GNU Linux-libre 5.10.153-gnu1
[releases.git] / drivers / gpu / drm / bridge / ti-sn65dsi86.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2018, The Linux Foundation. All rights reserved.
4  * datasheet: https://www.ti.com/lit/ds/symlink/sn65dsi86.pdf
5  */
6
7 #include <linux/bits.h>
8 #include <linux/clk.h>
9 #include <linux/debugfs.h>
10 #include <linux/gpio/consumer.h>
11 #include <linux/gpio/driver.h>
12 #include <linux/i2c.h>
13 #include <linux/iopoll.h>
14 #include <linux/module.h>
15 #include <linux/of_graph.h>
16 #include <linux/pm_runtime.h>
17 #include <linux/regmap.h>
18 #include <linux/regulator/consumer.h>
19
20 #include <drm/drm_atomic.h>
21 #include <drm/drm_atomic_helper.h>
22 #include <drm/drm_bridge.h>
23 #include <drm/drm_dp_helper.h>
24 #include <drm/drm_mipi_dsi.h>
25 #include <drm/drm_of.h>
26 #include <drm/drm_panel.h>
27 #include <drm/drm_print.h>
28 #include <drm/drm_probe_helper.h>
29
30 #define SN_DEVICE_REV_REG                       0x08
31 #define SN_DPPLL_SRC_REG                        0x0A
32 #define  DPPLL_CLK_SRC_DSICLK                   BIT(0)
33 #define  REFCLK_FREQ_MASK                       GENMASK(3, 1)
34 #define  REFCLK_FREQ(x)                         ((x) << 1)
35 #define  DPPLL_SRC_DP_PLL_LOCK                  BIT(7)
36 #define SN_PLL_ENABLE_REG                       0x0D
37 #define SN_DSI_LANES_REG                        0x10
38 #define  CHA_DSI_LANES_MASK                     GENMASK(4, 3)
39 #define  CHA_DSI_LANES(x)                       ((x) << 3)
40 #define SN_DSIA_CLK_FREQ_REG                    0x12
41 #define SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG       0x20
42 #define SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG    0x24
43 #define SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG        0x2C
44 #define SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG       0x2D
45 #define  CHA_HSYNC_POLARITY                     BIT(7)
46 #define SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG        0x30
47 #define SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG       0x31
48 #define  CHA_VSYNC_POLARITY                     BIT(7)
49 #define SN_CHA_HORIZONTAL_BACK_PORCH_REG        0x34
50 #define SN_CHA_VERTICAL_BACK_PORCH_REG          0x36
51 #define SN_CHA_HORIZONTAL_FRONT_PORCH_REG       0x38
52 #define SN_CHA_VERTICAL_FRONT_PORCH_REG         0x3A
53 #define SN_LN_ASSIGN_REG                        0x59
54 #define  LN_ASSIGN_WIDTH                        2
55 #define SN_ENH_FRAME_REG                        0x5A
56 #define  VSTREAM_ENABLE                         BIT(3)
57 #define  LN_POLRS_OFFSET                        4
58 #define  LN_POLRS_MASK                          0xf0
59 #define SN_DATA_FORMAT_REG                      0x5B
60 #define  BPP_18_RGB                             BIT(0)
61 #define SN_HPD_DISABLE_REG                      0x5C
62 #define  HPD_DISABLE                            BIT(0)
63 #define SN_GPIO_IO_REG                          0x5E
64 #define  SN_GPIO_INPUT_SHIFT                    4
65 #define  SN_GPIO_OUTPUT_SHIFT                   0
66 #define SN_GPIO_CTRL_REG                        0x5F
67 #define  SN_GPIO_MUX_INPUT                      0
68 #define  SN_GPIO_MUX_OUTPUT                     1
69 #define  SN_GPIO_MUX_SPECIAL                    2
70 #define  SN_GPIO_MUX_MASK                       0x3
71 #define SN_AUX_WDATA_REG(x)                     (0x64 + (x))
72 #define SN_AUX_ADDR_19_16_REG                   0x74
73 #define SN_AUX_ADDR_15_8_REG                    0x75
74 #define SN_AUX_ADDR_7_0_REG                     0x76
75 #define SN_AUX_LENGTH_REG                       0x77
76 #define SN_AUX_CMD_REG                          0x78
77 #define  AUX_CMD_SEND                           BIT(0)
78 #define  AUX_CMD_REQ(x)                         ((x) << 4)
79 #define SN_AUX_RDATA_REG(x)                     (0x79 + (x))
80 #define SN_SSC_CONFIG_REG                       0x93
81 #define  DP_NUM_LANES_MASK                      GENMASK(5, 4)
82 #define  DP_NUM_LANES(x)                        ((x) << 4)
83 #define SN_DATARATE_CONFIG_REG                  0x94
84 #define  DP_DATARATE_MASK                       GENMASK(7, 5)
85 #define  DP_DATARATE(x)                         ((x) << 5)
86 #define SN_ML_TX_MODE_REG                       0x96
87 #define  ML_TX_MAIN_LINK_OFF                    0
88 #define  ML_TX_NORMAL_MODE                      BIT(0)
89 #define SN_AUX_CMD_STATUS_REG                   0xF4
90 #define  AUX_IRQ_STATUS_AUX_RPLY_TOUT           BIT(3)
91 #define  AUX_IRQ_STATUS_AUX_SHORT               BIT(5)
92 #define  AUX_IRQ_STATUS_NAT_I2C_FAIL            BIT(6)
93
94 #define MIN_DSI_CLK_FREQ_MHZ    40
95
96 /* fudge factor required to account for 8b/10b encoding */
97 #define DP_CLK_FUDGE_NUM        10
98 #define DP_CLK_FUDGE_DEN        8
99
100 /* Matches DP_AUX_MAX_PAYLOAD_BYTES (for now) */
101 #define SN_AUX_MAX_PAYLOAD_BYTES        16
102
103 #define SN_REGULATOR_SUPPLY_NUM         4
104
105 #define SN_MAX_DP_LANES                 4
106 #define SN_NUM_GPIOS                    4
107 #define SN_GPIO_PHYSICAL_OFFSET         1
108
109 /**
110  * struct ti_sn_bridge - Platform data for ti-sn65dsi86 driver.
111  * @dev:          Pointer to our device.
112  * @regmap:       Regmap for accessing i2c.
113  * @aux:          Our aux channel.
114  * @bridge:       Our bridge.
115  * @connector:    Our connector.
116  * @debugfs:      Used for managing our debugfs.
117  * @host_node:    Remote DSI node.
118  * @dsi:          Our MIPI DSI source.
119  * @refclk:       Our reference clock.
120  * @panel:        Our panel.
121  * @enable_gpio:  The GPIO we toggle to enable the bridge.
