GNU Linux-libre 4.19.245-gnu1
[releases.git] / drivers / gpu / drm / amd / powerplay / smumgr / ci_smumgr.c
1 /*
2  * Copyright 2017 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/fb.h>
26 #include "linux/delay.h"
27 #include <linux/types.h>
28
29 #include "smumgr.h"
30 #include "pp_debug.h"
31 #include "ci_smumgr.h"
32 #include "ppsmc.h"
33 #include "smu7_hwmgr.h"
34 #include "hardwaremanager.h"
35 #include "ppatomctrl.h"
36 #include "cgs_common.h"
37 #include "atombios.h"
38 #include "pppcielanes.h"
39
40 #include "smu/smu_7_0_1_d.h"
41 #include "smu/smu_7_0_1_sh_mask.h"
42
43 #include "dce/dce_8_0_d.h"
44 #include "dce/dce_8_0_sh_mask.h"
45
46 #include "bif/bif_4_1_d.h"
47 #include "bif/bif_4_1_sh_mask.h"
48
49 #include "gca/gfx_7_2_d.h"
50 #include "gca/gfx_7_2_sh_mask.h"
51
52 #include "gmc/gmc_7_1_d.h"
53 #include "gmc/gmc_7_1_sh_mask.h"
54
55 #include "processpptables.h"
56
57 #define MC_CG_ARB_FREQ_F0           0x0a
58 #define MC_CG_ARB_FREQ_F1           0x0b
59 #define MC_CG_ARB_FREQ_F2           0x0c
60 #define MC_CG_ARB_FREQ_F3           0x0d
61
62 #define SMC_RAM_END 0x40000
63
64 #define CISLAND_MINIMUM_ENGINE_CLOCK 800
65 #define CISLAND_MAX_DEEPSLEEP_DIVIDER_ID 5
66
67 static const struct ci_pt_defaults defaults_hawaii_xt = {
68         1, 0xF, 0xFD, 0x19, 5, 0x14, 0, 0xB0000,
69         { 0x2E,  0x00,  0x00,  0x88,  0x00,  0x00,  0x72,  0x60,  0x51,  0xA7,  0x79,  0x6B,  0x90,  0xBD,  0x79  },
70         { 0x217, 0x217, 0x217, 0x242, 0x242, 0x242, 0x269, 0x269, 0x269, 0x2A1, 0x2A1, 0x2A1, 0x2C9, 0x2C9, 0x2C9 }
71 };
72
73 static const struct ci_pt_defaults defaults_hawaii_pro = {
74         1, 0xF, 0xFD, 0x19, 5, 0x14, 0, 0x65062,
75         { 0x2E,  0x00,  0x00,  0x88,  0x00,  0x00,  0x72,  0x60,  0x51,  0xA7,  0x79,  0x6B,  0x90,  0xBD,  0x79  },
76         { 0x217, 0x217, 0x217, 0x242, 0x242, 0x242, 0x269, 0x269, 0x269, 0x2A1, 0x2A1, 0x2A1, 0x2C9, 0x2C9, 0x2C9 }
77 };
78
79 static const struct ci_pt_defaults defaults_bonaire_xt = {
80         1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000,
81         { 0x79,  0x253, 0x25D, 0xAE,  0x72,  0x80,  0x83,  0x86,  0x6F,  0xC8,  0xC9,  0xC9,  0x2F,  0x4D,  0x61  },
82         { 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 }
83 };
84
85
86 static const struct ci_pt_defaults defaults_saturn_xt = {
87         1, 0xF, 0xFD, 0x19, 5, 55, 0, 0x70000,
88         { 0x8C,  0x247, 0x249, 0xA6,  0x80,  0x81,  0x8B,  0x89,  0x86,  0xC9,  0xCA,  0xC9,  0x4D,  0x4D,  0x4D  },
89         { 0x187, 0x187, 0x187, 0x1C7, 0x1C7, 0x1C7, 0x210, 0x210, 0x210, 0x266, 0x266, 0x266, 0x2C9, 0x2C9, 0x2C9 }
90 };
91
92
93 static int ci_set_smc_sram_address(struct pp_hwmgr *hwmgr,
94                                         uint32_t smc_addr, uint32_t limit)
95 {
96         if ((0 != (3 & smc_addr))
97                 || ((smc_addr + 3) >= limit)) {
98                 pr_err("smc_addr invalid \n");
99                 return -EINVAL;
100         }
101
102         cgs_write_register(hwmgr->device, mmSMC_IND_INDEX_0, smc_addr);
103         PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0);
104         return 0;
105 }
106
107 static int ci_copy_bytes_to_smc(struct pp_hwmgr *hwmgr, uint32_t smc_start_address,
108                                 const uint8_t *src, uint32_t byte_count, uint32_t limit)
109 {
110         int result;
111         uint32_t data = 0;
112         uint32_t original_data;
113         uint32_t addr = 0;
114         uint32_t extra_shift;
115
116         if ((3 & smc_start_address)
117                 || ((smc_start_address + byte_count) >= limit)) {
118                 pr_err("smc_start_address invalid \n");
119                 return -EINVAL;
120         }
121
122         addr = smc_start_address;
123
124         while (byte_count >= 4) {
125         /* Bytes are written into the SMC address space with the MSB first. */
126                 data = src[0] * 0x1000000 + src[1] * 0x10000 + src[2] * 0x100 + src[3];
127
128                 result = ci_set_smc_sram_address(hwmgr, addr, limit);
129
130                 if (0 != result)
131                         return result;
132
133                 cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data);
134
135                 src += 4;
136                 byte_count -= 4;
137                 addr += 4;
138         }
139
140         if (0 != byte_count) {
141
142                 data = 0;
143
144                 result = ci_set_smc_sram_address(hwmgr, addr, limit);
145
146                 if (0 != result)
147                         return result;
148
149
150                 original_data = cgs_read_register(hwmgr->device, mmSMC_IND_DATA_0);
151
152                 extra_shift = 8 * (4 - byte_count);
153
154                 while (byte_count > 0) {
155                         /* Bytes are written into the SMC addres space with the MSB first. */
156                         data = (0x100 * data) + *src++;
157                         byte_count--;
158                 }
159
160                 data <<= extra_shift;
161
162                 data |= (original_data & ~((~0UL) << extra_shift));
163
164                 result = ci_set_smc_sram_address(hwmgr, addr, limit);
165
166                 if (0 != result)
167                         return result;
168
169                 cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data);
170         }
171
172         return 0;
173 }
174
175
176 static int ci_program_jump_on_start(struct pp_hwmgr *hwmgr)
177 {
178         static const unsigned char data[4] = { 0xE0, 0x00, 0x80, 0x40 };
179
180         ci_copy_bytes_to_smc(hwmgr, 0x0, data, 4, sizeof(data)+1);
181
182         return 0;
183 }
184
185 bool ci_is_smc_ram_running(struct pp_hwmgr *hwmgr)
186 {
187         return ((0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
188                         CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable))
189         && (0x20100 <= cgs_read_ind_register(hwmgr->device,
190                         CGS_IND_REG__SMC, ixSMC_PC_C)));
191 }
192
193 static int ci_read_smc_sram_dword(struct pp_hwmgr *hwmgr, uint32_t smc_addr,
194                                 uint32_t *value, uint32_t limit)
195 {
196         int result;
197
198         result = ci_set_smc_sram_address(hwmgr, smc_addr, limit);
199
200         if (result)
201                 return result;
202
203         *value = cgs_read_register(hwmgr->device, mmSMC_IND_DATA_0);
204         return 0;
205 }
206
207 static int ci_send_msg_to_smc(struct pp_hwmgr *hwmgr, uint16_t msg)
208 {
209         int ret;
210
211         cgs_write_register(hwmgr->device, mmSMC_RESP_0, 0);
212         cgs_write_register(hwmgr->device, mmSMC_MESSAGE_0, msg);
213
214         PHM_WAIT_FIELD_UNEQUAL(hwmgr, SMC_RESP_0, SMC_RESP, 0);
215
216         ret = PHM_READ_FIELD(hwmgr->device, SMC_RESP_0, SMC_RESP);
217
218         if (ret != 1)
219                 pr_info("\n failed to send message %x ret is %d\n",  msg, ret);
220
221         return 0;
222 }
223
224 static int ci_send_msg_to_smc_with_parameter(struct pp_hwmgr *hwmgr,
225                                         uint16_t msg, uint32_t parameter)
226 {
227         cgs_write_register(hwmgr->device, mmSMC_MSG_ARG_0, parameter);
228         return ci_send_msg_to_smc(hwmgr, msg);
229 }
230
231 static void ci_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
232 {
233         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
234         struct amdgpu_device *adev = hwmgr->adev;
235         uint32_t dev_id;
236
237         dev_id = adev->pdev->device;
238
239         switch (dev_id) {
240         case 0x67BA:
241         case 0x67B1:
242                 smu_data->power_tune_defaults = &defaults_hawaii_pro;
243                 break;
244         case 0x67B8:
245         case 0x66B0:
246                 smu_data->power_tune_defaults = &defaults_hawaii_xt;
247                 break;
248         case 0x6640:
249         case 0x6641:
250         case 0x6646:
251         case 0x6647:
252                 smu_data->power_tune_defaults = &defaults_saturn_xt;
253                 break;
254         case 0x6649:
255         case 0x6650:
256         case 0x6651:
257         case 0x6658:
258         case 0x665C:
259         case 0x665D:
260         case 0x67A0:
261         case 0x67A1:
262         case 0x67A2:
263         case 0x67A8:
264         case 0x67A9:
265         case 0x67AA:
266         case 0x67B9:
267         case 0x67BE:
268         default:
269                 smu_data->power_tune_defaults = &defaults_bonaire_xt;
270                 break;
271         }
272 }
273
274 static int ci_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
275         struct phm_clock_voltage_dependency_table *allowed_clock_voltage_table,
276         uint32_t clock, uint32_t *vol)
277 {
278         uint32_t i = 0;
279
280         if (allowed_clock_voltage_table->count == 0)
281                 return -EINVAL;
282
283         for (i = 0; i < allowed_clock_voltage_table->count; i++) {
284                 if (allowed_clock_voltage_table->entries[i].clk >= clock) {
285                         *vol = allowed_clock_voltage_table->entries[i].v;
286                         return 0;
287                 }
288         }
289
290         *vol = allowed_clock_voltage_table->entries[i - 1].v;
291         return 0;
292 }
293
294 static int ci_calculate_sclk_params(struct pp_hwmgr *hwmgr,
295                 uint32_t clock, struct SMU7_Discrete_GraphicsLevel *sclk)
296 {
297         const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
298         struct pp_atomctrl_clock_dividers_vi dividers;
299         uint32_t spll_func_cntl            = data->clock_registers.vCG_SPLL_FUNC_CNTL;
300         uint32_t spll_func_cntl_3          = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
301         uint32_t spll_func_cntl_4          = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
302         uint32_t cg_spll_spread_spectrum   = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
303         uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
304         uint32_t ref_clock;
305         uint32_t ref_divider;
306         uint32_t fbdiv;
307         int result;
308
309         /* get the engine clock dividers for this clock value */
310         result = atomctrl_get_engine_pll_dividers_vi(hwmgr, clock,  &dividers);
311
312         PP_ASSERT_WITH_CODE(result == 0,
313                         "Error retrieving Engine Clock dividers from VBIOS.",
314                         return result);
315
316         /* To get FBDIV we need to multiply this by 16384 and divide it by Fref. */
317         ref_clock = atomctrl_get_reference_clock(hwmgr);
318         ref_divider = 1 + dividers.uc_pll_ref_div;
319
320         /* low 14 bits is fraction and high 12 bits is divider */
321         fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
322
323         /* SPLL_FUNC_CNTL setup */
324         spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
325                         SPLL_REF_DIV, dividers.uc_pll_ref_div);
326         spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
327                         SPLL_PDIV_A,  dividers.uc_pll_post_div);
328
329         /* SPLL_FUNC_CNTL_3 setup*/
330         spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
331                         SPLL_FB_DIV, fbdiv);
332
333         /* set to use fractional accumulation*/
334         spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
335                         SPLL_DITHEN, 1);
336
337         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
338                                 PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
339                 struct pp_atomctrl_internal_ss_info ss_info;
340                 uint32_t vco_freq = clock * dividers.uc_pll_post_div;
341
342                 if (!atomctrl_get_engine_clock_spread_spectrum(hwmgr,
343                                 vco_freq, &ss_info)) {
344                         uint32_t clk_s = ref_clock * 5 /
345                                         (ref_divider * ss_info.speed_spectrum_rate);
346                         uint32_t clk_v = 4 * ss_info.speed_spectrum_percentage *
347                                         fbdiv / (clk_s * 10000);
348
349                         cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
350                                         CG_SPLL_SPREAD_SPECTRUM, CLKS, clk_s);
351                         cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
352                                         CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
353                         cg_spll_spread_spectrum_2 = PHM_SET_FIELD(cg_spll_spread_spectrum_2,
354                                         CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clk_v);
355                 }
356         }
357
358         sclk->SclkFrequency        = clock;
359         sclk->CgSpllFuncCntl3      = spll_func_cntl_3;
360         sclk->CgSpllFuncCntl4      = spll_func_cntl_4;
361         sclk->SpllSpreadSpectrum   = cg_spll_spread_spectrum;
362         sclk->SpllSpreadSpectrum2  = cg_spll_spread_spectrum_2;
363         sclk->SclkDid              = (uint8_t)dividers.pll_post_divider;
364
365         return 0;
366 }
367
368 static void ci_populate_phase_value_based_on_sclk(struct pp_hwmgr *hwmgr,
369                                 const struct phm_phase_shedding_limits_table *pl,
370                                         uint32_t sclk, uint32_t *p_shed)
371 {
372         unsigned int i;
373
374         /* use the minimum phase shedding */
375         *p_shed = 1;
376
377         for (i = 0; i < pl->count; i++) {
378                 if (sclk < pl->entries[i].Sclk) {
379                         *p_shed = i;
380                         break;
381                 }
382         }
383 }
384
385 static uint8_t ci_get_sleep_divider_id_from_clock(uint32_t clock,
386                         uint32_t clock_insr)
387 {
388         uint8_t i;
389         uint32_t temp;
390         uint32_t min = min_t(uint32_t, clock_insr, CISLAND_MINIMUM_ENGINE_CLOCK);
391
392         if (clock < min) {
393                 pr_info("Engine clock can't satisfy stutter requirement!\n");
394                 return 0;
395         }
396         for (i = CISLAND_MAX_DEEPSLEEP_DIVIDER_ID;  ; i--) {
397                 temp = clock >> i;
398
399                 if (temp >= min || i == 0)
400                         break;
401         }
402         return i;
403 }
404
405 static int ci_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
406                 uint32_t clock, struct SMU7_Discrete_GraphicsLevel *level)
407 {
408         int result;
409         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
410
411
412         result = ci_calculate_sclk_params(hwmgr, clock, level);
413
414         /* populate graphics levels */
415         result = ci_get_dependency_volt_by_clk(hwmgr,
416                         hwmgr->dyn_state.vddc_dependency_on_sclk, clock,
417                         (uint32_t *)(&level->MinVddc));
418         if (result) {
419                 pr_err("vdd_dep_on_sclk table is NULL\n");
420                 return result;
421         }
422
