GNU Linux-libre 5.10.215-gnu1
[releases.git] / drivers / gpu / drm / i915 / gvt / cmd_parser.c
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Ke Yu
25  *    Kevin Tian <kevin.tian@intel.com>
26  *    Zhiyuan Lv <zhiyuan.lv@intel.com>
27  *
28  * Contributors:
29  *    Min He <min.he@intel.com>
30  *    Ping Gao <ping.a.gao@intel.com>
31  *    Tina Zhang <tina.zhang@intel.com>
32  *    Yulei Zhang <yulei.zhang@intel.com>
33  *    Zhi Wang <zhi.a.wang@intel.com>
34  *
35  */
36
37 #include <linux/slab.h>
38
39 #include "i915_drv.h"
40 #include "gt/intel_ring.h"
41 #include "gvt.h"
42 #include "i915_pvinfo.h"
43 #include "trace.h"
44
45 #define INVALID_OP    (~0U)
46
47 #define OP_LEN_MI           9
48 #define OP_LEN_2D           10
49 #define OP_LEN_3D_MEDIA     16
50 #define OP_LEN_MFX_VC       16
51 #define OP_LEN_VEBOX        16
52
53 #define CMD_TYPE(cmd)   (((cmd) >> 29) & 7)
54
55 struct sub_op_bits {
56         int hi;
57         int low;
58 };
59 struct decode_info {
60         const char *name;
61         int op_len;
62         int nr_sub_op;
63         const struct sub_op_bits *sub_op;
64 };
65
66 #define   MAX_CMD_BUDGET                        0x7fffffff
67 #define   MI_WAIT_FOR_PLANE_C_FLIP_PENDING      (1<<15)
68 #define   MI_WAIT_FOR_PLANE_B_FLIP_PENDING      (1<<9)
69 #define   MI_WAIT_FOR_PLANE_A_FLIP_PENDING      (1<<1)
70
71 #define   MI_WAIT_FOR_SPRITE_C_FLIP_PENDING      (1<<20)
72 #define   MI_WAIT_FOR_SPRITE_B_FLIP_PENDING      (1<<10)
73 #define   MI_WAIT_FOR_SPRITE_A_FLIP_PENDING      (1<<2)
74
75 /* Render Command Map */
76
77 /* MI_* command Opcode (28:23) */
78 #define OP_MI_NOOP                          0x0
79 #define OP_MI_SET_PREDICATE                 0x1  /* HSW+ */
80 #define OP_MI_USER_INTERRUPT                0x2
81 #define OP_MI_WAIT_FOR_EVENT                0x3
82 #define OP_MI_FLUSH                         0x4
83 #define OP_MI_ARB_CHECK                     0x5
84 #define OP_MI_RS_CONTROL                    0x6  /* HSW+ */
85 #define OP_MI_REPORT_HEAD                   0x7
86 #define OP_MI_ARB_ON_OFF                    0x8
87 #define OP_MI_URB_ATOMIC_ALLOC              0x9  /* HSW+ */
88 #define OP_MI_BATCH_BUFFER_END              0xA
89 #define OP_MI_SUSPEND_FLUSH                 0xB
90 #define OP_MI_PREDICATE                     0xC  /* IVB+ */
91 #define OP_MI_TOPOLOGY_FILTER               0xD  /* IVB+ */
92 #define OP_MI_SET_APPID                     0xE  /* IVB+ */
93 #define OP_MI_RS_CONTEXT                    0xF  /* HSW+ */
94 #define OP_MI_LOAD_SCAN_LINES_INCL          0x12 /* HSW+ */
95 #define OP_MI_DISPLAY_FLIP                  0x14
96 #define OP_MI_SEMAPHORE_MBOX                0x16
97 #define OP_MI_SET_CONTEXT                   0x18
98 #define OP_MI_MATH                          0x1A
99 #define OP_MI_URB_CLEAR                     0x19
100 #define OP_MI_SEMAPHORE_SIGNAL              0x1B  /* BDW+ */
101 #define OP_MI_SEMAPHORE_WAIT                0x1C  /* BDW+ */
102
103 #define OP_MI_STORE_DATA_IMM                0x20
104 #define OP_MI_STORE_DATA_INDEX              0x21
105 #define OP_MI_LOAD_REGISTER_IMM             0x22
106 #define OP_MI_UPDATE_GTT                    0x23
107 #define OP_MI_STORE_REGISTER_MEM            0x24
108 #define OP_MI_FLUSH_DW                      0x26
109 #define OP_MI_CLFLUSH                       0x27
110 #define OP_MI_REPORT_PERF_COUNT             0x28
111 #define OP_MI_LOAD_REGISTER_MEM             0x29  /* HSW+ */
112 #define OP_MI_LOAD_REGISTER_REG             0x2A  /* HSW+ */
113 #define OP_MI_RS_STORE_DATA_IMM             0x2B  /* HSW+ */
114 #define OP_MI_LOAD_URB_MEM                  0x2C  /* HSW+ */
115 #define OP_MI_STORE_URM_MEM                 0x2D  /* HSW+ */
116 #define OP_MI_2E                            0x2E  /* BDW+ */
117 #define OP_MI_2F                            0x2F  /* BDW+ */
118 #define OP_MI_BATCH_BUFFER_START            0x31
119
120 /* Bit definition for dword 0 */
121 #define _CMDBIT_BB_START_IN_PPGTT       (1UL << 8)
122
123 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END  0x36
124
125 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2))
126 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U))
127 #define BATCH_BUFFER_ADR_SPACE_BIT(x)   (((x) >> 8) & 1U)
128 #define BATCH_BUFFER_2ND_LEVEL_BIT(x)   ((x) >> 22 & 1U)
129
130 /* 2D command: Opcode (28:22) */
131 #define OP_2D(x)    ((2<<7) | x)
132
133 #define OP_XY_SETUP_BLT                             OP_2D(0x1)
134 #define OP_XY_SETUP_CLIP_BLT                        OP_2D(0x3)
135 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT             OP_2D(0x11)
136 #define OP_XY_PIXEL_BLT                             OP_2D(0x24)
137 #define OP_XY_SCANLINES_BLT                         OP_2D(0x25)
138 #define OP_XY_TEXT_BLT                              OP_2D(0x26)
139 #define OP_XY_TEXT_IMMEDIATE_BLT                    OP_2D(0x31)
140 #define OP_XY_COLOR_BLT                             OP_2D(0x50)
141 #define OP_XY_PAT_BLT                               OP_2D(0x51)
142 #define OP_XY_MONO_PAT_BLT                          OP_2D(0x52)
143 #define OP_XY_SRC_COPY_BLT                          OP_2D(0x53)
144 #define OP_XY_MONO_SRC_COPY_BLT                     OP_2D(0x54)
145 #define OP_XY_FULL_BLT                              OP_2D(0x55)
146 #define OP_XY_FULL_MONO_SRC_BLT                     OP_2D(0x56)
147 #define OP_XY_FULL_MONO_PATTERN_BLT                 OP_2D(0x57)
148 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT        OP_2D(0x58)
149 #define OP_XY_MONO_PAT_FIXED_BLT                    OP_2D(0x59)
150 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT           OP_2D(0x71)
151 #define OP_XY_PAT_BLT_IMMEDIATE                     OP_2D(0x72)
152 #define OP_XY_SRC_COPY_CHROMA_BLT                   OP_2D(0x73)
153 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT            OP_2D(0x74)
154 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT   OP_2D(0x75)
155 #define OP_XY_PAT_CHROMA_BLT                        OP_2D(0x76)
156 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE              OP_2D(0x77)
157
158 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */
159 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \
160         ((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode))
161
162 #define OP_STATE_PREFETCH                       OP_3D_MEDIA(0x0, 0x0, 0x03)
163
164 #define OP_STATE_BASE_ADDRESS                   OP_3D_MEDIA(0x0, 0x1, 0x01)
165 #define OP_STATE_SIP                            OP_3D_MEDIA(0x0, 0x1, 0x02)
166 #define OP_3D_MEDIA_0_1_4                       OP_3D_MEDIA(0x0, 0x1, 0x04)
167 #define OP_SWTESS_BASE_ADDRESS                  OP_3D_MEDIA(0x0, 0x1, 0x03)
168
169 #define OP_3DSTATE_VF_STATISTICS_GM45           OP_3D_MEDIA(0x1, 0x0, 0x0B)
170
171 #define OP_PIPELINE_SELECT                      OP_3D_MEDIA(0x1, 0x1, 0x04)
172
173 #define OP_MEDIA_VFE_STATE                      OP_3D_MEDIA(0x2, 0x0, 0x0)
174 #define OP_MEDIA_CURBE_LOAD                     OP_3D_MEDIA(0x2, 0x0, 0x1)
175 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD      OP_3D_MEDIA(0x2, 0x0, 0x2)
176 #define OP_MEDIA_GATEWAY_STATE                  OP_3D_MEDIA(0x2, 0x0, 0x3)
177 #define OP_MEDIA_STATE_FLUSH                    OP_3D_MEDIA(0x2, 0x0, 0x4)
178 #define OP_MEDIA_POOL_STATE                     OP_3D_MEDIA(0x2, 0x0, 0x5)
179
180 #define OP_MEDIA_OBJECT                         OP_3D_MEDIA(0x2, 0x1, 0x0)
181 #define OP_MEDIA_OBJECT_PRT                     OP_3D_MEDIA(0x2, 0x1, 0x2)
182 #define OP_MEDIA_OBJECT_WALKER                  OP_3D_MEDIA(0x2, 0x1, 0x3)
183 #define OP_GPGPU_WALKER                         OP_3D_MEDIA(0x2, 0x1, 0x5)
184
185 #define OP_3DSTATE_CLEAR_PARAMS                 OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */
186 #define OP_3DSTATE_DEPTH_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */
187 #define OP_3DSTATE_STENCIL_BUFFER               OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */
188 #define OP_3DSTATE_HIER_DEPTH_BUFFER            OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */
189 #define OP_3DSTATE_VERTEX_BUFFERS               OP_3D_MEDIA(0x3, 0x0, 0x08)
190 #define OP_3DSTATE_VERTEX_ELEMENTS              OP_3D_MEDIA(0x3, 0x0, 0x09)
191 #define OP_3DSTATE_INDEX_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x0A)
192 #define OP_3DSTATE_VF_STATISTICS                OP_3D_MEDIA(0x3, 0x0, 0x0B)
193 #define OP_3DSTATE_VF                           OP_3D_MEDIA(0x3, 0x0, 0x0C)  /* HSW+ */
194 #define OP_3DSTATE_CC_STATE_POINTERS            OP_3D_MEDIA(0x3, 0x0, 0x0E)
195 #define OP_3DSTATE_SCISSOR_STATE_POINTERS       OP_3D_MEDIA(0x3, 0x0, 0x0F)
196 #define OP_3DSTATE_VS                           OP_3D_MEDIA(0x3, 0x0, 0x10)
197 #define OP_3DSTATE_GS                           OP_3D_MEDIA(0x3, 0x0, 0x11)
198 #define OP_3DSTATE_CLIP                         OP_3D_MEDIA(0x3, 0x0, 0x12)
199 #define OP_3DSTATE_SF                           OP_3D_MEDIA(0x3, 0x0, 0x13)
200 #define OP_3DSTATE_WM                           OP_3D_MEDIA(0x3, 0x0, 0x14)
201 #define OP_3DSTATE_CONSTANT_VS                  OP_3D_MEDIA(0x3, 0x0, 0x15)
202 #define OP_3DSTATE_CONSTANT_GS                  OP_3D_MEDIA(0x3, 0x0, 0x16)
203 #define OP_3DSTATE_CONSTANT_PS                  OP_3D_MEDIA(0x3, 0x0, 0x17)
204 #define OP_3DSTATE_SAMPLE_MASK                  OP_3D_MEDIA(0x3, 0x0, 0x18)
205 #define OP_3DSTATE_CONSTANT_HS                  OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */
206 #define OP_3DSTATE_CONSTANT_DS                  OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */
207 #define OP_3DSTATE_HS                           OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */
208 #define OP_3DSTATE_TE                           OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */
209 #define OP_3DSTATE_DS                           OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */
210 #define OP_3DSTATE_STREAMOUT                    OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */
211 #define OP_3DSTATE_SBE                          OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */
212 #define OP_3DSTATE_PS                           OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */
213 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */
214 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC   OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */
215 #define OP_3DSTATE_BLEND_STATE_POINTERS         OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */
216 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */
217 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */
218 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */
219 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */
220 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */
221 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */
222 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */
223 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */
224 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */
225 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */
226 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */
227 #define OP_3DSTATE_URB_VS                       OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */
228 #define OP_3DSTATE_URB_HS                       OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */
229 #define OP_3DSTATE_URB_DS                       OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */
230 #define OP_3DSTATE_URB_GS                       OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */
231 #define OP_3DSTATE_GATHER_CONSTANT_VS           OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */
232 #define OP_3DSTATE_GATHER_CONSTANT_GS           OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */
233 #define OP_3DSTATE_GATHER_CONSTANT_HS           OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */
234 #define OP_3DSTATE_GATHER_CONSTANT_DS           OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */
235 #define OP_3DSTATE_GATHER_CONSTANT_PS           OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */
236 #define OP_3DSTATE_DX9_CONSTANTF_VS             OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */
237 #define OP_3DSTATE_DX9_CONSTANTF_PS             OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */
238 #define OP_3DSTATE_DX9_CONSTANTI_VS             OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */
239 #define OP_3DSTATE_DX9_CONSTANTI_PS             OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */
240 #define OP_3DSTATE_DX9_CONSTANTB_VS             OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */
241 #define OP_3DSTATE_DX9_CONSTANTB_PS             OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */
242 #define OP_3DSTATE_DX9_LOCAL_VALID_VS           OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */
243 #define OP_3DSTATE_DX9_LOCAL_VALID_PS           OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */
244 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS       OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */
245 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS       OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */
246 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS        OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */
247 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS        OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */
248 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS        OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */
249 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS        OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */
250 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS        OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */
251
252 #define OP_3DSTATE_VF_INSTANCING                OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */
253 #define OP_3DSTATE_VF_SGVS                      OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */
254 #define OP_3DSTATE_VF_TOPOLOGY                  OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */
255 #define OP_3DSTATE_WM_CHROMAKEY                 OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */
256 #define OP_3DSTATE_PS_BLEND                     OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */
257 #define OP_3DSTATE_WM_DEPTH_STENCIL             OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */
258 #define OP_3DSTATE_PS_EXTRA                     OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */
259 #define OP_3DSTATE_RASTER                       OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */
260 #define OP_3DSTATE_SBE_SWIZ                     OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */
261 #define OP_3DSTATE_WM_HZ_OP                     OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */
262 #define OP_3DSTATE_COMPONENT_PACKING            OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */
263
264 #define OP_3DSTATE_DRAWING_RECTANGLE            OP_3D_MEDIA(0x3, 0x1, 0x00)
265 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0        OP_3D_MEDIA(0x3, 0x1, 0x02)
266 #define OP_3DSTATE_CHROMA_KEY                   OP_3D_MEDIA(0x3, 0x1, 0x04)
267 #define OP_SNB_3DSTATE_DEPTH_BUFFER             OP_3D_MEDIA(0x3, 0x1, 0x05)
268 #define OP_3DSTATE_POLY_STIPPLE_OFFSET          OP_3D_MEDIA(0x3, 0x1, 0x06)
269 #define OP_3DSTATE_POLY_STIPPLE_PATTERN         OP_3D_MEDIA(0x3, 0x1, 0x07)
270 #define OP_3DSTATE_LINE_STIPPLE                 OP_3D_MEDIA(0x3, 0x1, 0x08)
271 #define OP_3DSTATE_AA_LINE_PARAMS               OP_3D_MEDIA(0x3, 0x1, 0x0A)
272 #define OP_3DSTATE_GS_SVB_INDEX                 OP_3D_MEDIA(0x3, 0x1, 0x0B)
273 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1        OP_3D_MEDIA(0x3, 0x1, 0x0C)
274 #define OP_3DSTATE_MULTISAMPLE_BDW              OP_3D_MEDIA(0x3, 0x0, 0x0D)
275 #define OP_SNB_3DSTATE_STENCIL_BUFFER           OP_3D_MEDIA(0x3, 0x1, 0x0E)
276 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER        OP_3D_MEDIA(0x3, 0x1, 0x0F)
277 #define OP_SNB_3DSTATE_CLEAR_PARAMS             OP_3D_MEDIA(0x3, 0x1, 0x10)
278 #define OP_3DSTATE_MONOFILTER_SIZE              OP_3D_MEDIA(0x3, 0x1, 0x11)
279 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS       OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */
280 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS       OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */
281 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS       OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */
282 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS       OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */
283 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS       OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */
284 #define OP_3DSTATE_SO_DECL_LIST                 OP_3D_MEDIA(0x3, 0x1, 0x17)
285 #define OP_3DSTATE_SO_BUFFER                    OP_3D_MEDIA(0x3, 0x1, 0x18)
286 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC     OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */
287 #define OP_3DSTATE_GATHER_POOL_ALLOC            OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */
288 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */
289 #define OP_3DSTATE_SAMPLE_PATTERN               OP_3D_MEDIA(0x3, 0x1, 0x1C)
290 #define OP_PIPE_CONTROL                         OP_3D_MEDIA(0x3, 0x2, 0x00)
291 #define OP_3DPRIMITIVE                          OP_3D_MEDIA(0x3, 0x3, 0x00)
292
293 /* VCCP Command Parser */
294
295 /*
296  * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License)
297  * git://anongit.freedesktop.org/vaapi/intel-driver
298  * src/i965_defines.h
299  *
300  */
301
302 #define OP_MFX(pipeline, op, sub_opa, sub_opb)     \
303         (3 << 13 | \
304          (pipeline) << 11 | \
305          (op) << 8 | \
306          (sub_opa) << 5 | \
307          (sub_opb))
308
309 #define OP_MFX_PIPE_MODE_SELECT                    OP_MFX(2, 0, 0, 0)  /* ALL */
310 #define OP_MFX_SURFACE_STATE                       OP_MFX(2, 0, 0, 1)  /* ALL */
311 #define OP_MFX_PIPE_BUF_ADDR_STATE                 OP_MFX(2, 0, 0, 2)  /* ALL */
312 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 3)  /* ALL */
313 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 4)  /* ALL */
314 #define OP_2_0_0_5                                 OP_MFX(2, 0, 0, 5)  /* ALL */
315 #define OP_MFX_STATE_POINTER                       OP_MFX(2, 0, 0, 6)  /* ALL */
316 #define OP_MFX_QM_STATE                            OP_MFX(2, 0, 0, 7)  /* IVB+ */
317 #define OP_MFX_FQM_STATE                           OP_MFX(2, 0, 0, 8)  /* IVB+ */
318 #define OP_MFX_PAK_INSERT_OBJECT                   OP_MFX(2, 0, 2, 8)  /* IVB+ */
319 #define OP_MFX_STITCH_OBJECT                       OP_MFX(2, 0, 2, 0xA)  /* IVB+ */
320
321 #define OP_MFD_IT_OBJECT                           OP_MFX(2, 0, 1, 9) /* ALL */
322
323 #define OP_MFX_WAIT                                OP_MFX(1, 0, 0, 0) /* IVB+ */
324 #define OP_MFX_AVC_IMG_STATE                       OP_MFX(2, 1, 0, 0) /* ALL */
325 #define OP_MFX_AVC_QM_STATE                        OP_MFX(2, 1, 0, 1) /* ALL */
326 #define OP_MFX_AVC_DIRECTMODE_STATE                OP_MFX(2, 1, 0, 2) /* ALL */
327 #define OP_MFX_AVC_SLICE_STATE                     OP_MFX(2, 1, 0, 3) /* ALL */
328 #define OP_MFX_AVC_REF_IDX_STATE                   OP_MFX(2, 1, 0, 4) /* ALL */
329 #define OP_MFX_AVC_WEIGHTOFFSET_STATE              OP_MFX(2, 1, 0, 5) /* ALL */
330 #define OP_MFD_AVC_PICID_STATE                     OP_MFX(2, 1, 1, 5) /* HSW+ */
331 #define OP_MFD_AVC_DPB_STATE                       OP_MFX(2, 1, 1, 6) /* IVB+ */
332 #define OP_MFD_AVC_SLICEADDR                       OP_MFX(2, 1, 1, 7) /* IVB+ */
333 #define OP_MFD_AVC_BSD_OBJECT                      OP_MFX(2, 1, 1, 8) /* ALL */
334 #define OP_MFC_AVC_PAK_OBJECT                      OP_MFX(2, 1, 2, 9) /* ALL */
335
336 #define OP_MFX_VC1_PRED_PIPE_STATE                 OP_MFX(2, 2, 0, 1) /* ALL */
337 #define OP_MFX_VC1_DIRECTMODE_STATE                OP_MFX(2, 2, 0, 2) /* ALL */
338 #define OP_MFD_VC1_SHORT_PIC_STATE                 OP_MFX(2, 2, 1, 0) /* IVB+ */
339 #define OP_MFD_VC1_LONG_PIC_STATE                  OP_MFX(2, 2, 1, 1) /* IVB+ */
340 #define OP_MFD_VC1_BSD_OBJECT                      OP_MFX(2, 2, 1, 8) /* ALL */
341
342 #define OP_MFX_MPEG2_PIC_STATE                     OP_MFX(2, 3, 0, 0) /* ALL */
343 #define OP_MFX_MPEG2_QM_STATE                      OP_MFX(2, 3, 0, 1) /* ALL */
344 #define OP_MFD_MPEG2_BSD_OBJECT                    OP_MFX(2, 3, 1, 8) /* ALL */
345 #define OP_MFC_MPEG2_SLICEGROUP_STATE              OP_MFX(2, 3, 2, 3) /* ALL */
346 #define OP_MFC_MPEG2_PAK_OBJECT                    OP_MFX(2, 3, 2, 9) /* ALL */
347
348 #define OP_MFX_2_6_0_0                             OP_MFX(2, 6, 0, 0) /* IVB+ */
349 #define OP_MFX_2_6_0_8                             OP_MFX(2, 6, 0, 8) /* IVB+ */
350 #define OP_MFX_2_6_0_9                             OP_MFX(2, 6, 0, 9) /* IVB+ */
351
352 #define OP_MFX_JPEG_PIC_STATE                      OP_MFX(2, 7, 0, 0)
353 #define OP_MFX_JPEG_HUFF_TABLE_STATE               OP_MFX(2, 7, 0, 2)
354 #define OP_MFD_JPEG_BSD_OBJECT                     OP_MFX(2, 7, 1, 8)
355
356 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \
357         (3 << 13 | \
358          (pipeline) << 11 | \
359          (op) << 8 | \
360          (sub_opa) << 5 | \
361          (sub_opb))
362
363 #define OP_VEB_SURFACE_STATE                       OP_VEB(2, 4, 0, 0)
364 #define OP_VEB_STATE                               OP_VEB(2, 4, 0, 2)
365 #define OP_VEB_DNDI_IECP_STATE                     OP_VEB(2, 4, 0, 3)
366
367 struct parser_exec_state;
368
369 typedef int (*parser_cmd_handler)(struct parser_exec_state *s);
370
371 #define GVT_CMD_HASH_BITS   7
372
373 /* which DWords need address fix */
374 #define ADDR_FIX_1(x1)                  (1 << (x1))
375 #define ADDR_FIX_2(x1, x2)              (ADDR_FIX_1(x1) | ADDR_FIX_1(x2))
376 #define ADDR_FIX_3(x1, x2, x3)          (ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3))
377 #define ADDR_FIX_4(x1, x2, x3, x4)      (ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4))
378 #define ADDR_FIX_5(x1, x2, x3, x4, x5)  (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5))
379
380 #define DWORD_FIELD(dword, end, start) \
381         FIELD_GET(GENMASK(end, start), cmd_val(s, dword))
382
383 #define OP_LENGTH_BIAS 2
384 #define CMD_LEN(value)  (value + OP_LENGTH_BIAS)
385
386 static int gvt_check_valid_cmd_length(int len, int valid_len)
387 {
388         if (valid_len != len) {
389                 gvt_err("len is not valid:  len=%u  valid_len=%u\n",
390                         len, valid_len);
391                 return -EFAULT;
392         }
393         return 0;
394 }
395
396 struct cmd_info {
397         const char *name;
398         u32 opcode;
399
400 #define F_LEN_MASK      3U
401 #define F_LEN_CONST  1U
402 #define F_LEN_VAR    0U
403 /* value is const although LEN maybe variable */
404 #define F_LEN_VAR_FIXED    (1<<1)
405
406 /*
407  * command has its own ip advance logic
408  * e.g. MI_BATCH_START, MI_BATCH_END
409  */
410 #define F_IP_ADVANCE_CUSTOM (1<<2)
411         u32 flag;
412
413 #define R_RCS   BIT(RCS0)
414 #define R_VCS1  BIT(VCS0)
415 #define R_VCS2  BIT(VCS1)
416 #define R_VCS   (R_VCS1 | R_VCS2)
417 #define R_BCS   BIT(BCS0)
418 #define R_VECS  BIT(VECS0)
419 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS)
420         /* rings that support this cmd: BLT/RCS/VCS/VECS */
421         u16 rings;
422
423         /* devices that support this cmd: SNB/IVB/HSW/... */
424         u16 devices;
425
426         /* which DWords are address that need fix up.
427          * bit 0 means a 32-bit non address operand in command
428          * bit 1 means address operand, which could be 32-bit
429          * or 64-bit depending on different architectures.(
430          * defined by "gmadr_bytes_in_cmd" in intel_gvt.
431          * No matter the address length, each address only takes
432          * one bit in the bitmap.