122  * @supplies:     Data for bulk enabling/disabling our regulators.
123  * @dp_lanes:     Count of dp_lanes we're using.
124  * @ln_assign:    Value to program to the LN_ASSIGN register.
125  * @ln_polrs:     Value for the 4-bit LN_POLRS field of SN_ENH_FRAME_REG.
126  *
127  * @gchip:        If we expose our GPIOs, this is used.
128  * @gchip_output: A cache of whether we've set GPIOs to output.  This
129  *                serves double-duty of keeping track of the direction and
130  *                also keeping track of whether we've incremented the
131  *                pm_runtime reference count for this pin, which we do
132  *                whenever a pin is configured as an output.  This is a
133  *                bitmap so we can do atomic ops on it without an extra
134  *                lock so concurrent users of our 4 GPIOs don't stomp on
135  *                each other's read-modify-write.
136  */
137 struct ti_sn_bridge {
138         struct device                   *dev;
139         struct regmap                   *regmap;
140         struct drm_dp_aux               aux;
141         struct drm_bridge               bridge;
142         struct drm_connector            connector;
143         struct dentry                   *debugfs;
144         struct device_node              *host_node;
145         struct mipi_dsi_device          *dsi;
146         struct clk                      *refclk;
147         struct drm_panel                *panel;
148         struct gpio_desc                *enable_gpio;
149         struct regulator_bulk_data      supplies[SN_REGULATOR_SUPPLY_NUM];
150         int                             dp_lanes;
151         u8                              ln_assign;
152         u8                              ln_polrs;
153
154 #if defined(CONFIG_OF_GPIO)
155         struct gpio_chip                gchip;
156         DECLARE_BITMAP(gchip_output, SN_NUM_GPIOS);
157 #endif
158 };
159
160 static const struct regmap_range ti_sn_bridge_volatile_ranges[] = {
161         { .range_min = 0, .range_max = 0xFF },
162 };
163
164 static const struct regmap_access_table ti_sn_bridge_volatile_table = {
165         .yes_ranges = ti_sn_bridge_volatile_ranges,
166         .n_yes_ranges = ARRAY_SIZE(ti_sn_bridge_volatile_ranges),
167 };
168
169 static const struct regmap_config ti_sn_bridge_regmap_config = {
170         .reg_bits = 8,
171         .val_bits = 8,
172         .volatile_table = &ti_sn_bridge_volatile_table,
173         .cache_type = REGCACHE_NONE,
174         .max_register = 0xFF,
175 };
176
177 static void ti_sn_bridge_write_u16(struct ti_sn_bridge *pdata,
178                                    unsigned int reg, u16 val)
179 {
180         regmap_write(pdata->regmap, reg, val & 0xFF);
181         regmap_write(pdata->regmap, reg + 1, val >> 8);
182 }
183
184 static int __maybe_unused ti_sn_bridge_resume(struct device *dev)
185 {
186         struct ti_sn_bridge *pdata = dev_get_drvdata(dev);
187         int ret;
188
189         ret = regulator_bulk_enable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
190         if (ret) {
191                 DRM_ERROR("failed to enable supplies %d\n", ret);
192                 return ret;
193         }
194
195         gpiod_set_value(pdata->enable_gpio, 1);
196
197         return ret;
198 }
199
200 static int __maybe_unused ti_sn_bridge_suspend(struct device *dev)
201 {
202         struct ti_sn_bridge *pdata = dev_get_drvdata(dev);
203         int ret;
204
205         gpiod_set_value(pdata->enable_gpio, 0);
206
207         ret = regulator_bulk_disable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
208         if (ret)
209                 DRM_ERROR("failed to disable supplies %d\n", ret);
210
211         return ret;
212 }
213
214 static const struct dev_pm_ops ti_sn_bridge_pm_ops = {
215         SET_RUNTIME_PM_OPS(ti_sn_bridge_suspend, ti_sn_bridge_resume, NULL)
216         SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
217                                 pm_runtime_force_resume)
218 };
219
220 static int status_show(struct seq_file *s, void *data)
221 {
222         struct ti_sn_bridge *pdata = s->private;
223         unsigned int reg, val;
224
225         seq_puts(s, "STATUS REGISTERS:\n");
226
227         pm_runtime_get_sync(pdata->dev);
228
229         /* IRQ Status Registers, see Table 31 in datasheet */
230         for (reg = 0xf0; reg <= 0xf8; reg++) {
231                 regmap_read(pdata->regmap, reg, &val);
232                 seq_printf(s, "[0x%02x] = 0x%08x\n", reg, val);
233         }
234
235         pm_runtime_put(pdata->dev);
236
237         return 0;
238 }
239
240 DEFINE_SHOW_ATTRIBUTE(status);
241
242 static void ti_sn_debugfs_init(struct ti_sn_bridge *pdata)
243 {
244         pdata->debugfs = debugfs_create_dir(dev_name(pdata->dev), NULL);
245
246         debugfs_create_file("status", 0600, pdata->debugfs, pdata,
247                         &status_fops);
248 }
249
250 static void ti_sn_debugfs_remove(struct ti_sn_bridge *pdata)
251 {
252         debugfs_remove_recursive(pdata->debugfs);
253         pdata->debugfs = NULL;
254 }
255
256 /* Connector funcs */
257 static struct ti_sn_bridge *
258 connector_to_ti_sn_bridge(struct drm_connector *connector)
259 {
260         return container_of(connector, struct ti_sn_bridge, connector);
261 }
262
263 static int ti_sn_bridge_connector_get_modes(struct drm_connector *connector)
264 {
265         struct ti_sn_bridge *pdata = connector_to_ti_sn_bridge(connector);
266
267         return drm_panel_get_modes(pdata->panel, connector);
268 }
269
270 static enum drm_mode_status
271 ti_sn_bridge_connector_mode_valid(struct drm_connector *connector,
272                                   struct drm_display_mode *mode)
273 {
274         /* maximum supported resolution is 4K at 60 fps */
275         if (mode->clock > 594000)
276                 return MODE_CLOCK_HIGH;
277
278         return MODE_OK;
279 }
280
281 static struct drm_connector_helper_funcs ti_sn_bridge_connector_helper_funcs = {
282         .get_modes = ti_sn_bridge_connector_get_modes,
283         .mode_valid = ti_sn_bridge_connector_mode_valid,
284 };
285
286 static enum drm_connector_status
287 ti_sn_bridge_connector_detect(struct drm_connector *connector, bool force)
288 {
289         /**
290          * TODO: Currently if drm_panel is present, then always
291          * return the status as connected. Need to add support to detect
292          * device state for hot pluggable scenarios.