423         level->SclkFrequency = clock;
424         level->MinVddcPhases = 1;
425
426         if (data->vddc_phase_shed_control)
427                 ci_populate_phase_value_based_on_sclk(hwmgr,
428                                 hwmgr->dyn_state.vddc_phase_shed_limits_table,
429                                 clock,
430                                 &level->MinVddcPhases);
431
432         level->ActivityLevel = data->current_profile_setting.sclk_activity;
433         level->CcPwrDynRm = 0;
434         level->CcPwrDynRm1 = 0;
435         level->EnabledForActivity = 0;
436         /* this level can be used for throttling.*/
437         level->EnabledForThrottle = 1;
438         level->UpH = data->current_profile_setting.sclk_up_hyst;
439         level->DownH = data->current_profile_setting.sclk_down_hyst;
440         level->VoltageDownH = 0;
441         level->PowerThrottle = 0;
442
443
444         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
445                         PHM_PlatformCaps_SclkDeepSleep))
446                 level->DeepSleepDivId =
447                                 ci_get_sleep_divider_id_from_clock(clock,
448                                                 CISLAND_MINIMUM_ENGINE_CLOCK);
449
450         /* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/
451         level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
452
453         if (0 == result) {
454                 level->MinVddc = PP_HOST_TO_SMC_UL(level->MinVddc * VOLTAGE_SCALE);
455                 CONVERT_FROM_HOST_TO_SMC_UL(level->MinVddcPhases);
456                 CONVERT_FROM_HOST_TO_SMC_UL(level->SclkFrequency);
457                 CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
458                 CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl3);
459                 CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl4);
460                 CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum);
461                 CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum2);
462                 CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
463                 CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
464         }
465
466         return result;
467 }
468
469 static int ci_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
470 {
471         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
472         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
473         struct smu7_dpm_table *dpm_table = &data->dpm_table;
474         int result = 0;
475         uint32_t array = smu_data->dpm_table_start +
476                         offsetof(SMU7_Discrete_DpmTable, GraphicsLevel);
477         uint32_t array_size = sizeof(struct SMU7_Discrete_GraphicsLevel) *
478                         SMU7_MAX_LEVELS_GRAPHICS;
479         struct SMU7_Discrete_GraphicsLevel *levels =
480                         smu_data->smc_state_table.GraphicsLevel;
481         uint32_t i;
482
483         for (i = 0; i < dpm_table->sclk_table.count; i++) {
484                 result = ci_populate_single_graphic_level(hwmgr,
485                                 dpm_table->sclk_table.dpm_levels[i].value,
486                                 &levels[i]);
487                 if (result)
488                         return result;
489                 if (i > 1)
490                         smu_data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0;
491                 if (i == (dpm_table->sclk_table.count - 1))
492                         smu_data->smc_state_table.GraphicsLevel[i].DisplayWatermark =
493                                 PPSMC_DISPLAY_WATERMARK_HIGH;
494         }
495
496         smu_data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1;
497
498         smu_data->smc_state_table.GraphicsDpmLevelCount = (u8)dpm_table->sclk_table.count;
499         data->dpm_level_enable_mask.sclk_dpm_enable_mask =
500                 phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
501
502         result = ci_copy_bytes_to_smc(hwmgr, array,
503                                    (u8 *)levels, array_size,
504                                    SMC_RAM_END);
505
506         return result;
507
508 }
509
510 static int ci_populate_svi_load_line(struct pp_hwmgr *hwmgr)
511 {
512         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
513         const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
514
515         smu_data->power_tune_table.SviLoadLineEn = defaults->svi_load_line_en;
516         smu_data->power_tune_table.SviLoadLineVddC = defaults->svi_load_line_vddc;
517         smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
518         smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
519
520         return 0;
521 }
522
523 static int ci_populate_tdc_limit(struct pp_hwmgr *hwmgr)
524 {
525         uint16_t tdc_limit;
526         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
527         const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
528
529         tdc_limit = (uint16_t)(hwmgr->dyn_state.cac_dtp_table->usTDC * 256);
530         smu_data->power_tune_table.TDC_VDDC_PkgLimit =
531                         CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
532         smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
533                         defaults->tdc_vddc_throttle_release_limit_perc;
534         smu_data->power_tune_table.TDC_MAWt = defaults->tdc_mawt;
535
536         return 0;
537 }
538
539 static int ci_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
540 {
541         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
542         const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
543         uint32_t temp;
544
545         if (ci_read_smc_sram_dword(hwmgr,
546                         fuse_table_offset +
547                         offsetof(SMU7_Discrete_PmFuses, TdcWaterfallCtl),
548                         (uint32_t *)&temp, SMC_RAM_END))
549                 PP_ASSERT_WITH_CODE(false,
550                                 "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
551                                 return -EINVAL);
552         else
553                 smu_data->power_tune_table.TdcWaterfallCtl = defaults->tdc_waterfall_ctl;
554
555         return 0;
556 }
557
558 static int ci_populate_fuzzy_fan(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
559 {
560         uint16_t tmp;
561         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
562
563         if ((hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity & (1 << 15))
564                 || 0 == hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity)
565                 tmp = hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity;
566         else
567                 tmp = hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity;
568
569         smu_data->power_tune_table.FuzzyFan_PwmSetDelta = CONVERT_FROM_HOST_TO_SMC_US(tmp);
570
571         return 0;
572 }
573
574 static int ci_populate_bapm_vddc_vid_sidd(struct pp_hwmgr *hwmgr)
575 {
576         int i;
577         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
578         uint8_t *hi_vid = smu_data->power_tune_table.BapmVddCVidHiSidd;
579         uint8_t *lo_vid = smu_data->power_tune_table.BapmVddCVidLoSidd;
580         uint8_t *hi2_vid = smu_data->power_tune_table.BapmVddCVidHiSidd2;
581
582         PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.cac_leakage_table,
583                             "The CAC Leakage table does not exist!", return -EINVAL);
584         PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count <= 8,
585                             "There should never be more than 8 entries for BapmVddcVid!!!", return -EINVAL);
586         PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count == hwmgr->dyn_state.vddc_dependency_on_sclk->count,
587                             "CACLeakageTable->count and VddcDependencyOnSCLk->count not equal", return -EINVAL);
588
589         for (i = 0; (uint32_t) i < hwmgr->dyn_state.cac_leakage_table->count; i++) {
590                 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EVV)) {
591                         lo_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc1);
592                         hi_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc2);
593                         hi2_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc3);
594                 } else {
595                         lo_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc);
596                         hi_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Leakage);
597                 }
598         }
599
600         return 0;
601 }
602
603 static int ci_populate_vddc_vid(struct pp_hwmgr *hwmgr)
604 {
605         int i;
606         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
607         uint8_t *vid = smu_data->power_tune_table.VddCVid;
608         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
609
610         PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 8,
611                 "There should never be more than 8 entries for VddcVid!!!",
612                 return -EINVAL);
613
614         for (i = 0; i < (int)data->vddc_voltage_table.count; i++)
615                 vid[i] = convert_to_vid(data->vddc_voltage_table.entries[i].value);
616
617         return 0;
618 }
619
620 static int ci_min_max_v_gnbl_pm_lid_from_bapm_vddc(struct pp_hwmgr *hwmgr)
621 {
622         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
623         u8 *hi_vid = smu_data->power_tune_table.BapmVddCVidHiSidd;
624         u8 *lo_vid = smu_data->power_tune_table.BapmVddCVidLoSidd;
625         int i, min, max;
626
627         min = max = hi_vid[0];
628         for (i = 0; i < 8; i++) {
629                 if (0 != hi_vid[i]) {
630                         if (min > hi_vid[i])
631                                 min = hi_vid[i];
632                         if (max < hi_vid[i])
633                                 max = hi_vid[i];
634                 }
635
636                 if (0 != lo_vid[i]) {
637                         if (min > lo_vid[i])
638                                 min = lo_vid[i];
639                         if (max < lo_vid[i])
640                                 max = lo_vid[i];
641                 }
642         }
643
644         if ((min == 0) || (max == 0))
645                 return -EINVAL;
646         smu_data->power_tune_table.GnbLPMLMaxVid = (u8)max;
647         smu_data->power_tune_table.GnbLPMLMinVid = (u8)min;
648
649         return 0;
650 }
651
652 static int ci_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
653 {
654         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
655         uint16_t HiSidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd;
656         uint16_t LoSidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd;
657         struct phm_cac_tdp_table *cac_table = hwmgr->dyn_state.cac_dtp_table;
658
659         HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
660         LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
661
662         smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
663                         CONVERT_FROM_HOST_TO_SMC_US(HiSidd);
664         smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
665                         CONVERT_FROM_HOST_TO_SMC_US(LoSidd);
666
667         return 0;
668 }
669
670 static int ci_populate_pm_fuses(struct pp_hwmgr *hwmgr)
671 {
672         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
673         uint32_t pm_fuse_table_offset;
674         int ret = 0;
675
676         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
677                         PHM_PlatformCaps_PowerContainment)) {
678                 if (ci_read_smc_sram_dword(hwmgr,
679                                 SMU7_FIRMWARE_HEADER_LOCATION +
680                                 offsetof(SMU7_Firmware_Header, PmFuseTable),
681                                 &pm_fuse_table_offset, SMC_RAM_END)) {
682                         pr_err("Attempt to get pm_fuse_table_offset Failed!\n");
683                         return -EINVAL;
684                 }
685
686                 /* DW0 - DW3 */
687                 ret = ci_populate_bapm_vddc_vid_sidd(hwmgr);
688                 /* DW4 - DW5 */
689                 ret |= ci_populate_vddc_vid(hwmgr);
690                 /* DW6 */
691                 ret |= ci_populate_svi_load_line(hwmgr);
692                 /* DW7 */
693                 ret |= ci_populate_tdc_limit(hwmgr);
694                 /* DW8 */
695                 ret |= ci_populate_dw8(hwmgr, pm_fuse_table_offset);
696
697                 ret |= ci_populate_fuzzy_fan(hwmgr, pm_fuse_table_offset);
698
699                 ret |= ci_min_max_v_gnbl_pm_lid_from_bapm_vddc(hwmgr);
700
701                 ret |= ci_populate_bapm_vddc_base_leakage_sidd(hwmgr);
702                 if (ret)
703                         return ret;
704
705                 ret = ci_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
706                                 (uint8_t *)&smu_data->power_tune_table,
707                                 sizeof(struct SMU7_Discrete_PmFuses), SMC_RAM_END);
708         }
709         return ret;
710 }
711
712 static int ci_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
713 {
714         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
715         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
716         const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
717         SMU7_Discrete_DpmTable  *dpm_table = &(smu_data->smc_state_table);
718         struct phm_cac_tdp_table *cac_dtp_table = hwmgr->dyn_state.cac_dtp_table;
719         struct phm_ppm_table *ppm = hwmgr->dyn_state.ppm_parameter_table;
720         const uint16_t *def1, *def2;
721         int i, j, k;
722
723         dpm_table->DefaultTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 256));
724         dpm_table->TargetTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usConfigurableTDP * 256));
725
726         dpm_table->DTETjOffset = 0;
727         dpm_table->GpuTjMax = (uint8_t)(data->thermal_temp_setting.temperature_high / PP_TEMPERATURE_UNITS_PER_CENTIGRADES);
728         dpm_table->GpuTjHyst = 8;
729
730         dpm_table->DTEAmbientTempBase = defaults->dte_ambient_temp_base;
731
732         if (ppm) {
733                 dpm_table->PPM_PkgPwrLimit = (uint16_t)ppm->dgpu_tdp * 256 / 1000;
734                 dpm_table->PPM_TemperatureLimit = (uint16_t)ppm->tj_max * 256;
735         } else {
736                 dpm_table->PPM_PkgPwrLimit = 0;
737                 dpm_table->PPM_TemperatureLimit = 0;
738         }
739
740         CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_PkgPwrLimit);
741         CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_TemperatureLimit);
742
743         dpm_table->BAPM_TEMP_GRADIENT = PP_HOST_TO_SMC_UL(defaults->bapm_temp_gradient);
744         def1 = defaults->bapmti_r;
745         def2 = defaults->bapmti_rc;
746
747         for (i = 0; i < SMU7_DTE_ITERATIONS; i++) {
748                 for (j = 0; j < SMU7_DTE_SOURCES; j++) {
749                         for (k = 0; k < SMU7_DTE_SINKS; k++) {