433          */
434         u16 addr_bitmap;
435
436         /* flag == F_LEN_CONST : command length
437          * flag == F_LEN_VAR : length bias bits
438          * Note: length is in DWord
439          */
440         u32 len;
441
442         parser_cmd_handler handler;
443
444         /* valid length in DWord */
445         u32 valid_len;
446 };
447
448 struct cmd_entry {
449         struct hlist_node hlist;
450         const struct cmd_info *info;
451 };
452
453 enum {
454         RING_BUFFER_INSTRUCTION,
455         BATCH_BUFFER_INSTRUCTION,
456         BATCH_BUFFER_2ND_LEVEL,
457 };
458
459 enum {
460         GTT_BUFFER,
461         PPGTT_BUFFER
462 };
463
464 struct parser_exec_state {
465         struct intel_vgpu *vgpu;
466         const struct intel_engine_cs *engine;
467
468         int buf_type;
469
470         /* batch buffer address type */
471         int buf_addr_type;
472
473         /* graphics memory address of ring buffer start */
474         unsigned long ring_start;
475         unsigned long ring_size;
476         unsigned long ring_head;
477         unsigned long ring_tail;
478
479         /* instruction graphics memory address */
480         unsigned long ip_gma;
481
482         /* mapped va of the instr_gma */
483         void *ip_va;
484         void *rb_va;
485
486         void *ret_bb_va;
487         /* next instruction when return from  batch buffer to ring buffer */
488         unsigned long ret_ip_gma_ring;
489
490         /* next instruction when return from 2nd batch buffer to batch buffer */
491         unsigned long ret_ip_gma_bb;
492
493         /* batch buffer address type (GTT or PPGTT)
494          * used when ret from 2nd level batch buffer
495          */
496         int saved_buf_addr_type;
497         bool is_ctx_wa;
498
499         const struct cmd_info *info;
500
501         struct intel_vgpu_workload *workload;
502 };
503
504 #define gmadr_dw_number(s)      \
505         (s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2)
506
507 static unsigned long bypass_scan_mask = 0;
508
509 /* ring ALL, type = 0 */
510 static const struct sub_op_bits sub_op_mi[] = {
511         {31, 29},
512         {28, 23},
513 };
514
515 static const struct decode_info decode_info_mi = {
516         "MI",
517         OP_LEN_MI,
518         ARRAY_SIZE(sub_op_mi),
519         sub_op_mi,
520 };
521
522 /* ring RCS, command type 2 */
523 static const struct sub_op_bits sub_op_2d[] = {
524         {31, 29},
525         {28, 22},
526 };
527
528 static const struct decode_info decode_info_2d = {
529         "2D",
530         OP_LEN_2D,
531         ARRAY_SIZE(sub_op_2d),
532         sub_op_2d,
533 };
534
535 /* ring RCS, command type 3 */
536 static const struct sub_op_bits sub_op_3d_media[] = {
537         {31, 29},
538         {28, 27},
539         {26, 24},
540         {23, 16},
541 };
542
543 static const struct decode_info decode_info_3d_media = {
544         "3D_Media",
545         OP_LEN_3D_MEDIA,
546         ARRAY_SIZE(sub_op_3d_media),
547         sub_op_3d_media,
548 };
549
550 /* ring VCS, command type 3 */
551 static const struct sub_op_bits sub_op_mfx_vc[] = {
552         {31, 29},
553         {28, 27},
554         {26, 24},
555         {23, 21},
556         {20, 16},
557 };
558
559 static const struct decode_info decode_info_mfx_vc = {
560         "MFX_VC",
561         OP_LEN_MFX_VC,
562         ARRAY_SIZE(sub_op_mfx_vc),
563         sub_op_mfx_vc,
564 };
565
566 /* ring VECS, command type 3 */
567 static const struct sub_op_bits sub_op_vebox[] = {
568         {31, 29},
569         {28, 27},
570         {26, 24},
571         {23, 21},
572         {20, 16},
573 };
574
575 static const struct decode_info decode_info_vebox = {
576         "VEBOX",
577         OP_LEN_VEBOX,
578         ARRAY_SIZE(sub_op_vebox),
579         sub_op_vebox,
580 };
581
582 static const struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = {
583         [RCS0] = {
584                 &decode_info_mi,
585                 NULL,
586                 NULL,
587                 &decode_info_3d_media,
588                 NULL,
589                 NULL,
590                 NULL,
591                 NULL,
592         },
593
594         [VCS0] = {
595                 &decode_info_mi,
596                 NULL,
597                 NULL,
598                 &decode_info_mfx_vc,
599                 NULL,
600                 NULL,
601                 NULL,
602                 NULL,
603         },
604
605         [BCS0] = {
606                 &decode_info_mi,
607                 NULL,
608                 &decode_info_2d,
609                 NULL,
610                 NULL,
611                 NULL,
612                 NULL,
613                 NULL,
614         },
615
616         [VECS0] = {
617                 &decode_info_mi,
618                 NULL,
619                 NULL,
620                 &decode_info_vebox,
621                 NULL,
622                 NULL,
623                 NULL,
624                 NULL,
625         },
626
627         [VCS1] = {
628                 &decode_info_mi,
629                 NULL,
630                 NULL,
631                 &decode_info_mfx_vc,
632                 NULL,
633                 NULL,
634                 NULL,
635                 NULL,
636         },
637 };
638
639 static inline u32 get_opcode(u32 cmd, const struct intel_engine_cs *engine)
640 {
641         const struct decode_info *d_info;
642
643         d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)];
644         if (d_info == NULL)
645                 return INVALID_OP;
646
647         return cmd >> (32 - d_info->op_len);
648 }
649
650 static inline const struct cmd_info *
651 find_cmd_entry(struct intel_gvt *gvt, unsigned int opcode,
652                const struct intel_engine_cs *engine)
653 {
654         struct cmd_entry *e;
655
656         hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) {
657                 if (opcode == e->info->opcode &&
658                     e->info->rings & engine->mask)
659                         return e->info;
660         }
661         return NULL;
662 }
663
664 static inline const struct cmd_info *
665 get_cmd_info(struct intel_gvt *gvt, u32 cmd,
666              const struct intel_engine_cs *engine)
667 {
668         u32 opcode;
669
670         opcode = get_opcode(cmd, engine);
671         if (opcode == INVALID_OP)
672                 return NULL;
673
674         return find_cmd_entry(gvt, opcode, engine);
675 }
676
677 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low)
678 {
679         return (cmd >> low) & ((1U << (hi - low + 1)) - 1);
680 }
681
682 static inline void print_opcode(u32 cmd, const struct intel_engine_cs *engine)
683 {
684         const struct decode_info *d_info;
685         int i;
686
687         d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)];
688         if (d_info == NULL)
689                 return;
690
691         gvt_dbg_cmd("opcode=0x%x %s sub_ops:",
692                         cmd >> (32 - d_info->op_len), d_info->name);
693
694         for (i = 0; i < d_info->nr_sub_op; i++)
695                 pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi,
696                                         d_info->sub_op[i].low));
697
698         pr_err("\n");
699 }
700
701 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index)
702 {
703         return s->ip_va + (index << 2);
704 }
705
706 static inline u32 cmd_val(struct parser_exec_state *s, int index)
707 {
708         return *cmd_ptr(s, index);
709 }
710
711 static void parser_exec_state_dump(struct parser_exec_state *s)
712 {
713         int cnt = 0;
714         int i;
715
716         gvt_dbg_cmd("  vgpu%d RING%s: ring_start(%08lx) ring_end(%08lx)"
717                     " ring_head(%08lx) ring_tail(%08lx)\n",
718                     s->vgpu->id, s->engine->name,
719                     s->ring_start, s->ring_start + s->ring_size,
720                     s->ring_head, s->ring_tail);
721
722         gvt_dbg_cmd("  %s %s ip_gma(%08lx) ",
723                         s->buf_type == RING_BUFFER_INSTRUCTION ?
724                         "RING_BUFFER" : "BATCH_BUFFER",
725                         s->buf_addr_type == GTT_BUFFER ?
726                         "GTT" : "PPGTT", s->ip_gma);
727
728         if (s->ip_va == NULL) {
729                 gvt_dbg_cmd(" ip_va(NULL)");
730                 return;
731         }
732
733         gvt_dbg_cmd("  ip_va=%p: %08x %08x %08x %08x\n",
734                         s->ip_va, cmd_val(s, 0), cmd_val(s, 1),
735                         cmd_val(s, 2), cmd_val(s, 3));
736
737         print_opcode(cmd_val(s, 0), s->engine);
738
739         s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12);
740
741         while (cnt < 1024) {
742                 gvt_dbg_cmd("ip_va=%p: ", s->ip_va);
743                 for (i = 0; i < 8; i++)
744                         gvt_dbg_cmd("%08x ", cmd_val(s, i));
745                 gvt_dbg_cmd("\n");
746
747                 s->ip_va += 8 * sizeof(u32);
748                 cnt += 8;
749         }
750 }
751
752 static inline void update_ip_va(struct parser_exec_state *s)
753 {
754         unsigned long len = 0;
755
756         if (WARN_ON(s->ring_head == s->ring_tail))
757                 return;
758
759         if (s->buf_type == RING_BUFFER_INSTRUCTION) {
760                 unsigned long ring_top = s->ring_start + s->ring_size;
761
762                 if (s->ring_head > s->ring_tail) {
763                         if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top)
764                                 len = (s->ip_gma - s->ring_head);
765                         else if (s->ip_gma >= s->ring_start &&
766                                         s->ip_gma <= s->ring_tail)
767                                 len = (ring_top - s->ring_head) +
768                                         (s->ip_gma - s->ring_start);
769                 } else
770                         len = (s->ip_gma - s->ring_head);
771
772                 s->ip_va = s->rb_va + len;
773         } else {/* shadow batch buffer */
774                 s->ip_va = s->ret_bb_va;
775         }
776 }
777
778 static inline int ip_gma_set(struct parser_exec_state *s,
779                 unsigned long ip_gma)
780 {
781         WARN_ON(!IS_ALIGNED(ip_gma, 4));
782
783         s->ip_gma = ip_gma;
784         update_ip_va(s);
785         return 0;
786 }
787
788 static inline int ip_gma_advance(struct parser_exec_state *s,
789                 unsigned int dw_len)
790 {
791         s->ip_gma += (dw_len << 2);
792
793         if (s->buf_type == RING_BUFFER_INSTRUCTION) {
794                 if (s->ip_gma >= s->ring_start + s->ring_size)
795                         s->ip_gma -= s->ring_size;
796                 update_ip_va(s);
797         } else {
798                 s->ip_va += (dw_len << 2);
799         }
800
801         return 0;
802 }
803
804 static inline int get_cmd_length(const struct cmd_info *info, u32 cmd)
805 {
806         if ((info->flag & F_LEN_MASK) == F_LEN_CONST)
807                 return info->len;
808         else
809                 return (cmd & ((1U << info->len) - 1)) + 2;
810         return 0;
811 }
812
813 static inline int cmd_length(struct parser_exec_state *s)
814 {
815         return get_cmd_length(s->info, cmd_val(s, 0));
816 }
817
818 /* do not remove this, some platform may need clflush here */
819 #define patch_value(s, addr, val) do { \
820         *addr = val; \
821 } while (0)
822
823 static bool is_shadowed_mmio(unsigned int offset)
824 {
825         bool ret = false;
826
827         if ((offset == 0x2168) || /*BB current head register UDW */
828             (offset == 0x2140) || /*BB current header register */
829             (offset == 0x211c) || /*second BB header register UDW */
830             (offset == 0x2114)) { /*second BB header register UDW */
831                 ret = true;
832         }
833         return ret;
834 }
835
836 static inline bool is_force_nonpriv_mmio(unsigned int offset)
837 {
838         return (offset >= 0x24d0 && offset < 0x2500);
839 }
840
841 static int force_nonpriv_reg_handler(struct parser_exec_state *s,
842                 unsigned int offset, unsigned int index, char *cmd)
843 {
844         struct intel_gvt *gvt = s->vgpu->gvt;
845         unsigned int data;
846         u32 ring_base;
847         u32 nopid;
848
849         if (!strcmp(cmd, "lri"))
850                 data = cmd_val(s, index + 1);
851         else {
852                 gvt_err("Unexpected forcenonpriv 0x%x write from cmd %s\n",
853                         offset, cmd);
854                 return -EINVAL;
855         }
856
857         ring_base = s->engine->mmio_base;
858         nopid = i915_mmio_reg_offset(RING_NOPID(ring_base));
859
860         if (!intel_gvt_in_force_nonpriv_whitelist(gvt, data) &&
861                         data != nopid) {
862                 gvt_err("Unexpected forcenonpriv 0x%x LRI write, value=0x%x\n",
863                         offset, data);
864                 patch_value(s, cmd_ptr(s, index), nopid);
865                 return 0;
866         }
867         return 0;
868 }
869
870 static inline bool is_mocs_mmio(unsigned int offset)
871 {
872         return ((offset >= 0xc800) && (offset <= 0xcff8)) ||
873                 ((offset >= 0xb020) && (offset <= 0xb0a0));
874 }
875
876 static int mocs_cmd_reg_handler(struct parser_exec_state *s,
877                                 unsigned int offset, unsigned int index)
878 {
879         if (!is_mocs_mmio(offset))
880                 return -EINVAL;
881         vgpu_vreg(s->vgpu, offset) = cmd_val(s, index + 1);
882         return 0;
883 }
884
885 static int is_cmd_update_pdps(unsigned int offset,
886                               struct parser_exec_state *s)
887 {
888         u32 base = s->workload->engine->mmio_base;
889         return i915_mmio_reg_equal(_MMIO(offset), GEN8_RING_PDP_UDW(base, 0));
890 }
891
892 static int cmd_pdp_mmio_update_handler(struct parser_exec_state *s,
893                                        unsigned int offset, unsigned int index)
894 {
895         struct intel_vgpu *vgpu = s->vgpu;
896         struct intel_vgpu_mm *shadow_mm = s->workload->shadow_mm;
897         struct intel_vgpu_mm *mm;
898         u64 pdps[GEN8_3LVL_PDPES];
899
900         if (shadow_mm->ppgtt_mm.root_entry_type ==
901             GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
902                 pdps[0] = (u64)cmd_val(s, 2) << 32;
903                 pdps[0] |= cmd_val(s, 4);
904
905                 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
906                 if (!mm) {
907                         gvt_vgpu_err("failed to get the 4-level shadow vm\n");
908                         return -EINVAL;
909                 }
910                 intel_vgpu_mm_get(mm);
911                 list_add_tail(&mm->ppgtt_mm.link,
912                               &s->workload->lri_shadow_mm);
913                 *cmd_ptr(s, 2) = upper_32_bits(mm->ppgtt_mm.shadow_pdps[0]);
914                 *cmd_ptr(s, 4) = lower_32_bits(mm->ppgtt_mm.shadow_pdps[0]);
915         } else {
916                 /* Currently all guests use PML4 table and now can't
917                  * have a guest with 3-level table but uses LRI for
918                  * PPGTT update. So this is simply un-testable. */
919                 GEM_BUG_ON(1);
920                 gvt_vgpu_err("invalid shared shadow vm type\n");
921                 return -EINVAL;
922         }
923         return 0;
924 }
925
926 static int cmd_reg_handler(struct parser_exec_state *s,
927         unsigned int offset, unsigned int index, char *cmd)
928 {
929         struct intel_vgpu *vgpu = s->vgpu;
930         struct intel_gvt *gvt = vgpu->gvt;
931         u32 ctx_sr_ctl;
932
933         if (offset + 4 > gvt->device_info.mmio_size) {
934                 gvt_vgpu_err("%s access to (%x) outside of MMIO range\n",
935                                 cmd, offset);
936                 return -EFAULT;
937         }
938
939         if (!intel_gvt_mmio_is_cmd_accessible(gvt, offset)) {
940                 gvt_vgpu_err("%s access to non-render register (%x)\n",
941                                 cmd, offset);
942                 return -EBADRQC;
943         }
944
945         if (is_shadowed_mmio(offset)) {
946                 gvt_vgpu_err("found access of shadowed MMIO %x\n", offset);
947                 return 0;
948         }
949
950         if (is_mocs_mmio(offset) &&
951             mocs_cmd_reg_handler(s, offset, index))
952                 return -EINVAL;
953
954         if (is_force_nonpriv_mmio(offset) &&
955                 force_nonpriv_reg_handler(s, offset, index, cmd))
956                 return -EPERM;
957
958         if (offset == i915_mmio_reg_offset(DERRMR) ||
959                 offset == i915_mmio_reg_offset(FORCEWAKE_MT)) {
960                 /* Writing to HW VGT_PVINFO_PAGE offset will be discarded */
961                 patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE);
962         }
963
964         if (is_cmd_update_pdps(offset, s) &&
965             cmd_pdp_mmio_update_handler(s, offset, index))
966                 return -EINVAL;
967
968         /* TODO
969          * In order to let workload with inhibit context to generate
970          * correct image data into memory, vregs values will be loaded to
971          * hw via LRIs in the workload with inhibit context. But as
972          * indirect context is loaded prior to LRIs in workload, we don't
973          * want reg values specified in indirect context overwritten by
974          * LRIs in workloads. So, when scanning an indirect context, we
975          * update reg values in it into vregs, so LRIs in workload with
976          * inhibit context will restore with correct values
977          */
978         if (IS_GEN(s->engine->i915, 9) &&
979             intel_gvt_mmio_is_sr_in_ctx(gvt, offset) &&
980             !strncmp(cmd, "lri", 3)) {
981                 intel_gvt_hypervisor_read_gpa(s->vgpu,
982                         s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4);
983                 /* check inhibit context */
984                 if (ctx_sr_ctl & 1) {
985                         u32 data = cmd_val(s, index + 1);
986
987                         if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset))
988                                 intel_vgpu_mask_mmio_write(vgpu,
989                                                         offset, &data, 4);
990                         else
991                                 vgpu_vreg(vgpu, offset) = data;
992                 }
993         }
994
995         return 0;
996 }
997
998 #define cmd_reg(s, i) \
999         (cmd_val(s, i) & GENMASK(22, 2))
1000
1001 #define cmd_reg_inhibit(s, i) \
1002         (cmd_val(s, i) & GENMASK(22, 18))
1003
1004 #define cmd_gma(s, i) \
1005         (cmd_val(s, i) & GENMASK(31, 2))
1006
1007 #define cmd_gma_hi(s, i) \
1008         (cmd_val(s, i) & GENMASK(15, 0))
1009
1010 static int cmd_handler_lri(struct parser_exec_state *s)
1011 {
1012         int i, ret = 0;
1013         int cmd_len = cmd_length(s);
1014
1015         for (i = 1; i < cmd_len; i += 2) {
1016                 if (IS_BROADWELL(s->engine->i915) && s->engine->id != RCS0) {
1017                         if (s->engine->id == BCS0 &&
1018                             cmd_reg(s, i) == i915_mmio_reg_offset(DERRMR))
1019                                 ret |= 0;
1020                         else
1021                                 ret |= cmd_reg_inhibit(s, i) ? -EBADRQC : 0;
1022                 }
1023                 if (ret)
1024                         break;
1025                 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri");
1026                 if (ret)
1027                         break;
1028         }
1029         return ret;
1030 }
1031
1032 static int cmd_handler_lrr(struct parser_exec_state *s)
1033 {
1034         int i, ret = 0;
1035         int cmd_len = cmd_length(s);
1036
1037         for (i = 1; i < cmd_len; i += 2) {
1038                 if (IS_BROADWELL(s->engine->i915))
1039                         ret |= ((cmd_reg_inhibit(s, i) ||
1040                                  (cmd_reg_inhibit(s, i + 1)))) ?