293          */
294         return connector_status_connected;
295 }
296
297 static const struct drm_connector_funcs ti_sn_bridge_connector_funcs = {
298         .fill_modes = drm_helper_probe_single_connector_modes,
299         .detect = ti_sn_bridge_connector_detect,
300         .destroy = drm_connector_cleanup,
301         .reset = drm_atomic_helper_connector_reset,
302         .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
303         .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
304 };
305
306 static struct ti_sn_bridge *bridge_to_ti_sn_bridge(struct drm_bridge *bridge)
307 {
308         return container_of(bridge, struct ti_sn_bridge, bridge);
309 }
310
311 static int ti_sn_bridge_parse_regulators(struct ti_sn_bridge *pdata)
312 {
313         unsigned int i;
314         const char * const ti_sn_bridge_supply_names[] = {
315                 "vcca", "vcc", "vccio", "vpll",
316         };
317
318         for (i = 0; i < SN_REGULATOR_SUPPLY_NUM; i++)
319                 pdata->supplies[i].supply = ti_sn_bridge_supply_names[i];
320
321         return devm_regulator_bulk_get(pdata->dev, SN_REGULATOR_SUPPLY_NUM,
322                                        pdata->supplies);
323 }
324
325 static int ti_sn_bridge_attach(struct drm_bridge *bridge,
326                                enum drm_bridge_attach_flags flags)
327 {
328         int ret, val;
329         struct ti_sn_bridge *pdata = bridge_to_ti_sn_bridge(bridge);
330         struct mipi_dsi_host *host;
331         struct mipi_dsi_device *dsi;
332         const struct mipi_dsi_device_info info = { .type = "ti_sn_bridge",
333                                                    .channel = 0,
334                                                    .node = NULL,
335                                                  };
336
337         if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR) {
338                 DRM_ERROR("Fix bridge driver to make connector optional!");
339                 return -EINVAL;
340         }
341
342         ret = drm_connector_init(bridge->dev, &pdata->connector,
343                                  &ti_sn_bridge_connector_funcs,
344                                  DRM_MODE_CONNECTOR_eDP);
345         if (ret) {
346                 DRM_ERROR("Failed to initialize connector with drm\n");
347                 return ret;
348         }
349
350         drm_connector_helper_add(&pdata->connector,
351                                  &ti_sn_bridge_connector_helper_funcs);
352         drm_connector_attach_encoder(&pdata->connector, bridge->encoder);
353
354         /*
355          * TODO: ideally finding host resource and dsi dev registration needs
356          * to be done in bridge probe. But some existing DSI host drivers will
357          * wait for any of the drm_bridge/drm_panel to get added to the global
358          * bridge/panel list, before completing their probe. So if we do the
359          * dsi dev registration part in bridge probe, before populating in
360          * the global bridge list, then it will cause deadlock as dsi host probe
361          * will never complete, neither our bridge probe. So keeping it here
362          * will satisfy most of the existing host drivers. Once the host driver
363          * is fixed we can move the below code to bridge probe safely.
364          */
365         host = of_find_mipi_dsi_host_by_node(pdata->host_node);
366         if (!host) {
367                 DRM_ERROR("failed to find dsi host\n");
368                 ret = -ENODEV;
369                 goto err_dsi_host;
370         }
371
372         dsi = mipi_dsi_device_register_full(host, &info);
373         if (IS_ERR(dsi)) {
374                 DRM_ERROR("failed to create dsi device\n");
375                 ret = PTR_ERR(dsi);
376                 goto err_dsi_host;
377         }
378
379         /* TODO: setting to 4 MIPI lanes always for now */
380         dsi->lanes = 4;
381         dsi->format = MIPI_DSI_FMT_RGB888;
382         dsi->mode_flags = MIPI_DSI_MODE_VIDEO;
383
384         /* check if continuous dsi clock is required or not */
385         pm_runtime_get_sync(pdata->dev);
386         regmap_read(pdata->regmap, SN_DPPLL_SRC_REG, &val);
387         pm_runtime_put(pdata->dev);
388         if (!(val & DPPLL_CLK_SRC_DSICLK))
389                 dsi->mode_flags |= MIPI_DSI_CLOCK_NON_CONTINUOUS;
390
391         ret = mipi_dsi_attach(dsi);
392         if (ret < 0) {
393                 DRM_ERROR("failed to attach dsi to host\n");
394                 goto err_dsi_attach;
395         }
396         pdata->dsi = dsi;
397
398         return 0;
399
400 err_dsi_attach:
401         mipi_dsi_device_unregister(dsi);
402 err_dsi_host:
403         drm_connector_cleanup(&pdata->connector);
404         return ret;
405 }
406
407 static void ti_sn_bridge_disable(struct drm_bridge *bridge)
408 {
409         struct ti_sn_bridge *pdata = bridge_to_ti_sn_bridge(bridge);
410
411         drm_panel_disable(pdata->panel);
412
413         /* disable video stream */
414         regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE, 0);
415         /* semi auto link training mode OFF */
416         regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0);
417         /* disable DP PLL */
418         regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
419
420         drm_panel_unprepare(pdata->panel);
421 }
422
423 static u32 ti_sn_bridge_get_dsi_freq(struct ti_sn_bridge *pdata)
424 {
425         u32 bit_rate_khz, clk_freq_khz;
426         struct drm_display_mode *mode =
427                 &pdata->bridge.encoder->crtc->state->adjusted_mode;
428
429         bit_rate_khz = mode->clock *
430                         mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
431         clk_freq_khz = bit_rate_khz / (pdata->dsi->lanes * 2);
432
433         return clk_freq_khz;
434 }
435
436 /* clk frequencies supported by bridge in Hz in case derived from REFCLK pin */
437 static const u32 ti_sn_bridge_refclk_lut[] = {
438         12000000,
439         19200000,
440         26000000,
441         27000000,
442         38400000,
443 };
444
445 /* clk frequencies supported by bridge in Hz in case derived from DACP/N pin */
446 static const u32 ti_sn_bridge_dsiclk_lut[] = {
447         468000000,
448         384000000,
449         416000000,
450         486000000,
451         460800000,
452 };
453
454 static void ti_sn_bridge_set_refclk_freq(struct ti_sn_bridge *pdata)
455 {
456         int i;
457         u32 refclk_rate;
458         const u32 *refclk_lut;
459         size_t refclk_lut_size;
460
461         if (pdata->refclk) {
462                 refclk_rate = clk_get_rate(pdata->refclk);
463                 refclk_lut = ti_sn_bridge_refclk_lut;
464                 refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_refclk_lut);
465                 clk_prepare_enable(pdata->refclk);
466         } else {
467                 refclk_rate = ti_sn_bridge_get_dsi_freq(pdata) * 1000;
468                 refclk_lut = ti_sn_bridge_dsiclk_lut;
469                 refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_dsiclk_lut);
470         }
471
472         /* for i equals to refclk_lut_size means default frequency */
473         for (i = 0; i < refclk_lut_size; i++)
474                 if (refclk_lut[i] == refclk_rate)
475                         break;
476
477         regmap_update_bits(pdata->regmap, SN_DPPLL_SRC_REG, REFCLK_FREQ_MASK,
478                            REFCLK_FREQ(i));
479 }
480
481 static void ti_sn_bridge_set_dsi_rate(struct ti_sn_bridge *pdata)
482 {
483         unsigned int bit_rate_mhz, clk_freq_mhz;
484         unsigned int val;
485         struct drm_display_mode *mode =
486                 &pdata->bridge.encoder->crtc->state->adjusted_mode;
487
488         /* set DSIA clk frequency */
489         bit_rate_mhz = (mode->clock / 1000) *
490                         mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
491         clk_freq_mhz = bit_rate_mhz / (pdata->dsi->lanes * 2);
492
493         /* for each increment in val, frequency increases by 5MHz */
494         val = (MIN_DSI_CLK_FREQ_MHZ / 5) +
495                 (((clk_freq_mhz - MIN_DSI_CLK_FREQ_MHZ) / 5) & 0xFF);
496         regmap_write(pdata->regmap, SN_DSIA_CLK_FREQ_REG, val);
497 }
498
499 static unsigned int ti_sn_bridge_get_bpp(struct ti_sn_bridge *pdata)
500 {
501         if (pdata->connector.display_info.bpc <= 6)
502                 return 18;
503         else
504                 return 24;
505 }
506
507 /*
508  * LUT index corresponds to register value and
509  * LUT values corresponds to dp data rate supported
510  * by the bridge in Mbps unit.
