GNU Linux-libre 5.10.215-gnu1
[releases.git] / drivers / gpu / drm / i915 / gvt / gtt.c
1 /*
2  * GTT virtualization
3  *
4  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Authors:
26  *    Zhi Wang <zhi.a.wang@intel.com>
27  *    Zhenyu Wang <zhenyuw@linux.intel.com>
28  *    Xiao Zheng <xiao.zheng@intel.com>
29  *
30  * Contributors:
31  *    Min He <min.he@intel.com>
32  *    Bing Niu <bing.niu@intel.com>
33  *
34  */
35
36 #include "i915_drv.h"
37 #include "gvt.h"
38 #include "i915_pvinfo.h"
39 #include "trace.h"
40
41 #if defined(VERBOSE_DEBUG)
42 #define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args)
43 #else
44 #define gvt_vdbg_mm(fmt, args...)
45 #endif
46
47 static bool enable_out_of_sync = false;
48 static int preallocated_oos_pages = 8192;
49
50 /*
51  * validate a gm address and related range size,
52  * translate it to host gm address
53  */
54 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
55 {
56         if (size == 0)
57                 return vgpu_gmadr_is_valid(vgpu, addr);
58
59         if (vgpu_gmadr_is_aperture(vgpu, addr) &&
60             vgpu_gmadr_is_aperture(vgpu, addr + size - 1))
61                 return true;
62         else if (vgpu_gmadr_is_hidden(vgpu, addr) &&
63                  vgpu_gmadr_is_hidden(vgpu, addr + size - 1))
64                 return true;
65
66         gvt_dbg_mm("Invalid ggtt range at 0x%llx, size: 0x%x\n",
67                      addr, size);
68         return false;
69 }
70
71 /* translate a guest gmadr to host gmadr */
72 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
73 {
74         struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
75
76         if (drm_WARN(&i915->drm, !vgpu_gmadr_is_valid(vgpu, g_addr),
77                      "invalid guest gmadr %llx\n", g_addr))
78                 return -EACCES;
79
80         if (vgpu_gmadr_is_aperture(vgpu, g_addr))
81                 *h_addr = vgpu_aperture_gmadr_base(vgpu)
82                           + (g_addr - vgpu_aperture_offset(vgpu));
83         else
84                 *h_addr = vgpu_hidden_gmadr_base(vgpu)
85                           + (g_addr - vgpu_hidden_offset(vgpu));
86         return 0;
87 }
88
89 /* translate a host gmadr to guest gmadr */
90 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
91 {
92         struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
93
94         if (drm_WARN(&i915->drm, !gvt_gmadr_is_valid(vgpu->gvt, h_addr),
95                      "invalid host gmadr %llx\n", h_addr))
96                 return -EACCES;
97
98         if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
99                 *g_addr = vgpu_aperture_gmadr_base(vgpu)
100                         + (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
101         else
102                 *g_addr = vgpu_hidden_gmadr_base(vgpu)
103                         + (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
104         return 0;
105 }
106
107 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
108                              unsigned long *h_index)
109 {
110         u64 h_addr;
111         int ret;
112
113         ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT,
114                                        &h_addr);
115         if (ret)
116                 return ret;
117
118         *h_index = h_addr >> I915_GTT_PAGE_SHIFT;
119         return 0;
120 }
121
122 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
123                              unsigned long *g_index)
124 {
125         u64 g_addr;
126         int ret;
127
128         ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT,
129                                        &g_addr);
130         if (ret)
131                 return ret;
132
133         *g_index = g_addr >> I915_GTT_PAGE_SHIFT;
134         return 0;
135 }
136
137 #define gtt_type_is_entry(type) \
138         (type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
139          && type != GTT_TYPE_PPGTT_PTE_ENTRY \
140          && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
141
142 #define gtt_type_is_pt(type) \
143         (type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
144
145 #define gtt_type_is_pte_pt(type) \
146         (type == GTT_TYPE_PPGTT_PTE_PT)
147
148 #define gtt_type_is_root_pointer(type) \
149         (gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
150
151 #define gtt_init_entry(e, t, p, v) do { \
152         (e)->type = t; \
153         (e)->pdev = p; \
154         memcpy(&(e)->val64, &v, sizeof(v)); \
155 } while (0)
156
157 /*
158  * Mappings between GTT_TYPE* enumerations.
159  * Following information can be found according to the given type:
160  * - type of next level page table
161  * - type of entry inside this level page table
162  * - type of entry with PSE set
163  *
164  * If the given type doesn't have such a kind of information,
165  * e.g. give a l4 root entry type, then request to get its PSE type,
166  * give a PTE page table type, then request to get its next level page
167  * table type, as we know l4 root entry doesn't have a PSE bit,
168  * and a PTE page table doesn't have a next level page table type,
169  * GTT_TYPE_INVALID will be returned. This is useful when traversing a
170  * page table.
171  */
172
173 struct gtt_type_table_entry {
174         int entry_type;
175         int pt_type;
176         int next_pt_type;
177         int pse_entry_type;
178 };
179
180 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \
181         [type] = { \
182                 .entry_type = e_type, \
183                 .pt_type = cpt_type, \
184                 .next_pt_type = npt_type, \
185                 .pse_entry_type = pse_type, \
186         }
187
188 static struct gtt_type_table_entry gtt_type_table[] = {
189         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
190                         GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
191                         GTT_TYPE_INVALID,
192                         GTT_TYPE_PPGTT_PML4_PT,
193                         GTT_TYPE_INVALID),
194         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
195                         GTT_TYPE_PPGTT_PML4_ENTRY,
196                         GTT_TYPE_PPGTT_PML4_PT,
197                         GTT_TYPE_PPGTT_PDP_PT,
198                         GTT_TYPE_INVALID),
199         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
200                         GTT_TYPE_PPGTT_PML4_ENTRY,
201                         GTT_TYPE_PPGTT_PML4_PT,
202                         GTT_TYPE_PPGTT_PDP_PT,
203                         GTT_TYPE_INVALID),
204         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
205                         GTT_TYPE_PPGTT_PDP_ENTRY,
206                         GTT_TYPE_PPGTT_PDP_PT,
207                         GTT_TYPE_PPGTT_PDE_PT,
208                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
209         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
210                         GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
211                         GTT_TYPE_INVALID,
212                         GTT_TYPE_PPGTT_PDE_PT,
213                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
214         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
215                         GTT_TYPE_PPGTT_PDP_ENTRY,
216                         GTT_TYPE_PPGTT_PDP_PT,
217                         GTT_TYPE_PPGTT_PDE_PT,
218                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
219         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
220                         GTT_TYPE_PPGTT_PDE_ENTRY,
221                         GTT_TYPE_PPGTT_PDE_PT,
222                         GTT_TYPE_PPGTT_PTE_PT,
223                         GTT_TYPE_PPGTT_PTE_2M_ENTRY),
224         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
225                         GTT_TYPE_PPGTT_PDE_ENTRY,
226                         GTT_TYPE_PPGTT_PDE_PT,
227                         GTT_TYPE_PPGTT_PTE_PT,
228                         GTT_TYPE_PPGTT_PTE_2M_ENTRY),
229         /* We take IPS bit as 'PSE' for PTE level. */
230         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
231                         GTT_TYPE_PPGTT_PTE_4K_ENTRY,
232                         GTT_TYPE_PPGTT_PTE_PT,
233                         GTT_TYPE_INVALID,
234                         GTT_TYPE_PPGTT_PTE_64K_ENTRY),
235         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
236                         GTT_TYPE_PPGTT_PTE_4K_ENTRY,
237                         GTT_TYPE_PPGTT_PTE_PT,
238                         GTT_TYPE_INVALID,
239                         GTT_TYPE_PPGTT_PTE_64K_ENTRY),
240         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY,
241                         GTT_TYPE_PPGTT_PTE_4K_ENTRY,
242                         GTT_TYPE_PPGTT_PTE_PT,
243                         GTT_TYPE_INVALID,
244                         GTT_TYPE_PPGTT_PTE_64K_ENTRY),
245         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
246                         GTT_TYPE_PPGTT_PDE_ENTRY,
247                         GTT_TYPE_PPGTT_PDE_PT,
248                         GTT_TYPE_INVALID,
249                         GTT_TYPE_PPGTT_PTE_2M_ENTRY),
250         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
251                         GTT_TYPE_PPGTT_PDP_ENTRY,
252                         GTT_TYPE_PPGTT_PDP_PT,
253                         GTT_TYPE_INVALID,
254                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
255         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
256                         GTT_TYPE_GGTT_PTE,
257                         GTT_TYPE_INVALID,
258                         GTT_TYPE_INVALID,
259                         GTT_TYPE_INVALID),
260 };
261
262 static inline int get_next_pt_type(int type)
263 {
264         return gtt_type_table[type].next_pt_type;
265 }
266
267 static inline int get_pt_type(int type)
268 {
269         return gtt_type_table[type].pt_type;
270 }
271
272 static inline int get_entry_type(int type)
273 {
274         return gtt_type_table[type].entry_type;
275 }
276
277 static inline int get_pse_type(int type)
278 {
279         return gtt_type_table[type].pse_entry_type;
280 }
281
282 static u64 read_pte64(struct i915_ggtt *ggtt, unsigned long index)
283 {
284         void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index;
285
286         return readq(addr);
287 }
288
289 static void ggtt_invalidate(struct intel_gt *gt)
290 {
291         mmio_hw_access_pre(gt);
292         intel_uncore_write(gt->uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
293         mmio_hw_access_post(gt);
294 }
295
296 static void write_pte64(struct i915_ggtt *ggtt, unsigned long index, u64 pte)
297 {
298         void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index;
299
300         writeq(pte, addr);
301 }
302
303 static inline int gtt_get_entry64(void *pt,
304                 struct intel_gvt_gtt_entry *e,
305                 unsigned long index, bool hypervisor_access, unsigned long gpa,
306                 struct intel_vgpu *vgpu)
307 {
308         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
309         int ret;
310
311         if (WARN_ON(info->gtt_entry_size != 8))
312                 return -EINVAL;
313
314         if (hypervisor_access) {
315                 ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
316                                 (index << info->gtt_entry_size_shift),
317                                 &e->val64, 8);
318                 if (WARN_ON(ret))
319                         return ret;
320         } else if (!pt) {
321                 e->val64 = read_pte64(vgpu->gvt->gt->ggtt, index);
322         } else {
323                 e->val64 = *((u64 *)pt + index);
324         }
325         return 0;
326 }
327
328 static inline int gtt_set_entry64(void *pt,
329                 struct intel_gvt_gtt_entry *e,
330                 unsigned long index, bool hypervisor_access, unsigned long gpa,
331                 struct intel_vgpu *vgpu)
332 {
333         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
334         int ret;
335
336         if (WARN_ON(info->gtt_entry_size != 8))
337                 return -EINVAL;
338
339         if (hypervisor_access) {
340                 ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
341                                 (index << info->gtt_entry_size_shift),
342                                 &e->val64, 8);
343                 if (WARN_ON(ret))
344                         return ret;
345         } else if (!pt) {
346                 write_pte64(vgpu->gvt->gt->ggtt, index, e->val64);
347         } else {
348                 *((u64 *)pt + index) = e->val64;
349         }
350         return 0;
351 }
352
353 #define GTT_HAW 46
354
355 #define ADDR_1G_MASK    GENMASK_ULL(GTT_HAW - 1, 30)
356 #define ADDR_2M_MASK    GENMASK_ULL(GTT_HAW - 1, 21)
357 #define ADDR_64K_MASK   GENMASK_ULL(GTT_HAW - 1, 16)
358 #define ADDR_4K_MASK    GENMASK_ULL(GTT_HAW - 1, 12)
359
360 #define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52)
361 #define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */
362
363 #define GTT_64K_PTE_STRIDE 16
364
365 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
366 {
367         unsigned long pfn;
368
369         if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
370                 pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT;
371         else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
372                 pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT;
373         else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY)
374                 pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT;
375         else
376                 pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT;
377         return pfn;
378 }
379
380 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
381 {
382         if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
383                 e->val64 &= ~ADDR_1G_MASK;
384                 pfn &= (ADDR_1G_MASK >> PAGE_SHIFT);
385         } else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
386                 e->val64 &= ~ADDR_2M_MASK;
387                 pfn &= (ADDR_2M_MASK >> PAGE_SHIFT);
388         } else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) {
389                 e->val64 &= ~ADDR_64K_MASK;
390                 pfn &= (ADDR_64K_MASK >> PAGE_SHIFT);
391         } else {
392                 e->val64 &= ~ADDR_4K_MASK;
393                 pfn &= (ADDR_4K_MASK >> PAGE_SHIFT);
394         }
395
396         e->val64 |= (pfn << PAGE_SHIFT);
397 }
398
399 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
400 {
401         return !!(e->val64 & _PAGE_PSE);
402 }
403
404 static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e)
405 {
406         if (gen8_gtt_test_pse(e)) {
407                 switch (e->type) {
408                 case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
409                         e->val64 &= ~_PAGE_PSE;
410                         e->type = GTT_TYPE_PPGTT_PDE_ENTRY;
411                         break;
412                 case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
413                         e->type = GTT_TYPE_PPGTT_PDP_ENTRY;
414                         e->val64 &= ~_PAGE_PSE;
415                         break;
416                 default:
417                         WARN_ON(1);
418                 }
419         }
420 }
421
422 static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e)
423 {
424         if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
425                 return false;
426
427         return !!(e->val64 & GEN8_PDE_IPS_64K);
428 }
429
430 static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e)
431 {
432         if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
433                 return;
434
435         e->val64 &= ~GEN8_PDE_IPS_64K;
436 }
437
438 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
439 {
440         /*
441          * i915 writes PDP root pointer registers without present bit,
442          * it also works, so we need to treat root pointer entry
443          * specifically.