750                                 dpm_table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*def1);
751                                 dpm_table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*def2);
752                                 def1++;
753                                 def2++;
754                         }
755                 }
756         }
757
758         return 0;
759 }
760
761 static int ci_get_std_voltage_value_sidd(struct pp_hwmgr *hwmgr,
762                 pp_atomctrl_voltage_table_entry *tab, uint16_t *hi,
763                 uint16_t *lo)
764 {
765         uint16_t v_index;
766         bool vol_found = false;
767         *hi = tab->value * VOLTAGE_SCALE;
768         *lo = tab->value * VOLTAGE_SCALE;
769
770         PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.vddc_dependency_on_sclk,
771                         "The SCLK/VDDC Dependency Table does not exist.\n",
772                         return -EINVAL);
773
774         if (NULL == hwmgr->dyn_state.cac_leakage_table) {
775                 pr_warn("CAC Leakage Table does not exist, using vddc.\n");
776                 return 0;
777         }
778
779         for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) {
780                 if (tab->value == hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) {
781                         vol_found = true;
782                         if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) {
783                                 *lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE;
784                                 *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage * VOLTAGE_SCALE);
785                         } else {
786                                 pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index, using maximum index from CAC table.\n");
787                                 *lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE;
788                                 *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE);
789                         }
790                         break;
791                 }
792         }
793
794         if (!vol_found) {
795                 for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) {
796                         if (tab->value <= hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) {
797                                 vol_found = true;
798                                 if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) {
799                                         *lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE;
800                                         *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage) * VOLTAGE_SCALE;
801                                 } else {
802                                         pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index in second look up, using maximum index from CAC table.");
803                                         *lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE;
804                                         *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE);
805                                 }
806                                 break;
807                         }
808                 }
809
810                 if (!vol_found)
811                         pr_warn("Unable to get std_vddc from SCLK/VDDC Dependency Table, using vddc.\n");
812         }
813
814         return 0;
815 }
816
817 static int ci_populate_smc_voltage_table(struct pp_hwmgr *hwmgr,
818                 pp_atomctrl_voltage_table_entry *tab,
819                 SMU7_Discrete_VoltageLevel *smc_voltage_tab)
820 {
821         int result;
822
823         result = ci_get_std_voltage_value_sidd(hwmgr, tab,
824                         &smc_voltage_tab->StdVoltageHiSidd,
825                         &smc_voltage_tab->StdVoltageLoSidd);
826         if (result) {
827                 smc_voltage_tab->StdVoltageHiSidd = tab->value * VOLTAGE_SCALE;
828                 smc_voltage_tab->StdVoltageLoSidd = tab->value * VOLTAGE_SCALE;
829         }
830
831         smc_voltage_tab->Voltage = PP_HOST_TO_SMC_US(tab->value * VOLTAGE_SCALE);
832         CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageHiSidd);
833         CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageLoSidd);
834
835         return 0;
836 }
837
838 static int ci_populate_smc_vddc_table(struct pp_hwmgr *hwmgr,
839                         SMU7_Discrete_DpmTable *table)
840 {
841         unsigned int count;
842         int result;
843         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
844
845         table->VddcLevelCount = data->vddc_voltage_table.count;
846         for (count = 0; count < table->VddcLevelCount; count++) {
847                 result = ci_populate_smc_voltage_table(hwmgr,
848                                 &(data->vddc_voltage_table.entries[count]),
849                                 &(table->VddcLevel[count]));
850                 PP_ASSERT_WITH_CODE(0 == result, "do not populate SMC VDDC voltage table", return -EINVAL);
851
852                 /* GPIO voltage control */
853                 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->voltage_control) {
854                         table->VddcLevel[count].Smio = (uint8_t) count;
855                         table->Smio[count] |= data->vddc_voltage_table.entries[count].smio_low;
856                         table->SmioMaskVddcVid |= data->vddc_voltage_table.entries[count].smio_low;
857                 } else {
858                         table->VddcLevel[count].Smio = 0;
859                 }
860         }
861
862         CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount);
863
864         return 0;
865 }
866
867 static int ci_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr,
868                         SMU7_Discrete_DpmTable *table)
869 {
870         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
871         uint32_t count;
872         int result;
873
874         table->VddciLevelCount = data->vddci_voltage_table.count;
875
876         for (count = 0; count < table->VddciLevelCount; count++) {
877                 result = ci_populate_smc_voltage_table(hwmgr,
878                                 &(data->vddci_voltage_table.entries[count]),
879                                 &(table->VddciLevel[count]));
880                 PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC VDDCI voltage table", return -EINVAL);
881                 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
882                         table->VddciLevel[count].Smio = (uint8_t) count;
883                         table->Smio[count] |= data->vddci_voltage_table.entries[count].smio_low;
884                         table->SmioMaskVddciVid |= data->vddci_voltage_table.entries[count].smio_low;
885                 } else {
886                         table->VddciLevel[count].Smio = 0;
887                 }
888         }
889
890         CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount);
891
892         return 0;
893 }
894
895 static int ci_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
896                         SMU7_Discrete_DpmTable *table)
897 {
898         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
899         uint32_t count;
900         int result;
901
902         table->MvddLevelCount = data->mvdd_voltage_table.count;
903
904         for (count = 0; count < table->MvddLevelCount; count++) {
905                 result = ci_populate_smc_voltage_table(hwmgr,
906                                 &(data->mvdd_voltage_table.entries[count]),
907                                 &table->MvddLevel[count]);
908                 PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC mvdd voltage table", return -EINVAL);
909                 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
910                         table->MvddLevel[count].Smio = (uint8_t) count;
911                         table->Smio[count] |= data->mvdd_voltage_table.entries[count].smio_low;
912                         table->SmioMaskMvddVid |= data->mvdd_voltage_table.entries[count].smio_low;
913                 } else {
914                         table->MvddLevel[count].Smio = 0;
915                 }
916         }
917
918         CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount);
919
920         return 0;
921 }
922
923
924 static int ci_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
925         SMU7_Discrete_DpmTable *table)
926 {
927         int result;
928
929         result = ci_populate_smc_vddc_table(hwmgr, table);
930         PP_ASSERT_WITH_CODE(0 == result,
931                         "can not populate VDDC voltage table to SMC", return -EINVAL);
932
933         result = ci_populate_smc_vdd_ci_table(hwmgr, table);
934         PP_ASSERT_WITH_CODE(0 == result,
935                         "can not populate VDDCI voltage table to SMC", return -EINVAL);
936
937         result = ci_populate_smc_mvdd_table(hwmgr, table);
938         PP_ASSERT_WITH_CODE(0 == result,
939                         "can not populate MVDD voltage table to SMC", return -EINVAL);
940
941         return 0;
942 }
943
944 static int ci_populate_ulv_level(struct pp_hwmgr *hwmgr,
945                 struct SMU7_Discrete_Ulv *state)
946 {
947         uint32_t voltage_response_time, ulv_voltage;
948         int result;
949         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
950
951         state->CcPwrDynRm = 0;
952         state->CcPwrDynRm1 = 0;
953
954         result = pp_tables_get_response_times(hwmgr, &voltage_response_time, &ulv_voltage);
955         PP_ASSERT_WITH_CODE((0 == result), "can not get ULV voltage value", return result;);
956
957         if (ulv_voltage == 0) {
958                 data->ulv_supported = false;
959                 return 0;
960         }
961
962         if (data->voltage_control != SMU7_VOLTAGE_CONTROL_BY_SVID2) {
963                 /* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
964                 if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v)
965                         state->VddcOffset = 0;
966                 else
967                         /* used in SMIO Mode. not implemented for now. this is backup only for CI. */
968                         state->VddcOffset = (uint16_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage);
969         } else {
970                 /* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
971                 if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v)
972                         state->VddcOffsetVid = 0;
973                 else  /* used in SVI2 Mode */
974                         state->VddcOffsetVid = (uint8_t)(
975                                         (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage)
976                                                 * VOLTAGE_VID_OFFSET_SCALE2
977                                                 / VOLTAGE_VID_OFFSET_SCALE1);
978         }
979         state->VddcPhase = 1;
980
981         CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
982         CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
983         CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
984
985         return 0;
986 }
987
988 static int ci_populate_ulv_state(struct pp_hwmgr *hwmgr,
989                  SMU7_Discrete_Ulv *ulv_level)
990 {
991         return ci_populate_ulv_level(hwmgr, ulv_level);
992 }
993
994 static int ci_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU7_Discrete_DpmTable *table)
995 {
996         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
997         struct smu7_dpm_table *dpm_table = &data->dpm_table;
998         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
999         uint32_t i;
1000
1001 /* Index dpm_table->pcie_speed_table.count is reserved for PCIE boot level.*/
1002         for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
1003                 table->LinkLevel[i].PcieGenSpeed  =
1004                         (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
1005                 table->LinkLevel[i].PcieLaneCount =
1006                         (uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1);
1007                 table->LinkLevel[i].EnabledForActivity = 1;
1008                 table->LinkLevel[i].DownT = PP_HOST_TO_SMC_UL(5);
1009                 table->LinkLevel[i].UpT = PP_HOST_TO_SMC_UL(30);
1010         }
1011
1012         smu_data->smc_state_table.LinkLevelCount =
1013                 (uint8_t)dpm_table->pcie_speed_table.count;
1014         data->dpm_level_enable_mask.pcie_dpm_enable_mask =
1015                 phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
1016
1017         return 0;
1018 }
1019
1020 static int ci_calculate_mclk_params(
1021                 struct pp_hwmgr *hwmgr,
1022                 uint32_t memory_clock,
1023                 SMU7_Discrete_MemoryLevel *mclk,
1024                 bool strobe_mode,
1025                 bool dllStateOn
1026                 )
1027 {
1028         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1029         uint32_t  dll_cntl = data->clock_registers.vDLL_CNTL;
1030         uint32_t  mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
1031         uint32_t  mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL;
1032         uint32_t  mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL;
1033         uint32_t  mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL;
1034         uint32_t  mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1;
1035         uint32_t  mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2;
1036         uint32_t  mpll_ss1 = data->clock_registers.vMPLL_SS1;
1037         uint32_t  mpll_ss2 = data->clock_registers.vMPLL_SS2;
1038
1039         pp_atomctrl_memory_clock_param mpll_param;
1040         int result;
1041
1042         result = atomctrl_get_memory_pll_dividers_si(hwmgr,
1043                                 memory_clock, &mpll_param, strobe_mode);
1044         PP_ASSERT_WITH_CODE(0 == result,
1045                 "Error retrieving Memory Clock Parameters from VBIOS.", return result);
1046
1047         mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL, mpll_param.bw_ctrl);
1048
1049         mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
1050                                                         MPLL_FUNC_CNTL_1, CLKF, mpll_param.mpll_fb_divider.cl_kf);
1051         mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
1052                                                         MPLL_FUNC_CNTL_1, CLKFRAC, mpll_param.mpll_fb_divider.clk_frac);
1053         mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
1054                                                         MPLL_FUNC_CNTL_1, VCO_MODE, mpll_param.vco_mode);
1055
1056         mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl,
1057                                                         MPLL_AD_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
1058
1059         if (data->is_memory_gddr5) {
1060                 mpll_dq_func_cntl  = PHM_SET_FIELD(mpll_dq_func_cntl,
