
798                 list_for_each_entry_safe(pos, n,
799                         &s->workload_q_head[engine->id], list) {
800                         list_del_init(&pos->list);
801                         intel_vgpu_destroy_workload(pos);
802                 }
803                 clear_bit(engine->id, s->shadow_ctx_desc_updated);
804         }
805 }
806
807 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
808 {
809         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
810         struct intel_vgpu_workload *workload =
811                 scheduler->current_workload[ring_id];
812         struct intel_vgpu *vgpu = workload->vgpu;
813         struct intel_vgpu_submission *s = &vgpu->submission;
814         struct i915_request *rq = workload->req;
815         int event;
816
817         mutex_lock(&vgpu->vgpu_lock);
818         mutex_lock(&gvt->sched_lock);
819
820         /* For the workload w/ request, needs to wait for the context
821          * switch to make sure request is completed.
822          * For the workload w/o request, directly complete the workload.
823          */
824         if (rq) {
825                 wait_event(workload->shadow_ctx_status_wq,
826                            !atomic_read(&workload->shadow_ctx_active));
827
828                 /* If this request caused GPU hang, req->fence.error will
829                  * be set to -EIO. Use -EIO to set workload status so
830                  * that when this request caused GPU hang, didn't trigger
831                  * context switch interrupt to guest.
832                  */
833                 if (likely(workload->status == -EINPROGRESS)) {
834                         if (workload->req->fence.error == -EIO)
835                                 workload->status = -EIO;
836                         else
837                                 workload->status = 0;
838                 }
839
840                 if (!workload->status && !(vgpu->resetting_eng &
841                                            ENGINE_MASK(ring_id))) {
842                         update_guest_context(workload);
843
844                         for_each_set_bit(event, workload->pending_events,
845                                          INTEL_GVT_EVENT_MAX)
846                                 intel_vgpu_trigger_virtual_event(vgpu, event);
847                 }
848
849                 /* unpin shadow ctx as the shadow_ctx update is done */
850                 mutex_lock(&rq->i915->drm.struct_mutex);
851                 intel_context_unpin(rq->hw_context);
852                 mutex_unlock(&rq->i915->drm.struct_mutex);
853
854                 i915_request_put(fetch_and_zero(&workload->req));
855         }
856
857         gvt_dbg_sched("ring id %d complete workload %p status %d\n",
858                         ring_id, workload, workload->status);
859
860         scheduler->current_workload[ring_id] = NULL;
861
862         list_del_init(&workload->list);
863
864         if (!workload->status) {
865                 release_shadow_batch_buffer(workload);
866                 release_shadow_wa_ctx(&workload->wa_ctx);
867         }
868
869         if (workload->status || (vgpu->resetting_eng & ENGINE_MASK(ring_id))) {
870                 /* if workload->status is not successful means HW GPU
871                  * has occurred GPU hang or something wrong with i915/GVT,
872                  * and GVT won't inject context switch interrupt to guest.
873                  * So this error is a vGPU hang actually to the guest.
874                  * According to this we should emunlate a vGPU hang. If
875                  * there are pending workloads which are already submitted
876                  * from guest, we should clean them up like HW GPU does.
877                  *
878                  * if it is in middle of engine resetting, the pending
879                  * workloads won't be submitted to HW GPU and will be
880                  * cleaned up during the resetting process later, so doing
881                  * the workload clean up here doesn't have any impact.