1041                                 -EBADRQC : 0;
1042                 if (ret)
1043                         break;
1044                 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src");
1045                 if (ret)
1046                         break;
1047                 ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst");
1048                 if (ret)
1049                         break;
1050         }
1051         return ret;
1052 }
1053
1054 static inline int cmd_address_audit(struct parser_exec_state *s,
1055                 unsigned long guest_gma, int op_size, bool index_mode);
1056
1057 static int cmd_handler_lrm(struct parser_exec_state *s)
1058 {
1059         struct intel_gvt *gvt = s->vgpu->gvt;
1060         int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
1061         unsigned long gma;
1062         int i, ret = 0;
1063         int cmd_len = cmd_length(s);
1064
1065         for (i = 1; i < cmd_len;) {
1066                 if (IS_BROADWELL(s->engine->i915))
1067                         ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0;
1068                 if (ret)
1069                         break;
1070                 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm");
1071                 if (ret)
1072                         break;
1073                 if (cmd_val(s, 0) & (1 << 22)) {
1074                         gma = cmd_gma(s, i + 1);
1075                         if (gmadr_bytes == 8)
1076                                 gma |= (cmd_gma_hi(s, i + 2)) << 32;
1077                         ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1078                         if (ret)
1079                                 break;
1080                 }
1081                 i += gmadr_dw_number(s) + 1;
1082         }
1083         return ret;
1084 }
1085
1086 static int cmd_handler_srm(struct parser_exec_state *s)
1087 {
1088         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1089         unsigned long gma;
1090         int i, ret = 0;
1091         int cmd_len = cmd_length(s);
1092
1093         for (i = 1; i < cmd_len;) {
1094                 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm");
1095                 if (ret)
1096                         break;
1097                 if (cmd_val(s, 0) & (1 << 22)) {
1098                         gma = cmd_gma(s, i + 1);
1099                         if (gmadr_bytes == 8)
1100                                 gma |= (cmd_gma_hi(s, i + 2)) << 32;
1101                         ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1102                         if (ret)
1103                                 break;
1104                 }
1105                 i += gmadr_dw_number(s) + 1;
1106         }
1107         return ret;
1108 }
1109
1110 struct cmd_interrupt_event {
1111         int pipe_control_notify;
1112         int mi_flush_dw;
1113         int mi_user_interrupt;
1114 };
1115
1116 static struct cmd_interrupt_event cmd_interrupt_events[] = {
1117         [RCS0] = {
1118                 .pipe_control_notify = RCS_PIPE_CONTROL,
1119                 .mi_flush_dw = INTEL_GVT_EVENT_RESERVED,
1120                 .mi_user_interrupt = RCS_MI_USER_INTERRUPT,
1121         },
1122         [BCS0] = {
1123                 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1124                 .mi_flush_dw = BCS_MI_FLUSH_DW,
1125                 .mi_user_interrupt = BCS_MI_USER_INTERRUPT,
1126         },
1127         [VCS0] = {
1128                 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1129                 .mi_flush_dw = VCS_MI_FLUSH_DW,
1130                 .mi_user_interrupt = VCS_MI_USER_INTERRUPT,
1131         },
1132         [VCS1] = {
1133                 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1134                 .mi_flush_dw = VCS2_MI_FLUSH_DW,
1135                 .mi_user_interrupt = VCS2_MI_USER_INTERRUPT,
1136         },
1137         [VECS0] = {
1138                 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1139                 .mi_flush_dw = VECS_MI_FLUSH_DW,
1140                 .mi_user_interrupt = VECS_MI_USER_INTERRUPT,
1141         },
1142 };
1143
1144 static int cmd_handler_pipe_control(struct parser_exec_state *s)
1145 {
1146         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1147         unsigned long gma;
1148         bool index_mode = false;
1149         unsigned int post_sync;
1150         int ret = 0;
1151         u32 hws_pga, val;
1152
1153         post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14;
1154
1155         /* LRI post sync */
1156         if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE)
1157                 ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl");
1158         /* post sync */
1159         else if (post_sync) {
1160                 if (post_sync == 2)
1161                         ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl");
1162                 else if (post_sync == 3)
1163                         ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl");
1164                 else if (post_sync == 1) {
1165                         /* check ggtt*/
1166                         if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) {
1167                                 gma = cmd_val(s, 2) & GENMASK(31, 3);
1168                                 if (gmadr_bytes == 8)
1169                                         gma |= (cmd_gma_hi(s, 3)) << 32;
1170                                 /* Store Data Index */
1171                                 if (cmd_val(s, 1) & (1 << 21))
1172                                         index_mode = true;
1173                                 ret |= cmd_address_audit(s, gma, sizeof(u64),
1174                                                 index_mode);
1175                                 if (ret)
1176                                         return ret;
1177                                 if (index_mode) {
1178                                         hws_pga = s->vgpu->hws_pga[s->engine->id];
1179                                         gma = hws_pga + gma;
1180                                         patch_value(s, cmd_ptr(s, 2), gma);
1181                                         val = cmd_val(s, 1) & (~(1 << 21));
1182                                         patch_value(s, cmd_ptr(s, 1), val);
1183                                 }
1184                         }
1185                 }
1186         }
1187
1188         if (ret)
1189                 return ret;
1190
1191         if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY)
1192                 set_bit(cmd_interrupt_events[s->engine->id].pipe_control_notify,
1193                         s->workload->pending_events);
1194         return 0;
1195 }
1196
1197 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s)
1198 {
1199         set_bit(cmd_interrupt_events[s->engine->id].mi_user_interrupt,
1200                 s->workload->pending_events);
1201         patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1202         return 0;
1203 }
1204
1205 static int cmd_advance_default(struct parser_exec_state *s)
1206 {
1207         return ip_gma_advance(s, cmd_length(s));
1208 }
1209
1210 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s)
1211 {
1212         int ret;
1213
1214         if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1215                 s->buf_type = BATCH_BUFFER_INSTRUCTION;
1216                 ret = ip_gma_set(s, s->ret_ip_gma_bb);
1217                 s->buf_addr_type = s->saved_buf_addr_type;
1218         } else {
1219                 s->buf_type = RING_BUFFER_INSTRUCTION;
1220                 s->buf_addr_type = GTT_BUFFER;
1221                 if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size)
1222                         s->ret_ip_gma_ring -= s->ring_size;
1223                 ret = ip_gma_set(s, s->ret_ip_gma_ring);
1224         }
1225         return ret;
1226 }
1227
1228 struct mi_display_flip_command_info {
1229         int pipe;
1230         int plane;
1231         int event;
1232         i915_reg_t stride_reg;
1233         i915_reg_t ctrl_reg;
1234         i915_reg_t surf_reg;
1235         u64 stride_val;
1236         u64 tile_val;
1237         u64 surf_val;
1238         bool async_flip;
1239 };
1240
1241 struct plane_code_mapping {
1242         int pipe;
1243         int plane;
1244         int event;
1245 };
1246
1247 static int gen8_decode_mi_display_flip(struct parser_exec_state *s,
1248                 struct mi_display_flip_command_info *info)
1249 {
1250         struct drm_i915_private *dev_priv = s->engine->i915;
1251         struct plane_code_mapping gen8_plane_code[] = {
1252                 [0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE},
1253                 [1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE},
1254                 [2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE},
1255                 [3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE},
1256                 [4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE},
1257                 [5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE},
1258         };
1259         u32 dword0, dword1, dword2;
1260         u32 v;
1261
1262         dword0 = cmd_val(s, 0);
1263         dword1 = cmd_val(s, 1);
1264         dword2 = cmd_val(s, 2);
1265
1266         v = (dword0 & GENMASK(21, 19)) >> 19;
1267         if (drm_WARN_ON(&dev_priv->drm, v >= ARRAY_SIZE(gen8_plane_code)))
1268                 return -EBADRQC;
1269
1270         info->pipe = gen8_plane_code[v].pipe;
1271         info->plane = gen8_plane_code[v].plane;
1272         info->event = gen8_plane_code[v].event;
1273         info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1274         info->tile_val = (dword1 & 0x1);
1275         info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1276         info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1277
1278         if (info->plane == PLANE_A) {
1279                 info->ctrl_reg = DSPCNTR(info->pipe);
1280                 info->stride_reg = DSPSTRIDE(info->pipe);
1281                 info->surf_reg = DSPSURF(info->pipe);
1282         } else if (info->plane == PLANE_B) {
1283                 info->ctrl_reg = SPRCTL(info->pipe);
1284                 info->stride_reg = SPRSTRIDE(info->pipe);
1285                 info->surf_reg = SPRSURF(info->pipe);
1286         } else {
1287                 drm_WARN_ON(&dev_priv->drm, 1);
1288                 return -EBADRQC;
1289         }
1290         return 0;
1291 }
1292
1293 static int skl_decode_mi_display_flip(struct parser_exec_state *s,
1294                 struct mi_display_flip_command_info *info)
1295 {
1296         struct drm_i915_private *dev_priv = s->engine->i915;
1297         struct intel_vgpu *vgpu = s->vgpu;
1298         u32 dword0 = cmd_val(s, 0);
1299         u32 dword1 = cmd_val(s, 1);
1300         u32 dword2 = cmd_val(s, 2);
1301         u32 plane = (dword0 & GENMASK(12, 8)) >> 8;
1302
1303         info->plane = PRIMARY_PLANE;
1304
1305         switch (plane) {
1306         case MI_DISPLAY_FLIP_SKL_PLANE_1_A:
1307                 info->pipe = PIPE_A;
1308                 info->event = PRIMARY_A_FLIP_DONE;
1309                 break;
1310         case MI_DISPLAY_FLIP_SKL_PLANE_1_B:
1311                 info->pipe = PIPE_B;
1312                 info->event = PRIMARY_B_FLIP_DONE;
1313                 break;
1314         case MI_DISPLAY_FLIP_SKL_PLANE_1_C:
1315                 info->pipe = PIPE_C;
1316                 info->event = PRIMARY_C_FLIP_DONE;
1317                 break;
1318
1319         case MI_DISPLAY_FLIP_SKL_PLANE_2_A:
1320                 info->pipe = PIPE_A;
1321                 info->event = SPRITE_A_FLIP_DONE;
1322                 info->plane = SPRITE_PLANE;
1323                 break;
1324         case MI_DISPLAY_FLIP_SKL_PLANE_2_B:
1325                 info->pipe = PIPE_B;
1326                 info->event = SPRITE_B_FLIP_DONE;
1327                 info->plane = SPRITE_PLANE;
1328                 break;
1329         case MI_DISPLAY_FLIP_SKL_PLANE_2_C:
1330                 info->pipe = PIPE_C;
1331                 info->event = SPRITE_C_FLIP_DONE;
1332                 info->plane = SPRITE_PLANE;
1333                 break;
1334
1335         default:
1336                 gvt_vgpu_err("unknown plane code %d\n", plane);
1337                 return -EBADRQC;
1338         }
1339
1340         info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1341         info->tile_val = (dword1 & GENMASK(2, 0));
1342         info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1343         info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1344
1345         info->ctrl_reg = DSPCNTR(info->pipe);
1346         info->stride_reg = DSPSTRIDE(info->pipe);
1347         info->surf_reg = DSPSURF(info->pipe);
1348
1349         return 0;
1350 }
1351
1352 static int gen8_check_mi_display_flip(struct parser_exec_state *s,
1353                 struct mi_display_flip_command_info *info)
1354 {
1355         u32 stride, tile;
1356
1357         if (!info->async_flip)
1358                 return 0;
1359
1360         if (INTEL_GEN(s->engine->i915) >= 9) {
1361                 stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0);
1362                 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) &
1363                                 GENMASK(12, 10)) >> 10;
1364         } else {
1365                 stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) &
1366                                 GENMASK(15, 6)) >> 6;
1367                 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10;
1368         }
1369
1370         if (stride != info->stride_val)