444          */
445         if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
446                         || e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
447                 return (e->val64 != 0);
448         else
449                 return (e->val64 & _PAGE_PRESENT);
450 }
451
452 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
453 {
454         e->val64 &= ~_PAGE_PRESENT;
455 }
456
457 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e)
458 {
459         e->val64 |= _PAGE_PRESENT;
460 }
461
462 static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e)
463 {
464         return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED);
465 }
466
467 static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e)
468 {
469         e->val64 |= GTT_SPTE_FLAG_64K_SPLITED;
470 }
471
472 static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e)
473 {
474         e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED;
475 }
476
477 /*
478  * Per-platform GMA routines.
479  */
480 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
481 {
482         unsigned long x = (gma >> I915_GTT_PAGE_SHIFT);
483
484         trace_gma_index(__func__, gma, x);
485         return x;
486 }
487
488 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
489 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
490 { \
491         unsigned long x = (exp); \
492         trace_gma_index(__func__, gma, x); \
493         return x; \
494 }
495
496 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
497 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
498 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
499 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
500 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
501
502 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
503         .get_entry = gtt_get_entry64,
504         .set_entry = gtt_set_entry64,
505         .clear_present = gtt_entry_clear_present,
506         .set_present = gtt_entry_set_present,
507         .test_present = gen8_gtt_test_present,
508         .test_pse = gen8_gtt_test_pse,
509         .clear_pse = gen8_gtt_clear_pse,
510         .clear_ips = gen8_gtt_clear_ips,
511         .test_ips = gen8_gtt_test_ips,
512         .clear_64k_splited = gen8_gtt_clear_64k_splited,
513         .set_64k_splited = gen8_gtt_set_64k_splited,
514         .test_64k_splited = gen8_gtt_test_64k_splited,
515         .get_pfn = gen8_gtt_get_pfn,
516         .set_pfn = gen8_gtt_set_pfn,
517 };
518
519 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
520         .gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
521         .gma_to_pte_index = gen8_gma_to_pte_index,
522         .gma_to_pde_index = gen8_gma_to_pde_index,
523         .gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
524         .gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
525         .gma_to_pml4_index = gen8_gma_to_pml4_index,
526 };
527
528 /* Update entry type per pse and ips bit. */
529 static void update_entry_type_for_real(struct intel_gvt_gtt_pte_ops *pte_ops,
530         struct intel_gvt_gtt_entry *entry, bool ips)
531 {
532         switch (entry->type) {
533         case GTT_TYPE_PPGTT_PDE_ENTRY:
534         case GTT_TYPE_PPGTT_PDP_ENTRY:
535                 if (pte_ops->test_pse(entry))
536                         entry->type = get_pse_type(entry->type);
537                 break;
538         case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
539                 if (ips)
540                         entry->type = get_pse_type(entry->type);
541                 break;
542         default:
543                 GEM_BUG_ON(!gtt_type_is_entry(entry->type));
544         }
545
546         GEM_BUG_ON(entry->type == GTT_TYPE_INVALID);
547 }
548
549 /*
550  * MM helpers.
551  */
552 static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm,
553                 struct intel_gvt_gtt_entry *entry, unsigned long index,
554                 bool guest)
555 {
556         struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
557
558         GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT);
559
560         entry->type = mm->ppgtt_mm.root_entry_type;
561         pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps :
562                            mm->ppgtt_mm.shadow_pdps,
563                            entry, index, false, 0, mm->vgpu);
564         update_entry_type_for_real(pte_ops, entry, false);
565 }
566
567 static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm,
568                 struct intel_gvt_gtt_entry *entry, unsigned long index)
569 {
570         _ppgtt_get_root_entry(mm, entry, index, true);
571 }
572
573 static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm,
574                 struct intel_gvt_gtt_entry *entry, unsigned long index)
575 {
576         _ppgtt_get_root_entry(mm, entry, index, false);
577 }
578
579 static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm,
580                 struct intel_gvt_gtt_entry *entry, unsigned long index,
581                 bool guest)
582 {
583         struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
584
585         pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps :
586                            mm->ppgtt_mm.shadow_pdps,
587                            entry, index, false, 0, mm->vgpu);
588 }
589
590 static inline void ppgtt_set_guest_root_entry(struct intel_vgpu_mm *mm,
591                 struct intel_gvt_gtt_entry *entry, unsigned long index)
592 {
593         _ppgtt_set_root_entry(mm, entry, index, true);
594 }
595
596 static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm,
597                 struct intel_gvt_gtt_entry *entry, unsigned long index)
598 {
599         _ppgtt_set_root_entry(mm, entry, index, false);
600 }
601
602 static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm,
603                 struct intel_gvt_gtt_entry *entry, unsigned long index)
604 {
605         struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
606
607         GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
608
609         entry->type = GTT_TYPE_GGTT_PTE;
610         pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
611                            false, 0, mm->vgpu);
612 }
613
614 static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm,
615                 struct intel_gvt_gtt_entry *entry, unsigned long index)
616 {
617         struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
618
619         GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
620
621         pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
622                            false, 0, mm->vgpu);
623 }
624
625 static void ggtt_get_host_entry(struct intel_vgpu_mm *mm,
626                 struct intel_gvt_gtt_entry *entry, unsigned long index)
627 {
628         struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
629
630         GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
631
632         pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu);
633 }
634
635 static void ggtt_set_host_entry(struct intel_vgpu_mm *mm,
636                 struct intel_gvt_gtt_entry *entry, unsigned long index)
637 {
638         struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
639         unsigned long offset = index;
640
641         GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
642
643         if (vgpu_gmadr_is_aperture(mm->vgpu, index << I915_GTT_PAGE_SHIFT)) {
644                 offset -= (vgpu_aperture_gmadr_base(mm->vgpu) >> PAGE_SHIFT);
645                 mm->ggtt_mm.host_ggtt_aperture[offset] = entry->val64;
646         } else if (vgpu_gmadr_is_hidden(mm->vgpu, index << I915_GTT_PAGE_SHIFT)) {
647                 offset -= (vgpu_hidden_gmadr_base(mm->vgpu) >> PAGE_SHIFT);
648                 mm->ggtt_mm.host_ggtt_hidden[offset] = entry->val64;
649         }
650
651         pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu);
652 }
653
654 /*
655  * PPGTT shadow page table helpers.
656  */
657 static inline int ppgtt_spt_get_entry(
658                 struct intel_vgpu_ppgtt_spt *spt,
659                 void *page_table, int type,
660                 struct intel_gvt_gtt_entry *e, unsigned long index,
661                 bool guest)
662 {
663         struct intel_gvt *gvt = spt->vgpu->gvt;
664         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
665         int ret;
666
667         e->type = get_entry_type(type);
668
669         if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
670                 return -EINVAL;
671
672         ret = ops->get_entry(page_table, e, index, guest,
673                         spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
674                         spt->vgpu);
675         if (ret)
676                 return ret;
677
678         update_entry_type_for_real(ops, e, guest ?