511  */
512 static const unsigned int ti_sn_bridge_dp_rate_lut[] = {
513         0, 1620, 2160, 2430, 2700, 3240, 4320, 5400
514 };
515
516 static int ti_sn_bridge_calc_min_dp_rate_idx(struct ti_sn_bridge *pdata)
517 {
518         unsigned int bit_rate_khz, dp_rate_mhz;
519         unsigned int i;
520         struct drm_display_mode *mode =
521                 &pdata->bridge.encoder->crtc->state->adjusted_mode;
522
523         /* Calculate minimum bit rate based on our pixel clock. */
524         bit_rate_khz = mode->clock * ti_sn_bridge_get_bpp(pdata);
525
526         /* Calculate minimum DP data rate, taking 80% as per DP spec */
527         dp_rate_mhz = DIV_ROUND_UP(bit_rate_khz * DP_CLK_FUDGE_NUM,
528                                    1000 * pdata->dp_lanes * DP_CLK_FUDGE_DEN);
529
530         for (i = 1; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut) - 1; i++)
531                 if (ti_sn_bridge_dp_rate_lut[i] >= dp_rate_mhz)
532                         break;
533
534         return i;
535 }
536
537 static void ti_sn_bridge_read_valid_rates(struct ti_sn_bridge *pdata,
538                                           bool rate_valid[])
539 {
540         unsigned int rate_per_200khz;
541         unsigned int rate_mhz;
542         u8 dpcd_val;
543         int ret;
544         int i, j;
545
546         ret = drm_dp_dpcd_readb(&pdata->aux, DP_EDP_DPCD_REV, &dpcd_val);
547         if (ret != 1) {
548                 DRM_DEV_ERROR(pdata->dev,
549                               "Can't read eDP rev (%d), assuming 1.1\n", ret);
550                 dpcd_val = DP_EDP_11;
551         }
552
553         if (dpcd_val >= DP_EDP_14) {
554                 /* eDP 1.4 devices must provide a custom table */
555                 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
556
557                 ret = drm_dp_dpcd_read(&pdata->aux, DP_SUPPORTED_LINK_RATES,
558                                        sink_rates, sizeof(sink_rates));
559
560                 if (ret != sizeof(sink_rates)) {
561                         DRM_DEV_ERROR(pdata->dev,
562                                 "Can't read supported rate table (%d)\n", ret);
563
564                         /* By zeroing we'll fall back to DP_MAX_LINK_RATE. */
565                         memset(sink_rates, 0, sizeof(sink_rates));
566                 }
567
568                 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
569                         rate_per_200khz = le16_to_cpu(sink_rates[i]);
570
571                         if (!rate_per_200khz)
572                                 break;
573
574                         rate_mhz = rate_per_200khz * 200 / 1000;
575                         for (j = 0;
576                              j < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
577                              j++) {
578                                 if (ti_sn_bridge_dp_rate_lut[j] == rate_mhz)
579                                         rate_valid[j] = true;
580                         }
581                 }
582
583                 for (i = 0; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut); i++) {
584                         if (rate_valid[i])
585                                 return;
586                 }
587                 DRM_DEV_ERROR(pdata->dev,
588                               "No matching eDP rates in table; falling back\n");
589         }
590
591         /* On older versions best we can do is use DP_MAX_LINK_RATE */
592         ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LINK_RATE, &dpcd_val);
593         if (ret != 1) {
594                 DRM_DEV_ERROR(pdata->dev,
595                               "Can't read max rate (%d); assuming 5.4 GHz\n",
596                               ret);
597                 dpcd_val = DP_LINK_BW_5_4;
598         }
599
600         switch (dpcd_val) {
601         default:
602                 DRM_DEV_ERROR(pdata->dev,
603                               "Unexpected max rate (%#x); assuming 5.4 GHz\n",
604                               (int)dpcd_val);
605                 fallthrough;
606         case DP_LINK_BW_5_4:
607                 rate_valid[7] = 1;
608                 fallthrough;
609         case DP_LINK_BW_2_7:
610                 rate_valid[4] = 1;
611                 fallthrough;
612         case DP_LINK_BW_1_62:
613                 rate_valid[1] = 1;
614                 break;
615         }
616 }
617
618 static void ti_sn_bridge_set_video_timings(struct ti_sn_bridge *pdata)
619 {
620         struct drm_display_mode *mode =
621                 &pdata->bridge.encoder->crtc->state->adjusted_mode;
622         u8 hsync_polarity = 0, vsync_polarity = 0;
623
624         if (mode->flags & DRM_MODE_FLAG_PHSYNC)
625                 hsync_polarity = CHA_HSYNC_POLARITY;
626         if (mode->flags & DRM_MODE_FLAG_PVSYNC)
627                 vsync_polarity = CHA_VSYNC_POLARITY;
628
629         ti_sn_bridge_write_u16(pdata, SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG,
630                                mode->hdisplay);
631         ti_sn_bridge_write_u16(pdata, SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG,
632                                mode->vdisplay);
633         regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG,
634                      (mode->hsync_end - mode->hsync_start) & 0xFF);
635         regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG,
636                      (((mode->hsync_end - mode->hsync_start) >> 8) & 0x7F) |
637                      hsync_polarity);
638         regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG,
639                      (mode->vsync_end - mode->vsync_start) & 0xFF);
640         regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG,
641                      (((mode->vsync_end - mode->vsync_start) >> 8) & 0x7F) |
642                      vsync_polarity);
643
644         regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_BACK_PORCH_REG,
645                      (mode->htotal - mode->hsync_end) & 0xFF);
646         regmap_write(pdata->regmap, SN_CHA_VERTICAL_BACK_PORCH_REG,
647                      (mode->vtotal - mode->vsync_end) & 0xFF);
648
649         regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_FRONT_PORCH_REG,
650                      (mode->hsync_start - mode->hdisplay) & 0xFF);
651         regmap_write(pdata->regmap, SN_CHA_VERTICAL_FRONT_PORCH_REG,
652                      (mode->vsync_start - mode->vdisplay) & 0xFF);