1371                 gvt_dbg_cmd("cannot change stride during async flip\n");
1372
1373         if (tile != info->tile_val)
1374                 gvt_dbg_cmd("cannot change tile during async flip\n");
1375
1376         return 0;
1377 }
1378
1379 static int gen8_update_plane_mmio_from_mi_display_flip(
1380                 struct parser_exec_state *s,
1381                 struct mi_display_flip_command_info *info)
1382 {
1383         struct drm_i915_private *dev_priv = s->engine->i915;
1384         struct intel_vgpu *vgpu = s->vgpu;
1385
1386         set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12),
1387                       info->surf_val << 12);
1388         if (INTEL_GEN(dev_priv) >= 9) {
1389                 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0),
1390                               info->stride_val);
1391                 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10),
1392                               info->tile_val << 10);
1393         } else {
1394                 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6),
1395                               info->stride_val << 6);
1396                 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10),
1397                               info->tile_val << 10);
1398         }
1399
1400         if (info->plane == PLANE_PRIMARY)
1401                 vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(info->pipe))++;
1402
1403         if (info->async_flip)
1404                 intel_vgpu_trigger_virtual_event(vgpu, info->event);
1405         else
1406                 set_bit(info->event, vgpu->irq.flip_done_event[info->pipe]);
1407
1408         return 0;
1409 }
1410
1411 static int decode_mi_display_flip(struct parser_exec_state *s,
1412                 struct mi_display_flip_command_info *info)
1413 {
1414         if (IS_BROADWELL(s->engine->i915))
1415                 return gen8_decode_mi_display_flip(s, info);
1416         if (INTEL_GEN(s->engine->i915) >= 9)
1417                 return skl_decode_mi_display_flip(s, info);
1418
1419         return -ENODEV;
1420 }
1421
1422 static int check_mi_display_flip(struct parser_exec_state *s,
1423                 struct mi_display_flip_command_info *info)
1424 {
1425         return gen8_check_mi_display_flip(s, info);
1426 }
1427
1428 static int update_plane_mmio_from_mi_display_flip(
1429                 struct parser_exec_state *s,
1430                 struct mi_display_flip_command_info *info)
1431 {
1432         return gen8_update_plane_mmio_from_mi_display_flip(s, info);
1433 }
1434
1435 static int cmd_handler_mi_display_flip(struct parser_exec_state *s)
1436 {
1437         struct mi_display_flip_command_info info;
1438         struct intel_vgpu *vgpu = s->vgpu;
1439         int ret;
1440         int i;
1441         int len = cmd_length(s);
1442         u32 valid_len = CMD_LEN(1);
1443
1444         /* Flip Type == Stereo 3D Flip */
1445         if (DWORD_FIELD(2, 1, 0) == 2)
1446                 valid_len++;
1447         ret = gvt_check_valid_cmd_length(cmd_length(s),
1448                         valid_len);
1449         if (ret)
1450                 return ret;
1451
1452         ret = decode_mi_display_flip(s, &info);
1453         if (ret) {
1454                 gvt_vgpu_err("fail to decode MI display flip command\n");
1455                 return ret;
1456         }
1457
1458         ret = check_mi_display_flip(s, &info);
1459         if (ret) {
1460                 gvt_vgpu_err("invalid MI display flip command\n");
1461                 return ret;
1462         }
1463
1464         ret = update_plane_mmio_from_mi_display_flip(s, &info);
1465         if (ret) {
1466                 gvt_vgpu_err("fail to update plane mmio\n");
1467                 return ret;
1468         }
1469
1470         for (i = 0; i < len; i++)
1471                 patch_value(s, cmd_ptr(s, i), MI_NOOP);
1472         return 0;
1473 }
1474
1475 static bool is_wait_for_flip_pending(u32 cmd)
1476 {
1477         return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING |
1478                         MI_WAIT_FOR_PLANE_B_FLIP_PENDING |
1479                         MI_WAIT_FOR_PLANE_C_FLIP_PENDING |
1480                         MI_WAIT_FOR_SPRITE_A_FLIP_PENDING |
1481                         MI_WAIT_FOR_SPRITE_B_FLIP_PENDING |
1482                         MI_WAIT_FOR_SPRITE_C_FLIP_PENDING);
1483 }
1484
1485 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s)
1486 {
1487         u32 cmd = cmd_val(s, 0);
1488
1489         if (!is_wait_for_flip_pending(cmd))
1490                 return 0;
1491
1492         patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1493         return 0;
1494 }
1495
1496 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index)
1497 {
1498         unsigned long addr;
1499         unsigned long gma_high, gma_low;
1500         struct intel_vgpu *vgpu = s->vgpu;
1501         int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1502
1503         if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) {
1504                 gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes);
1505                 return INTEL_GVT_INVALID_ADDR;
1506         }
1507
1508         gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK;
1509         if (gmadr_bytes == 4) {
1510                 addr = gma_low;
1511         } else {
1512                 gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK;
1513                 addr = (((unsigned long)gma_high) << 32) | gma_low;
1514         }
1515         return addr;
1516 }
1517
1518 static inline int cmd_address_audit(struct parser_exec_state *s,
1519                 unsigned long guest_gma, int op_size, bool index_mode)
1520 {
1521         struct intel_vgpu *vgpu = s->vgpu;
1522         u32 max_surface_size = vgpu->gvt->device_info.max_surface_size;
1523         int i;
1524         int ret;
1525
1526         if (op_size > max_surface_size) {
1527                 gvt_vgpu_err("command address audit fail name %s\n",
1528                         s->info->name);
1529                 return -EFAULT;
1530         }
1531
1532         if (index_mode) {
1533                 if (guest_gma >= I915_GTT_PAGE_SIZE) {
1534                         ret = -EFAULT;
1535                         goto err;
1536                 }
1537         } else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) {
1538                 ret = -EFAULT;
1539                 goto err;
1540         }
1541
1542         return 0;
1543
1544 err:
1545         gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n",
1546                         s->info->name, guest_gma, op_size);
1547
1548         pr_err("cmd dump: ");
1549         for (i = 0; i < cmd_length(s); i++) {
1550                 if (!(i % 4))
1551                         pr_err("\n%08x ", cmd_val(s, i));
1552                 else
1553                         pr_err("%08x ", cmd_val(s, i));
1554         }
1555         pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n",
1556                         vgpu->id,
1557                         vgpu_aperture_gmadr_base(vgpu),
1558                         vgpu_aperture_gmadr_end(vgpu),
1559                         vgpu_hidden_gmadr_base(vgpu),
1560                         vgpu_hidden_gmadr_end(vgpu));
1561         return ret;
1562 }
1563
1564 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s)
1565 {
1566         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1567         int op_size = (cmd_length(s) - 3) * sizeof(u32);
1568         int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0;
1569         unsigned long gma, gma_low, gma_high;
1570         u32 valid_len = CMD_LEN(2);
1571         int ret = 0;
1572
1573         /* check ppggt */
1574         if (!(cmd_val(s, 0) & (1 << 22)))
1575                 return 0;
1576
1577         /* check if QWORD */
1578         if (DWORD_FIELD(0, 21, 21))
1579                 valid_len++;
1580         ret = gvt_check_valid_cmd_length(cmd_length(s),
1581                         valid_len);
1582         if (ret)
1583                 return ret;
1584
1585         gma = cmd_val(s, 2) & GENMASK(31, 2);
1586
1587         if (gmadr_bytes == 8) {
1588                 gma_low = cmd_val(s, 1) & GENMASK(31, 2);
1589                 gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1590                 gma = (gma_high << 32) | gma_low;
1591                 core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0;
1592         }
1593         ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false);
1594         return ret;
1595 }
1596
1597 static inline int unexpected_cmd(struct parser_exec_state *s)
1598 {
1599         struct intel_vgpu *vgpu = s->vgpu;
1600
1601         gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name);
1602
1603         return -EBADRQC;
1604 }
1605
1606 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s)
1607 {
1608         return unexpected_cmd(s);
1609 }
1610
1611 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s)
1612 {
1613         return unexpected_cmd(s);
1614 }
1615
1616 static int cmd_handler_mi_op_2e(struct parser_exec_state *s)
1617 {
1618         return unexpected_cmd(s);
1619 }
1620
1621 static int cmd_handler_mi_op_2f(struct parser_exec_state *s)
1622 {
1623         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1624         int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) *
1625                         sizeof(u32);
1626         unsigned long gma, gma_high;
1627         u32 valid_len = CMD_LEN(1);
1628         int ret = 0;
1629
1630         if (!(cmd_val(s, 0) & (1 << 22)))
1631                 return ret;
1632
1633         /* check inline data */
1634         if (cmd_val(s, 0) & BIT(18))
1635                 valid_len = CMD_LEN(9);
1636         ret = gvt_check_valid_cmd_length(cmd_length(s),
1637                         valid_len);
1638         if (ret)
1639                 return ret;
1640
1641         gma = cmd_val(s, 1) & GENMASK(31, 2);
1642         if (gmadr_bytes == 8) {
1643                 gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1644                 gma = (gma_high << 32) | gma;
1645         }
1646         ret = cmd_address_audit(s, gma, op_size, false);
1647         return ret;
1648 }
1649
1650 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s)
1651 {
1652         return unexpected_cmd(s);
1653 }
1654
1655 static int cmd_handler_mi_clflush(struct parser_exec_state *s)
1656 {
1657         return unexpected_cmd(s);
1658 }
1659
1660 static int cmd_handler_mi_conditional_batch_buffer_end(
1661                 struct parser_exec_state *s)
1662 {
1663         return unexpected_cmd(s);
1664 }
1665
1666 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s)
1667 {
1668         return unexpected_cmd(s);
1669 }
1670
1671 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s)
1672 {
1673         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1674         unsigned long gma;
1675         bool index_mode = false;
1676         int ret = 0;
1677         u32 hws_pga, val;
1678         u32 valid_len = CMD_LEN(2);
1679
1680         ret = gvt_check_valid_cmd_length(cmd_length(s),
1681                         valid_len);
1682         if (ret) {
1683                 /* Check again for Qword */
1684                 ret = gvt_check_valid_cmd_length(cmd_length(s),
1685                         ++valid_len);
1686                 return ret;
1687         }
1688
1689         /* Check post-sync and ppgtt bit */
1690         if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) {
1691                 gma = cmd_val(s, 1) & GENMASK(31, 3);
1692                 if (gmadr_bytes == 8)
1693                         gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32;
1694                 /* Store Data Index */
1695                 if (cmd_val(s, 0) & (1 << 21))
1696                         index_mode = true;
1697                 ret = cmd_address_audit(s, gma, sizeof(u64), index_mode);
1698                 if (ret)
1699                         return ret;
1700                 if (index_mode) {
1701                         hws_pga = s->vgpu->hws_pga[s->engine->id];
1702                         gma = hws_pga + gma;
1703                         patch_value(s, cmd_ptr(s, 1), gma);
1704                         val = cmd_val(s, 0) & (~(1 << 21));
1705                         patch_value(s, cmd_ptr(s, 0), val);
1706                 }
1707         }
1708         /* Check notify bit */
1709         if ((cmd_val(s, 0) & (1 << 8)))
1710                 set_bit(cmd_interrupt_events[s->engine->id].mi_flush_dw,
1711                         s->workload->pending_events);
1712         return ret;
1713 }
1714
1715 static void addr_type_update_snb(struct parser_exec_state *s)
1716 {
1717         if ((s->buf_type == RING_BUFFER_INSTRUCTION) &&
1718                         (BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) {
1719                 s->buf_addr_type = PPGTT_BUFFER;
1720         }
1721 }
1722
1723
1724 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm,
1725                 unsigned long gma, unsigned long end_gma, void *va)
1726 {
1727         unsigned long copy_len, offset;
1728         unsigned long len = 0;
1729         unsigned long gpa;
1730
1731         while (gma != end_gma) {
1732                 gpa = intel_vgpu_gma_to_gpa(mm, gma);
1733                 if (gpa == INTEL_GVT_INVALID_ADDR) {
1734                         gvt_vgpu_err("invalid gma address: %lx\n", gma);
1735                         return -EFAULT;
1736                 }
1737
1738                 offset = gma & (I915_GTT_PAGE_SIZE - 1);
1739
1740                 copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ?