679                                    spt->guest_page.pde_ips : false);
680
681         gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
682                     type, e->type, index, e->val64);
683         return 0;
684 }
685
686 static inline int ppgtt_spt_set_entry(
687                 struct intel_vgpu_ppgtt_spt *spt,
688                 void *page_table, int type,
689                 struct intel_gvt_gtt_entry *e, unsigned long index,
690                 bool guest)
691 {
692         struct intel_gvt *gvt = spt->vgpu->gvt;
693         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
694
695         if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
696                 return -EINVAL;
697
698         gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
699                     type, e->type, index, e->val64);
700
701         return ops->set_entry(page_table, e, index, guest,
702                         spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
703                         spt->vgpu);
704 }
705
706 #define ppgtt_get_guest_entry(spt, e, index) \
707         ppgtt_spt_get_entry(spt, NULL, \
708                 spt->guest_page.type, e, index, true)
709
710 #define ppgtt_set_guest_entry(spt, e, index) \
711         ppgtt_spt_set_entry(spt, NULL, \
712                 spt->guest_page.type, e, index, true)
713
714 #define ppgtt_get_shadow_entry(spt, e, index) \
715         ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
716                 spt->shadow_page.type, e, index, false)
717
718 #define ppgtt_set_shadow_entry(spt, e, index) \
719         ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
720                 spt->shadow_page.type, e, index, false)
721
722 static void *alloc_spt(gfp_t gfp_mask)
723 {
724         struct intel_vgpu_ppgtt_spt *spt;
725
726         spt = kzalloc(sizeof(*spt), gfp_mask);
727         if (!spt)
728                 return NULL;
729
730         spt->shadow_page.page = alloc_page(gfp_mask);
731         if (!spt->shadow_page.page) {
732                 kfree(spt);
733                 return NULL;
734         }
735         return spt;
736 }
737
738 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
739 {
740         __free_page(spt->shadow_page.page);
741         kfree(spt);
742 }
743
744 static int detach_oos_page(struct intel_vgpu *vgpu,
745                 struct intel_vgpu_oos_page *oos_page);
746
747 static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt)
748 {
749         struct device *kdev = &spt->vgpu->gvt->gt->i915->drm.pdev->dev;
750
751         trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type);
752
753         dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096,
754                        PCI_DMA_BIDIRECTIONAL);
755
756         radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn);
757
758         if (spt->guest_page.gfn) {
759                 if (spt->guest_page.oos_page)
760                         detach_oos_page(spt->vgpu, spt->guest_page.oos_page);
761
762                 intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn);
763         }
764
765         list_del_init(&spt->post_shadow_list);
766         free_spt(spt);
767 }
768
769 static void ppgtt_free_all_spt(struct intel_vgpu *vgpu)
770 {
771         struct intel_vgpu_ppgtt_spt *spt, *spn;
772         struct radix_tree_iter iter;
773         LIST_HEAD(all_spt);
774         void __rcu **slot;
775
776         rcu_read_lock();
777         radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) {
778                 spt = radix_tree_deref_slot(slot);
779                 list_move(&spt->post_shadow_list, &all_spt);
780         }
781         rcu_read_unlock();
782
783         list_for_each_entry_safe(spt, spn, &all_spt, post_shadow_list)
784                 ppgtt_free_spt(spt);
785 }
786
787 static int ppgtt_handle_guest_write_page_table_bytes(
788                 struct intel_vgpu_ppgtt_spt *spt,
789                 u64 pa, void *p_data, int bytes);
790
791 static int ppgtt_write_protection_handler(
792                 struct intel_vgpu_page_track *page_track,
793                 u64 gpa, void *data, int bytes)
794 {
795         struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data;
796
797         int ret;
798
799         if (bytes != 4 && bytes != 8)
800                 return -EINVAL;
801
802         ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes);
803         if (ret)
804                 return ret;
805         return ret;
806 }
807
808 /* Find a spt by guest gfn. */
809 static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn(
810                 struct intel_vgpu *vgpu, unsigned long gfn)
811 {
812         struct intel_vgpu_page_track *track;
813
814         track = intel_vgpu_find_page_track(vgpu, gfn);
815         if (track && track->handler == ppgtt_write_protection_handler)
816                 return track->priv_data;
817
818         return NULL;
819 }
820
821 /* Find the spt by shadow page mfn. */
822 static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn(
823                 struct intel_vgpu *vgpu, unsigned long mfn)
824 {
825         return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn);
826 }
827
828 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt);
829
830 /* Allocate shadow page table without guest page. */
831 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt(
832                 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type)
833 {
834         struct device *kdev = &vgpu->gvt->gt->i915->drm.pdev->dev;
835         struct intel_vgpu_ppgtt_spt *spt = NULL;
836         dma_addr_t daddr;
837         int ret;
838
839 retry:
840         spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
841         if (!spt) {
842                 if (reclaim_one_ppgtt_mm(vgpu->gvt))
843                         goto retry;
844
845                 gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
846                 return ERR_PTR(-ENOMEM);
847         }
848
849         spt->vgpu = vgpu;
850         atomic_set(&spt->refcount, 1);
851         INIT_LIST_HEAD(&spt->post_shadow_list);
852
853         /*
854          * Init shadow_page.
855          */
856         spt->shadow_page.type = type;
857         daddr = dma_map_page(kdev, spt->shadow_page.page,
858                              0, 4096, PCI_DMA_BIDIRECTIONAL);
859         if (dma_mapping_error(kdev, daddr)) {
860                 gvt_vgpu_err("fail to map dma addr\n");
861                 ret = -EINVAL;
862                 goto err_free_spt;
863         }
864         spt->shadow_page.vaddr = page_address(spt->shadow_page.page);
865         spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT;
866
867         ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt);
868         if (ret)
869                 goto err_unmap_dma;
870
871         return spt;
872
873 err_unmap_dma:
874         dma_unmap_page(kdev, daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
875 err_free_spt:
876         free_spt(spt);
877         return ERR_PTR(ret);
878 }
879
880 /* Allocate shadow page table associated with specific gfn. */
881 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn(
882                 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type,
883                 unsigned long gfn, bool guest_pde_ips)
884 {
885         struct intel_vgpu_ppgtt_spt *spt;
886         int ret;
887
888         spt = ppgtt_alloc_spt(vgpu, type);
889         if (IS_ERR(spt))
890                 return spt;
891
892         /*
893          * Init guest_page.
894          */
895         ret = intel_vgpu_register_page_track(vgpu, gfn,
896                         ppgtt_write_protection_handler, spt);
897         if (ret) {
898                 ppgtt_free_spt(spt);
899                 return ERR_PTR(ret);
900         }
901
902         spt->guest_page.type = type;
903         spt->guest_page.gfn = gfn;
904         spt->guest_page.pde_ips = guest_pde_ips;
905
906         trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
907
908         return spt;
909 }
910
911 #define pt_entry_size_shift(spt) \
912         ((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
913
914 #define pt_entries(spt) \
915         (I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
916
917 #define for_each_present_guest_entry(spt, e, i) \
918         for (i = 0; i < pt_entries(spt); \
919              i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
920                 if (!ppgtt_get_guest_entry(spt, e, i) && \
921                     spt->vgpu->gvt->gtt.pte_ops->test_present(e))
922
923 #define for_each_present_shadow_entry(spt, e, i) \
924         for (i = 0; i < pt_entries(spt); \
925              i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
926                 if (!ppgtt_get_shadow_entry(spt, e, i) && \
927                     spt->vgpu->gvt->gtt.pte_ops->test_present(e))
928
929 #define for_each_shadow_entry(spt, e, i) \
930         for (i = 0; i < pt_entries(spt); \
931              i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \
932                 if (!ppgtt_get_shadow_entry(spt, e, i))
933
934 static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt)
935 {
936         int v = atomic_read(&spt->refcount);
937
938         trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
939         atomic_inc(&spt->refcount);
940 }
941
942 static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt)
943 {
944         int v = atomic_read(&spt->refcount);
945
946         trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
947         return atomic_dec_return(&spt->refcount);
948 }
949
950 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt);
951
952 static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu,
953                 struct intel_gvt_gtt_entry *e)
954 {
955         struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
956         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
957         struct intel_vgpu_ppgtt_spt *s;
958         enum intel_gvt_gtt_type cur_pt_type;
959
960         GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type)));
961
962         if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
963                 && e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
964                 cur_pt_type = get_next_pt_type(e->type);
965
966                 if (!gtt_type_is_pt(cur_pt_type) ||
967                                 !gtt_type_is_pt(cur_pt_type + 1)) {
968                         drm_WARN(&i915->drm, 1,
969                                  "Invalid page table type, cur_pt_type is: %d\n",
970                                  cur_pt_type);
971                         return -EINVAL;
972                 }
973
974                 cur_pt_type += 1;
975
976                 if (ops->get_pfn(e) ==
977                         vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
978                         return 0;
979         }
980         s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
981         if (!s) {
982                 gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
983                                 ops->get_pfn(e));
984                 return -ENXIO;
985         }
986         return ppgtt_invalidate_spt(s);
987 }
988
989 static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt,
990                 struct intel_gvt_gtt_entry *entry)
991 {
992         struct intel_vgpu *vgpu = spt->vgpu;
993         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
994         unsigned long pfn;
995         int type;
996
997         pfn = ops->get_pfn(entry);
998         type = spt->shadow_page.type;
999
1000         /* Uninitialized spte or unshadowed spte. */
1001         if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn)
1002                 return;
1003
1004         intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
1005 }
1006
1007 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt)
1008 {
1009         struct intel_vgpu *vgpu = spt->vgpu;
1010         struct intel_gvt_gtt_entry e;
1011         unsigned long index;
1012         int ret;
1013
1014         trace_spt_change(spt->vgpu->id, "die", spt,
1015                         spt->guest_page.gfn, spt->shadow_page.type);
1016
1017         if (ppgtt_put_spt(spt) > 0)
1018                 return 0;
1019
1020         for_each_present_shadow_entry(spt, &e, index) {
1021                 switch (e.type) {
1022                 case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1023                         gvt_vdbg_mm("invalidate 4K entry\n");
1024                         ppgtt_invalidate_pte(spt, &e);
1025                         break;
1026                 case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1027                         /* We don't setup 64K shadow entry so far. */
1028                         WARN(1, "suspicious 64K gtt entry\n");
1029                         continue;
1030                 case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1031                         gvt_vdbg_mm("invalidate 2M entry\n");
1032                         continue;
1033                 case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1034                         WARN(1, "GVT doesn't support 1GB page\n");
1035                         continue;
1036                 case GTT_TYPE_PPGTT_PML4_ENTRY:
1037                 case GTT_TYPE_PPGTT_PDP_ENTRY:
1038                 case GTT_TYPE_PPGTT_PDE_ENTRY:
1039                         gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n");
1040                         ret = ppgtt_invalidate_spt_by_shadow_entry(
1041                                         spt->vgpu, &e);
1042                         if (ret)
1043                                 goto fail;
1044                         break;
1045                 default:
1046                         GEM_BUG_ON(1);
1047                 }
1048         }
1049
1050         trace_spt_change(spt->vgpu->id, "release", spt,
1051                          spt->guest_page.gfn, spt->shadow_page.type);
1052         ppgtt_free_spt(spt);
1053         return 0;
1054 fail:
1055         gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
1056                         spt, e.val64, e.type);
1057         return ret;
1058 }
1059
1060 static bool vgpu_ips_enabled(struct intel_vgpu *vgpu)
1061 {
1062         struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1063
1064         if (INTEL_GEN(dev_priv) == 9 || INTEL_GEN(dev_priv) == 10) {
1065                 u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) &
1066                         GAMW_ECO_ENABLE_64K_IPS_FIELD;
1067
1068                 return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD;
1069         } else if (INTEL_GEN(dev_priv) >= 11) {
1070                 /* 64K paging only controlled by IPS bit in PTE now. */
1071                 return true;
1072         } else
1073                 return false;
1074 }
1075
1076 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt);
1077
1078 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry(
1079                 struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
1080 {
1081         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1082         struct intel_vgpu_ppgtt_spt *spt = NULL;
1083         bool ips = false;
1084         int ret;
1085
1086         GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type)));
1087
1088         if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1089                 ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we);
1090
1091         spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we));
1092         if (spt) {
1093                 ppgtt_get_spt(spt);
1094
1095                 if (ips != spt->guest_page.pde_ips) {
1096                         spt->guest_page.pde_ips = ips;
1097
1098                         gvt_dbg_mm("reshadow PDE since ips changed\n");
1099                         clear_page(spt->shadow_page.vaddr);
1100                         ret = ppgtt_populate_spt(spt);
1101                         if (ret) {
1102                                 ppgtt_put_spt(spt);
1103                                 goto err;
1104                         }
1105                 }
1106         } else {
1107                 int type = get_next_pt_type(we->type);
1108
1109                 if (!gtt_type_is_pt(type)) {
1110                         ret = -EINVAL;
1111                         goto err;
1112                 }
1113
1114                 spt = ppgtt_alloc_spt_gfn(vgpu, type, ops->get_pfn(we), ips);
1115                 if (IS_ERR(spt)) {
1116                         ret = PTR_ERR(spt);
1117                         goto err;
1118                 }
1119
1120                 ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn);
1121                 if (ret)
1122                         goto err_free_spt;
1123
1124                 ret = ppgtt_populate_spt(spt);
1125                 if (ret)
1126                         goto err_free_spt;
1127
1128                 trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn,
1129                                  spt->shadow_page.type);
1130         }
1131         return spt;
1132
1133 err_free_spt:
1134         ppgtt_free_spt(spt);
1135         spt = NULL;
1136 err:
1137         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1138                      spt, we->val64, we->type);
1139         return ERR_PTR(ret);
1140 }
1141
1142 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
1143                 struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
1144 {
1145         struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
1146
1147         se->type = ge->type;
1148         se->val64 = ge->val64;
1149
1150         /* Because we always split 64KB pages, so clear IPS in shadow PDE. */
1151         if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1152                 ops->clear_ips(se);
1153
1154         ops->set_pfn(se, s->shadow_page.mfn);
1155 }
1156
1157 /**
1158  * Check if can do 2M page
1159  * @vgpu: target vgpu
1160  * @entry: target pfn's gtt entry
1161  *
1162  * Return 1 if 2MB huge gtt shadowing is possilbe, 0 if miscondition,
1163  * negtive if found err.