882                  **/
883                 intel_vgpu_clean_workloads(vgpu, ENGINE_MASK(ring_id));
884         }
885
886         workload->complete(workload);
887
888         atomic_dec(&s->running_workload_num);
889         wake_up(&scheduler->workload_complete_wq);
890
891         if (gvt->scheduler.need_reschedule)
892                 intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
893
894         mutex_unlock(&gvt->sched_lock);
895         mutex_unlock(&vgpu->vgpu_lock);
896 }
897
898 struct workload_thread_param {
899         struct intel_gvt *gvt;
900         int ring_id;
901 };
902
903 static int workload_thread(void *priv)
904 {
905         struct workload_thread_param *p = (struct workload_thread_param *)priv;
906         struct intel_gvt *gvt = p->gvt;
907         int ring_id = p->ring_id;
908         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
909         struct intel_vgpu_workload *workload = NULL;
910         struct intel_vgpu *vgpu = NULL;
911         int ret;
912         bool need_force_wake = IS_SKYLAKE(gvt->dev_priv)
913                         || IS_KABYLAKE(gvt->dev_priv)
914                         || IS_BROXTON(gvt->dev_priv);
915         DEFINE_WAIT_FUNC(wait, woken_wake_function);
916
917         kfree(p);
918
919         gvt_dbg_core("workload thread for ring %d started\n", ring_id);
920
921         while (!kthread_should_stop()) {
922                 add_wait_queue(&scheduler->waitq[ring_id], &wait);
923                 do {
924                         workload = pick_next_workload(gvt, ring_id);
925                         if (workload)
926                                 break;
927                         wait_woken(&wait, TASK_INTERRUPTIBLE,
928                                    MAX_SCHEDULE_TIMEOUT);
929                 } while (!kthread_should_stop());
930                 remove_wait_queue(&scheduler->waitq[ring_id], &wait);
931
932                 if (!workload)
933                         break;
934
935                 gvt_dbg_sched("ring id %d next workload %p vgpu %d\n",
936                                 workload->ring_id, workload,
937                                 workload->vgpu->id);
938
939                 intel_runtime_pm_get(gvt->dev_priv);
940
941                 gvt_dbg_sched("ring id %d will dispatch workload %p\n",
942                                 workload->ring_id, workload);
943
944                 if (need_force_wake)
945                         intel_uncore_forcewake_get(gvt->dev_priv,
946                                         FORCEWAKE_ALL);
947
948                 ret = dispatch_workload(workload);
949
950                 if (ret) {
951                         vgpu = workload->vgpu;
952                         gvt_vgpu_err("fail to dispatch workload, skip\n");
953                         goto complete;
954                 }
955
956                 gvt_dbg_sched("ring id %d wait workload %p\n",
957                                 workload->ring_id, workload);
958                 i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
959
960 complete:
961                 gvt_dbg_sched("will complete workload %p, status: %d\n",
962                                 workload, workload->status);
963
964                 complete_current_workload(gvt, ring_id);
965
966                 if (need_force_wake)
967                         intel_uncore_forcewake_put(gvt->dev_priv,
968                                         FORCEWAKE_ALL);
969
970                 intel_runtime_pm_put(gvt->dev_priv);
971                 if (ret && (vgpu_is_vm_unhealthy(ret)))
972                         enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
973         }
974         return 0;
975 }
976
977 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
978 {
979         struct intel_vgpu_submission *s = &vgpu->submission;
980         struct intel_gvt *gvt = vgpu->gvt;
981         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
982
983         if (atomic_read(&s->running_workload_num)) {
984                 gvt_dbg_sched("wait vgpu idle\n");
985
986                 wait_event(scheduler->workload_complete_wq,
987                                 !atomic_read(&s->running_workload_num));
988         }
989 }
990
991 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
992 {
993         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
994         struct intel_engine_cs *engine;
995         enum intel_engine_id i;
996
997         gvt_dbg_core("clean workload scheduler\n");
998
999         for_each_engine(engine, gvt->dev_priv, i) {
1000                 atomic_notifier_chain_unregister(
1001                                         &engine->context_status_notifier,
1002                                         &gvt->shadow_ctx_notifier_block[i]);
1003                 kthread_stop(scheduler->thread[i]);
1004         }
1005 }
1006
1007 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
1008 {
1009         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1010         struct workload_thread_param *param = NULL;
1011         struct intel_engine_cs *engine;
1012         enum intel_engine_id i;
1013         int ret;
1014
1015         gvt_dbg_core("init workload scheduler\n");
1016
1017         init_waitqueue_head(&scheduler->workload_complete_wq);
1018
1019         for_each_engine(engine, gvt->dev_priv, i) {
1020                 init_waitqueue_head(&scheduler->waitq[i]);
1021
1022                 param = kzalloc(sizeof(*param), GFP_KERNEL);
1023                 if (!param) {
1024                         ret = -ENOMEM;
1025                         goto err;
1026                 }
1027
1028                 param->gvt = gvt;
1029                 param->ring_id = i;
1030
1031                 scheduler->thread[i] = kthread_run(workload_thread, param,
1032                         "gvt workload %d", i);
1033                 if (IS_ERR(scheduler->thread[i])) {
1034                         gvt_err("fail to create workload thread\n");
1035                         ret = PTR_ERR(scheduler->thread[i]);
1036                         goto err;
1037                 }
1038
1039                 gvt->shadow_ctx_notifier_block[i].notifier_call =
1040                                         shadow_context_status_change;
1041                 atomic_notifier_chain_register(&engine->context_status_notifier,
1042                                         &gvt->shadow_ctx_notifier_block[i]);
1043         }
1044         return 0;
1045 err:
1046         intel_gvt_clean_workload_scheduler(gvt);
1047         kfree(param);
1048         param = NULL;
1049         return ret;
1050 }
1051
1052 /**
1053  * intel_vgpu_clean_submission - free submission-related resource for vGPU
1054  * @vgpu: a vGPU
1055  *
1056  * This function is called when a vGPU is being destroyed.