1741                         I915_GTT_PAGE_SIZE - offset : end_gma - gma;
1742
1743                 intel_gvt_hypervisor_read_gpa(vgpu, gpa, va + len, copy_len);
1744
1745                 len += copy_len;
1746                 gma += copy_len;
1747         }
1748         return len;
1749 }
1750
1751
1752 /*
1753  * Check whether a batch buffer needs to be scanned. Currently
1754  * the only criteria is based on privilege.
1755  */
1756 static int batch_buffer_needs_scan(struct parser_exec_state *s)
1757 {
1758         /* Decide privilege based on address space */
1759         if (cmd_val(s, 0) & BIT(8) &&
1760             !(s->vgpu->scan_nonprivbb & s->engine->mask))
1761                 return 0;
1762
1763         return 1;
1764 }
1765
1766 static const char *repr_addr_type(unsigned int type)
1767 {
1768         return type == PPGTT_BUFFER ? "ppgtt" : "ggtt";
1769 }
1770
1771 static int find_bb_size(struct parser_exec_state *s,
1772                         unsigned long *bb_size,
1773                         unsigned long *bb_end_cmd_offset)
1774 {
1775         unsigned long gma = 0;
1776         const struct cmd_info *info;
1777         u32 cmd_len = 0;
1778         bool bb_end = false;
1779         struct intel_vgpu *vgpu = s->vgpu;
1780         u32 cmd;
1781         struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1782                 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1783
1784         *bb_size = 0;
1785         *bb_end_cmd_offset = 0;
1786
1787         /* get the start gm address of the batch buffer */
1788         gma = get_gma_bb_from_cmd(s, 1);
1789         if (gma == INTEL_GVT_INVALID_ADDR)
1790                 return -EFAULT;
1791
1792         cmd = cmd_val(s, 0);
1793         info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1794         if (info == NULL) {
1795                 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1796                              cmd, get_opcode(cmd, s->engine),
1797                              repr_addr_type(s->buf_addr_type),
1798                              s->engine->name, s->workload);
1799                 return -EBADRQC;
1800         }
1801         do {
1802                 if (copy_gma_to_hva(s->vgpu, mm,
1803                                     gma, gma + 4, &cmd) < 0)
1804                         return -EFAULT;
1805                 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1806                 if (info == NULL) {
1807                         gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1808                                      cmd, get_opcode(cmd, s->engine),
1809                                      repr_addr_type(s->buf_addr_type),
1810                                      s->engine->name, s->workload);
1811                         return -EBADRQC;
1812                 }
1813
1814                 if (info->opcode == OP_MI_BATCH_BUFFER_END) {
1815                         bb_end = true;
1816                 } else if (info->opcode == OP_MI_BATCH_BUFFER_START) {
1817                         if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)
1818                                 /* chained batch buffer */
1819                                 bb_end = true;
1820                 }
1821
1822                 if (bb_end)
1823                         *bb_end_cmd_offset = *bb_size;
1824
1825                 cmd_len = get_cmd_length(info, cmd) << 2;
1826                 *bb_size += cmd_len;
1827                 gma += cmd_len;
1828         } while (!bb_end);
1829
1830         return 0;
1831 }
1832
1833 static int audit_bb_end(struct parser_exec_state *s, void *va)
1834 {
1835         struct intel_vgpu *vgpu = s->vgpu;
1836         u32 cmd = *(u32 *)va;
1837         const struct cmd_info *info;
1838
1839         info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1840         if (info == NULL) {
1841                 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1842                              cmd, get_opcode(cmd, s->engine),
1843                              repr_addr_type(s->buf_addr_type),
1844                              s->engine->name, s->workload);
1845                 return -EBADRQC;
1846         }
1847
1848         if ((info->opcode == OP_MI_BATCH_BUFFER_END) ||
1849             ((info->opcode == OP_MI_BATCH_BUFFER_START) &&
1850              (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)))
1851                 return 0;
1852
1853         return -EBADRQC;
1854 }
1855
1856 static int perform_bb_shadow(struct parser_exec_state *s)
1857 {
1858         struct intel_vgpu *vgpu = s->vgpu;
1859         struct intel_vgpu_shadow_bb *bb;
1860         unsigned long gma = 0;
1861         unsigned long bb_size;
1862         unsigned long bb_end_cmd_offset;
1863         int ret = 0;
1864         struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1865                 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1866         unsigned long start_offset = 0;
1867
1868         /* get the start gm address of the batch buffer */
1869         gma = get_gma_bb_from_cmd(s, 1);
1870         if (gma == INTEL_GVT_INVALID_ADDR)
1871                 return -EFAULT;
1872
1873         ret = find_bb_size(s, &bb_size, &bb_end_cmd_offset);
1874         if (ret)
1875                 return ret;
1876
1877         bb = kzalloc(sizeof(*bb), GFP_KERNEL);
1878         if (!bb)
1879                 return -ENOMEM;
1880
1881         bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true;
1882
1883         /* the start_offset stores the batch buffer's start gma's
1884          * offset relative to page boundary. so for non-privileged batch
1885          * buffer, the shadowed gem object holds exactly the same page
1886          * layout as original gem object. This is for the convience of
1887          * replacing the whole non-privilged batch buffer page to this
1888          * shadowed one in PPGTT at the same gma address. (this replacing
1889          * action is not implemented yet now, but may be necessary in
1890          * future).
1891          * for prileged batch buffer, we just change start gma address to
1892          * that of shadowed page.
1893          */
1894         if (bb->ppgtt)
1895                 start_offset = gma & ~I915_GTT_PAGE_MASK;
1896
1897         bb->obj = i915_gem_object_create_shmem(s->engine->i915,
1898                                                round_up(bb_size + start_offset,
1899                                                         PAGE_SIZE));
1900         if (IS_ERR(bb->obj)) {
1901                 ret = PTR_ERR(bb->obj);
1902                 goto err_free_bb;
1903         }
1904
1905         bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB);
1906         if (IS_ERR(bb->va)) {
1907                 ret = PTR_ERR(bb->va);
1908                 goto err_free_obj;
1909         }
1910
1911         ret = copy_gma_to_hva(s->vgpu, mm,
1912                               gma, gma + bb_size,
1913                               bb->va + start_offset);
1914         if (ret < 0) {
1915                 gvt_vgpu_err("fail to copy guest ring buffer\n");
1916                 ret = -EFAULT;
1917                 goto err_unmap;
1918         }
1919
1920         ret = audit_bb_end(s, bb->va + start_offset + bb_end_cmd_offset);
1921         if (ret)
1922                 goto err_unmap;
1923
1924         i915_gem_object_unlock(bb->obj);
1925         INIT_LIST_HEAD(&bb->list);
1926         list_add(&bb->list, &s->workload->shadow_bb);
1927
1928         bb->bb_start_cmd_va = s->ip_va;
1929
1930         if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa))
1931                 bb->bb_offset = s->ip_va - s->rb_va;
1932         else
1933                 bb->bb_offset = 0;
1934
1935         /*
1936          * ip_va saves the virtual address of the shadow batch buffer, while
1937          * ip_gma saves the graphics address of the original batch buffer.
1938          * As the shadow batch buffer is just a copy from the originial one,
1939          * it should be right to use shadow batch buffer'va and original batch
1940          * buffer's gma in pair. After all, we don't want to pin the shadow
1941          * buffer here (too early).
1942          */
1943         s->ip_va = bb->va + start_offset;
1944         s->ip_gma = gma;
1945         return 0;
1946 err_unmap:
1947         i915_gem_object_unpin_map(bb->obj);
1948 err_free_obj:
1949         i915_gem_object_put(bb->obj);
1950 err_free_bb:
1951         kfree(bb);
1952         return ret;
1953 }
1954
1955 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s)
1956 {
1957         bool second_level;
1958         int ret = 0;
1959         struct intel_vgpu *vgpu = s->vgpu;
1960
1961         if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1962                 gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n");
1963                 return -EFAULT;
1964         }
1965
1966         second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1;
1967         if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) {
1968                 gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n");
1969                 return -EFAULT;
1970         }
1971
1972         s->saved_buf_addr_type = s->buf_addr_type;
1973         addr_type_update_snb(s);
1974         if (s->buf_type == RING_BUFFER_INSTRUCTION) {
1975                 s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32);
1976                 s->buf_type = BATCH_BUFFER_INSTRUCTION;
1977         } else if (second_level) {
1978                 s->buf_type = BATCH_BUFFER_2ND_LEVEL;
1979                 s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32);
1980                 s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32);
1981         }
1982
1983         if (batch_buffer_needs_scan(s)) {
1984                 ret = perform_bb_shadow(s);
1985                 if (ret < 0)
1986                         gvt_vgpu_err("invalid shadow batch buffer\n");
1987         } else {
1988                 /* emulate a batch buffer end to do return right */
1989                 ret = cmd_handler_mi_batch_buffer_end(s);
1990                 if (ret < 0)
1991                         return ret;
1992         }
1993         return ret;
1994 }
1995
1996 static int mi_noop_index;
1997
1998 static const struct cmd_info cmd_info[] = {
1999         {"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2000
2001         {"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL,
2002                 0, 1, NULL},
2003
2004         {"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL,
2005                 0, 1, cmd_handler_mi_user_interrupt},
2006
2007         {"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS,
2008                 D_ALL, 0, 1, cmd_handler_mi_wait_for_event},
2009
2010         {"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2011
2012         {"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2013                 NULL},
2014
2015         {"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2016                 NULL},
2017
2018         {"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2019                 NULL},
2020
2021         {"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2022                 NULL},
2023
2024         {"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS,
2025                 D_ALL, 0, 1, NULL},
2026
2027         {"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END,
2028                 F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2029                 cmd_handler_mi_batch_buffer_end},
2030
2031         {"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL,
2032                 0, 1, NULL},
2033
2034         {"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2035                 NULL},
2036
2037         {"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL,
2038                 D_ALL, 0, 1, NULL},
2039
2040         {"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2041                 NULL},
2042
2043         {"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2044                 NULL},
2045
2046         {"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR,
2047                 R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip},
2048
2049         {"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR | F_LEN_VAR_FIXED,
2050                 R_ALL, D_ALL, 0, 8, NULL, CMD_LEN(1)},
2051
2052         {"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL},
2053
2054         {"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS,
2055                 D_ALL, 0, 8, NULL, CMD_LEN(0)},
2056
2057         {"MI_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL,
2058                 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 0, 8,
2059                 NULL, CMD_LEN(0)},
2060
2061         {"MI_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT,
2062                 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, ADDR_FIX_1(2),
2063                 8, cmd_handler_mi_semaphore_wait, CMD_LEN(2)},
2064
2065         {"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS,
2066                 ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm},
2067
2068         {"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL,
2069                 0, 8, cmd_handler_mi_store_data_index},
2070
2071         {"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL,
2072                 D_ALL, 0, 8, cmd_handler_lri},
2073
2074         {"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10,
2075                 cmd_handler_mi_update_gtt},
2076
2077         {"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM,
2078                 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2079                 cmd_handler_srm, CMD_LEN(2)},
2080
2081         {"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6,
2082                 cmd_handler_mi_flush_dw},
2083
2084         {"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1),
2085                 10, cmd_handler_mi_clflush},
2086
2087         {"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT,
2088                 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(1), 6,
2089                 cmd_handler_mi_report_perf_count, CMD_LEN(2)},
2090
2091         {"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM,
2092                 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2093                 cmd_handler_lrm, CMD_LEN(2)},
2094
2095         {"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG,
2096                 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, 0, 8,
2097                 cmd_handler_lrr, CMD_LEN(1)},
2098
2099         {"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM,
2100                 F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, D_ALL, 0,
2101                 8, NULL, CMD_LEN(2)},
2102
2103         {"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR | F_LEN_VAR_FIXED,
2104                 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL, CMD_LEN(2)},
2105
2106         {"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL,
2107                 ADDR_FIX_1(2), 8, NULL},
2108
2109         {"MI_OP_2E", OP_MI_2E, F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS,
2110                 ADDR_FIX_2(1, 2), 8, cmd_handler_mi_op_2e, CMD_LEN(3)},
2111
2112         {"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1),
2113                 8, cmd_handler_mi_op_2f},
2114
2115         {"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START,
2116                 F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8,
2117                 cmd_handler_mi_batch_buffer_start},
2118
2119         {"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END,
2120                 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2121                 cmd_handler_mi_conditional_batch_buffer_end, CMD_LEN(2)},
2122
2123         {"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST,
2124                 R_RCS | R_BCS, D_ALL, 0, 2, NULL},
2125
2126         {"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2127                 ADDR_FIX_2(4, 7), 8, NULL},
2128
2129         {"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2130                 0, 8, NULL},
2131
2132         {"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT,
2133                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2134
2135         {"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2136
2137         {"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL,
2138                 0, 8, NULL},
2139
2140         {"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2141                 ADDR_FIX_1(3), 8, NULL},
2142
2143         {"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS,
2144                 D_ALL, 0, 8, NULL},
2145
2146         {"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL,
2147                 ADDR_FIX_1(4), 8, NULL},
2148
2149         {"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2150                 ADDR_FIX_2(4, 5), 8, NULL},
2151
2152         {"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2153                 ADDR_FIX_1(4), 8, NULL},
2154
2155         {"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL,
2156                 ADDR_FIX_2(4, 7), 8, NULL},
2157
2158         {"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS,
2159                 D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2160
2161         {"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2162
2163         {"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS,
2164                 D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL},
2165
2166         {"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR,
2167                 R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2168
2169         {"XY_FULL_MONO_PATTERN_MONO_SRC_BLT",
2170                 OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT,
2171                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2172
2173         {"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS,
2174                 D_ALL, ADDR_FIX_1(4), 8, NULL},
2175
2176         {"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT,
2177                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2178
2179         {"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS,
2180                 D_ALL, ADDR_FIX_1(4), 8, NULL},
2181
2182         {"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS,
2183                 D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2184
2185         {"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT,
2186                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2187
2188         {"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT",
2189                 OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT,
2190                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2191
2192         {"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL,
2193                 ADDR_FIX_2(4, 5), 8, NULL},
2194
2195         {"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE,
2196                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2197
2198         {"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP",
2199                 OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP,
2200                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2201
2202         {"3DSTATE_VIEWPORT_STATE_POINTERS_CC",
2203                 OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC,
2204                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2205
2206         {"3DSTATE_BLEND_STATE_POINTERS",
2207                 OP_3DSTATE_BLEND_STATE_POINTERS,
2208                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2209
2210         {"3DSTATE_DEPTH_STENCIL_STATE_POINTERS",
2211                 OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS,
2212                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2213
2214         {"3DSTATE_BINDING_TABLE_POINTERS_VS",
2215                 OP_3DSTATE_BINDING_TABLE_POINTERS_VS,
2216                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2217
2218         {"3DSTATE_BINDING_TABLE_POINTERS_HS",
2219                 OP_3DSTATE_BINDING_TABLE_POINTERS_HS,
2220                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2221
2222         {"3DSTATE_BINDING_TABLE_POINTERS_DS",
2223                 OP_3DSTATE_BINDING_TABLE_POINTERS_DS,
2224                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2225
2226         {"3DSTATE_BINDING_TABLE_POINTERS_GS",
2227                 OP_3DSTATE_BINDING_TABLE_POINTERS_GS,
2228                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2229
2230         {"3DSTATE_BINDING_TABLE_POINTERS_PS",
2231                 OP_3DSTATE_BINDING_TABLE_POINTERS_PS,
2232                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2233
2234         {"3DSTATE_SAMPLER_STATE_POINTERS_VS",
2235                 OP_3DSTATE_SAMPLER_STATE_POINTERS_VS,
2236                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2237
2238         {"3DSTATE_SAMPLER_STATE_POINTERS_HS",
2239                 OP_3DSTATE_SAMPLER_STATE_POINTERS_HS,