1164  */
1165 static int is_2MB_gtt_possible(struct intel_vgpu *vgpu,
1166         struct intel_gvt_gtt_entry *entry)
1167 {
1168         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1169         unsigned long pfn;
1170
1171         if (!HAS_PAGE_SIZES(vgpu->gvt->gt->i915, I915_GTT_PAGE_SIZE_2M))
1172                 return 0;
1173
1174         pfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, ops->get_pfn(entry));
1175         if (pfn == INTEL_GVT_INVALID_ADDR)
1176                 return -EINVAL;
1177
1178         return PageTransHuge(pfn_to_page(pfn));
1179 }
1180
1181 static int split_2MB_gtt_entry(struct intel_vgpu *vgpu,
1182         struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1183         struct intel_gvt_gtt_entry *se)
1184 {
1185         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1186         struct intel_vgpu_ppgtt_spt *sub_spt;
1187         struct intel_gvt_gtt_entry sub_se;
1188         unsigned long start_gfn;
1189         dma_addr_t dma_addr;
1190         unsigned long sub_index;
1191         int ret;
1192
1193         gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index);
1194
1195         start_gfn = ops->get_pfn(se);
1196
1197         sub_spt = ppgtt_alloc_spt(vgpu, GTT_TYPE_PPGTT_PTE_PT);
1198         if (IS_ERR(sub_spt))
1199                 return PTR_ERR(sub_spt);
1200
1201         for_each_shadow_entry(sub_spt, &sub_se, sub_index) {
1202                 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1203                                 start_gfn + sub_index, PAGE_SIZE, &dma_addr);
1204                 if (ret)
1205                         goto err;
1206                 sub_se.val64 = se->val64;
1207
1208                 /* Copy the PAT field from PDE. */
1209                 sub_se.val64 &= ~_PAGE_PAT;
1210                 sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5;
1211
1212                 ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT);
1213                 ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index);
1214         }
1215
1216         /* Clear dirty field. */
1217         se->val64 &= ~_PAGE_DIRTY;
1218
1219         ops->clear_pse(se);
1220         ops->clear_ips(se);
1221         ops->set_pfn(se, sub_spt->shadow_page.mfn);
1222         ppgtt_set_shadow_entry(spt, se, index);
1223         return 0;
1224 err:
1225         /* Cancel the existing addess mappings of DMA addr. */
1226         for_each_present_shadow_entry(sub_spt, &sub_se, sub_index) {
1227                 gvt_vdbg_mm("invalidate 4K entry\n");
1228                 ppgtt_invalidate_pte(sub_spt, &sub_se);
1229         }
1230         /* Release the new allocated spt. */
1231         trace_spt_change(sub_spt->vgpu->id, "release", sub_spt,
1232                 sub_spt->guest_page.gfn, sub_spt->shadow_page.type);
1233         ppgtt_free_spt(sub_spt);
1234         return ret;
1235 }
1236
1237 static int split_64KB_gtt_entry(struct intel_vgpu *vgpu,
1238         struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1239         struct intel_gvt_gtt_entry *se)
1240 {
1241         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1242         struct intel_gvt_gtt_entry entry = *se;
1243         unsigned long start_gfn;
1244         dma_addr_t dma_addr;
1245         int i, ret;
1246
1247         gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index);
1248
1249         GEM_BUG_ON(index % GTT_64K_PTE_STRIDE);
1250
1251         start_gfn = ops->get_pfn(se);
1252
1253         entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY;
1254         ops->set_64k_splited(&entry);
1255
1256         for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1257                 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1258                                         start_gfn + i, PAGE_SIZE, &dma_addr);
1259                 if (ret)
1260                         return ret;
1261
1262                 ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT);
1263                 ppgtt_set_shadow_entry(spt, &entry, index + i);
1264         }
1265         return 0;
1266 }
1267
1268 static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu,
1269         struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1270         struct intel_gvt_gtt_entry *ge)
1271 {
1272         struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
1273         struct intel_gvt_gtt_entry se = *ge;
1274         unsigned long gfn, page_size = PAGE_SIZE;
1275         dma_addr_t dma_addr;
1276         int ret;
1277
1278         if (!pte_ops->test_present(ge))
1279                 return 0;
1280
1281         gfn = pte_ops->get_pfn(ge);
1282
1283         switch (ge->type) {
1284         case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1285                 gvt_vdbg_mm("shadow 4K gtt entry\n");
1286                 break;
1287         case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1288                 gvt_vdbg_mm("shadow 64K gtt entry\n");
1289                 /*
1290                  * The layout of 64K page is special, the page size is
1291                  * controlled by uper PDE. To be simple, we always split
1292                  * 64K page to smaller 4K pages in shadow PT.
1293                  */
1294                 return split_64KB_gtt_entry(vgpu, spt, index, &se);
1295         case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1296                 gvt_vdbg_mm("shadow 2M gtt entry\n");
1297                 ret = is_2MB_gtt_possible(vgpu, ge);
1298                 if (ret == 0)
1299                         return split_2MB_gtt_entry(vgpu, spt, index, &se);
1300                 else if (ret < 0)
1301                         return ret;
1302                 page_size = I915_GTT_PAGE_SIZE_2M;
1303                 break;
1304         case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1305                 gvt_vgpu_err("GVT doesn't support 1GB entry\n");
1306                 return -EINVAL;
1307         default:
1308                 GEM_BUG_ON(1);
1309         }
1310
1311         /* direct shadow */
1312         ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, page_size,
1313                                                       &dma_addr);
1314         if (ret)
1315                 return -ENXIO;
1316
1317         pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT);
1318         ppgtt_set_shadow_entry(spt, &se, index);
1319         return 0;
1320 }
1321
1322 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt)
1323 {
1324         struct intel_vgpu *vgpu = spt->vgpu;
1325         struct intel_gvt *gvt = vgpu->gvt;
1326         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1327         struct intel_vgpu_ppgtt_spt *s;
1328         struct intel_gvt_gtt_entry se, ge;
1329         unsigned long gfn, i;
1330         int ret;
1331
1332         trace_spt_change(spt->vgpu->id, "born", spt,
1333                          spt->guest_page.gfn, spt->shadow_page.type);
1334
1335         for_each_present_guest_entry(spt, &ge, i) {
1336                 if (gtt_type_is_pt(get_next_pt_type(ge.type))) {
1337                         s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1338                         if (IS_ERR(s)) {
1339                                 ret = PTR_ERR(s);
1340                                 goto fail;
1341                         }
1342                         ppgtt_get_shadow_entry(spt, &se, i);
1343                         ppgtt_generate_shadow_entry(&se, s, &ge);
1344                         ppgtt_set_shadow_entry(spt, &se, i);
1345                 } else {
1346                         gfn = ops->get_pfn(&ge);
1347                         if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
1348                                 ops->set_pfn(&se, gvt->gtt.scratch_mfn);
1349                                 ppgtt_set_shadow_entry(spt, &se, i);
1350                                 continue;
1351                         }
1352
1353                         ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge);
1354                         if (ret)
1355                                 goto fail;
1356                 }
1357         }
1358         return 0;
1359 fail:
1360         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1361                         spt, ge.val64, ge.type);
1362         return ret;
1363 }
1364
1365 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt,
1366                 struct intel_gvt_gtt_entry *se, unsigned long index)
1367 {
1368         struct intel_vgpu *vgpu = spt->vgpu;
1369         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1370         int ret;
1371
1372         trace_spt_guest_change(spt->vgpu->id, "remove", spt,
1373                                spt->shadow_page.type, se->val64, index);
1374
1375         gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n",
1376                     se->type, index, se->val64);
1377
1378         if (!ops->test_present(se))
1379                 return 0;
1380
1381         if (ops->get_pfn(se) ==
1382             vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn)
1383                 return 0;
1384
1385         if (gtt_type_is_pt(get_next_pt_type(se->type))) {
1386                 struct intel_vgpu_ppgtt_spt *s =
1387                         intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se));
1388                 if (!s) {
1389                         gvt_vgpu_err("fail to find guest page\n");
1390                         ret = -ENXIO;
1391                         goto fail;
1392                 }
1393                 ret = ppgtt_invalidate_spt(s);
1394                 if (ret)
1395                         goto fail;
1396         } else {
1397                 /* We don't setup 64K shadow entry so far. */
1398                 WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY,
1399                      "suspicious 64K entry\n");
1400                 ppgtt_invalidate_pte(spt, se);
1401         }
1402
1403         return 0;
1404 fail:
1405         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1406                         spt, se->val64, se->type);
1407         return ret;
1408 }
1409
1410 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt,
1411                 struct intel_gvt_gtt_entry *we, unsigned long index)
1412 {
1413         struct intel_vgpu *vgpu = spt->vgpu;
1414         struct intel_gvt_gtt_entry m;
1415         struct intel_vgpu_ppgtt_spt *s;
1416         int ret;
1417
1418         trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type,
1419                                we->val64, index);
1420
1421         gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n",
1422                     we->type, index, we->val64);
1423
1424         if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1425                 s = ppgtt_populate_spt_by_guest_entry(vgpu, we);
1426                 if (IS_ERR(s)) {
1427                         ret = PTR_ERR(s);
1428                         goto fail;
1429                 }
1430                 ppgtt_get_shadow_entry(spt, &m, index);
1431                 ppgtt_generate_shadow_entry(&m, s, we);
1432                 ppgtt_set_shadow_entry(spt, &m, index);
1433         } else {
1434                 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we);
1435                 if (ret)
1436                         goto fail;
1437         }
1438         return 0;
1439 fail:
1440         gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1441                 spt, we->val64, we->type);
1442         return ret;
1443 }
1444
1445 static int sync_oos_page(struct intel_vgpu *vgpu,
1446                 struct intel_vgpu_oos_page *oos_page)
1447 {
1448         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1449         struct intel_gvt *gvt = vgpu->gvt;
1450         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1451         struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1452         struct intel_gvt_gtt_entry old, new;
1453         int index;
1454         int ret;
1455
1456         trace_oos_change(vgpu->id, "sync", oos_page->id,
1457                          spt, spt->guest_page.type);
1458
1459         old.type = new.type = get_entry_type(spt->guest_page.type);
1460         old.val64 = new.val64 = 0;
1461
1462         for (index = 0; index < (I915_GTT_PAGE_SIZE >>
1463                                 info->gtt_entry_size_shift); index++) {
1464                 ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1465                 ops->get_entry(NULL, &new, index, true,
1466                                spt->guest_page.gfn << PAGE_SHIFT, vgpu);
1467
1468                 if (old.val64 == new.val64
1469                         && !test_and_clear_bit(index, spt->post_shadow_bitmap))
1470                         continue;
1471
1472                 trace_oos_sync(vgpu->id, oos_page->id,
1473                                 spt, spt->guest_page.type,
1474                                 new.val64, index);
1475
1476                 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new);
1477                 if (ret)
1478                         return ret;
1479
1480                 ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1481         }
1482
1483         spt->guest_page.write_cnt = 0;
1484         list_del_init(&spt->post_shadow_list);
1485         return 0;
1486 }
1487
1488 static int detach_oos_page(struct intel_vgpu *vgpu,
1489                 struct intel_vgpu_oos_page *oos_page)
1490 {
1491         struct intel_gvt *gvt = vgpu->gvt;
1492         struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1493
1494         trace_oos_change(vgpu->id, "detach", oos_page->id,
1495                          spt, spt->guest_page.type);
1496
1497         spt->guest_page.write_cnt = 0;
1498         spt->guest_page.oos_page = NULL;
1499         oos_page->spt = NULL;
1500
1501         list_del_init(&oos_page->vm_list);
1502         list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1503
1504         return 0;
1505 }
1506
1507 static int attach_oos_page(struct intel_vgpu_oos_page *oos_page,
1508                 struct intel_vgpu_ppgtt_spt *spt)
1509 {
1510         struct intel_gvt *gvt = spt->vgpu->gvt;
1511         int ret;
1512
1513         ret = intel_gvt_hypervisor_read_gpa(spt->vgpu,
1514                         spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
1515                         oos_page->mem, I915_GTT_PAGE_SIZE);
1516         if (ret)
1517                 return ret;
1518
1519         oos_page->spt = spt;
1520         spt->guest_page.oos_page = oos_page;
1521
1522         list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1523
1524         trace_oos_change(spt->vgpu->id, "attach", oos_page->id,
1525                          spt, spt->guest_page.type);
1526         return 0;
1527 }
1528
1529 static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt)
1530 {
1531         struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1532         int ret;
1533
1534         ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn);
1535         if (ret)
1536                 return ret;
1537
1538         trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id,
1539                          spt, spt->guest_page.type);
1540
1541         list_del_init(&oos_page->vm_list);
1542         return sync_oos_page(spt->vgpu, oos_page);
1543 }
1544
1545 static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt)
1546 {
1547         struct intel_gvt *gvt = spt->vgpu->gvt;
1548         struct intel_gvt_gtt *gtt = &gvt->gtt;
1549         struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1550         int ret;
1551
1552         WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1553
1554         if (list_empty(&gtt->oos_page_free_list_head)) {
1555                 oos_page = container_of(gtt->oos_page_use_list_head.next,
1556                         struct intel_vgpu_oos_page, list);
1557                 ret = ppgtt_set_guest_page_sync(oos_page->spt);
1558                 if (ret)
1559                         return ret;
1560                 ret = detach_oos_page(spt->vgpu, oos_page);
1561                 if (ret)
1562                         return ret;
1563         } else
1564                 oos_page = container_of(gtt->oos_page_free_list_head.next,
1565                         struct intel_vgpu_oos_page, list);
1566         return attach_oos_page(oos_page, spt);
1567 }
1568
1569 static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt)
1570 {
1571         struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1572
1573         if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1574                 return -EINVAL;
1575
1576         trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id,
1577                          spt, spt->guest_page.type);
1578
1579         list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head);
1580         return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn);
1581 }
1582
1583 /**
1584  * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1585  * @vgpu: a vGPU
1586  *
1587  * This function is called before submitting a guest workload to host,
1588  * to sync all the out-of-synced shadow for vGPU
1589  *
1590  * Returns:
1591  * Zero on success, negative error code if failed.