1061                                                                 MPLL_DQ_FUNC_CNTL, YCLK_SEL, mpll_param.yclk_sel);
1062                 mpll_dq_func_cntl  = PHM_SET_FIELD(mpll_dq_func_cntl,
1063                                                                 MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
1064         }
1065
1066         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1067                         PHM_PlatformCaps_MemorySpreadSpectrumSupport)) {
1068                 pp_atomctrl_internal_ss_info ss_info;
1069                 uint32_t freq_nom;
1070                 uint32_t tmp;
1071                 uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr);
1072
1073                 /* for GDDR5 for all modes and DDR3 */
1074                 if (1 == mpll_param.qdr)
1075                         freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider);
1076                 else
1077                         freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider);
1078
1079                 /* tmp = (freq_nom / reference_clock * reference_divider) ^ 2  Note: S.I. reference_divider = 1*/
1080                 tmp = (freq_nom / reference_clock);
1081                 tmp = tmp * tmp;
1082
1083                 if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) {
1084                         uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate;
1085                         uint32_t clkv =
1086                                 (uint32_t)((((131 * ss_info.speed_spectrum_percentage *
1087                                                         ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom);
1088
1089                         mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv);
1090                         mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks);
1091                 }
1092         }
1093
1094         mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1095                 MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed);
1096         mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1097                 MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn);
1098         mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1099                 MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn);
1100
1101
1102         mclk->MclkFrequency   = memory_clock;
1103         mclk->MpllFuncCntl    = mpll_func_cntl;
1104         mclk->MpllFuncCntl_1  = mpll_func_cntl_1;
1105         mclk->MpllFuncCntl_2  = mpll_func_cntl_2;
1106         mclk->MpllAdFuncCntl  = mpll_ad_func_cntl;
1107         mclk->MpllDqFuncCntl  = mpll_dq_func_cntl;
1108         mclk->MclkPwrmgtCntl  = mclk_pwrmgt_cntl;
1109         mclk->DllCntl         = dll_cntl;
1110         mclk->MpllSs1         = mpll_ss1;
1111         mclk->MpllSs2         = mpll_ss2;
1112
1113         return 0;
1114 }
1115
1116 static uint8_t ci_get_mclk_frequency_ratio(uint32_t memory_clock,
1117                 bool strobe_mode)
1118 {
1119         uint8_t mc_para_index;
1120
1121         if (strobe_mode) {
1122                 if (memory_clock < 12500)
1123                         mc_para_index = 0x00;
1124                 else if (memory_clock > 47500)
1125                         mc_para_index = 0x0f;
1126                 else
1127                         mc_para_index = (uint8_t)((memory_clock - 10000) / 2500);
1128         } else {
1129                 if (memory_clock < 65000)
1130                         mc_para_index = 0x00;
1131                 else if (memory_clock > 135000)
1132                         mc_para_index = 0x0f;
1133                 else
1134                         mc_para_index = (uint8_t)((memory_clock - 60000) / 5000);
1135         }
1136
1137         return mc_para_index;
1138 }
1139
1140 static uint8_t ci_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock)
1141 {
1142         uint8_t mc_para_index;
1143
1144         if (memory_clock < 10000)
1145                 mc_para_index = 0;
1146         else if (memory_clock >= 80000)
1147                 mc_para_index = 0x0f;
1148         else
1149                 mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1);
1150
1151         return mc_para_index;
1152 }
1153
1154 static int ci_populate_phase_value_based_on_mclk(struct pp_hwmgr *hwmgr, const struct phm_phase_shedding_limits_table *pl,
1155                                         uint32_t memory_clock, uint32_t *p_shed)
1156 {
1157         unsigned int i;
1158
1159         *p_shed = 1;
1160
1161         for (i = 0; i < pl->count; i++) {
1162                 if (memory_clock < pl->entries[i].Mclk) {
1163                         *p_shed = i;
1164                         break;
1165                 }
1166         }
1167
1168         return 0;
1169 }
1170
1171 static int ci_populate_single_memory_level(
1172                 struct pp_hwmgr *hwmgr,
1173                 uint32_t memory_clock,
1174                 SMU7_Discrete_MemoryLevel *memory_level
1175                 )
1176 {
1177         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1178         int result = 0;
1179         bool dll_state_on;
1180         uint32_t mclk_edc_wr_enable_threshold = 40000;
1181         uint32_t mclk_edc_enable_threshold = 40000;
1182         uint32_t mclk_strobe_mode_threshold = 40000;
1183
1184         if (hwmgr->dyn_state.vddc_dependency_on_mclk != NULL) {
1185                 result = ci_get_dependency_volt_by_clk(hwmgr,
1186                         hwmgr->dyn_state.vddc_dependency_on_mclk, memory_clock, &memory_level->MinVddc);
1187                 PP_ASSERT_WITH_CODE((0 == result),
1188                         "can not find MinVddc voltage value from memory VDDC voltage dependency table", return result);
1189         }
1190
1191         if (NULL != hwmgr->dyn_state.vddci_dependency_on_mclk) {
1192                 result = ci_get_dependency_volt_by_clk(hwmgr,
1193                                 hwmgr->dyn_state.vddci_dependency_on_mclk,
1194                                 memory_clock,
1195                                 &memory_level->MinVddci);
1196                 PP_ASSERT_WITH_CODE((0 == result),
1197                         "can not find MinVddci voltage value from memory VDDCI voltage dependency table", return result);
1198         }
1199
1200         if (NULL != hwmgr->dyn_state.mvdd_dependency_on_mclk) {
1201                 result = ci_get_dependency_volt_by_clk(hwmgr,
1202                                 hwmgr->dyn_state.mvdd_dependency_on_mclk,
1203                                 memory_clock,
1204                                 &memory_level->MinMvdd);
1205                 PP_ASSERT_WITH_CODE((0 == result),
1206                         "can not find MinVddci voltage value from memory MVDD voltage dependency table", return result);
1207         }
1208
1209         memory_level->MinVddcPhases = 1;
1210
1211         if (data->vddc_phase_shed_control) {
1212                 ci_populate_phase_value_based_on_mclk(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table,
1213                                 memory_clock, &memory_level->MinVddcPhases);
1214         }
1215
1216         memory_level->EnabledForThrottle = 1;
1217         memory_level->EnabledForActivity = 1;
1218         memory_level->UpH = data->current_profile_setting.mclk_up_hyst;
1219         memory_level->DownH = data->current_profile_setting.mclk_down_hyst;
1220         memory_level->VoltageDownH = 0;
1221
1222         /* Indicates maximum activity level for this performance level.*/
1223         memory_level->ActivityLevel = data->current_profile_setting.mclk_activity;
1224         memory_level->StutterEnable = 0;
1225         memory_level->StrobeEnable = 0;
1226         memory_level->EdcReadEnable = 0;
1227         memory_level->EdcWriteEnable = 0;
1228         memory_level->RttEnable = 0;
1229
1230         /* default set to low watermark. Highest level will be set to high later.*/
1231         memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1232
1233         data->display_timing.num_existing_displays = hwmgr->display_config->num_display;
1234
1235         /* stutter mode not support on ci */
1236
1237         /* decide strobe mode*/
1238         memory_level->StrobeEnable = (mclk_strobe_mode_threshold != 0) &&
1239                 (memory_clock <= mclk_strobe_mode_threshold);
1240
1241         /* decide EDC mode and memory clock ratio*/
1242         if (data->is_memory_gddr5) {
1243                 memory_level->StrobeRatio = ci_get_mclk_frequency_ratio(memory_clock,
1244                                         memory_level->StrobeEnable);
1245
1246                 if ((mclk_edc_enable_threshold != 0) &&
1247                                 (memory_clock > mclk_edc_enable_threshold)) {
1248                         memory_level->EdcReadEnable = 1;
1249                 }
1250
1251                 if ((mclk_edc_wr_enable_threshold != 0) &&
1252                                 (memory_clock > mclk_edc_wr_enable_threshold)) {
1253                         memory_level->EdcWriteEnable = 1;
1254                 }
1255
1256                 if (memory_level->StrobeEnable) {
1257                         if (ci_get_mclk_frequency_ratio(memory_clock, 1) >=
1258                                         ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf))
1259                                 dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
1260                         else
1261                                 dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0;
1262                 } else
1263                         dll_state_on = data->dll_default_on;
1264         } else {
1265                 memory_level->StrobeRatio =
1266                         ci_get_ddr3_mclk_frequency_ratio(memory_clock);
1267                 dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
1268         }
1269
1270         result = ci_calculate_mclk_params(hwmgr,
1271                 memory_clock, memory_level, memory_level->StrobeEnable, dll_state_on);
1272
1273         if (0 == result) {
1274                 memory_level->MinVddc = PP_HOST_TO_SMC_UL(memory_level->MinVddc * VOLTAGE_SCALE);
1275                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinVddcPhases);
1276                 memory_level->MinVddci = PP_HOST_TO_SMC_UL(memory_level->MinVddci * VOLTAGE_SCALE);
1277                 memory_level->MinMvdd = PP_HOST_TO_SMC_UL(memory_level->MinMvdd * VOLTAGE_SCALE);
1278                 /* MCLK frequency in units of 10KHz*/
1279                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency);
1280                 /* Indicates maximum activity level for this performance level.*/
1281                 CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel);
1282                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl);
1283                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1);
1284                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2);
1285                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl);
1286                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl);
1287                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl);
1288                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl);
1289                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1);
1290                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2);
1291         }
1292
1293         return result;
1294 }
1295
1296 static int ci_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1297 {
1298         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1299         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1300         struct smu7_dpm_table *dpm_table = &data->dpm_table;
1301         int result;
1302         struct amdgpu_device *adev = hwmgr->adev;
1303         uint32_t dev_id;
1304
1305         uint32_t level_array_address = smu_data->dpm_table_start + offsetof(SMU7_Discrete_DpmTable, MemoryLevel);
1306         uint32_t level_array_size = sizeof(SMU7_Discrete_MemoryLevel) * SMU7_MAX_LEVELS_MEMORY;
1307         SMU7_Discrete_MemoryLevel *levels = smu_data->smc_state_table.MemoryLevel;
1308         uint32_t i;
1309
1310         memset(levels, 0x00, level_array_size);
1311
1312         for (i = 0; i < dpm_table->mclk_table.count; i++) {
1313                 PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
1314                         "can not populate memory level as memory clock is zero", return -EINVAL);
1315                 result = ci_populate_single_memory_level(hwmgr, dpm_table->mclk_table.dpm_levels[i].value,
1316                         &(smu_data->smc_state_table.MemoryLevel[i]));
1317                 if (0 != result)
1318                         return result;
1319         }
1320
1321         smu_data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1;
1322
1323         dev_id = adev->pdev->device;
1324
1325         if ((dpm_table->mclk_table.count >= 2)
1326                 && ((dev_id == 0x67B0) ||  (dev_id == 0x67B1))) {
1327                 smu_data->smc_state_table.MemoryLevel[1].MinVddci =
1328                                 smu_data->smc_state_table.MemoryLevel[0].MinVddci;
1329                 smu_data->smc_state_table.MemoryLevel[1].MinMvdd =
1330                                 smu_data->smc_state_table.MemoryLevel[0].MinMvdd;
1331         }
1332         smu_data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F;
1333         CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.MemoryLevel[0].ActivityLevel);
1334
1335         smu_data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count;
1336         data->dpm_level_enable_mask.mclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
1337         smu_data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH;
1338
1339         result = ci_copy_bytes_to_smc(hwmgr,
1340                 level_array_address, (uint8_t *)levels, (uint32_t)level_array_size,
1341                 SMC_RAM_END);
1342
1343         return result;
1344 }
1345
1346 static int ci_populate_mvdd_value(struct pp_hwmgr *hwmgr, uint32_t mclk,
1347                                         SMU7_Discrete_VoltageLevel *voltage)
1348 {
1349         const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1350
1351         uint32_t i = 0;
1352
1353         if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
1354                 /* find mvdd value which clock is more than request */
1355                 for (i = 0; i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count; i++) {
1356                         if (mclk <= hwmgr->dyn_state.mvdd_dependency_on_mclk->entries[i].clk) {
1357                                 /* Always round to higher voltage. */
1358                                 voltage->Voltage = data->mvdd_voltage_table.entries[i].value;
1359                                 break;
1360                         }
1361                 }
1362
1363                 PP_ASSERT_WITH_CODE(i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count,
1364                         "MVDD Voltage is outside the supported range.", return -EINVAL);