2240                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2241
2242         {"3DSTATE_SAMPLER_STATE_POINTERS_DS",
2243                 OP_3DSTATE_SAMPLER_STATE_POINTERS_DS,
2244                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2245
2246         {"3DSTATE_SAMPLER_STATE_POINTERS_GS",
2247                 OP_3DSTATE_SAMPLER_STATE_POINTERS_GS,
2248                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2249
2250         {"3DSTATE_SAMPLER_STATE_POINTERS_PS",
2251                 OP_3DSTATE_SAMPLER_STATE_POINTERS_PS,
2252                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2253
2254         {"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL,
2255                 0, 8, NULL},
2256
2257         {"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL,
2258                 0, 8, NULL},
2259
2260         {"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL,
2261                 0, 8, NULL},
2262
2263         {"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL,
2264                 0, 8, NULL},
2265
2266         {"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS,
2267                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2268
2269         {"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS,
2270                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2271
2272         {"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS,
2273                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2274
2275         {"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS,
2276                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2277
2278         {"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS,
2279                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2280
2281         {"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS,
2282                 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2283
2284         {"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS,
2285                 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2286
2287         {"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS,
2288                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2289
2290         {"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS,
2291                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2292
2293         {"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS,
2294                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2295
2296         {"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS,
2297                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2298
2299         {"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS,
2300                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2301
2302         {"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS,
2303                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2304
2305         {"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS,
2306                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2307
2308         {"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS,
2309                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2310
2311         {"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS,
2312                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2313
2314         {"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS,
2315                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2316
2317         {"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS,
2318                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2319
2320         {"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS,
2321                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2322
2323         {"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS,
2324                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2325
2326         {"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS,
2327                 D_BDW_PLUS, 0, 8, NULL},
2328
2329         {"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2330                 NULL},
2331
2332         {"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS,
2333                 D_BDW_PLUS, 0, 8, NULL},
2334
2335         {"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS,
2336                 D_BDW_PLUS, 0, 8, NULL},
2337
2338         {"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2339                 8, NULL},
2340
2341         {"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR,
2342                 R_RCS, D_BDW_PLUS, 0, 8, NULL},
2343
2344         {"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2345                 8, NULL},
2346
2347         {"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2348                 NULL},
2349
2350         {"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2351                 NULL},
2352
2353         {"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2354                 NULL},
2355
2356         {"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS,
2357                 D_BDW_PLUS, 0, 8, NULL},
2358
2359         {"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR,
2360                 R_RCS, D_ALL, 0, 8, NULL},
2361
2362         {"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS,
2363                 D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL},
2364
2365         {"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST,
2366                 R_RCS, D_ALL, 0, 1, NULL},
2367
2368         {"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2369
2370         {"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR,
2371                 R_RCS, D_ALL, 0, 8, NULL},
2372
2373         {"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS,
2374                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2375
2376         {"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2377
2378         {"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2379
2380         {"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2381
2382         {"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS,
2383                 D_BDW_PLUS, 0, 8, NULL},
2384
2385         {"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS,
2386                 D_BDW_PLUS, 0, 8, NULL},
2387
2388         {"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS,
2389                 D_ALL, 0, 8, NULL},
2390
2391         {"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS,
2392                 D_BDW_PLUS, 0, 8, NULL},
2393
2394         {"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS,
2395                 D_BDW_PLUS, 0, 8, NULL},
2396
2397         {"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2398
2399         {"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2400
2401         {"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2402
2403         {"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS,
2404                 D_ALL, 0, 8, NULL},
2405
2406         {"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2407
2408         {"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2409
2410         {"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR,
2411                 R_RCS, D_ALL, 0, 8, NULL},
2412
2413         {"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0,
2414                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2415
2416         {"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL,
2417                 0, 8, NULL},
2418
2419         {"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS,
2420                 D_ALL, ADDR_FIX_1(2), 8, NULL},
2421
2422         {"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET,
2423                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2424
2425         {"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN,
2426                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2427
2428         {"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS,
2429                 D_ALL, 0, 8, NULL},
2430
2431         {"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS,
2432                 D_ALL, 0, 8, NULL},
2433
2434         {"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS,
2435                 D_ALL, 0, 8, NULL},
2436
2437         {"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1,
2438                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2439
2440         {"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS,
2441                 D_BDW_PLUS, 0, 8, NULL},
2442
2443         {"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS,
2444                 D_ALL, ADDR_FIX_1(2), 8, NULL},
2445
2446         {"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR,
2447                 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL},
2448
2449         {"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR,
2450                 R_RCS, D_ALL, 0, 8, NULL},
2451
2452         {"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS,
2453                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2454
2455         {"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS,
2456                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2457
2458         {"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS,
2459                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2460
2461         {"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS,
2462                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2463
2464         {"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS,
2465                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2466
2467         {"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR,
2468                 R_RCS, D_ALL, 0, 8, NULL},
2469
2470         {"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS,
2471                 D_ALL, 0, 9, NULL},
2472
2473         {"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2474                 ADDR_FIX_2(2, 4), 8, NULL},
2475
2476         {"3DSTATE_BINDING_TABLE_POOL_ALLOC",
2477                 OP_3DSTATE_BINDING_TABLE_POOL_ALLOC,
2478                 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2479
2480         {"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC,
2481                 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2482
2483         {"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC",
2484                 OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC,
2485                 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2486
2487         {"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS,
2488                 D_BDW_PLUS, 0, 8, NULL},
2489
2490         {"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL,
2491                 ADDR_FIX_1(2), 8, cmd_handler_pipe_control},
2492
2493         {"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2494
2495         {"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0,
2496                 1, NULL},
2497
2498         {"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL,
2499                 ADDR_FIX_1(1), 8, NULL},
2500
2501         {"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2502
2503         {"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2504                 ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL},
2505
2506         {"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL,
2507                 ADDR_FIX_1(1), 8, NULL},
2508
2509         {"OP_SWTESS_BASE_ADDRESS", OP_SWTESS_BASE_ADDRESS,
2510                 F_LEN_VAR, R_RCS, D_ALL, ADDR_FIX_2(1, 2), 3, NULL},
2511
2512         {"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2513
2514         {"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2515
2516         {"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2517                 0, 8, NULL},
2518
2519         {"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS,
2520                 D_SKL_PLUS, 0, 8, NULL},
2521
2522         {"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD,
2523                 F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2524
2525         {"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL,
2526                 0, 16, NULL},
2527
2528         {"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL,
2529                 0, 16, NULL},
2530
2531         {"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL,
2532                 0, 16, NULL},
2533
2534         {"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2535
2536         {"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL,
2537                 0, 16, NULL},
2538
2539         {"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL,
2540                 0, 16, NULL},
2541
2542         {"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2543                 0, 16, NULL},
2544
2545         {"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2546                 0, 8, NULL},
2547
2548         {"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16,
2549                 NULL},
2550
2551         {"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45,
2552                 F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2553
2554         {"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR,
2555                 R_VCS, D_ALL, 0, 12, NULL},
2556
2557         {"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR,
2558                 R_VCS, D_ALL, 0, 12, NULL},
2559
2560         {"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR,
2561                 R_VCS, D_BDW_PLUS, 0, 12, NULL},
2562
2563         {"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE,
2564                 F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2565
2566         {"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE,
2567                 F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL},
2568
2569         {"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2570
2571         {"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR,
2572                 R_VCS, D_ALL, 0, 12, NULL},
2573
2574         {"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR,
2575                 R_VCS, D_ALL, 0, 12, NULL},
2576
2577         {"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR,
2578                 R_VCS, D_ALL, 0, 12, NULL},
2579
2580         {"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR,
2581                 R_VCS, D_ALL, 0, 12, NULL},
2582
2583         {"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR,
2584                 R_VCS, D_ALL, 0, 12, NULL},
2585
2586         {"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR,
2587                 R_VCS, D_ALL, 0, 12, NULL},
2588
2589         {"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR,
2590                 R_VCS, D_ALL, 0, 6, NULL},
2591
2592         {"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR,
2593                 R_VCS, D_ALL, 0, 12, NULL},
2594
2595         {"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR,
2596                 R_VCS, D_ALL, 0, 12, NULL},
2597
2598         {"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR,
2599                 R_VCS, D_ALL, 0, 12, NULL},
2600
2601         {"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR,
2602                 R_VCS, D_ALL, 0, 12, NULL},
2603
2604         {"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR,
2605                 R_VCS, D_ALL, 0, 12, NULL},
2606
2607         {"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR,
2608                 R_VCS, D_ALL, 0, 12, NULL},
2609
2610         {"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR,
2611                 R_VCS, D_ALL, 0, 12, NULL},
2612         {"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR,
2613                 R_VCS, D_ALL, 0, 12, NULL},
2614
2615         {"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR,
2616                 R_VCS, D_ALL, 0, 12, NULL},
2617
2618         {"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR,
2619                 R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL},
2620
2621         {"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR,
2622                 R_VCS, D_ALL, 0, 12, NULL},
2623
2624         {"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR,
2625                 R_VCS, D_ALL, 0, 12, NULL},
2626
2627         {"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR,
2628                 R_VCS, D_ALL, 0, 12, NULL},
2629
2630         {"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR,
2631                 R_VCS, D_ALL, 0, 12, NULL},
2632
2633         {"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR,
2634                 R_VCS, D_ALL, 0, 12, NULL},
2635
2636         {"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR,
2637                 R_VCS, D_ALL, 0, 12, NULL},
2638
2639         {"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR,
2640                 R_VCS, D_ALL, 0, 12, NULL},
2641
2642         {"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR,
2643                 R_VCS, D_ALL, 0, 12, NULL},
2644
2645         {"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR,
2646                 R_VCS, D_ALL, 0, 12, NULL},
2647
2648         {"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR,
2649                 R_VCS, D_ALL, 0, 12, NULL},
2650
2651         {"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR,
2652                 R_VCS, D_ALL, 0, 12, NULL},
2653
2654         {"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL,
2655                 0, 16, NULL},
2656
2657         {"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2658
2659         {"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2660
2661         {"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR,
2662                 R_VCS, D_ALL, 0, 12, NULL},
2663
2664         {"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR,
2665                 R_VCS, D_ALL, 0, 12, NULL},
2666
2667         {"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR,
2668                 R_VCS, D_ALL, 0, 12, NULL},
2669
2670         {"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL},
2671
2672         {"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL,
2673                 0, 12, NULL},
2674
2675         {"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS,
2676                 0, 12, NULL},
2677 };
2678
2679 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e)
2680 {
2681         hash_add(gvt->cmd_table, &e->hlist, e->info->opcode);
2682 }
2683
2684 /* call the cmd handler, and advance ip */
2685 static int cmd_parser_exec(struct parser_exec_state *s)
2686 {
2687         struct intel_vgpu *vgpu = s->vgpu;
2688         const struct cmd_info *info;
2689         u32 cmd;
2690         int ret = 0;
2691
2692         cmd = cmd_val(s, 0);
2693
2694         /* fastpath for MI_NOOP */
2695         if (cmd == MI_NOOP)
2696                 info = &cmd_info[mi_noop_index];
2697         else
2698                 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
2699
2700         if (info == NULL) {
2701                 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
2702                              cmd, get_opcode(cmd, s->engine),
2703                              repr_addr_type(s->buf_addr_type),
2704                              s->engine->name, s->workload);
2705                 return -EBADRQC;
2706         }
2707
2708         s->info = info;
2709
2710         trace_gvt_command(vgpu->id, s->engine->id, s->ip_gma, s->ip_va,
2711                           cmd_length(s), s->buf_type, s->buf_addr_type,
2712                           s->workload, info->name);
2713
2714         if ((info->flag & F_LEN_MASK) == F_LEN_VAR_FIXED) {
2715                 ret = gvt_check_valid_cmd_length(cmd_length(s),
2716                                                  info->valid_len);
2717                 if (ret)
2718                         return ret;
2719         }
2720
2721         if (info->handler) {
2722                 ret = info->handler(s);
2723                 if (ret < 0) {
2724                         gvt_vgpu_err("%s handler error\n", info->name);
2725                         return ret;
2726                 }
2727         }
2728
2729         if (!(info->flag & F_IP_ADVANCE_CUSTOM)) {
2730                 ret = cmd_advance_default(s);
2731                 if (ret) {
2732                         gvt_vgpu_err("%s IP advance error\n", info->name);
2733                         return ret;
2734                 }
2735         }
2736         return 0;
2737 }
2738
2739 static inline bool gma_out_of_range(unsigned long gma,
2740                 unsigned long gma_head, unsigned int gma_tail)
2741 {
2742         if (gma_tail >= gma_head)
2743                 return (gma < gma_head) || (gma > gma_tail);
2744         else
2745                 return (gma > gma_tail) && (gma < gma_head);
2746 }
2747
2748 /* Keep the consistent return type, e.g EBADRQC for unknown
2749  * cmd, EFAULT for invalid address, EPERM for nonpriv. later
2750  * works as the input of VM healthy status.