1592  */
1593 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1594 {
1595         struct list_head *pos, *n;
1596         struct intel_vgpu_oos_page *oos_page;
1597         int ret;
1598
1599         if (!enable_out_of_sync)
1600                 return 0;
1601
1602         list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1603                 oos_page = container_of(pos,
1604                                 struct intel_vgpu_oos_page, vm_list);
1605                 ret = ppgtt_set_guest_page_sync(oos_page->spt);
1606                 if (ret)
1607                         return ret;
1608         }
1609         return 0;
1610 }
1611
1612 /*
1613  * The heart of PPGTT shadow page table.
1614  */
1615 static int ppgtt_handle_guest_write_page_table(
1616                 struct intel_vgpu_ppgtt_spt *spt,
1617                 struct intel_gvt_gtt_entry *we, unsigned long index)
1618 {
1619         struct intel_vgpu *vgpu = spt->vgpu;
1620         int type = spt->shadow_page.type;
1621         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1622         struct intel_gvt_gtt_entry old_se;
1623         int new_present;
1624         int i, ret;
1625
1626         new_present = ops->test_present(we);
1627
1628         /*
1629          * Adding the new entry first and then removing the old one, that can
1630          * guarantee the ppgtt table is validated during the window between
1631          * adding and removal.
1632          */
1633         ppgtt_get_shadow_entry(spt, &old_se, index);
1634
1635         if (new_present) {
1636                 ret = ppgtt_handle_guest_entry_add(spt, we, index);
1637                 if (ret)
1638                         goto fail;
1639         }
1640
1641         ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index);
1642         if (ret)
1643                 goto fail;
1644
1645         if (!new_present) {
1646                 /* For 64KB splited entries, we need clear them all. */
1647                 if (ops->test_64k_splited(&old_se) &&
1648                     !(index % GTT_64K_PTE_STRIDE)) {
1649                         gvt_vdbg_mm("remove splited 64K shadow entries\n");
1650                         for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1651                                 ops->clear_64k_splited(&old_se);
1652                                 ops->set_pfn(&old_se,
1653                                         vgpu->gtt.scratch_pt[type].page_mfn);
1654                                 ppgtt_set_shadow_entry(spt, &old_se, index + i);
1655                         }
1656                 } else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY ||
1657                            old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
1658                         ops->clear_pse(&old_se);
1659                         ops->set_pfn(&old_se,
1660                                      vgpu->gtt.scratch_pt[type].page_mfn);
1661                         ppgtt_set_shadow_entry(spt, &old_se, index);
1662                 } else {
1663                         ops->set_pfn(&old_se,
1664                                      vgpu->gtt.scratch_pt[type].page_mfn);
1665                         ppgtt_set_shadow_entry(spt, &old_se, index);
1666                 }
1667         }
1668
1669         return 0;
1670 fail:
1671         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1672                         spt, we->val64, we->type);
1673         return ret;
1674 }
1675
1676
1677
1678 static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt)
1679 {
1680         return enable_out_of_sync
1681                 && gtt_type_is_pte_pt(spt->guest_page.type)
1682                 && spt->guest_page.write_cnt >= 2;
1683 }
1684
1685 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1686                 unsigned long index)
1687 {
1688         set_bit(index, spt->post_shadow_bitmap);
1689         if (!list_empty(&spt->post_shadow_list))
1690                 return;
1691
1692         list_add_tail(&spt->post_shadow_list,
1693                         &spt->vgpu->gtt.post_shadow_list_head);
1694 }
1695
1696 /**
1697  * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1698  * @vgpu: a vGPU
1699  *
1700  * This function is called before submitting a guest workload to host,
1701  * to flush all the post shadows for a vGPU.
1702  *
1703  * Returns:
1704  * Zero on success, negative error code if failed.
1705  */
1706 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1707 {
1708         struct list_head *pos, *n;
1709         struct intel_vgpu_ppgtt_spt *spt;
1710         struct intel_gvt_gtt_entry ge;
1711         unsigned long index;
1712         int ret;
1713
1714         list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1715                 spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1716                                 post_shadow_list);
1717
1718                 for_each_set_bit(index, spt->post_shadow_bitmap,
1719                                 GTT_ENTRY_NUM_IN_ONE_PAGE) {
1720                         ppgtt_get_guest_entry(spt, &ge, index);
1721
1722                         ret = ppgtt_handle_guest_write_page_table(spt,
1723                                                         &ge, index);
1724                         if (ret)
1725                                 return ret;
1726                         clear_bit(index, spt->post_shadow_bitmap);
1727                 }
1728                 list_del_init(&spt->post_shadow_list);
1729         }
1730         return 0;
1731 }
1732
1733 static int ppgtt_handle_guest_write_page_table_bytes(
1734                 struct intel_vgpu_ppgtt_spt *spt,
1735                 u64 pa, void *p_data, int bytes)
1736 {
1737         struct intel_vgpu *vgpu = spt->vgpu;
1738         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1739         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1740         struct intel_gvt_gtt_entry we, se;
1741         unsigned long index;
1742         int ret;
1743
1744         index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1745
1746         ppgtt_get_guest_entry(spt, &we, index);
1747
1748         /*
1749          * For page table which has 64K gtt entry, only PTE#0, PTE#16,
1750          * PTE#32, ... PTE#496 are used. Unused PTEs update should be
1751          * ignored.
1752          */
1753         if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY &&
1754             (index % GTT_64K_PTE_STRIDE)) {
1755                 gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n",
1756                             index);
1757                 return 0;
1758         }
1759
1760         if (bytes == info->gtt_entry_size) {
1761                 ret = ppgtt_handle_guest_write_page_table(spt, &we, index);
1762                 if (ret)
1763                         return ret;
1764         } else {
1765                 if (!test_bit(index, spt->post_shadow_bitmap)) {
1766                         int type = spt->shadow_page.type;
1767
1768                         ppgtt_get_shadow_entry(spt, &se, index);
1769                         ret = ppgtt_handle_guest_entry_removal(spt, &se, index);
1770                         if (ret)
1771                                 return ret;
1772                         ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1773                         ppgtt_set_shadow_entry(spt, &se, index);
1774                 }
1775                 ppgtt_set_post_shadow(spt, index);
1776         }
1777
1778         if (!enable_out_of_sync)
1779                 return 0;
1780
1781         spt->guest_page.write_cnt++;
1782
1783         if (spt->guest_page.oos_page)
1784                 ops->set_entry(spt->guest_page.oos_page->mem, &we, index,
1785                                 false, 0, vgpu);
1786
1787         if (can_do_out_of_sync(spt)) {
1788                 if (!spt->guest_page.oos_page)
1789                         ppgtt_allocate_oos_page(spt);
1790
1791                 ret = ppgtt_set_guest_page_oos(spt);
1792                 if (ret < 0)
1793                         return ret;
1794         }
1795         return 0;
1796 }
1797
1798 static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm)
1799 {
1800         struct intel_vgpu *vgpu = mm->vgpu;
1801         struct intel_gvt *gvt = vgpu->gvt;
1802         struct intel_gvt_gtt *gtt = &gvt->gtt;
1803         struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1804         struct intel_gvt_gtt_entry se;
1805         int index;
1806
1807         if (!mm->ppgtt_mm.shadowed)
1808                 return;
1809
1810         for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) {
1811                 ppgtt_get_shadow_root_entry(mm, &se, index);
1812
1813                 if (!ops->test_present(&se))
1814                         continue;
1815
1816                 ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se);
1817                 se.val64 = 0;
1818                 ppgtt_set_shadow_root_entry(mm, &se, index);
1819
1820                 trace_spt_guest_change(vgpu->id, "destroy root pointer",
1821                                        NULL, se.type, se.val64, index);
1822         }
1823
1824         mm->ppgtt_mm.shadowed = false;
1825 }
1826
1827
1828 static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm)
1829 {
1830         struct intel_vgpu *vgpu = mm->vgpu;
1831         struct intel_gvt *gvt = vgpu->gvt;
1832         struct intel_gvt_gtt *gtt = &gvt->gtt;
1833         struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1834         struct intel_vgpu_ppgtt_spt *spt;
1835         struct intel_gvt_gtt_entry ge, se;
1836         int index, ret;
1837
1838         if (mm->ppgtt_mm.shadowed)
1839                 return 0;
1840
1841         mm->ppgtt_mm.shadowed = true;
1842
1843         for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) {
1844                 ppgtt_get_guest_root_entry(mm, &ge, index);
1845
1846                 if (!ops->test_present(&ge))
1847                         continue;
1848
1849                 trace_spt_guest_change(vgpu->id, __func__, NULL,
1850                                        ge.type, ge.val64, index);
1851
1852                 spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1853                 if (IS_ERR(spt)) {
1854                         gvt_vgpu_err("fail to populate guest root pointer\n");
1855                         ret = PTR_ERR(spt);
1856                         goto fail;
1857                 }
1858                 ppgtt_generate_shadow_entry(&se, spt, &ge);
1859                 ppgtt_set_shadow_root_entry(mm, &se, index);
1860
1861                 trace_spt_guest_change(vgpu->id, "populate root pointer",
1862                                        NULL, se.type, se.val64, index);
1863         }
1864
1865         return 0;
1866 fail:
1867         invalidate_ppgtt_mm(mm);
1868         return ret;
1869 }
1870
1871 static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu)
1872 {
1873         struct intel_vgpu_mm *mm;
1874
1875         mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1876         if (!mm)
1877                 return NULL;
1878
1879         mm->vgpu = vgpu;
1880         kref_init(&mm->ref);
1881         atomic_set(&mm->pincount, 0);
1882
1883         return mm;
1884 }
1885
1886 static void vgpu_free_mm(struct intel_vgpu_mm *mm)
1887 {
1888         kfree(mm);
1889 }
1890
1891 /**
1892  * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU
1893  * @vgpu: a vGPU
1894  * @root_entry_type: ppgtt root entry type
1895  * @pdps: guest pdps.