1365
1366         } else {
1367                 return -EINVAL;
1368         }
1369
1370         return 0;
1371 }
1372
1373 static int ci_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
1374         SMU7_Discrete_DpmTable *table)
1375 {
1376         int result = 0;
1377         const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1378         struct pp_atomctrl_clock_dividers_vi dividers;
1379
1380         SMU7_Discrete_VoltageLevel voltage_level;
1381         uint32_t spll_func_cntl    = data->clock_registers.vCG_SPLL_FUNC_CNTL;
1382         uint32_t spll_func_cntl_2  = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
1383         uint32_t dll_cntl          = data->clock_registers.vDLL_CNTL;
1384         uint32_t mclk_pwrmgt_cntl  = data->clock_registers.vMCLK_PWRMGT_CNTL;
1385
1386
1387         /* The ACPI state should not do DPM on DC (or ever).*/
1388         table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
1389
1390         if (data->acpi_vddc)
1391                 table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->acpi_vddc * VOLTAGE_SCALE);
1392         else
1393                 table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->min_vddc_in_pptable * VOLTAGE_SCALE);
1394
1395         table->ACPILevel.MinVddcPhases = data->vddc_phase_shed_control ? 0 : 1;
1396         /* assign zero for now*/
1397         table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr);
1398
1399         /* get the engine clock dividers for this clock value*/
1400         result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
1401                 table->ACPILevel.SclkFrequency,  &dividers);
1402
1403         PP_ASSERT_WITH_CODE(result == 0,
1404                 "Error retrieving Engine Clock dividers from VBIOS.", return result);
1405
1406         /* divider ID for required SCLK*/
1407         table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
1408         table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1409         table->ACPILevel.DeepSleepDivId = 0;
1410
1411         spll_func_cntl      = PHM_SET_FIELD(spll_func_cntl,
1412                                                         CG_SPLL_FUNC_CNTL,   SPLL_PWRON,     0);
1413         spll_func_cntl      = PHM_SET_FIELD(spll_func_cntl,
1414                                                         CG_SPLL_FUNC_CNTL,   SPLL_RESET,     1);
1415         spll_func_cntl_2    = PHM_SET_FIELD(spll_func_cntl_2,
1416                                                         CG_SPLL_FUNC_CNTL_2, SCLK_MUX_SEL,   4);
1417
1418         table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
1419         table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
1420         table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
1421         table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
1422         table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
1423         table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
1424         table->ACPILevel.CcPwrDynRm = 0;
1425         table->ACPILevel.CcPwrDynRm1 = 0;
1426
1427         /* For various features to be enabled/disabled while this level is active.*/
1428         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
1429         /* SCLK frequency in units of 10KHz*/
1430         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
1431         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
1432         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
1433         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
1434         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
1435         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
1436         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
1437         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
1438         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
1439
1440
1441         /* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/
1442         table->MemoryACPILevel.MinVddc = table->ACPILevel.MinVddc;
1443         table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;
1444
1445         if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
1446                 table->MemoryACPILevel.MinVddci = table->MemoryACPILevel.MinVddc;
1447         else {
1448                 if (data->acpi_vddci != 0)
1449                         table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->acpi_vddci * VOLTAGE_SCALE);
1450                 else
1451                         table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->min_vddci_in_pptable * VOLTAGE_SCALE);
1452         }
1453
1454         if (0 == ci_populate_mvdd_value(hwmgr, 0, &voltage_level))
1455                 table->MemoryACPILevel.MinMvdd =
1456                         PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE);
1457         else
1458                 table->MemoryACPILevel.MinMvdd = 0;
1459
1460         /* Force reset on DLL*/
1461         mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1462                 MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1);
1463         mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1464                 MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1);
1465
1466         /* Disable DLL in ACPIState*/
1467         mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1468                 MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0);
1469         mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1470                 MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0);
1471
1472         /* Enable DLL bypass signal*/
1473         dll_cntl            = PHM_SET_FIELD(dll_cntl,
1474                 DLL_CNTL, MRDCK0_BYPASS, 0);
1475         dll_cntl            = PHM_SET_FIELD(dll_cntl,
1476                 DLL_CNTL, MRDCK1_BYPASS, 0);
1477
1478         table->MemoryACPILevel.DllCntl            =
1479                 PP_HOST_TO_SMC_UL(dll_cntl);
1480         table->MemoryACPILevel.MclkPwrmgtCntl     =
1481                 PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl);
1482         table->MemoryACPILevel.MpllAdFuncCntl     =
1483                 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL);
1484         table->MemoryACPILevel.MpllDqFuncCntl     =
1485                 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL);
1486         table->MemoryACPILevel.MpllFuncCntl       =
1487                 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL);
1488         table->MemoryACPILevel.MpllFuncCntl_1     =
1489                 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1);
1490         table->MemoryACPILevel.MpllFuncCntl_2     =
1491                 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2);
1492         table->MemoryACPILevel.MpllSs1            =
1493                 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1);
1494         table->MemoryACPILevel.MpllSs2            =
1495                 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2);
1496
1497         table->MemoryACPILevel.EnabledForThrottle = 0;
1498         table->MemoryACPILevel.EnabledForActivity = 0;
1499         table->MemoryACPILevel.UpH = 0;
1500         table->MemoryACPILevel.DownH = 100;
1501         table->MemoryACPILevel.VoltageDownH = 0;
1502         /* Indicates maximum activity level for this performance level.*/
1503         table->MemoryACPILevel.ActivityLevel = PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity);
1504
1505         table->MemoryACPILevel.StutterEnable = 0;
1506         table->MemoryACPILevel.StrobeEnable = 0;
1507         table->MemoryACPILevel.EdcReadEnable = 0;
1508         table->MemoryACPILevel.EdcWriteEnable = 0;
1509         table->MemoryACPILevel.RttEnable = 0;
1510
1511         return result;
1512 }
1513
1514 static int ci_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
1515                                         SMU7_Discrete_DpmTable *table)
1516 {
1517         int result = 0;
1518         uint8_t count;
1519         struct pp_atomctrl_clock_dividers_vi dividers;
1520         struct phm_uvd_clock_voltage_dependency_table *uvd_table =
1521                 hwmgr->dyn_state.uvd_clock_voltage_dependency_table;
1522
1523         table->UvdLevelCount = (uint8_t)(uvd_table->count);
1524
1525         for (count = 0; count < table->UvdLevelCount; count++) {
1526                 table->UvdLevel[count].VclkFrequency =
1527                                         uvd_table->entries[count].vclk;
1528                 table->UvdLevel[count].DclkFrequency =
1529                                         uvd_table->entries[count].dclk;
1530                 table->UvdLevel[count].MinVddc =
1531                                         uvd_table->entries[count].v * VOLTAGE_SCALE;
1532                 table->UvdLevel[count].MinVddcPhases = 1;
1533
1534                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1535                                 table->UvdLevel[count].VclkFrequency, &dividers);
1536                 PP_ASSERT_WITH_CODE((0 == result),
1537                                 "can not find divide id for Vclk clock", return result);
1538
1539                 table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
1540
1541                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1542                                 table->UvdLevel[count].DclkFrequency, &dividers);
1543                 PP_ASSERT_WITH_CODE((0 == result),
1544                                 "can not find divide id for Dclk clock", return result);
1545
1546                 table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
1547                 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
1548                 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
1549                 CONVERT_FROM_HOST_TO_SMC_US(table->UvdLevel[count].MinVddc);
1550         }
1551
1552         return result;
1553 }
1554
1555 static int ci_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1556                 SMU7_Discrete_DpmTable *table)
1557 {
1558         int result = -EINVAL;
1559         uint8_t count;
1560         struct pp_atomctrl_clock_dividers_vi dividers;
1561         struct phm_vce_clock_voltage_dependency_table *vce_table =
1562                                 hwmgr->dyn_state.vce_clock_voltage_dependency_table;
1563
1564         table->VceLevelCount = (uint8_t)(vce_table->count);
1565         table->VceBootLevel = 0;
1566
1567         for (count = 0; count < table->VceLevelCount; count++) {
1568                 table->VceLevel[count].Frequency = vce_table->entries[count].evclk;
1569                 table->VceLevel[count].MinVoltage =
1570                                 vce_table->entries[count].v * VOLTAGE_SCALE;
1571                 table->VceLevel[count].MinPhases = 1;
1572
1573                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1574                                 table->VceLevel[count].Frequency, &dividers);
1575                 PP_ASSERT_WITH_CODE((0 == result),
1576                                 "can not find divide id for VCE engine clock",
1577                                 return result);
1578
1579                 table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1580
1581                 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
1582                 CONVERT_FROM_HOST_TO_SMC_US(table->VceLevel[count].MinVoltage);
1583         }
1584         return result;
1585 }
1586
1587 static int ci_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
1588                                         SMU7_Discrete_DpmTable *table)
1589 {
1590         int result = -EINVAL;
1591         uint8_t count;
1592         struct pp_atomctrl_clock_dividers_vi dividers;
1593         struct phm_acp_clock_voltage_dependency_table *acp_table =
1594                                 hwmgr->dyn_state.acp_clock_voltage_dependency_table;
1595
1596         table->AcpLevelCount = (uint8_t)(acp_table->count);
1597         table->AcpBootLevel = 0;
1598
1599         for (count = 0; count < table->AcpLevelCount; count++) {
1600                 table->AcpLevel[count].Frequency = acp_table->entries[count].acpclk;
1601                 table->AcpLevel[count].MinVoltage = acp_table->entries[count].v;
1602                 table->AcpLevel[count].MinPhases = 1;
1603
1604                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1605                                 table->AcpLevel[count].Frequency, &dividers);
1606                 PP_ASSERT_WITH_CODE((0 == result),
1607                                 "can not find divide id for engine clock", return result);
1608
1609                 table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1610
1611                 CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
1612                 CONVERT_FROM_HOST_TO_SMC_US(table->AcpLevel[count].MinVoltage);
1613         }
1614         return result;
1615 }
1616
1617 static int ci_populate_memory_timing_parameters(
1618                 struct pp_hwmgr *hwmgr,
1619                 uint32_t engine_clock,
1620                 uint32_t memory_clock,
1621                 struct SMU7_Discrete_MCArbDramTimingTableEntry *arb_regs
1622                 )
1623 {
1624         uint32_t dramTiming;
1625         uint32_t dramTiming2;
1626         uint32_t burstTime;
1627         int result;
1628
1629         result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
1630                                 engine_clock, memory_clock);
1631
1632         PP_ASSERT_WITH_CODE(result == 0,
1633                 "Error calling VBIOS to set DRAM_TIMING.", return result);
1634
1635         dramTiming  = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1636         dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1637         burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
1638
1639         arb_regs->McArbDramTiming  = PP_HOST_TO_SMC_UL(dramTiming);
1640         arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2);
1641         arb_regs->McArbBurstTime = (uint8_t)burstTime;
1642
1643         return 0;
1644 }
1645
1646 static int ci_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1647 {
1648         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1649         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1650         int result = 0;
1651         SMU7_Discrete_MCArbDramTimingTable  arb_regs;
1652         uint32_t i, j;
1653
1654         memset(&arb_regs, 0x00, sizeof(SMU7_Discrete_MCArbDramTimingTable));
1655
1656         for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
1657                 for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
1658                         result = ci_populate_memory_timing_parameters
1659                                 (hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value,
1660                                  data->dpm_table.mclk_table.dpm_levels[j].value,
1661                                  &arb_regs.entries[i][j]);
1662
1663                         if (0 != result)
1664                                 break;
1665                 }
1666         }