653
654         usleep_range(10000, 10500); /* 10ms delay recommended by spec */
655 }
656
657 static unsigned int ti_sn_get_max_lanes(struct ti_sn_bridge *pdata)
658 {
659         u8 data;
660         int ret;
661
662         ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LANE_COUNT, &data);
663         if (ret != 1) {
664                 DRM_DEV_ERROR(pdata->dev,
665                               "Can't read lane count (%d); assuming 4\n", ret);
666                 return 4;
667         }
668
669         return data & DP_LANE_COUNT_MASK;
670 }
671
672 static int ti_sn_link_training(struct ti_sn_bridge *pdata, int dp_rate_idx,
673                                const char **last_err_str)
674 {
675         unsigned int val;
676         int ret;
677
678         /* set dp clk frequency value */
679         regmap_update_bits(pdata->regmap, SN_DATARATE_CONFIG_REG,
680                            DP_DATARATE_MASK, DP_DATARATE(dp_rate_idx));
681
682         /* enable DP PLL */
683         regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 1);
684
685         ret = regmap_read_poll_timeout(pdata->regmap, SN_DPPLL_SRC_REG, val,
686                                        val & DPPLL_SRC_DP_PLL_LOCK, 1000,
687                                        50 * 1000);
688         if (ret) {
689                 *last_err_str = "DP_PLL_LOCK polling failed";
690                 goto exit;
691         }
692
693         /* Semi auto link training mode */
694         regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0x0A);
695         ret = regmap_read_poll_timeout(pdata->regmap, SN_ML_TX_MODE_REG, val,
696                                        val == ML_TX_MAIN_LINK_OFF ||
697                                        val == ML_TX_NORMAL_MODE, 1000,
698                                        500 * 1000);
699         if (ret) {
700                 *last_err_str = "Training complete polling failed";
701         } else if (val == ML_TX_MAIN_LINK_OFF) {
702                 *last_err_str = "Link training failed, link is off";
703                 ret = -EIO;
704         }
705
706 exit:
707         /* Disable the PLL if we failed */
708         if (ret)
709                 regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
710
711         return ret;
712 }
713
714 static void ti_sn_bridge_enable(struct drm_bridge *bridge)
715 {
716         struct ti_sn_bridge *pdata = bridge_to_ti_sn_bridge(bridge);
717         bool rate_valid[ARRAY_SIZE(ti_sn_bridge_dp_rate_lut)] = { };
718         const char *last_err_str = "No supported DP rate";
719         int dp_rate_idx;
720         unsigned int val;
721         int ret = -EINVAL;
722         int max_dp_lanes;
723
724         max_dp_lanes = ti_sn_get_max_lanes(pdata);
725         pdata->dp_lanes = min(pdata->dp_lanes, max_dp_lanes);
726
727         /* DSI_A lane config */
728         val = CHA_DSI_LANES(SN_MAX_DP_LANES - pdata->dsi->lanes);
729         regmap_update_bits(pdata->regmap, SN_DSI_LANES_REG,
730                            CHA_DSI_LANES_MASK, val);
731
732         regmap_write(pdata->regmap, SN_LN_ASSIGN_REG, pdata->ln_assign);
733         regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, LN_POLRS_MASK,
734                            pdata->ln_polrs << LN_POLRS_OFFSET);
735
736         /* set dsi clk frequency value */
737         ti_sn_bridge_set_dsi_rate(pdata);
738
739         /**
740          * The SN65DSI86 only supports ASSR Display Authentication method and
741          * this method is enabled by default. An eDP panel must support this
742          * authentication method. We need to enable this method in the eDP panel
743          * at DisplayPort address 0x0010A prior to link training.
744          */
745         drm_dp_dpcd_writeb(&pdata->aux, DP_EDP_CONFIGURATION_SET,
746                            DP_ALTERNATE_SCRAMBLER_RESET_ENABLE);
747
748         /* Set the DP output format (18 bpp or 24 bpp) */
749         val = (ti_sn_bridge_get_bpp(pdata) == 18) ? BPP_18_RGB : 0;
750         regmap_update_bits(pdata->regmap, SN_DATA_FORMAT_REG, BPP_18_RGB, val);
751
752         /* DP lane config */
753         val = DP_NUM_LANES(min(pdata->dp_lanes, 3));
754         regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK,
755                            val);
756
757         ti_sn_bridge_read_valid_rates(pdata, rate_valid);
758
759         /* Train until we run out of rates */
760         for (dp_rate_idx = ti_sn_bridge_calc_min_dp_rate_idx(pdata);
761              dp_rate_idx < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
762              dp_rate_idx++) {
763                 if (!rate_valid[dp_rate_idx])
764                         continue;
765
766                 ret = ti_sn_link_training(pdata, dp_rate_idx, &last_err_str);
767                 if (!ret)
768                         break;
769         }
770         if (ret) {
771                 DRM_DEV_ERROR(pdata->dev, "%s (%d)\n", last_err_str, ret);
772                 return;
773         }
774
775         /* config video parameters */
776         ti_sn_bridge_set_video_timings(pdata);
777
778         /* enable video stream */
779         regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE,
780                            VSTREAM_ENABLE);
781
782         drm_panel_enable(pdata->panel);
783 }
784
785 static void ti_sn_bridge_pre_enable(struct drm_bridge *bridge)
786 {
787         struct ti_sn_bridge *pdata = bridge_to_ti_sn_bridge(bridge);
788
789         pm_runtime_get_sync(pdata->dev);
790
791         /* configure bridge ref_clk */
792         ti_sn_bridge_set_refclk_freq(pdata);
793
794         /*
795          * HPD on this bridge chip is a bit useless.  This is an eDP bridge
796          * so the HPD is an internal signal that's only there to signal that
797          * the panel is done powering up.  ...but the bridge chip debounces
798          * this signal by between 100 ms and 400 ms (depending on process,
799          * voltage, and temperate--I measured it at about 200 ms).  One
800          * particular panel asserted HPD 84 ms after it was powered on meaning
801          * that we saw HPD 284 ms after power on.  ...but the same panel said
802          * that instead of looking at HPD you could just hardcode a delay of
803          * 200 ms.  We'll assume that the panel driver will have the hardcoded
804          * delay in its prepare and always disable HPD.