1896  *
1897  * This function is used to create a ppgtt mm object for a vGPU.
1898  *
1899  * Returns:
1900  * Zero on success, negative error code in pointer if failed.
1901  */
1902 struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu,
1903                 enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
1904 {
1905         struct intel_gvt *gvt = vgpu->gvt;
1906         struct intel_vgpu_mm *mm;
1907         int ret;
1908
1909         mm = vgpu_alloc_mm(vgpu);
1910         if (!mm)
1911                 return ERR_PTR(-ENOMEM);
1912
1913         mm->type = INTEL_GVT_MM_PPGTT;
1914
1915         GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY &&
1916                    root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY);
1917         mm->ppgtt_mm.root_entry_type = root_entry_type;
1918
1919         INIT_LIST_HEAD(&mm->ppgtt_mm.list);
1920         INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list);
1921         INIT_LIST_HEAD(&mm->ppgtt_mm.link);
1922
1923         if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
1924                 mm->ppgtt_mm.guest_pdps[0] = pdps[0];
1925         else
1926                 memcpy(mm->ppgtt_mm.guest_pdps, pdps,
1927                        sizeof(mm->ppgtt_mm.guest_pdps));
1928
1929         ret = shadow_ppgtt_mm(mm);
1930         if (ret) {
1931                 gvt_vgpu_err("failed to shadow ppgtt mm\n");
1932                 vgpu_free_mm(mm);
1933                 return ERR_PTR(ret);
1934         }
1935
1936         list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head);
1937
1938         mutex_lock(&gvt->gtt.ppgtt_mm_lock);
1939         list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head);
1940         mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
1941
1942         return mm;
1943 }
1944
1945 static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu)
1946 {
1947         struct intel_vgpu_mm *mm;
1948         unsigned long nr_entries;
1949
1950         mm = vgpu_alloc_mm(vgpu);
1951         if (!mm)
1952                 return ERR_PTR(-ENOMEM);
1953
1954         mm->type = INTEL_GVT_MM_GGTT;
1955
1956         nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT;
1957         mm->ggtt_mm.virtual_ggtt =
1958                 vzalloc(array_size(nr_entries,
1959                                    vgpu->gvt->device_info.gtt_entry_size));
1960         if (!mm->ggtt_mm.virtual_ggtt) {
1961                 vgpu_free_mm(mm);
1962                 return ERR_PTR(-ENOMEM);
1963         }
1964
1965         mm->ggtt_mm.host_ggtt_aperture = vzalloc((vgpu_aperture_sz(vgpu) >> PAGE_SHIFT) * sizeof(u64));
1966         if (!mm->ggtt_mm.host_ggtt_aperture) {
1967                 vfree(mm->ggtt_mm.virtual_ggtt);
1968                 vgpu_free_mm(mm);
1969                 return ERR_PTR(-ENOMEM);
1970         }
1971
1972         mm->ggtt_mm.host_ggtt_hidden = vzalloc((vgpu_hidden_sz(vgpu) >> PAGE_SHIFT) * sizeof(u64));
1973         if (!mm->ggtt_mm.host_ggtt_hidden) {
1974                 vfree(mm->ggtt_mm.host_ggtt_aperture);
1975                 vfree(mm->ggtt_mm.virtual_ggtt);
1976                 vgpu_free_mm(mm);
1977                 return ERR_PTR(-ENOMEM);
1978         }
1979
1980         return mm;
1981 }
1982
1983 /**
1984  * _intel_vgpu_mm_release - destroy a mm object
1985  * @mm_ref: a kref object
1986  *
1987  * This function is used to destroy a mm object for vGPU
1988  *
1989  */
1990 void _intel_vgpu_mm_release(struct kref *mm_ref)
1991 {
1992         struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1993
1994         if (GEM_WARN_ON(atomic_read(&mm->pincount)))
1995                 gvt_err("vgpu mm pin count bug detected\n");
1996
1997         if (mm->type == INTEL_GVT_MM_PPGTT) {
1998                 list_del(&mm->ppgtt_mm.list);
1999
2000                 mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2001                 list_del(&mm->ppgtt_mm.lru_list);
2002                 mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2003
2004                 invalidate_ppgtt_mm(mm);
2005         } else {
2006                 vfree(mm->ggtt_mm.virtual_ggtt);
2007                 vfree(mm->ggtt_mm.host_ggtt_aperture);
2008                 vfree(mm->ggtt_mm.host_ggtt_hidden);
2009         }
2010
2011         vgpu_free_mm(mm);
2012 }
2013
2014 /**
2015  * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
2016  * @mm: a vGPU mm object
2017  *
2018  * This function is called when user doesn't want to use a vGPU mm object
2019  */
2020 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
2021 {
2022         atomic_dec_if_positive(&mm->pincount);
2023 }
2024
2025 /**
2026  * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
2027  * @mm: target vgpu mm
2028  *
2029  * This function is called when user wants to use a vGPU mm object. If this
2030  * mm object hasn't been shadowed yet, the shadow will be populated at this
2031  * time.
2032  *
2033  * Returns:
2034  * Zero on success, negative error code if failed.
2035  */
2036 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
2037 {
2038         int ret;
2039
2040         atomic_inc(&mm->pincount);
2041
2042         if (mm->type == INTEL_GVT_MM_PPGTT) {
2043                 ret = shadow_ppgtt_mm(mm);
2044                 if (ret)
2045                         return ret;
2046
2047                 mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2048                 list_move_tail(&mm->ppgtt_mm.lru_list,
2049                                &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head);
2050                 mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2051         }
2052
2053         return 0;
2054 }
2055
2056 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt)
2057 {
2058         struct intel_vgpu_mm *mm;
2059         struct list_head *pos, *n;
2060
2061         mutex_lock(&gvt->gtt.ppgtt_mm_lock);
2062
2063         list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) {
2064                 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list);
2065
2066                 if (atomic_read(&mm->pincount))
2067                         continue;
2068
2069                 list_del_init(&mm->ppgtt_mm.lru_list);
2070                 mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2071                 invalidate_ppgtt_mm(mm);
2072                 return 1;
2073         }
2074         mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2075         return 0;
2076 }
2077
2078 /*
2079  * GMA translation APIs.
2080  */
2081 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
2082                 struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
2083 {
2084         struct intel_vgpu *vgpu = mm->vgpu;
2085         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2086         struct intel_vgpu_ppgtt_spt *s;
2087
2088         s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
2089         if (!s)
2090                 return -ENXIO;
2091
2092         if (!guest)
2093                 ppgtt_get_shadow_entry(s, e, index);
2094         else
2095                 ppgtt_get_guest_entry(s, e, index);
2096         return 0;
2097 }
2098
2099 /**
2100  * intel_vgpu_gma_to_gpa - translate a gma to GPA
2101  * @mm: mm object. could be a PPGTT or GGTT mm object
2102  * @gma: graphics memory address in this mm object
2103  *
2104  * This function is used to translate a graphics memory address in specific
2105  * graphics memory space to guest physical address.
2106  *
2107  * Returns:
2108  * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
2109  */
2110 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
2111 {
2112         struct intel_vgpu *vgpu = mm->vgpu;
2113         struct intel_gvt *gvt = vgpu->gvt;
2114         struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
2115         struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
2116         unsigned long gpa = INTEL_GVT_INVALID_ADDR;
2117         unsigned long gma_index[4];
2118         struct intel_gvt_gtt_entry e;
2119         int i, levels = 0;
2120         int ret;
2121
2122         GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT &&
2123                    mm->type != INTEL_GVT_MM_PPGTT);
2124
2125         if (mm->type == INTEL_GVT_MM_GGTT) {
2126                 if (!vgpu_gmadr_is_valid(vgpu, gma))
2127                         goto err;
2128
2129                 ggtt_get_guest_entry(mm, &e,
2130                         gma_ops->gma_to_ggtt_pte_index(gma));
2131
2132                 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT)
2133                         + (gma & ~I915_GTT_PAGE_MASK);
2134
2135                 trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
2136         } else {
2137                 switch (mm->ppgtt_mm.root_entry_type) {
2138                 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2139                         ppgtt_get_shadow_root_entry(mm, &e, 0);
2140
2141                         gma_index[0] = gma_ops->gma_to_pml4_index(gma);
2142                         gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
2143                         gma_index[2] = gma_ops->gma_to_pde_index(gma);
2144                         gma_index[3] = gma_ops->gma_to_pte_index(gma);
2145                         levels = 4;
2146                         break;
2147                 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2148                         ppgtt_get_shadow_root_entry(mm, &e,
2149                                         gma_ops->gma_to_l3_pdp_index(gma));
2150
2151                         gma_index[0] = gma_ops->gma_to_pde_index(gma);
2152                         gma_index[1] = gma_ops->gma_to_pte_index(gma);
2153                         levels = 2;
2154                         break;
2155                 default:
2156                         GEM_BUG_ON(1);
2157                 }
2158
2159                 /* walk the shadow page table and get gpa from guest entry */
2160                 for (i = 0; i < levels; i++) {
2161                         ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
2162                                 (i == levels - 1));
2163                         if (ret)
2164                                 goto err;
2165
2166                         if (!pte_ops->test_present(&e)) {
2167                                 gvt_dbg_core("GMA 0x%lx is not present\n", gma);
2168                                 goto err;
2169                         }
2170                 }
2171
2172                 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) +
2173                                         (gma & ~I915_GTT_PAGE_MASK);
2174                 trace_gma_translate(vgpu->id, "ppgtt", 0,
2175                                     mm->ppgtt_mm.root_entry_type, gma, gpa);
2176         }
2177
2178         return gpa;
2179 err:
2180         gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
2181         return INTEL_GVT_INVALID_ADDR;
2182 }
2183
2184 static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu,
2185         unsigned int off, void *p_data, unsigned int bytes)
2186 {
2187         struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2188         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2189         unsigned long index = off >> info->gtt_entry_size_shift;
2190         unsigned long gma;
2191         struct intel_gvt_gtt_entry e;
2192
2193         if (bytes != 4 && bytes != 8)
2194                 return -EINVAL;
2195
2196         gma = index << I915_GTT_PAGE_SHIFT;
2197         if (!intel_gvt_ggtt_validate_range(vgpu,
2198                                            gma, 1 << I915_GTT_PAGE_SHIFT)) {
2199                 gvt_dbg_mm("read invalid ggtt at 0x%lx\n", gma);
2200                 memset(p_data, 0, bytes);
2201                 return 0;
2202         }
2203
2204         ggtt_get_guest_entry(ggtt_mm, &e, index);
2205         memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
2206                         bytes);
2207         return 0;
2208 }
2209
2210 /**
2211  * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
2212  * @vgpu: a vGPU
2213  * @off: register offset
2214  * @p_data: data will be returned to guest
2215  * @bytes: data length
2216  *
2217  * This function is used to emulate the GTT MMIO register read
2218  *
2219  * Returns:
2220  * Zero on success, error code if failed.