1667
1668         if (0 == result) {
1669                 result = ci_copy_bytes_to_smc(
1670                                 hwmgr,
1671                                 smu_data->arb_table_start,
1672                                 (uint8_t *)&arb_regs,
1673                                 sizeof(SMU7_Discrete_MCArbDramTimingTable),
1674                                 SMC_RAM_END
1675                                 );
1676         }
1677
1678         return result;
1679 }
1680
1681 static int ci_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
1682                         SMU7_Discrete_DpmTable *table)
1683 {
1684         int result = 0;
1685         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1686         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1687
1688         table->GraphicsBootLevel = 0;
1689         table->MemoryBootLevel = 0;
1690
1691         /* find boot level from dpm table*/
1692         result = phm_find_boot_level(&(data->dpm_table.sclk_table),
1693                         data->vbios_boot_state.sclk_bootup_value,
1694                         (uint32_t *)&(smu_data->smc_state_table.GraphicsBootLevel));
1695
1696         if (0 != result) {
1697                 smu_data->smc_state_table.GraphicsBootLevel = 0;
1698                 pr_err("VBIOS did not find boot engine clock value in dependency table. Using Graphics DPM level 0!\n");
1699                 result = 0;
1700         }
1701
1702         result = phm_find_boot_level(&(data->dpm_table.mclk_table),
1703                 data->vbios_boot_state.mclk_bootup_value,
1704                 (uint32_t *)&(smu_data->smc_state_table.MemoryBootLevel));
1705
1706         if (0 != result) {
1707                 smu_data->smc_state_table.MemoryBootLevel = 0;
1708                 pr_err("VBIOS did not find boot engine clock value in dependency table. Using Memory DPM level 0!\n");
1709                 result = 0;
1710         }
1711
1712         table->BootVddc = data->vbios_boot_state.vddc_bootup_value;
1713         table->BootVddci = data->vbios_boot_state.vddci_bootup_value;
1714         table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value;
1715
1716         return result;
1717 }
1718
1719 static int ci_populate_mc_reg_address(struct pp_hwmgr *hwmgr,
1720                                  SMU7_Discrete_MCRegisters *mc_reg_table)
1721 {
1722         const struct ci_smumgr *smu_data = (struct ci_smumgr *)hwmgr->smu_backend;
1723
1724         uint32_t i, j;
1725
1726         for (i = 0, j = 0; j < smu_data->mc_reg_table.last; j++) {
1727                 if (smu_data->mc_reg_table.validflag & 1<<j) {
1728                         PP_ASSERT_WITH_CODE(i < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE,
1729                                 "Index of mc_reg_table->address[] array out of boundary", return -EINVAL);
1730                         mc_reg_table->address[i].s0 =
1731                                 PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s0);
1732                         mc_reg_table->address[i].s1 =
1733                                 PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s1);
1734                         i++;
1735                 }
1736         }
1737
1738         mc_reg_table->last = (uint8_t)i;
1739
1740         return 0;
1741 }
1742
1743 static void ci_convert_mc_registers(
1744         const struct ci_mc_reg_entry *entry,
1745         SMU7_Discrete_MCRegisterSet *data,
1746         uint32_t num_entries, uint32_t valid_flag)
1747 {
1748         uint32_t i, j;
1749
1750         for (i = 0, j = 0; j < num_entries; j++) {
1751                 if (valid_flag & 1<<j) {
1752                         data->value[i] = PP_HOST_TO_SMC_UL(entry->mc_data[j]);
1753                         i++;
1754                 }
1755         }
1756 }
1757
1758 static int ci_convert_mc_reg_table_entry_to_smc(
1759                 struct pp_hwmgr *hwmgr,
1760                 const uint32_t memory_clock,
1761                 SMU7_Discrete_MCRegisterSet *mc_reg_table_data
1762                 )
1763 {
1764         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1765         uint32_t i = 0;
1766
1767         for (i = 0; i < smu_data->mc_reg_table.num_entries; i++) {
1768                 if (memory_clock <=
1769                         smu_data->mc_reg_table.mc_reg_table_entry[i].mclk_max) {
1770                         break;
1771                 }
1772         }
1773
1774         if ((i == smu_data->mc_reg_table.num_entries) && (i > 0))
1775                 --i;
1776
1777         ci_convert_mc_registers(&smu_data->mc_reg_table.mc_reg_table_entry[i],
1778                                 mc_reg_table_data, smu_data->mc_reg_table.last,
1779                                 smu_data->mc_reg_table.validflag);
1780
1781         return 0;
1782 }
1783
1784 static int ci_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr,
1785                 SMU7_Discrete_MCRegisters *mc_regs)
1786 {
1787         int result = 0;
1788         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1789         int res;
1790         uint32_t i;
1791
1792         for (i = 0; i < data->dpm_table.mclk_table.count; i++) {
1793                 res = ci_convert_mc_reg_table_entry_to_smc(
1794                                 hwmgr,
1795                                 data->dpm_table.mclk_table.dpm_levels[i].value,
1796                                 &mc_regs->data[i]
1797                                 );
1798
1799                 if (0 != res)
1800                         result = res;
1801         }
1802
1803         return result;
1804 }
1805
1806 static int ci_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr)
1807 {
1808         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1809         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1810         uint32_t address;
1811         int32_t result;
1812
1813         if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK))
1814                 return 0;
1815
1816
1817         memset(&smu_data->mc_regs, 0, sizeof(SMU7_Discrete_MCRegisters));
1818
1819         result = ci_convert_mc_reg_table_to_smc(hwmgr, &(smu_data->mc_regs));
1820
1821         if (result != 0)
1822                 return result;
1823
1824         address = smu_data->mc_reg_table_start + (uint32_t)offsetof(SMU7_Discrete_MCRegisters, data[0]);
1825
1826         return  ci_copy_bytes_to_smc(hwmgr, address,
1827                                  (uint8_t *)&smu_data->mc_regs.data[0],
1828                                 sizeof(SMU7_Discrete_MCRegisterSet) * data->dpm_table.mclk_table.count,
1829                                 SMC_RAM_END);
1830 }
1831
1832 static int ci_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr)
1833 {
1834         int result;
1835         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1836
1837         memset(&smu_data->mc_regs, 0x00, sizeof(SMU7_Discrete_MCRegisters));
1838         result = ci_populate_mc_reg_address(hwmgr, &(smu_data->mc_regs));
1839         PP_ASSERT_WITH_CODE(0 == result,
1840                 "Failed to initialize MCRegTable for the MC register addresses!", return result;);
1841
1842         result = ci_convert_mc_reg_table_to_smc(hwmgr, &smu_data->mc_regs);
1843         PP_ASSERT_WITH_CODE(0 == result,
1844                 "Failed to initialize MCRegTable for driver state!", return result;);
1845
1846         return ci_copy_bytes_to_smc(hwmgr, smu_data->mc_reg_table_start,
1847                         (uint8_t *)&smu_data->mc_regs, sizeof(SMU7_Discrete_MCRegisters), SMC_RAM_END);
1848 }
1849
1850 static int ci_populate_smc_initial_state(struct pp_hwmgr *hwmgr)
1851 {
1852         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1853         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1854         uint8_t count, level;
1855
1856         count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->count);
1857
1858         for (level = 0; level < count; level++) {
1859                 if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[level].clk
1860                          >= data->vbios_boot_state.sclk_bootup_value) {
1861                         smu_data->smc_state_table.GraphicsBootLevel = level;
1862                         break;
1863                 }
1864         }
1865
1866         count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_mclk->count);
1867
1868         for (level = 0; level < count; level++) {
1869                 if (hwmgr->dyn_state.vddc_dependency_on_mclk->entries[level].clk
1870                         >= data->vbios_boot_state.mclk_bootup_value) {
1871                         smu_data->smc_state_table.MemoryBootLevel = level;
1872                         break;
1873                 }
1874         }
1875
1876         return 0;
1877 }
1878
1879 static int ci_populate_smc_svi2_config(struct pp_hwmgr *hwmgr,
1880                                             SMU7_Discrete_DpmTable *table)
1881 {
1882         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1883
1884         if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control)
1885                 table->SVI2Enable = 1;
1886         else
1887                 table->SVI2Enable = 0;
1888         return 0;
1889 }
1890
1891 static int ci_start_smc(struct pp_hwmgr *hwmgr)
1892 {
1893         /* set smc instruct start point at 0x0 */
1894         ci_program_jump_on_start(hwmgr);
1895
1896         /* enable smc clock */
1897         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
1898
1899         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 0);
1900
1901         PHM_WAIT_INDIRECT_FIELD(hwmgr, SMC_IND, FIRMWARE_FLAGS,
1902                                  INTERRUPTS_ENABLED, 1);
1903
1904         return 0;
1905 }
1906
1907 static int ci_populate_vr_config(struct pp_hwmgr *hwmgr, SMU7_Discrete_DpmTable *table)
1908 {
1909         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1910         uint16_t config;
1911
1912         config = VR_SVI2_PLANE_1;
1913         table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT);
1914
1915         if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1916                 config = VR_SVI2_PLANE_2;
1917                 table->VRConfig |= config;
1918         } else {
1919                 pr_info("VDDCshould be on SVI2 controller!");
1920         }
1921
1922         if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
1923                 config = VR_SVI2_PLANE_2;
1924                 table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
1925         } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
1926                 config = VR_SMIO_PATTERN_1;
1927                 table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
1928         }
1929
1930         if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1931                 config = VR_SMIO_PATTERN_2;
1932                 table->VRConfig |= (config<<VRCONF_MVDD_SHIFT);
1933         }
1934
1935         return 0;
1936 }
1937
1938 static int ci_init_smc_table(struct pp_hwmgr *hwmgr)
1939 {
1940         int result;
1941         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1942         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1943         SMU7_Discrete_DpmTable  *table = &(smu_data->smc_state_table);
1944         struct pp_atomctrl_gpio_pin_assignment gpio_pin;
1945         u32 i;
1946
1947         ci_initialize_power_tune_defaults(hwmgr);
1948         memset(&(smu_data->smc_state_table), 0x00, sizeof(smu_data->smc_state_table));
1949
1950         if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control)
1951                 ci_populate_smc_voltage_tables(hwmgr, table);
1952
1953         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1954                         PHM_PlatformCaps_AutomaticDCTransition))
1955                 table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
1956
1957
1958         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1959                         PHM_PlatformCaps_StepVddc))
1960                 table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
1961
1962         if (data->is_memory_gddr5)
1963                 table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
1964
1965         if (data->ulv_supported) {
1966                 result = ci_populate_ulv_state(hwmgr, &(table->Ulv));
1967                 PP_ASSERT_WITH_CODE(0 == result,
1968                         "Failed to initialize ULV state!", return result);
1969
1970                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1971                         ixCG_ULV_PARAMETER, 0x40035);
1972         }
1973
1974         result = ci_populate_all_graphic_levels(hwmgr);
1975         PP_ASSERT_WITH_CODE(0 == result,
1976                 "Failed to initialize Graphics Level!", return result);
1977
1978         result = ci_populate_all_memory_levels(hwmgr);
1979         PP_ASSERT_WITH_CODE(0 == result,
1980                 "Failed to initialize Memory Level!", return result);
1981
1982         result = ci_populate_smc_link_level(hwmgr, table);
1983         PP_ASSERT_WITH_CODE(0 == result,
1984                 "Failed to initialize Link Level!", return result);
1985
1986         result = ci_populate_smc_acpi_level(hwmgr, table);
1987         PP_ASSERT_WITH_CODE(0 == result,
1988                 "Failed to initialize ACPI Level!", return result);
1989
1990         result = ci_populate_smc_vce_level(hwmgr, table);
1991         PP_ASSERT_WITH_CODE(0 == result,
1992                 "Failed to initialize VCE Level!", return result);
1993
1994         result = ci_populate_smc_acp_level(hwmgr, table);
1995         PP_ASSERT_WITH_CODE(0 == result,
1996                 "Failed to initialize ACP Level!", return result);
1997
1998         /* Since only the initial state is completely set up at this point (the other states are just copies of the boot state) we only */
1999         /* need to populate the  ARB settings for the initial state. */
2000         result = ci_program_memory_timing_parameters(hwmgr);
2001         PP_ASSERT_WITH_CODE(0 == result,
2002                 "Failed to Write ARB settings for the initial state.", return result);
2003
2004         result = ci_populate_smc_uvd_level(hwmgr, table);
2005         PP_ASSERT_WITH_CODE(0 == result,
2006                 "Failed to initialize UVD Level!", return result);
2007
2008         table->UvdBootLevel  = 0;
2009         table->VceBootLevel  = 0;
2010         table->AcpBootLevel  = 0;
2011         table->SamuBootLevel  = 0;
2012
2013         table->GraphicsBootLevel = 0;
2014         table->MemoryBootLevel = 0;
2015
2016         result = ci_populate_smc_boot_level(hwmgr, table);
2017         PP_ASSERT_WITH_CODE(0 == result,
2018                 "Failed to initialize Boot Level!", return result);
2019
2020         result = ci_populate_smc_initial_state(hwmgr);
2021         PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Boot State!", return result);
2022
2023         result = ci_populate_bapm_parameters_in_dpm_table(hwmgr);
2024         PP_ASSERT_WITH_CODE(0 == result, "Failed to populate BAPM Parameters!", return result);
2025