1057  *
1058  */
1059 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
1060 {
1061         struct intel_vgpu_submission *s = &vgpu->submission;
1062
1063         intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1064         i915_gem_context_put(s->shadow_ctx);
1065         kmem_cache_destroy(s->workloads);
1066 }
1067
1068
1069 /**
1070  * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1071  * @vgpu: a vGPU
1072  * @engine_mask: engines expected to be reset
1073  *
1074  * This function is called when a vGPU is being destroyed.
1075  *
1076  */
1077 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1078                 unsigned long engine_mask)
1079 {
1080         struct intel_vgpu_submission *s = &vgpu->submission;
1081
1082         if (!s->active)
1083                 return;
1084
1085         intel_vgpu_clean_workloads(vgpu, engine_mask);
1086         s->ops->reset(vgpu, engine_mask);
1087 }
1088
1089 /**
1090  * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1091  * @vgpu: a vGPU
1092  *
1093  * This function is called when a vGPU is being created.
1094  *
1095  * Returns:
1096  * Zero on success, negative error code if failed.
1097  *
1098  */
1099 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1100 {
1101         struct intel_vgpu_submission *s = &vgpu->submission;
1102         enum intel_engine_id i;
1103         struct intel_engine_cs *engine;
1104         int ret;
1105
1106         s->shadow_ctx = i915_gem_context_create_gvt(
1107                         &vgpu->gvt->dev_priv->drm);
1108         if (IS_ERR(s->shadow_ctx))
1109                 return PTR_ERR(s->shadow_ctx);
1110
1111         bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1112
1113         s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1114                                                   sizeof(struct intel_vgpu_workload), 0,
1115                                                   SLAB_HWCACHE_ALIGN,
1116                                                   offsetof(struct intel_vgpu_workload, rb_tail),
1117                                                   sizeof_field(struct intel_vgpu_workload, rb_tail),
1118                                                   NULL);
1119
1120         if (!s->workloads) {
1121                 ret = -ENOMEM;
1122                 goto out_shadow_ctx;
1123         }
1124
1125         for_each_engine(engine, vgpu->gvt->dev_priv, i)
1126                 INIT_LIST_HEAD(&s->workload_q_head[i]);
1127
1128         atomic_set(&s->running_workload_num, 0);
1129         bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1130
1131         return 0;
1132
1133 out_shadow_ctx:
1134         i915_gem_context_put(s->shadow_ctx);
1135         return ret;
1136 }
1137
1138 /**
1139  * intel_vgpu_select_submission_ops - select virtual submission interface
1140  * @vgpu: a vGPU
1141  * @interface: expected vGPU virtual submission interface
1142  *
1143  * This function is called when guest configures submission interface.
1144  *
1145  * Returns:
1146  * Zero on success, negative error code if failed.