805          *
806          * If HPD somehow makes sense on some future panel we'll have to
807          * change this to be conditional on someone specifying that HPD should
808          * be used.
809          */
810         regmap_update_bits(pdata->regmap, SN_HPD_DISABLE_REG, HPD_DISABLE,
811                            HPD_DISABLE);
812
813         drm_panel_prepare(pdata->panel);
814 }
815
816 static void ti_sn_bridge_post_disable(struct drm_bridge *bridge)
817 {
818         struct ti_sn_bridge *pdata = bridge_to_ti_sn_bridge(bridge);
819
820         if (pdata->refclk)
821                 clk_disable_unprepare(pdata->refclk);
822
823         pm_runtime_put_sync(pdata->dev);
824 }
825
826 static const struct drm_bridge_funcs ti_sn_bridge_funcs = {
827         .attach = ti_sn_bridge_attach,
828         .pre_enable = ti_sn_bridge_pre_enable,
829         .enable = ti_sn_bridge_enable,
830         .disable = ti_sn_bridge_disable,
831         .post_disable = ti_sn_bridge_post_disable,
832 };
833
834 static struct ti_sn_bridge *aux_to_ti_sn_bridge(struct drm_dp_aux *aux)
835 {
836         return container_of(aux, struct ti_sn_bridge, aux);
837 }
838
839 static ssize_t ti_sn_aux_transfer(struct drm_dp_aux *aux,
840                                   struct drm_dp_aux_msg *msg)
841 {
842         struct ti_sn_bridge *pdata = aux_to_ti_sn_bridge(aux);
843         u32 request = msg->request & ~DP_AUX_I2C_MOT;
844         u32 request_val = AUX_CMD_REQ(msg->request);
845         u8 *buf = (u8 *)msg->buffer;
846         unsigned int val;
847         int ret, i;
848
849         if (msg->size > SN_AUX_MAX_PAYLOAD_BYTES)
850                 return -EINVAL;
851
852         switch (request) {
853         case DP_AUX_NATIVE_WRITE:
854         case DP_AUX_I2C_WRITE:
855         case DP_AUX_NATIVE_READ:
856         case DP_AUX_I2C_READ:
857                 regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val);
858                 break;
859         default:
860                 return -EINVAL;
861         }
862
863         regmap_write(pdata->regmap, SN_AUX_ADDR_19_16_REG,
864                      (msg->address >> 16) & 0xF);
865         regmap_write(pdata->regmap, SN_AUX_ADDR_15_8_REG,
866                      (msg->address >> 8) & 0xFF);
867         regmap_write(pdata->regmap, SN_AUX_ADDR_7_0_REG, msg->address & 0xFF);
868
869         regmap_write(pdata->regmap, SN_AUX_LENGTH_REG, msg->size);
870
871         if (request == DP_AUX_NATIVE_WRITE || request == DP_AUX_I2C_WRITE) {
872                 for (i = 0; i < msg->size; i++)
873                         regmap_write(pdata->regmap, SN_AUX_WDATA_REG(i),
874                                      buf[i]);
875         }
876
877         /* Clear old status bits before start so we don't get confused */
878         regmap_write(pdata->regmap, SN_AUX_CMD_STATUS_REG,
879                      AUX_IRQ_STATUS_NAT_I2C_FAIL |
880                      AUX_IRQ_STATUS_AUX_RPLY_TOUT |
881                      AUX_IRQ_STATUS_AUX_SHORT);
882
883         regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val | AUX_CMD_SEND);
884
885         ret = regmap_read_poll_timeout(pdata->regmap, SN_AUX_CMD_REG, val,
886                                        !(val & AUX_CMD_SEND), 200,
887                                        50 * 1000);
888         if (ret)
889                 return ret;
890
891         ret = regmap_read(pdata->regmap, SN_AUX_CMD_STATUS_REG, &val);
892         if (ret)
893                 return ret;
894         else if ((val & AUX_IRQ_STATUS_NAT_I2C_FAIL)
895                  || (val & AUX_IRQ_STATUS_AUX_RPLY_TOUT)
896                  || (val & AUX_IRQ_STATUS_AUX_SHORT))
897                 return -ENXIO;
898
899         if (request == DP_AUX_NATIVE_WRITE || request == DP_AUX_I2C_WRITE)
900                 return msg->size;
901
902         for (i = 0; i < msg->size; i++) {
903                 unsigned int val;
904                 ret = regmap_read(pdata->regmap, SN_AUX_RDATA_REG(i),
905                                   &val);
906                 if (ret)
907                         return ret;
908
909                 WARN_ON(val & ~0xFF);
910                 buf[i] = (u8)(val & 0xFF);
911         }
912
913         return msg->size;
914 }
915
916 static int ti_sn_bridge_parse_dsi_host(struct ti_sn_bridge *pdata)
917 {
918         struct device_node *np = pdata->dev->of_node;
919
920         pdata->host_node = of_graph_get_remote_node(np, 0, 0);
921
922         if (!pdata->host_node) {
923                 DRM_ERROR("remote dsi host node not found\n");
924                 return -ENODEV;
925         }
926
927         return 0;
928 }
929
930 #if defined(CONFIG_OF_GPIO)
931
932 static int tn_sn_bridge_of_xlate(struct gpio_chip *chip,
933                                  const struct of_phandle_args *gpiospec,
934                                  u32 *flags)
935 {
936         if (WARN_ON(gpiospec->args_count < chip->of_gpio_n_cells))
937                 return -EINVAL;
938
939         if (gpiospec->args[0] > chip->ngpio || gpiospec->args[0] < 1)
940                 return -EINVAL;
941
942         if (flags)
943                 *flags = gpiospec->args[1];
944
945         return gpiospec->args[0] - SN_GPIO_PHYSICAL_OFFSET;
946 }
947
948 static int ti_sn_bridge_gpio_get_direction(struct gpio_chip *chip,
949                                            unsigned int offset)
950 {
951         struct ti_sn_bridge *pdata = gpiochip_get_data(chip);
952
953         /*
954          * We already have to keep track of the direction because we use
955          * that to figure out whether we've powered the device.  We can
956          * just return that rather than (maybe) powering up the device
957          * to ask its direction.
958          */
959         return test_bit(offset, pdata->gchip_output) ?