2221  */
2222 int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
2223         void *p_data, unsigned int bytes)
2224 {
2225         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2226         int ret;
2227
2228         if (bytes != 4 && bytes != 8)
2229                 return -EINVAL;
2230
2231         off -= info->gtt_start_offset;
2232         ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes);
2233         return ret;
2234 }
2235
2236 static void ggtt_invalidate_pte(struct intel_vgpu *vgpu,
2237                 struct intel_gvt_gtt_entry *entry)
2238 {
2239         struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2240         unsigned long pfn;
2241
2242         pfn = pte_ops->get_pfn(entry);
2243         if (pfn != vgpu->gvt->gtt.scratch_mfn)
2244                 intel_gvt_hypervisor_dma_unmap_guest_page(vgpu,
2245                                                 pfn << PAGE_SHIFT);
2246 }
2247
2248 static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
2249         void *p_data, unsigned int bytes)
2250 {
2251         struct intel_gvt *gvt = vgpu->gvt;
2252         const struct intel_gvt_device_info *info = &gvt->device_info;
2253         struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2254         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
2255         unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
2256         unsigned long gma, gfn;
2257         struct intel_gvt_gtt_entry e = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2258         struct intel_gvt_gtt_entry m = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2259         dma_addr_t dma_addr;
2260         int ret;
2261         struct intel_gvt_partial_pte *partial_pte, *pos, *n;
2262         bool partial_update = false;
2263
2264         if (bytes != 4 && bytes != 8)
2265                 return -EINVAL;
2266
2267         gma = g_gtt_index << I915_GTT_PAGE_SHIFT;
2268
2269         /* the VM may configure the whole GM space when ballooning is used */
2270         if (!vgpu_gmadr_is_valid(vgpu, gma))
2271                 return 0;
2272
2273         e.type = GTT_TYPE_GGTT_PTE;
2274         memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
2275                         bytes);
2276
2277         /* If ggtt entry size is 8 bytes, and it's split into two 4 bytes
2278          * write, save the first 4 bytes in a list and update virtual
2279          * PTE. Only update shadow PTE when the second 4 bytes comes.
2280          */
2281         if (bytes < info->gtt_entry_size) {
2282                 bool found = false;
2283
2284                 list_for_each_entry_safe(pos, n,
2285                                 &ggtt_mm->ggtt_mm.partial_pte_list, list) {
2286                         if (g_gtt_index == pos->offset >>
2287                                         info->gtt_entry_size_shift) {
2288                                 if (off != pos->offset) {
2289                                         /* the second partial part*/
2290                                         int last_off = pos->offset &
2291                                                 (info->gtt_entry_size - 1);
2292
2293                                         memcpy((void *)&e.val64 + last_off,
2294                                                 (void *)&pos->data + last_off,
2295                                                 bytes);
2296
2297                                         list_del(&pos->list);
2298                                         kfree(pos);
2299                                         found = true;
2300                                         break;
2301                                 }
2302
2303                                 /* update of the first partial part */
2304                                 pos->data = e.val64;
2305                                 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2306                                 return 0;
2307                         }
2308                 }
2309
2310                 if (!found) {
2311                         /* the first partial part */
2312                         partial_pte = kzalloc(sizeof(*partial_pte), GFP_KERNEL);
2313                         if (!partial_pte)
2314                                 return -ENOMEM;
2315                         partial_pte->offset = off;
2316                         partial_pte->data = e.val64;
2317                         list_add_tail(&partial_pte->list,
2318                                 &ggtt_mm->ggtt_mm.partial_pte_list);
2319                         partial_update = true;
2320                 }
2321         }
2322
2323         if (!partial_update && (ops->test_present(&e))) {
2324                 gfn = ops->get_pfn(&e);
2325                 m.val64 = e.val64;
2326                 m.type = e.type;
2327
2328                 /* one PTE update may be issued in multiple writes and the
2329                  * first write may not construct a valid gfn
2330                  */
2331                 if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
2332                         ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2333                         goto out;
2334                 }
2335
2336                 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn,
2337                                                         PAGE_SIZE, &dma_addr);
2338                 if (ret) {
2339                         gvt_vgpu_err("fail to populate guest ggtt entry\n");
2340                         /* guest driver may read/write the entry when partial
2341                          * update the entry in this situation p2m will fail
2342                          * settting the shadow entry to point to a scratch page
2343                          */
2344                         ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2345                 } else
2346                         ops->set_pfn(&m, dma_addr >> PAGE_SHIFT);
2347         } else {
2348                 ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2349                 ops->clear_present(&m);
2350         }
2351
2352 out:
2353         ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2354
2355         ggtt_get_host_entry(ggtt_mm, &e, g_gtt_index);
2356         ggtt_invalidate_pte(vgpu, &e);
2357
2358         ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index);
2359         ggtt_invalidate(gvt->gt);
2360         return 0;
2361 }
2362
2363 /*
2364  * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write
2365  * @vgpu: a vGPU
2366  * @off: register offset
2367  * @p_data: data from guest write
2368  * @bytes: data length
2369  *
2370  * This function is used to emulate the GTT MMIO register write
2371  *
2372  * Returns:
2373  * Zero on success, error code if failed.
2374  */
2375 int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu,
2376                 unsigned int off, void *p_data, unsigned int bytes)
2377 {
2378         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2379         int ret;
2380         struct intel_vgpu_submission *s = &vgpu->submission;
2381         struct intel_engine_cs *engine;
2382         int i;
2383
2384         if (bytes != 4 && bytes != 8)
2385                 return -EINVAL;
2386
2387         off -= info->gtt_start_offset;
2388         ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes);
2389
2390         /* if ggtt of last submitted context is written,
2391          * that context is probably got unpinned.
2392          * Set last shadowed ctx to invalid.
2393          */
2394         for_each_engine(engine, vgpu->gvt->gt, i) {
2395                 if (!s->last_ctx[i].valid)
2396                         continue;
2397
2398                 if (s->last_ctx[i].lrca == (off >> info->gtt_entry_size_shift))
2399                         s->last_ctx[i].valid = false;
2400         }
2401         return ret;
2402 }
2403
2404 static int alloc_scratch_pages(struct intel_vgpu *vgpu,
2405                 enum intel_gvt_gtt_type type)
2406 {
2407         struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
2408         struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2409         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2410         int page_entry_num = I915_GTT_PAGE_SIZE >>
2411                                 vgpu->gvt->device_info.gtt_entry_size_shift;
2412         void *scratch_pt;
2413         int i;
2414         struct device *dev = &vgpu->gvt->gt->i915->drm.pdev->dev;
2415         dma_addr_t daddr;
2416
2417         if (drm_WARN_ON(&i915->drm,
2418                         type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
2419                 return -EINVAL;
2420
2421         scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
2422         if (!scratch_pt) {
2423                 gvt_vgpu_err("fail to allocate scratch page\n");
2424                 return -ENOMEM;
2425         }
2426
2427         daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0,
2428                         4096, PCI_DMA_BIDIRECTIONAL);
2429         if (dma_mapping_error(dev, daddr)) {
2430                 gvt_vgpu_err("fail to dmamap scratch_pt\n");
2431                 __free_page(virt_to_page(scratch_pt));
2432                 return -ENOMEM;
2433         }
2434         gtt->scratch_pt[type].page_mfn =
2435                 (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2436         gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
2437         gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
2438                         vgpu->id, type, gtt->scratch_pt[type].page_mfn);
2439
2440         /* Build the tree by full filled the scratch pt with the entries which
2441          * point to the next level scratch pt or scratch page. The
2442          * scratch_pt[type] indicate the scratch pt/scratch page used by the
2443          * 'type' pt.
2444          * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
2445          * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
2446          * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
2447          */
2448         if (type > GTT_TYPE_PPGTT_PTE_PT) {
2449                 struct intel_gvt_gtt_entry se;
2450
2451                 memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
2452                 se.type = get_entry_type(type - 1);
2453                 ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
2454
2455                 /* The entry parameters like present/writeable/cache type
2456                  * set to the same as i915's scratch page tree.
2457                  */
2458                 se.val64 |= _PAGE_PRESENT | _PAGE_RW;
2459                 if (type == GTT_TYPE_PPGTT_PDE_PT)
2460                         se.val64 |= PPAT_CACHED;
2461
2462                 for (i = 0; i < page_entry_num; i++)
2463                         ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
2464         }
2465
2466         return 0;
2467 }
2468
2469 static int release_scratch_page_tree(struct intel_vgpu *vgpu)
2470 {
2471         int i;
2472         struct device *dev = &vgpu->gvt->gt->i915->drm.pdev->dev;
2473         dma_addr_t daddr;
2474
2475         for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2476                 if (vgpu->gtt.scratch_pt[i].page != NULL) {
2477                         daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
2478                                         I915_GTT_PAGE_SHIFT);
2479                         dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2480                         __free_page(vgpu->gtt.scratch_pt[i].page);
2481                         vgpu->gtt.scratch_pt[i].page = NULL;
2482                         vgpu->gtt.scratch_pt[i].page_mfn = 0;
2483                 }
2484         }
2485
2486         return 0;
2487 }
2488
2489 static int create_scratch_page_tree(struct intel_vgpu *vgpu)
2490 {
2491         int i, ret;
2492
2493         for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2494                 ret = alloc_scratch_pages(vgpu, i);
2495                 if (ret)
2496                         goto err;
2497         }
2498
2499         return 0;
2500
2501 err:
2502         release_scratch_page_tree(vgpu);
2503         return ret;
2504 }
2505
2506 /**
2507  * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
2508  * @vgpu: a vGPU
2509  *
2510  * This function is used to initialize per-vGPU graphics memory virtualization
2511  * components.
2512  *
2513  * Returns:
2514  * Zero on success, error code if failed.