2026         table->UVDInterval = 1;
2027         table->VCEInterval = 1;
2028         table->ACPInterval = 1;
2029         table->SAMUInterval = 1;
2030         table->GraphicsVoltageChangeEnable  = 1;
2031         table->GraphicsThermThrottleEnable  = 1;
2032         table->GraphicsInterval = 1;
2033         table->VoltageInterval  = 1;
2034         table->ThermalInterval  = 1;
2035
2036         table->TemperatureLimitHigh =
2037                 (data->thermal_temp_setting.temperature_high *
2038                  SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
2039         table->TemperatureLimitLow =
2040                 (data->thermal_temp_setting.temperature_low *
2041                 SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
2042
2043         table->MemoryVoltageChangeEnable  = 1;
2044         table->MemoryInterval  = 1;
2045         table->VoltageResponseTime  = 0;
2046         table->VddcVddciDelta = 4000;
2047         table->PhaseResponseTime  = 0;
2048         table->MemoryThermThrottleEnable  = 1;
2049
2050         PP_ASSERT_WITH_CODE((1 <= data->dpm_table.pcie_speed_table.count),
2051                         "There must be 1 or more PCIE levels defined in PPTable.",
2052                         return -EINVAL);
2053
2054         table->PCIeBootLinkLevel = (uint8_t)data->dpm_table.pcie_speed_table.count;
2055         table->PCIeGenInterval = 1;
2056
2057         result = ci_populate_vr_config(hwmgr, table);
2058         PP_ASSERT_WITH_CODE(0 == result,
2059                         "Failed to populate VRConfig setting!", return result);
2060         data->vr_config = table->VRConfig;
2061
2062         ci_populate_smc_svi2_config(hwmgr, table);
2063
2064         for (i = 0; i < SMU7_MAX_ENTRIES_SMIO; i++)
2065                 CONVERT_FROM_HOST_TO_SMC_UL(table->Smio[i]);
2066
2067         table->ThermGpio  = 17;
2068         table->SclkStepSize = 0x4000;
2069         if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
2070                 table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
2071                 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2072                                 PHM_PlatformCaps_RegulatorHot);
2073         } else {
2074                 table->VRHotGpio = SMU7_UNUSED_GPIO_PIN;
2075                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2076                                 PHM_PlatformCaps_RegulatorHot);
2077         }
2078
2079         table->AcDcGpio = SMU7_UNUSED_GPIO_PIN;
2080
2081         CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
2082         CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
2083         CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcVid);
2084         CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcPhase);
2085         CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddciVid);
2086         CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskMvddVid);
2087         CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
2088         CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
2089         CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
2090         table->VddcVddciDelta = PP_HOST_TO_SMC_US(table->VddcVddciDelta);
2091         CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
2092         CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
2093
2094         table->BootVddc = PP_HOST_TO_SMC_US(table->BootVddc * VOLTAGE_SCALE);
2095         table->BootVddci = PP_HOST_TO_SMC_US(table->BootVddci * VOLTAGE_SCALE);
2096         table->BootMVdd = PP_HOST_TO_SMC_US(table->BootMVdd * VOLTAGE_SCALE);
2097
2098         /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
2099         result = ci_copy_bytes_to_smc(hwmgr, smu_data->dpm_table_start +
2100                                         offsetof(SMU7_Discrete_DpmTable, SystemFlags),
2101                                         (uint8_t *)&(table->SystemFlags),
2102                                         sizeof(SMU7_Discrete_DpmTable)-3 * sizeof(SMU7_PIDController),
2103                                         SMC_RAM_END);
2104
2105         PP_ASSERT_WITH_CODE(0 == result,
2106                 "Failed to upload dpm data to SMC memory!", return result;);
2107
2108         result = ci_populate_initial_mc_reg_table(hwmgr);
2109         PP_ASSERT_WITH_CODE((0 == result),
2110                 "Failed to populate initialize MC Reg table!", return result);
2111
2112         result = ci_populate_pm_fuses(hwmgr);
2113         PP_ASSERT_WITH_CODE(0 == result,
2114                         "Failed to  populate PM fuses to SMC memory!", return result);
2115
2116         ci_start_smc(hwmgr);
2117
2118         return 0;
2119 }
2120
2121 static int ci_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
2122 {
2123         struct ci_smumgr *ci_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2124         SMU7_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE };
2125         uint32_t duty100;
2126         uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2;
2127         uint16_t fdo_min, slope1, slope2;
2128         uint32_t reference_clock;
2129         int res;
2130         uint64_t tmp64;
2131
2132         if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl))
2133                 return 0;
2134
2135         if (hwmgr->thermal_controller.fanInfo.bNoFan) {
2136                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2137                         PHM_PlatformCaps_MicrocodeFanControl);
2138                 return 0;
2139         }
2140
2141         if (0 == ci_data->fan_table_start) {
2142                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
2143                 return 0;
2144         }
2145
2146         duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_FDO_CTRL1, FMAX_DUTY100);
2147
2148         if (0 == duty100) {
2149                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
2150                 return 0;
2151         }
2152
2153         tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin * duty100;
2154         do_div(tmp64, 10000);
2155         fdo_min = (uint16_t)tmp64;
2156
2157         t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed - hwmgr->thermal_controller.advanceFanControlParameters.usTMin;
2158         t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh - hwmgr->thermal_controller.advanceFanControlParameters.usTMed;
2159
2160         pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin;
2161         pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed;
2162
2163         slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100);
2164         slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100);
2165
2166         fan_table.TempMin = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMin) / 100);
2167         fan_table.TempMed = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMed) / 100);
2168         fan_table.TempMax = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMax) / 100);
2169
2170         fan_table.Slope1 = cpu_to_be16(slope1);
2171         fan_table.Slope2 = cpu_to_be16(slope2);
2172
2173         fan_table.FdoMin = cpu_to_be16(fdo_min);
2174
2175         fan_table.HystDown = cpu_to_be16(hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst);
2176
2177         fan_table.HystUp = cpu_to_be16(1);
2178
2179         fan_table.HystSlope = cpu_to_be16(1);
2180
2181         fan_table.TempRespLim = cpu_to_be16(5);
2182
2183         reference_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
2184
2185         fan_table.RefreshPeriod = cpu_to_be32((hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600);
2186
2187         fan_table.FdoMax = cpu_to_be16((uint16_t)duty100);
2188
2189         fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_MULT_THERMAL_CTRL, TEMP_SEL);
2190
2191         res = ci_copy_bytes_to_smc(hwmgr, ci_data->fan_table_start, (uint8_t *)&fan_table, (uint32_t)sizeof(fan_table), SMC_RAM_END);
2192
2193         return 0;
2194 }
2195
2196 static int ci_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
2197 {
2198         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2199
2200         if (data->need_update_smu7_dpm_table &
2201                         (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
2202                 return ci_program_memory_timing_parameters(hwmgr);
2203
2204         return 0;
2205 }
2206
2207 static int ci_update_sclk_threshold(struct pp_hwmgr *hwmgr)
2208 {
2209         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2210         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2211
2212         int result = 0;
2213         uint32_t low_sclk_interrupt_threshold = 0;
2214
2215         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2216                         PHM_PlatformCaps_SclkThrottleLowNotification)
2217                 && (data->low_sclk_interrupt_threshold != 0)) {
2218                 low_sclk_interrupt_threshold =
2219                                 data->low_sclk_interrupt_threshold;
2220
2221                 CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
2222
2223                 result = ci_copy_bytes_to_smc(
2224                                 hwmgr,
2225                                 smu_data->dpm_table_start +
2226                                 offsetof(SMU7_Discrete_DpmTable,
2227                                         LowSclkInterruptT),
2228                                 (uint8_t *)&low_sclk_interrupt_threshold,
2229                                 sizeof(uint32_t),
2230                                 SMC_RAM_END);
2231         }
2232
2233         result = ci_update_and_upload_mc_reg_table(hwmgr);
2234
2235         PP_ASSERT_WITH_CODE((0 == result), "Failed to upload MC reg table!", return result);
2236
2237         result = ci_program_mem_timing_parameters(hwmgr);
2238         PP_ASSERT_WITH_CODE((result == 0),
2239                         "Failed to program memory timing parameters!",
2240                         );
2241
2242         return result;
2243 }
2244
2245 static uint32_t ci_get_offsetof(uint32_t type, uint32_t member)
2246 {
2247         switch (type) {
2248         case SMU_SoftRegisters:
2249                 switch (member) {
2250                 case HandshakeDisables:
2251                         return offsetof(SMU7_SoftRegisters, HandshakeDisables);
2252                 case VoltageChangeTimeout:
2253                         return offsetof(SMU7_SoftRegisters, VoltageChangeTimeout);
2254                 case AverageGraphicsActivity:
2255                         return offsetof(SMU7_SoftRegisters, AverageGraphicsA);
2256                 case PreVBlankGap:
2257                         return offsetof(SMU7_SoftRegisters, PreVBlankGap);
2258                 case VBlankTimeout:
2259                         return offsetof(SMU7_SoftRegisters, VBlankTimeout);
2260                 case DRAM_LOG_ADDR_H:
2261                         return offsetof(SMU7_SoftRegisters, DRAM_LOG_ADDR_H);
2262                 case DRAM_LOG_ADDR_L:
2263                         return offsetof(SMU7_SoftRegisters, DRAM_LOG_ADDR_L);
2264                 case DRAM_LOG_PHY_ADDR_H:
2265                         return offsetof(SMU7_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
2266                 case DRAM_LOG_PHY_ADDR_L:
2267                         return offsetof(SMU7_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
2268                 case DRAM_LOG_BUFF_SIZE:
2269                         return offsetof(SMU7_SoftRegisters, DRAM_LOG_BUFF_SIZE);
2270                 }
2271                 break;
2272         case SMU_Discrete_DpmTable:
2273                 switch (member) {
2274                 case LowSclkInterruptThreshold:
2275                         return offsetof(SMU7_Discrete_DpmTable, LowSclkInterruptT);
2276                 }
2277                 break;
2278         }
2279         pr_debug("can't get the offset of type %x member %x\n", type, member);
2280         return 0;
2281 }
2282
2283 static uint32_t ci_get_mac_definition(uint32_t value)
2284 {
2285         switch (value) {
2286         case SMU_MAX_LEVELS_GRAPHICS:
2287                 return SMU7_MAX_LEVELS_GRAPHICS;
2288         case SMU_MAX_LEVELS_MEMORY:
2289                 return SMU7_MAX_LEVELS_MEMORY;
2290         case SMU_MAX_LEVELS_LINK:
2291                 return SMU7_MAX_LEVELS_LINK;
2292         case SMU_MAX_ENTRIES_SMIO:
2293                 return SMU7_MAX_ENTRIES_SMIO;
2294         case SMU_MAX_LEVELS_VDDC:
2295                 return SMU7_MAX_LEVELS_VDDC;
2296         case SMU_MAX_LEVELS_VDDCI:
2297                 return SMU7_MAX_LEVELS_VDDCI;
2298         case SMU_MAX_LEVELS_MVDD:
2299                 return SMU7_MAX_LEVELS_MVDD;
2300         }
2301
2302         pr_debug("can't get the mac of %x\n", value);
2303         return 0;
2304 }
2305
2306 static int ci_load_smc_ucode(struct pp_hwmgr *hwmgr)
2307 {
2308         uint32_t byte_count, start_addr;
2309         uint8_t *src;
2310         uint32_t data;
2311
2312         struct cgs_firmware_info info = {0};
2313
2314         cgs_get_firmware_info(hwmgr->device, CGS_UCODE_ID_SMU, &info);
2315
2316         hwmgr->is_kicker = info.is_kicker;
2317         hwmgr->smu_version = info.version;
2318         byte_count = info.image_size;
2319         src = (uint8_t *)info.kptr;
2320         start_addr = info.ucode_start_address;
2321
2322         if  (byte_count > SMC_RAM_END) {
2323                 pr_err("SMC address is beyond the SMC RAM area.\n");
2324                 return -EINVAL;
2325         }
2326
2327         cgs_write_register(hwmgr->device, mmSMC_IND_INDEX_0, start_addr);
2328         PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 1);
2329
2330         for (; byte_count >= 4; byte_count -= 4) {
2331                 data = (src[0] << 24) | (src[1] << 16) | (src[2] << 8) | src[3];
2332                 cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data);
2333                 src += 4;
2334         }
2335         PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0);
2336
2337         if (0 != byte_count) {
2338                 pr_err("SMC size must be divisible by 4\n");
2339                 return -EINVAL;
2340         }
2341
2342         return 0;
2343 }
2344
2345 static int ci_upload_firmware(struct pp_hwmgr *hwmgr)
2346 {
2347         if (ci_is_smc_ram_running(hwmgr)) {
2348                 pr_info("smc is running, no need to load smc firmware\n");
2349                 return 0;
2350         }
2351         PHM_WAIT_INDIRECT_FIELD(hwmgr, SMC_IND, RCU_UC_EVENTS,
2352                         boot_seq_done, 1);
2353         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_MISC_CNTL,
2354                         pre_fetcher_en, 1);
2355
2356         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 1);
2357         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 1);
2358         return ci_load_smc_ucode(hwmgr);
2359 }
2360
2361 static int ci_process_firmware_header(struct pp_hwmgr *hwmgr)
2362 {
2363         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2364         struct ci_smumgr *ci_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2365