960                 GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
961 }
962
963 static int ti_sn_bridge_gpio_get(struct gpio_chip *chip, unsigned int offset)
964 {
965         struct ti_sn_bridge *pdata = gpiochip_get_data(chip);
966         unsigned int val;
967         int ret;
968
969         /*
970          * When the pin is an input we don't forcibly keep the bridge
971          * powered--we just power it on to read the pin.  NOTE: part of
972          * the reason this works is that the bridge defaults (when
973          * powered back on) to all 4 GPIOs being configured as GPIO input.
974          * Also note that if something else is keeping the chip powered the
975          * pm_runtime functions are lightweight increments of a refcount.
976          */
977         pm_runtime_get_sync(pdata->dev);
978         ret = regmap_read(pdata->regmap, SN_GPIO_IO_REG, &val);
979         pm_runtime_put(pdata->dev);
980
981         if (ret)
982                 return ret;
983
984         return !!(val & BIT(SN_GPIO_INPUT_SHIFT + offset));
985 }
986
987 static void ti_sn_bridge_gpio_set(struct gpio_chip *chip, unsigned int offset,
988                                   int val)
989 {
990         struct ti_sn_bridge *pdata = gpiochip_get_data(chip);
991         int ret;
992
993         if (!test_bit(offset, pdata->gchip_output)) {
994                 dev_err(pdata->dev, "Ignoring GPIO set while input\n");
995                 return;
996         }
997
998         val &= 1;
999         ret = regmap_update_bits(pdata->regmap, SN_GPIO_IO_REG,
1000                                  BIT(SN_GPIO_OUTPUT_SHIFT + offset),
1001                                  val << (SN_GPIO_OUTPUT_SHIFT + offset));
1002         if (ret)
1003                 dev_warn(pdata->dev,
1004                          "Failed to set bridge GPIO %u: %d\n", offset, ret);
1005 }
1006
1007 static int ti_sn_bridge_gpio_direction_input(struct gpio_chip *chip,
1008                                              unsigned int offset)
1009 {
1010         struct ti_sn_bridge *pdata = gpiochip_get_data(chip);
1011         int shift = offset * 2;
1012         int ret;
1013
1014         if (!test_and_clear_bit(offset, pdata->gchip_output))
1015                 return 0;
1016
1017         ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1018                                  SN_GPIO_MUX_MASK << shift,
1019                                  SN_GPIO_MUX_INPUT << shift);
1020         if (ret) {
1021                 set_bit(offset, pdata->gchip_output);
1022                 return ret;
1023         }
1024
1025         /*
1026          * NOTE: if nobody else is powering the device this may fully power
1027          * it off and when it comes back it will have lost all state, but
1028          * that's OK because the default is input and we're now an input.
1029          */
1030         pm_runtime_put(pdata->dev);
1031
1032         return 0;
1033 }
1034
1035 static int ti_sn_bridge_gpio_direction_output(struct gpio_chip *chip,
1036                                               unsigned int offset, int val)
1037 {
1038         struct ti_sn_bridge *pdata = gpiochip_get_data(chip);
1039         int shift = offset * 2;
1040         int ret;
1041
1042         if (test_and_set_bit(offset, pdata->gchip_output))
1043                 return 0;
1044
1045         pm_runtime_get_sync(pdata->dev);
1046
1047         /* Set value first to avoid glitching */
1048         ti_sn_bridge_gpio_set(chip, offset, val);
1049
1050         /* Set direction */
1051         ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1052                                  SN_GPIO_MUX_MASK << shift,
1053                                  SN_GPIO_MUX_OUTPUT << shift);
1054         if (ret) {
1055                 clear_bit(offset, pdata->gchip_output);
1056                 pm_runtime_put(pdata->dev);
1057         }
1058
1059         return ret;
1060 }
1061
1062 static void ti_sn_bridge_gpio_free(struct gpio_chip *chip, unsigned int offset)
1063 {
1064         /* We won't keep pm_runtime if we're input, so switch there on free */
1065         ti_sn_bridge_gpio_direction_input(chip, offset);
1066 }
1067
1068 static const char * const ti_sn_bridge_gpio_names[SN_NUM_GPIOS] = {
1069         "GPIO1", "GPIO2", "GPIO3", "GPIO4"
1070 };
1071
1072 static int ti_sn_setup_gpio_controller(struct ti_sn_bridge *pdata)
1073 {
1074         int ret;
1075
1076         /* Only init if someone is going to use us as a GPIO controller */
1077         if (!of_property_read_bool(pdata->dev->of_node, "gpio-controller"))
1078                 return 0;
1079
1080         pdata->gchip.label = dev_name(pdata->dev);
1081         pdata->gchip.parent = pdata->dev;
1082         pdata->gchip.owner = THIS_MODULE;
1083         pdata->gchip.of_xlate = tn_sn_bridge_of_xlate;
1084         pdata->gchip.of_gpio_n_cells = 2;
1085         pdata->gchip.free = ti_sn_bridge_gpio_free;
1086         pdata->gchip.get_direction = ti_sn_bridge_gpio_get_direction;
1087         pdata->gchip.direction_input = ti_sn_bridge_gpio_direction_input;
1088         pdata->gchip.direction_output = ti_sn_bridge_gpio_direction_output;
1089         pdata->gchip.get = ti_sn_bridge_gpio_get;
1090         pdata->gchip.set = ti_sn_bridge_gpio_set;
1091         pdata->gchip.can_sleep = true;
1092         pdata->gchip.names = ti_sn_bridge_gpio_names;
1093         pdata->gchip.ngpio = SN_NUM_GPIOS;
1094         pdata->gchip.base = -1;
1095         ret = devm_gpiochip_add_data(pdata->dev, &pdata->gchip, pdata);
1096         if (ret)
1097                 dev_err(pdata->dev, "can't add gpio chip\n");
1098
1099         return ret;
1100 }
1101
1102 #else
1103
1104 static inline int ti_sn_setup_gpio_controller(struct ti_sn_bridge *pdata)
1105 {
1106         return 0;
1107 }
1108
1109 #endif
1110
1111 static void ti_sn_bridge_parse_lanes(struct ti_sn_bridge *pdata,
1112                                      struct device_node *np)
1113 {
1114         u32 lane_assignments[SN_MAX_DP_LANES] = { 0, 1, 2, 3 };
1115         u32 lane_polarities[SN_MAX_DP_LANES] = { };
1116         struct device_node *endpoint;
1117         u8 ln_assign = 0;
1118         u8 ln_polrs = 0;
1119         int dp_lanes;
1120         int i;
1121
1122         /*
1123          * Read config from the device tree about lane remapping and lane
1124          * polarities.  These are optional and we assume identity map and
1125          * normal polarity if nothing is specified.  It's OK to specify just
1126          * data-lanes but not lane-polarities but not vice versa.
1127          *
1128          * Error checking is light (we just make sure we don't crash or
1129          * buffer overrun) and we assume dts is well formed and specifying
1130          * mappings that the hardware supports.