1147  *
1148  */
1149 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1150                                      unsigned long engine_mask,
1151                                      unsigned int interface)
1152 {
1153         struct intel_vgpu_submission *s = &vgpu->submission;
1154         const struct intel_vgpu_submission_ops *ops[] = {
1155                 [INTEL_VGPU_EXECLIST_SUBMISSION] =
1156                         &intel_vgpu_execlist_submission_ops,
1157         };
1158         int ret;
1159
1160         if (WARN_ON(interface >= ARRAY_SIZE(ops)))
1161                 return -EINVAL;
1162
1163         if (WARN_ON(interface == 0 && engine_mask != ALL_ENGINES))
1164                 return -EINVAL;
1165
1166         if (s->active)
1167                 s->ops->clean(vgpu, engine_mask);
1168
1169         if (interface == 0) {
1170                 s->ops = NULL;
1171                 s->virtual_submission_interface = 0;
1172                 s->active = false;
1173                 gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1174                 return 0;
1175         }
1176
1177         ret = ops[interface]->init(vgpu, engine_mask);
1178         if (ret)
1179                 return ret;
1180
1181         s->ops = ops[interface];
1182         s->virtual_submission_interface = interface;
1183         s->active = true;
1184
1185         gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1186                         vgpu->id, s->ops->name);
1187
1188         return 0;
1189 }
1190
1191 /**
1192  * intel_vgpu_destroy_workload - destroy a vGPU workload
1193  * @vgpu: a vGPU
1194  *
1195  * This function is called when destroy a vGPU workload.
1196  *
1197  */
1198 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1199 {
1200         struct intel_vgpu_submission *s = &workload->vgpu->submission;
1201
1202         if (workload->shadow_mm)
1203                 intel_vgpu_mm_put(workload->shadow_mm);
1204
1205         kmem_cache_free(s->workloads, workload);
1206 }
1207
1208 static struct intel_vgpu_workload *
1209 alloc_workload(struct intel_vgpu *vgpu)
1210 {
1211         struct intel_vgpu_submission *s = &vgpu->submission;
1212         struct intel_vgpu_workload *workload;
1213
1214         workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1215         if (!workload)
1216                 return ERR_PTR(-ENOMEM);
1217
1218         INIT_LIST_HEAD(&workload->list);
1219         INIT_LIST_HEAD(&workload->shadow_bb);
1220
1221         init_waitqueue_head(&workload->shadow_ctx_status_wq);
1222         atomic_set(&workload->shadow_ctx_active, 0);
1223
1224         workload->status = -EINPROGRESS;
1225         workload->vgpu = vgpu;
1226
1227         return workload;
1228 }
1229
1230 #define RING_CTX_OFF(x) \
1231         offsetof(struct execlist_ring_context, x)
1232
1233 static void read_guest_pdps(struct intel_vgpu *vgpu,
1234                 u64 ring_context_gpa, u32 pdp[8])
1235 {
1236         u64 gpa;
1237         int i;
1238
1239         gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
1240
1241         for (i = 0; i < 8; i++)
1242                 intel_gvt_hypervisor_read_gpa(vgpu,
1243                                 gpa + i * 8, &pdp[7 - i], 4);
1244 }
1245
1246 static int prepare_mm(struct intel_vgpu_workload *workload)
1247 {
1248         struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1249         struct intel_vgpu_mm *mm;
1250         struct intel_vgpu *vgpu = workload->vgpu;
1251         intel_gvt_gtt_type_t root_entry_type;
1252         u64 pdps[GVT_RING_CTX_NR_PDPS];
1253
1254         switch (desc->addressing_mode) {
1255         case 1: /* legacy 32-bit */
1256                 root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1257                 break;
1258         case 3: /* legacy 64-bit */
1259                 root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1260                 break;
1261         default:
1262                 gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1263                 return -EINVAL;
1264         }
1265
1266         read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
1267
1268         mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
1269         if (IS_ERR(mm))
1270                 return PTR_ERR(mm);
1271
1272         workload->shadow_mm = mm;
1273         return 0;
1274 }
1275
1276 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1277                 ((a)->lrca == (b)->lrca))
1278
1279 /**
1280  * intel_vgpu_create_workload - create a vGPU workload
1281  * @vgpu: a vGPU
1282  * @desc: a guest context descriptor
1283  *
1284  * This function is called when creating a vGPU workload.
1285  *
1286  * Returns:
1287  * struct intel_vgpu_workload * on success, negative error code in
1288  * pointer if failed.