2751  */
2752 static int command_scan(struct parser_exec_state *s,
2753                 unsigned long rb_head, unsigned long rb_tail,
2754                 unsigned long rb_start, unsigned long rb_len)
2755 {
2756
2757         unsigned long gma_head, gma_tail, gma_bottom;
2758         int ret = 0;
2759         struct intel_vgpu *vgpu = s->vgpu;
2760
2761         gma_head = rb_start + rb_head;
2762         gma_tail = rb_start + rb_tail;
2763         gma_bottom = rb_start +  rb_len;
2764
2765         while (s->ip_gma != gma_tail) {
2766                 if (s->buf_type == RING_BUFFER_INSTRUCTION) {
2767                         if (!(s->ip_gma >= rb_start) ||
2768                                 !(s->ip_gma < gma_bottom)) {
2769                                 gvt_vgpu_err("ip_gma %lx out of ring scope."
2770                                         "(base:0x%lx, bottom: 0x%lx)\n",
2771                                         s->ip_gma, rb_start,
2772                                         gma_bottom);
2773                                 parser_exec_state_dump(s);
2774                                 return -EFAULT;
2775                         }
2776                         if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) {
2777                                 gvt_vgpu_err("ip_gma %lx out of range."
2778                                         "base 0x%lx head 0x%lx tail 0x%lx\n",
2779                                         s->ip_gma, rb_start,
2780                                         rb_head, rb_tail);
2781                                 parser_exec_state_dump(s);
2782                                 break;
2783                         }
2784                 }
2785                 ret = cmd_parser_exec(s);
2786                 if (ret) {
2787                         gvt_vgpu_err("cmd parser error\n");
2788                         parser_exec_state_dump(s);
2789                         break;
2790                 }
2791         }
2792
2793         return ret;
2794 }
2795
2796 static int scan_workload(struct intel_vgpu_workload *workload)
2797 {
2798         unsigned long gma_head, gma_tail, gma_bottom;
2799         struct parser_exec_state s;
2800         int ret = 0;
2801
2802         /* ring base is page aligned */
2803         if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE)))
2804                 return -EINVAL;
2805
2806         gma_head = workload->rb_start + workload->rb_head;
2807         gma_tail = workload->rb_start + workload->rb_tail;
2808         gma_bottom = workload->rb_start +  _RING_CTL_BUF_SIZE(workload->rb_ctl);
2809
2810         s.buf_type = RING_BUFFER_INSTRUCTION;
2811         s.buf_addr_type = GTT_BUFFER;
2812         s.vgpu = workload->vgpu;
2813         s.engine = workload->engine;
2814         s.ring_start = workload->rb_start;
2815         s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2816         s.ring_head = gma_head;
2817         s.ring_tail = gma_tail;
2818         s.rb_va = workload->shadow_ring_buffer_va;
2819         s.workload = workload;
2820         s.is_ctx_wa = false;
2821
2822         if (bypass_scan_mask & workload->engine->mask || gma_head == gma_tail)
2823                 return 0;
2824
2825         ret = ip_gma_set(&s, gma_head);
2826         if (ret)
2827                 goto out;
2828
2829         ret = command_scan(&s, workload->rb_head, workload->rb_tail,
2830                 workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl));
2831
2832 out:
2833         return ret;
2834 }
2835
2836 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2837 {
2838
2839         unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail;
2840         struct parser_exec_state s;
2841         int ret = 0;
2842         struct intel_vgpu_workload *workload = container_of(wa_ctx,
2843                                 struct intel_vgpu_workload,
2844                                 wa_ctx);
2845
2846         /* ring base is page aligned */
2847         if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma,
2848                                         I915_GTT_PAGE_SIZE)))
2849                 return -EINVAL;
2850
2851         ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(u32);
2852         ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES,
2853                         PAGE_SIZE);
2854         gma_head = wa_ctx->indirect_ctx.guest_gma;
2855         gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail;
2856         gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size;
2857
2858         s.buf_type = RING_BUFFER_INSTRUCTION;
2859         s.buf_addr_type = GTT_BUFFER;
2860         s.vgpu = workload->vgpu;
2861         s.engine = workload->engine;
2862         s.ring_start = wa_ctx->indirect_ctx.guest_gma;
2863         s.ring_size = ring_size;
2864         s.ring_head = gma_head;
2865         s.ring_tail = gma_tail;
2866         s.rb_va = wa_ctx->indirect_ctx.shadow_va;
2867         s.workload = workload;
2868         s.is_ctx_wa = true;
2869
2870         ret = ip_gma_set(&s, gma_head);
2871         if (ret)
2872                 goto out;
2873
2874         ret = command_scan(&s, 0, ring_tail,
2875                 wa_ctx->indirect_ctx.guest_gma, ring_size);
2876 out:
2877         return ret;
2878 }
2879
2880 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload)
2881 {
2882         struct intel_vgpu *vgpu = workload->vgpu;
2883         struct intel_vgpu_submission *s = &vgpu->submission;
2884         unsigned long gma_head, gma_tail, gma_top, guest_rb_size;
2885         void *shadow_ring_buffer_va;
2886         int ret;
2887
2888         guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2889
2890         /* calculate workload ring buffer size */
2891         workload->rb_len = (workload->rb_tail + guest_rb_size -
2892                         workload->rb_head) % guest_rb_size;
2893
2894         gma_head = workload->rb_start + workload->rb_head;
2895         gma_tail = workload->rb_start + workload->rb_tail;
2896         gma_top = workload->rb_start + guest_rb_size;
2897
2898         if (workload->rb_len > s->ring_scan_buffer_size[workload->engine->id]) {
2899                 void *p;
2900
2901                 /* realloc the new ring buffer if needed */
2902                 p = krealloc(s->ring_scan_buffer[workload->engine->id],
2903                              workload->rb_len, GFP_KERNEL);
2904                 if (!p) {
2905                         gvt_vgpu_err("fail to re-alloc ring scan buffer\n");
2906                         return -ENOMEM;
2907                 }
2908                 s->ring_scan_buffer[workload->engine->id] = p;
2909                 s->ring_scan_buffer_size[workload->engine->id] = workload->rb_len;
2910         }
2911
2912         shadow_ring_buffer_va = s->ring_scan_buffer[workload->engine->id];
2913
2914         /* get shadow ring buffer va */
2915         workload->shadow_ring_buffer_va = shadow_ring_buffer_va;
2916
2917         /* head > tail --> copy head <-> top */
2918         if (gma_head > gma_tail) {
2919                 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm,
2920                                       gma_head, gma_top, shadow_ring_buffer_va);
2921                 if (ret < 0) {
2922                         gvt_vgpu_err("fail to copy guest ring buffer\n");
2923                         return ret;
2924                 }
2925                 shadow_ring_buffer_va += ret;
2926                 gma_head = workload->rb_start;
2927         }
2928
2929         /* copy head or start <-> tail */
2930         ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail,
2931                                 shadow_ring_buffer_va);
2932         if (ret < 0) {
2933                 gvt_vgpu_err("fail to copy guest ring buffer\n");
2934                 return ret;
2935         }
2936         return 0;
2937 }
2938
2939 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload)
2940 {
2941         int ret;
2942         struct intel_vgpu *vgpu = workload->vgpu;
2943
2944         ret = shadow_workload_ring_buffer(workload);
2945         if (ret) {
2946                 gvt_vgpu_err("fail to shadow workload ring_buffer\n");
2947                 return ret;
2948         }
2949
2950         ret = scan_workload(workload);
2951         if (ret) {
2952                 gvt_vgpu_err("scan workload error\n");
2953                 return ret;
2954         }
2955         return 0;
2956 }
2957
2958 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2959 {
2960         int ctx_size = wa_ctx->indirect_ctx.size;
2961         unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma;
2962         struct intel_vgpu_workload *workload = container_of(wa_ctx,
2963                                         struct intel_vgpu_workload,
2964                                         wa_ctx);
2965         struct intel_vgpu *vgpu = workload->vgpu;
2966         struct drm_i915_gem_object *obj;
2967         int ret = 0;
2968         void *map;
2969
2970         obj = i915_gem_object_create_shmem(workload->engine->i915,
2971                                            roundup(ctx_size + CACHELINE_BYTES,
2972                                                    PAGE_SIZE));
2973         if (IS_ERR(obj))
2974                 return PTR_ERR(obj);
2975
2976         /* get the va of the shadow batch buffer */
2977         map = i915_gem_object_pin_map(obj, I915_MAP_WB);
2978         if (IS_ERR(map)) {
2979                 gvt_vgpu_err("failed to vmap shadow indirect ctx\n");
2980                 ret = PTR_ERR(map);
2981                 goto put_obj;
2982         }
2983
2984         i915_gem_object_lock(obj, NULL);
2985         ret = i915_gem_object_set_to_cpu_domain(obj, false);
2986         i915_gem_object_unlock(obj);
2987         if (ret) {
2988                 gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n");
2989                 goto unmap_src;
2990         }
2991
2992         ret = copy_gma_to_hva(workload->vgpu,
2993                                 workload->vgpu->gtt.ggtt_mm,
2994                                 guest_gma, guest_gma + ctx_size,
2995                                 map);
2996         if (ret < 0) {
2997                 gvt_vgpu_err("fail to copy guest indirect ctx\n");
2998                 goto unmap_src;
2999         }
3000
3001         wa_ctx->indirect_ctx.obj = obj;
3002         wa_ctx->indirect_ctx.shadow_va = map;
3003         return 0;
3004
3005 unmap_src:
3006         i915_gem_object_unpin_map(obj);
3007 put_obj:
3008         i915_gem_object_put(obj);
3009         return ret;
3010 }
3011
3012 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3013 {
3014         u32 per_ctx_start[CACHELINE_DWORDS] = {0};
3015         unsigned char *bb_start_sva;
3016
3017         if (!wa_ctx->per_ctx.valid)
3018                 return 0;
3019
3020         per_ctx_start[0] = 0x18800001;
3021         per_ctx_start[1] = wa_ctx->per_ctx.guest_gma;
3022
3023         bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
3024                                 wa_ctx->indirect_ctx.size;
3025
3026         memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES);
3027
3028         return 0;
3029 }
3030
3031 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3032 {
3033         int ret;
3034         struct intel_vgpu_workload *workload = container_of(wa_ctx,
3035                                         struct intel_vgpu_workload,
3036                                         wa_ctx);
3037         struct intel_vgpu *vgpu = workload->vgpu;
3038
3039         if (wa_ctx->indirect_ctx.size == 0)
3040                 return 0;
3041
3042         ret = shadow_indirect_ctx(wa_ctx);
3043         if (ret) {
3044                 gvt_vgpu_err("fail to shadow indirect ctx\n");
3045                 return ret;
3046         }
3047
3048         combine_wa_ctx(wa_ctx);
3049
3050         ret = scan_wa_ctx(wa_ctx);
3051         if (ret) {
3052                 gvt_vgpu_err("scan wa ctx error\n");
3053                 return ret;
3054         }
3055
3056         return 0;
3057 }
3058
3059 static int init_cmd_table(struct intel_gvt *gvt)
3060 {
3061         unsigned int gen_type = intel_gvt_get_device_type(gvt);
3062         int i;
3063
3064         for (i = 0; i < ARRAY_SIZE(cmd_info); i++) {
3065                 struct cmd_entry *e;
3066
3067                 if (!(cmd_info[i].devices & gen_type))
3068                         continue;
3069
3070                 e = kzalloc(sizeof(*e), GFP_KERNEL);
3071                 if (!e)
3072                         return -ENOMEM;
3073
3074                 e->info = &cmd_info[i];
3075                 if (cmd_info[i].opcode == OP_MI_NOOP)
3076                         mi_noop_index = i;
3077
3078                 INIT_HLIST_NODE(&e->hlist);
3079                 add_cmd_entry(gvt, e);
3080                 gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n",
3081                             e->info->name, e->info->opcode, e->info->flag,
3082                             e->info->devices, e->info->rings);
3083         }
3084
3085         return 0;
3086 }
3087
3088 static void clean_cmd_table(struct intel_gvt *gvt)
3089 {
3090         struct hlist_node *tmp;
3091         struct cmd_entry *e;
3092         int i;
3093
3094         hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist)
3095                 kfree(e);
3096
3097         hash_init(gvt->cmd_table);
3098 }
3099
3100 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt)
3101 {
3102         clean_cmd_table(gvt);
3103 }
3104
3105 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt)
3106 {
3107         int ret;
3108
3109         ret = init_cmd_table(gvt);
3110         if (ret) {
3111                 intel_gvt_clean_cmd_parser(gvt);
3112                 return ret;
3113         }
3114         return 0;
3115 }