1131          */
1132         endpoint = of_graph_get_endpoint_by_regs(np, 1, -1);
1133         dp_lanes = of_property_count_u32_elems(endpoint, "data-lanes");
1134         if (dp_lanes > 0 && dp_lanes <= SN_MAX_DP_LANES) {
1135                 of_property_read_u32_array(endpoint, "data-lanes",
1136                                            lane_assignments, dp_lanes);
1137                 of_property_read_u32_array(endpoint, "lane-polarities",
1138                                            lane_polarities, dp_lanes);
1139         } else {
1140                 dp_lanes = SN_MAX_DP_LANES;
1141         }
1142         of_node_put(endpoint);
1143
1144         /*
1145          * Convert into register format.  Loop over all lanes even if
1146          * data-lanes had fewer elements so that we nicely initialize
1147          * the LN_ASSIGN register.
1148          */
1149         for (i = SN_MAX_DP_LANES - 1; i >= 0; i--) {
1150                 ln_assign = ln_assign << LN_ASSIGN_WIDTH | lane_assignments[i];
1151                 ln_polrs = ln_polrs << 1 | lane_polarities[i];
1152         }
1153
1154         /* Stash in our struct for when we power on */
1155         pdata->dp_lanes = dp_lanes;
1156         pdata->ln_assign = ln_assign;
1157         pdata->ln_polrs = ln_polrs;
1158 }
1159
1160 static int ti_sn_bridge_probe(struct i2c_client *client,
1161                               const struct i2c_device_id *id)
1162 {
1163         struct ti_sn_bridge *pdata;
1164         int ret;
1165
1166         if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
1167                 DRM_ERROR("device doesn't support I2C\n");
1168                 return -ENODEV;
1169         }
1170
1171         pdata = devm_kzalloc(&client->dev, sizeof(struct ti_sn_bridge),
1172                              GFP_KERNEL);
1173         if (!pdata)
1174                 return -ENOMEM;
1175
1176         pdata->regmap = devm_regmap_init_i2c(client,
1177                                              &ti_sn_bridge_regmap_config);
1178         if (IS_ERR(pdata->regmap)) {
1179                 DRM_ERROR("regmap i2c init failed\n");
1180                 return PTR_ERR(pdata->regmap);
1181         }
1182
1183         pdata->dev = &client->dev;
1184
1185         ret = drm_of_find_panel_or_bridge(pdata->dev->of_node, 1, 0,
1186                                           &pdata->panel, NULL);
1187         if (ret) {
1188                 DRM_ERROR("could not find any panel node\n");
1189                 return ret;
1190         }
1191
1192         dev_set_drvdata(&client->dev, pdata);
1193
1194         pdata->enable_gpio = devm_gpiod_get(pdata->dev, "enable",
1195                                             GPIOD_OUT_LOW);
1196         if (IS_ERR(pdata->enable_gpio)) {
1197                 DRM_ERROR("failed to get enable gpio from DT\n");
1198                 ret = PTR_ERR(pdata->enable_gpio);
1199                 return ret;
1200         }
1201
1202         ti_sn_bridge_parse_lanes(pdata, client->dev.of_node);
1203
1204         ret = ti_sn_bridge_parse_regulators(pdata);
1205         if (ret) {
1206                 DRM_ERROR("failed to parse regulators\n");
1207                 return ret;
1208         }
1209
1210         pdata->refclk = devm_clk_get(pdata->dev, "refclk");
1211         if (IS_ERR(pdata->refclk)) {
1212                 ret = PTR_ERR(pdata->refclk);
1213                 if (ret == -EPROBE_DEFER)
1214                         return ret;
1215                 DRM_DEBUG_KMS("refclk not found\n");
1216                 pdata->refclk = NULL;
1217         }
1218
1219         ret = ti_sn_bridge_parse_dsi_host(pdata);
1220         if (ret)
1221                 return ret;
1222
1223         pm_runtime_enable(pdata->dev);
1224
1225         ret = ti_sn_setup_gpio_controller(pdata);
1226         if (ret) {
1227                 pm_runtime_disable(pdata->dev);
1228                 return ret;
1229         }
1230
1231         i2c_set_clientdata(client, pdata);
1232
1233         pdata->aux.name = "ti-sn65dsi86-aux";
1234         pdata->aux.dev = pdata->dev;
1235         pdata->aux.transfer = ti_sn_aux_transfer;
1236         drm_dp_aux_register(&pdata->aux);
1237
1238         pdata->bridge.funcs = &ti_sn_bridge_funcs;
1239         pdata->bridge.of_node = client->dev.of_node;
1240
1241         drm_bridge_add(&pdata->bridge);
1242
1243         ti_sn_debugfs_init(pdata);
1244
1245         return 0;
1246 }
1247
1248 static int ti_sn_bridge_remove(struct i2c_client *client)
1249 {
1250         struct ti_sn_bridge *pdata = i2c_get_clientdata(client);
1251
1252         if (!pdata)
1253                 return -EINVAL;
1254
1255         ti_sn_debugfs_remove(pdata);
1256
1257         of_node_put(pdata->host_node);
1258
1259         pm_runtime_disable(pdata->dev);
1260
1261         if (pdata->dsi) {
1262                 mipi_dsi_detach(pdata->dsi);
1263                 mipi_dsi_device_unregister(pdata->dsi);
1264         }
1265
1266         drm_bridge_remove(&pdata->bridge);
1267
1268         return 0;
1269 }
1270
1271 static struct i2c_device_id ti_sn_bridge_id[] = {
1272         { "ti,sn65dsi86", 0},
1273         {},
1274 };
1275 MODULE_DEVICE_TABLE(i2c, ti_sn_bridge_id);
1276
1277 static const struct of_device_id ti_sn_bridge_match_table[] = {
1278         {.compatible = "ti,sn65dsi86"},
1279         {},
1280 };
1281 MODULE_DEVICE_TABLE(of, ti_sn_bridge_match_table);
1282
1283 static struct i2c_driver ti_sn_bridge_driver = {
1284         .driver = {
1285                 .name = "ti_sn65dsi86",
1286                 .of_match_table = ti_sn_bridge_match_table,
1287                 .pm = &ti_sn_bridge_pm_ops,
1288         },
1289         .probe = ti_sn_bridge_probe,
1290         .remove = ti_sn_bridge_remove,
1291         .id_table = ti_sn_bridge_id,
1292 };
1293 module_i2c_driver(ti_sn_bridge_driver);
1294
1295 MODULE_AUTHOR("Sandeep Panda <spanda@codeaurora.org>");
1296 MODULE_DESCRIPTION("sn65dsi86 DSI to eDP bridge driver");
1297 MODULE_LICENSE("GPL v2");