1289  *
1290  */
1291 struct intel_vgpu_workload *
1292 intel_vgpu_create_workload(struct intel_vgpu *vgpu, int ring_id,
1293                            struct execlist_ctx_descriptor_format *desc)
1294 {
1295         struct intel_vgpu_submission *s = &vgpu->submission;
1296         struct list_head *q = workload_q_head(vgpu, ring_id);
1297         struct intel_vgpu_workload *last_workload = NULL;
1298         struct intel_vgpu_workload *workload = NULL;
1299         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
1300         u64 ring_context_gpa;
1301         u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1302         int ret;
1303
1304         ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1305                         (u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1306         if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1307                 gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1308                 return ERR_PTR(-EINVAL);
1309         }
1310
1311         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1312                         RING_CTX_OFF(ring_header.val), &head, 4);
1313
1314         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1315                         RING_CTX_OFF(ring_tail.val), &tail, 4);
1316
1317         head &= RB_HEAD_OFF_MASK;
1318         tail &= RB_TAIL_OFF_MASK;
1319
1320         list_for_each_entry_reverse(last_workload, q, list) {
1321
1322                 if (same_context(&last_workload->ctx_desc, desc)) {
1323                         gvt_dbg_el("ring id %d cur workload == last\n",
1324                                         ring_id);
1325                         gvt_dbg_el("ctx head %x real head %lx\n", head,
1326                                         last_workload->rb_tail);
1327                         /*
1328                          * cannot use guest context head pointer here,
1329                          * as it might not be updated at this time
1330                          */
1331                         head = last_workload->rb_tail;
1332                         break;
1333                 }
1334         }
1335
1336         gvt_dbg_el("ring id %d begin a new workload\n", ring_id);
1337
1338         /* record some ring buffer register values for scan and shadow */
1339         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1340                         RING_CTX_OFF(rb_start.val), &start, 4);
1341         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1342                         RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1343         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1344                         RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1345
1346         workload = alloc_workload(vgpu);
1347         if (IS_ERR(workload))
1348                 return workload;
1349
1350         workload->ring_id = ring_id;
1351         workload->ctx_desc = *desc;
1352         workload->ring_context_gpa = ring_context_gpa;
1353         workload->rb_head = head;
1354         workload->rb_tail = tail;
1355         workload->rb_start = start;
1356         workload->rb_ctl = ctl;
1357
1358         if (ring_id == RCS) {
1359                 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1360                         RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1361                 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1362                         RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1363
1364                 workload->wa_ctx.indirect_ctx.guest_gma =
1365                         indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1366                 workload->wa_ctx.indirect_ctx.size =
1367                         (indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1368                         CACHELINE_BYTES;
1369                 workload->wa_ctx.per_ctx.guest_gma =
1370                         per_ctx & PER_CTX_ADDR_MASK;
1371                 workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1372         }
1373
1374         gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n",
1375                         workload, ring_id, head, tail, start, ctl);
1376
1377         ret = prepare_mm(workload);
1378         if (ret) {
1379                 kmem_cache_free(s->workloads, workload);
1380                 return ERR_PTR(ret);
1381         }
1382
1383         /* Only scan and shadow the first workload in the queue
1384          * as there is only one pre-allocated buf-obj for shadow.
1385          */
1386         if (list_empty(workload_q_head(vgpu, ring_id))) {
1387                 intel_runtime_pm_get(dev_priv);
1388                 mutex_lock(&dev_priv->drm.struct_mutex);
1389                 ret = intel_gvt_scan_and_shadow_workload(workload);
1390                 mutex_unlock(&dev_priv->drm.struct_mutex);
1391                 intel_runtime_pm_put(dev_priv);
1392         }
1393
1394         if (ret) {
1395                 if (vgpu_is_vm_unhealthy(ret))
1396                         enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1397                 intel_vgpu_destroy_workload(workload);
1398                 return ERR_PTR(ret);
1399         }
1400
1401         return workload;
1402 }
1403
1404 /**
1405  * intel_vgpu_queue_workload - Qeue a vGPU workload
1406  * @workload: the workload to queue in
1407  */
1408 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1409 {
1410         list_add_tail(&workload->list,
1411                 workload_q_head(workload->vgpu, workload->ring_id));
1412         intel_gvt_kick_schedule(workload->vgpu->gvt);
1413         wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->ring_id]);
1414 }