2515  */
2516 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
2517 {
2518         struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2519
2520         INIT_RADIX_TREE(&gtt->spt_tree, GFP_KERNEL);
2521
2522         INIT_LIST_HEAD(&gtt->ppgtt_mm_list_head);
2523         INIT_LIST_HEAD(&gtt->oos_page_list_head);
2524         INIT_LIST_HEAD(&gtt->post_shadow_list_head);
2525
2526         gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu);
2527         if (IS_ERR(gtt->ggtt_mm)) {
2528                 gvt_vgpu_err("fail to create mm for ggtt.\n");
2529                 return PTR_ERR(gtt->ggtt_mm);
2530         }
2531
2532         intel_vgpu_reset_ggtt(vgpu, false);
2533
2534         INIT_LIST_HEAD(&gtt->ggtt_mm->ggtt_mm.partial_pte_list);
2535
2536         return create_scratch_page_tree(vgpu);
2537 }
2538
2539 void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu)
2540 {
2541         struct list_head *pos, *n;
2542         struct intel_vgpu_mm *mm;
2543
2544         list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2545                 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2546                 intel_vgpu_destroy_mm(mm);
2547         }
2548
2549         if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head)))
2550                 gvt_err("vgpu ppgtt mm is not fully destroyed\n");
2551
2552         if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) {
2553                 gvt_err("Why we still has spt not freed?\n");
2554                 ppgtt_free_all_spt(vgpu);
2555         }
2556 }
2557
2558 static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu)
2559 {
2560         struct intel_gvt_partial_pte *pos, *next;
2561
2562         list_for_each_entry_safe(pos, next,
2563                                  &vgpu->gtt.ggtt_mm->ggtt_mm.partial_pte_list,
2564                                  list) {
2565                 gvt_dbg_mm("partial PTE update on hold 0x%lx : 0x%llx\n",
2566                         pos->offset, pos->data);
2567                 kfree(pos);
2568         }
2569         intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm);
2570         vgpu->gtt.ggtt_mm = NULL;
2571 }
2572
2573 /**
2574  * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2575  * @vgpu: a vGPU
2576  *
2577  * This function is used to clean up per-vGPU graphics memory virtualization
2578  * components.
2579  *
2580  * Returns:
2581  * Zero on success, error code if failed.
2582  */
2583 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2584 {
2585         intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2586         intel_vgpu_destroy_ggtt_mm(vgpu);
2587         release_scratch_page_tree(vgpu);
2588 }
2589
2590 static void clean_spt_oos(struct intel_gvt *gvt)
2591 {
2592         struct intel_gvt_gtt *gtt = &gvt->gtt;
2593         struct list_head *pos, *n;
2594         struct intel_vgpu_oos_page *oos_page;
2595
2596         WARN(!list_empty(&gtt->oos_page_use_list_head),
2597                 "someone is still using oos page\n");
2598
2599         list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
2600                 oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2601                 list_del(&oos_page->list);
2602                 free_page((unsigned long)oos_page->mem);
2603                 kfree(oos_page);
2604         }
2605 }
2606
2607 static int setup_spt_oos(struct intel_gvt *gvt)
2608 {
2609         struct intel_gvt_gtt *gtt = &gvt->gtt;
2610         struct intel_vgpu_oos_page *oos_page;
2611         int i;
2612         int ret;
2613
2614         INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
2615         INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
2616
2617         for (i = 0; i < preallocated_oos_pages; i++) {
2618                 oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2619                 if (!oos_page) {
2620                         ret = -ENOMEM;
2621                         goto fail;
2622                 }
2623                 oos_page->mem = (void *)__get_free_pages(GFP_KERNEL, 0);
2624                 if (!oos_page->mem) {
2625                         ret = -ENOMEM;
2626                         kfree(oos_page);
2627                         goto fail;
2628                 }
2629
2630                 INIT_LIST_HEAD(&oos_page->list);
2631                 INIT_LIST_HEAD(&oos_page->vm_list);
2632                 oos_page->id = i;
2633                 list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
2634         }
2635
2636         gvt_dbg_mm("%d oos pages preallocated\n", i);
2637
2638         return 0;
2639 fail:
2640         clean_spt_oos(gvt);
2641         return ret;
2642 }
2643
2644 /**
2645  * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2646  * @vgpu: a vGPU
2647  * @pdps: pdp root array
2648  *
2649  * This function is used to find a PPGTT mm object from mm object pool
2650  *
2651  * Returns:
2652  * pointer to mm object on success, NULL if failed.
2653  */
2654 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2655                 u64 pdps[])
2656 {
2657         struct intel_vgpu_mm *mm;
2658         struct list_head *pos;
2659
2660         list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) {
2661                 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2662
2663                 switch (mm->ppgtt_mm.root_entry_type) {
2664                 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2665                         if (pdps[0] == mm->ppgtt_mm.guest_pdps[0])
2666                                 return mm;
2667                         break;
2668                 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2669                         if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps,
2670                                     sizeof(mm->ppgtt_mm.guest_pdps)))
2671                                 return mm;
2672                         break;
2673                 default:
2674                         GEM_BUG_ON(1);
2675                 }
2676         }
2677         return NULL;
2678 }
2679
2680 /**
2681  * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object.
2682  * @vgpu: a vGPU
2683  * @root_entry_type: ppgtt root entry type
2684  * @pdps: guest pdps
2685  *
2686  * This function is used to find or create a PPGTT mm object from a guest.
2687  *
2688  * Returns:
2689  * Zero on success, negative error code if failed.
2690  */
2691 struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu,
2692                 enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
2693 {
2694         struct intel_vgpu_mm *mm;
2695
2696         mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2697         if (mm) {
2698                 intel_vgpu_mm_get(mm);
2699         } else {
2700                 mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps);
2701                 if (IS_ERR(mm))
2702                         gvt_vgpu_err("fail to create mm\n");
2703         }
2704         return mm;
2705 }
2706
2707 /**
2708  * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object.
2709  * @vgpu: a vGPU
2710  * @pdps: guest pdps
2711  *
2712  * This function is used to find a PPGTT mm object from a guest and destroy it.
2713  *
2714  * Returns:
2715  * Zero on success, negative error code if failed.
2716  */
2717 int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[])
2718 {
2719         struct intel_vgpu_mm *mm;
2720
2721         mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2722         if (!mm) {
2723                 gvt_vgpu_err("fail to find ppgtt instance.\n");
2724                 return -EINVAL;
2725         }
2726         intel_vgpu_mm_put(mm);
2727         return 0;
2728 }
2729
2730 /**
2731  * intel_gvt_init_gtt - initialize mm components of a GVT device
2732  * @gvt: GVT device
2733  *
2734  * This function is called at the initialization stage, to initialize
2735  * the mm components of a GVT device.
2736  *
2737  * Returns:
2738  * zero on success, negative error code if failed.
2739  */
2740 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2741 {
2742         int ret;
2743         void *page;
2744         struct device *dev = &gvt->gt->i915->drm.pdev->dev;
2745         dma_addr_t daddr;
2746
2747         gvt_dbg_core("init gtt\n");
2748
2749         gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2750         gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2751
2752         page = (void *)get_zeroed_page(GFP_KERNEL);
2753         if (!page) {
2754                 gvt_err("fail to allocate scratch ggtt page\n");
2755                 return -ENOMEM;
2756         }
2757
2758         daddr = dma_map_page(dev, virt_to_page(page), 0,
2759                         4096, PCI_DMA_BIDIRECTIONAL);
2760         if (dma_mapping_error(dev, daddr)) {
2761                 gvt_err("fail to dmamap scratch ggtt page\n");
2762                 __free_page(virt_to_page(page));
2763                 return -ENOMEM;
2764         }
2765
2766         gvt->gtt.scratch_page = virt_to_page(page);
2767         gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2768
2769         if (enable_out_of_sync) {
2770                 ret = setup_spt_oos(gvt);
2771                 if (ret) {
2772                         gvt_err("fail to initialize SPT oos\n");
2773                         dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2774                         __free_page(gvt->gtt.scratch_page);
2775                         return ret;
2776                 }
2777         }
2778         INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head);
2779         mutex_init(&gvt->gtt.ppgtt_mm_lock);
2780         return 0;
2781 }
2782
2783 /**
2784  * intel_gvt_clean_gtt - clean up mm components of a GVT device
2785  * @gvt: GVT device
2786  *
2787  * This function is called at the driver unloading stage, to clean up the
2788  * the mm components of a GVT device.
2789  *
2790  */
2791 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2792 {
2793         struct device *dev = &gvt->gt->i915->drm.pdev->dev;
2794         dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn <<
2795                                         I915_GTT_PAGE_SHIFT);
2796
2797         dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2798
2799         __free_page(gvt->gtt.scratch_page);
2800
2801         if (enable_out_of_sync)
2802                 clean_spt_oos(gvt);
2803 }
2804
2805 /**
2806  * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances
2807  * @vgpu: a vGPU
2808  *
2809  * This function is called when invalidate all PPGTT instances of a vGPU.
2810  *
2811  */
2812 void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu)
2813 {
2814         struct list_head *pos, *n;
2815         struct intel_vgpu_mm *mm;
2816
2817         list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2818                 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2819                 if (mm->type == INTEL_GVT_MM_PPGTT) {
2820                         mutex_lock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2821                         list_del_init(&mm->ppgtt_mm.lru_list);
2822                         mutex_unlock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2823                         if (mm->ppgtt_mm.shadowed)
2824                                 invalidate_ppgtt_mm(mm);
2825                 }
2826         }
2827 }
2828
2829 /**
2830  * intel_vgpu_reset_ggtt - reset the GGTT entry
2831  * @vgpu: a vGPU
2832  * @invalidate_old: invalidate old entries
2833  *
2834  * This function is called at the vGPU create stage
2835  * to reset all the GGTT entries.
2836  *
2837  */
2838 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old)
2839 {
2840         struct intel_gvt *gvt = vgpu->gvt;
2841         struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2842         struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE};
2843         struct intel_gvt_gtt_entry old_entry;
2844         u32 index;
2845         u32 num_entries;
2846
2847         pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn);
2848         pte_ops->set_present(&entry);
2849
2850         index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2851         num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2852         while (num_entries--) {
2853                 if (invalidate_old) {
2854                         ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2855                         ggtt_invalidate_pte(vgpu, &old_entry);
2856                 }
2857                 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2858         }
2859
2860         index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2861         num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2862         while (num_entries--) {
2863                 if (invalidate_old) {
2864                         ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2865                         ggtt_invalidate_pte(vgpu, &old_entry);
2866                 }
2867                 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2868         }
2869
2870         ggtt_invalidate(gvt->gt);
2871 }
2872
2873 /**
2874  * intel_gvt_restore_ggtt - restore all vGPU's ggtt entries
2875  * @gvt: intel gvt device
2876  *
2877  * This function is called at driver resume stage to restore
2878  * GGTT entries of every vGPU.
2879  *
2880  */
2881 void intel_gvt_restore_ggtt(struct intel_gvt *gvt)
2882 {
2883         struct intel_vgpu *vgpu;
2884         struct intel_vgpu_mm *mm;
2885         int id;
2886         gen8_pte_t pte;
2887         u32 idx, num_low, num_hi, offset;
2888
2889         /* Restore dirty host ggtt for all vGPUs */
2890         idr_for_each_entry(&(gvt)->vgpu_idr, vgpu, id) {
2891                 mm = vgpu->gtt.ggtt_mm;
2892
2893                 num_low = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2894                 offset = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2895                 for (idx = 0; idx < num_low; idx++) {
2896                         pte = mm->ggtt_mm.host_ggtt_aperture[idx];
2897                         if (pte & _PAGE_PRESENT)
2898                                 write_pte64(vgpu->gvt->gt->ggtt, offset + idx, pte);
2899                 }
2900
2901                 num_hi = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2902                 offset = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2903                 for (idx = 0; idx < num_hi; idx++) {
2904                         pte = mm->ggtt_mm.host_ggtt_hidden[idx];
2905                         if (pte & _PAGE_PRESENT)
2906                                 write_pte64(vgpu->gvt->gt->ggtt, offset + idx, pte);
2907                 }
2908         }
2909 }