2366         uint32_t tmp = 0;
2367         int result;
2368         bool error = false;
2369
2370         if (ci_upload_firmware(hwmgr))
2371                 return -EINVAL;
2372
2373         result = ci_read_smc_sram_dword(hwmgr,
2374                                 SMU7_FIRMWARE_HEADER_LOCATION +
2375                                 offsetof(SMU7_Firmware_Header, DpmTable),
2376                                 &tmp, SMC_RAM_END);
2377
2378         if (0 == result)
2379                 ci_data->dpm_table_start = tmp;
2380
2381         error |= (0 != result);
2382
2383         result = ci_read_smc_sram_dword(hwmgr,
2384                                 SMU7_FIRMWARE_HEADER_LOCATION +
2385                                 offsetof(SMU7_Firmware_Header, SoftRegisters),
2386                                 &tmp, SMC_RAM_END);
2387
2388         if (0 == result) {
2389                 data->soft_regs_start = tmp;
2390                 ci_data->soft_regs_start = tmp;
2391         }
2392
2393         error |= (0 != result);
2394
2395         result = ci_read_smc_sram_dword(hwmgr,
2396                                 SMU7_FIRMWARE_HEADER_LOCATION +
2397                                 offsetof(SMU7_Firmware_Header, mcRegisterTable),
2398                                 &tmp, SMC_RAM_END);
2399
2400         if (0 == result)
2401                 ci_data->mc_reg_table_start = tmp;
2402
2403         result = ci_read_smc_sram_dword(hwmgr,
2404                                 SMU7_FIRMWARE_HEADER_LOCATION +
2405                                 offsetof(SMU7_Firmware_Header, FanTable),
2406                                 &tmp, SMC_RAM_END);
2407
2408         if (0 == result)
2409                 ci_data->fan_table_start = tmp;
2410
2411         error |= (0 != result);
2412
2413         result = ci_read_smc_sram_dword(hwmgr,
2414                                 SMU7_FIRMWARE_HEADER_LOCATION +
2415                                 offsetof(SMU7_Firmware_Header, mcArbDramTimingTable),
2416                                 &tmp, SMC_RAM_END);
2417
2418         if (0 == result)
2419                 ci_data->arb_table_start = tmp;
2420
2421         error |= (0 != result);
2422
2423         result = ci_read_smc_sram_dword(hwmgr,
2424                                 SMU7_FIRMWARE_HEADER_LOCATION +
2425                                 offsetof(SMU7_Firmware_Header, Version),
2426                                 &tmp, SMC_RAM_END);
2427
2428         if (0 == result)
2429                 hwmgr->microcode_version_info.SMC = tmp;
2430
2431         error |= (0 != result);
2432
2433         return error ? 1 : 0;
2434 }
2435
2436 static uint8_t ci_get_memory_modile_index(struct pp_hwmgr *hwmgr)
2437 {
2438         return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16));
2439 }
2440
2441 static bool ci_check_s0_mc_reg_index(uint16_t in_reg, uint16_t *out_reg)
2442 {
2443         bool result = true;
2444
2445         switch (in_reg) {
2446         case  mmMC_SEQ_RAS_TIMING:
2447                 *out_reg = mmMC_SEQ_RAS_TIMING_LP;
2448                 break;
2449
2450         case  mmMC_SEQ_DLL_STBY:
2451                 *out_reg = mmMC_SEQ_DLL_STBY_LP;
2452                 break;
2453
2454         case  mmMC_SEQ_G5PDX_CMD0:
2455                 *out_reg = mmMC_SEQ_G5PDX_CMD0_LP;
2456                 break;
2457
2458         case  mmMC_SEQ_G5PDX_CMD1:
2459                 *out_reg = mmMC_SEQ_G5PDX_CMD1_LP;
2460                 break;
2461
2462         case  mmMC_SEQ_G5PDX_CTRL:
2463                 *out_reg = mmMC_SEQ_G5PDX_CTRL_LP;
2464                 break;
2465
2466         case mmMC_SEQ_CAS_TIMING:
2467                 *out_reg = mmMC_SEQ_CAS_TIMING_LP;
2468                 break;
2469
2470         case mmMC_SEQ_MISC_TIMING:
2471                 *out_reg = mmMC_SEQ_MISC_TIMING_LP;
2472                 break;
2473
2474         case mmMC_SEQ_MISC_TIMING2:
2475                 *out_reg = mmMC_SEQ_MISC_TIMING2_LP;
2476                 break;
2477
2478         case mmMC_SEQ_PMG_DVS_CMD:
2479                 *out_reg = mmMC_SEQ_PMG_DVS_CMD_LP;
2480                 break;
2481
2482         case mmMC_SEQ_PMG_DVS_CTL:
2483                 *out_reg = mmMC_SEQ_PMG_DVS_CTL_LP;
2484                 break;
2485
2486         case mmMC_SEQ_RD_CTL_D0:
2487                 *out_reg = mmMC_SEQ_RD_CTL_D0_LP;
2488                 break;
2489
2490         case mmMC_SEQ_RD_CTL_D1:
2491                 *out_reg = mmMC_SEQ_RD_CTL_D1_LP;
2492                 break;
2493
2494         case mmMC_SEQ_WR_CTL_D0:
2495                 *out_reg = mmMC_SEQ_WR_CTL_D0_LP;
2496                 break;
2497
2498         case mmMC_SEQ_WR_CTL_D1:
2499                 *out_reg = mmMC_SEQ_WR_CTL_D1_LP;
2500                 break;
2501
2502         case mmMC_PMG_CMD_EMRS:
2503                 *out_reg = mmMC_SEQ_PMG_CMD_EMRS_LP;
2504                 break;
2505
2506         case mmMC_PMG_CMD_MRS:
2507                 *out_reg = mmMC_SEQ_PMG_CMD_MRS_LP;
2508                 break;
2509
2510         case mmMC_PMG_CMD_MRS1:
2511                 *out_reg = mmMC_SEQ_PMG_CMD_MRS1_LP;
2512                 break;
2513
2514         case mmMC_SEQ_PMG_TIMING:
2515                 *out_reg = mmMC_SEQ_PMG_TIMING_LP;
2516                 break;
2517
2518         case mmMC_PMG_CMD_MRS2:
2519                 *out_reg = mmMC_SEQ_PMG_CMD_MRS2_LP;
2520                 break;
2521
2522         case mmMC_SEQ_WR_CTL_2:
2523                 *out_reg = mmMC_SEQ_WR_CTL_2_LP;
2524                 break;
2525
2526         default:
2527                 result = false;
2528                 break;
2529         }
2530
2531         return result;
2532 }
2533
2534 static int ci_set_s0_mc_reg_index(struct ci_mc_reg_table *table)
2535 {
2536         uint32_t i;
2537         uint16_t address;
2538
2539         for (i = 0; i < table->last; i++) {
2540                 table->mc_reg_address[i].s0 =
2541                         ci_check_s0_mc_reg_index(table->mc_reg_address[i].s1, &address)
2542                         ? address : table->mc_reg_address[i].s1;
2543         }
2544         return 0;
2545 }
2546
2547 static int ci_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table,
2548                                         struct ci_mc_reg_table *ni_table)
2549 {
2550         uint8_t i, j;
2551
2552         PP_ASSERT_WITH_CODE((table->last <= SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2553                 "Invalid VramInfo table.", return -EINVAL);
2554         PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES),
2555                 "Invalid VramInfo table.", return -EINVAL);
2556
2557         for (i = 0; i < table->last; i++)
2558                 ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1;
2559
2560         ni_table->last = table->last;
2561
2562         for (i = 0; i < table->num_entries; i++) {
2563                 ni_table->mc_reg_table_entry[i].mclk_max =
2564                         table->mc_reg_table_entry[i].mclk_max;
2565                 for (j = 0; j < table->last; j++) {
2566                         ni_table->mc_reg_table_entry[i].mc_data[j] =
2567                                 table->mc_reg_table_entry[i].mc_data[j];
2568                 }
2569         }
2570
2571         ni_table->num_entries = table->num_entries;
2572
2573         return 0;
2574 }
2575
2576 static int ci_set_mc_special_registers(struct pp_hwmgr *hwmgr,
2577                                         struct ci_mc_reg_table *table)
2578 {
2579         uint8_t i, j, k;
2580         uint32_t temp_reg;
2581         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2582
2583         for (i = 0, j = table->last; i < table->last; i++) {
2584                 PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2585                         "Invalid VramInfo table.", return -EINVAL);
2586
2587                 switch (table->mc_reg_address[i].s1) {
2588
2589                 case mmMC_SEQ_MISC1:
2590                         temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS);
2591                         table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS;
2592                         table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP;
2593                         for (k = 0; k < table->num_entries; k++) {
2594                                 table->mc_reg_table_entry[k].mc_data[j] =
2595                                         ((temp_reg & 0xffff0000)) |
2596                                         ((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16);
2597                         }
2598                         j++;
2599
2600                         PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2601                                 "Invalid VramInfo table.", return -EINVAL);
2602                         temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS);
2603                         table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS;
2604                         table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP;
2605                         for (k = 0; k < table->num_entries; k++) {
2606                                 table->mc_reg_table_entry[k].mc_data[j] =
2607                                         (temp_reg & 0xffff0000) |
2608                                         (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
2609
2610                                 if (!data->is_memory_gddr5)
2611                                         table->mc_reg_table_entry[k].mc_data[j] |= 0x100;
2612                         }
2613                         j++;
2614
2615                         if (!data->is_memory_gddr5) {
2616                                 PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2617                                         "Invalid VramInfo table.", return -EINVAL);
2618                                 table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD;
2619                                 table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD;
2620                                 for (k = 0; k < table->num_entries; k++) {
2621                                         table->mc_reg_table_entry[k].mc_data[j] =
2622                                                 (table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16;
2623                                 }
2624                                 j++;
2625                         }
2626
2627                         break;
2628
2629                 case mmMC_SEQ_RESERVE_M:
2630                         temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1);
2631                         table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1;
2632                         table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP;
2633                         for (k = 0; k < table->num_entries; k++) {
2634                                 table->mc_reg_table_entry[k].mc_data[j] =
2635                                         (temp_reg & 0xffff0000) |
2636                                         (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
2637                         }
2638                         j++;
2639                         break;
2640
2641                 default:
2642                         break;
2643                 }
2644
2645         }
2646
2647         table->last = j;
2648
2649         return 0;
2650 }
2651
2652 static int ci_set_valid_flag(struct ci_mc_reg_table *table)
2653 {
2654         uint8_t i, j;
2655
2656         for (i = 0; i < table->last; i++) {
2657                 for (j = 1; j < table->num_entries; j++) {
2658                         if (table->mc_reg_table_entry[j-1].mc_data[i] !=
2659                                 table->mc_reg_table_entry[j].mc_data[i]) {
2660                                 table->validflag |= (1 << i);
2661                                 break;
2662                         }
2663                 }
2664         }
2665
2666         return 0;
2667 }
2668
2669 static int ci_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
2670 {
2671         int result;
2672         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2673         pp_atomctrl_mc_reg_table *table;
2674         struct ci_mc_reg_table *ni_table = &smu_data->mc_reg_table;
2675         uint8_t module_index = ci_get_memory_modile_index(hwmgr);
2676
2677         table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL);
2678
2679         if (NULL == table)
2680                 return -ENOMEM;
2681
2682         /* Program additional LP registers that are no longer programmed by VBIOS */
2683         cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
2684         cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
2685         cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY));
2686         cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0));
2687         cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1));
2688         cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL));
2689         cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD));
2690         cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL));
2691         cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING));
2692         cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
2693         cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS));
2694         cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS));
2695         cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1));
2696         cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0));
2697         cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
2698         cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
2699         cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
2700         cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
2701         cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2));
2702         cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2));
2703
2704         memset(table, 0x00, sizeof(pp_atomctrl_mc_reg_table));
2705
2706         result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table);
2707
2708         if (0 == result)
2709                 result = ci_copy_vbios_smc_reg_table(table, ni_table);
2710
2711         if (0 == result) {
2712                 ci_set_s0_mc_reg_index(ni_table);
2713                 result = ci_set_mc_special_registers(hwmgr, ni_table);
2714         }
2715
2716         if (0 == result)
2717                 ci_set_valid_flag(ni_table);
2718
2719         kfree(table);
2720
2721         return result;
2722 }
2723
2724 static bool ci_is_dpm_running(struct pp_hwmgr *hwmgr)
2725 {
2726         return ci_is_smc_ram_running(hwmgr);
2727 }
2728
2729 static int ci_smu_init(struct pp_hwmgr *hwmgr)
2730 {
2731         struct ci_smumgr *ci_priv = NULL;
2732
2733         ci_priv = kzalloc(sizeof(struct ci_smumgr), GFP_KERNEL);
2734
2735         if (ci_priv == NULL)
2736                 return -ENOMEM;
2737
2738         hwmgr->smu_backend = ci_priv;
2739
2740         return 0;
2741 }
2742
2743 static int ci_smu_fini(struct pp_hwmgr *hwmgr)
2744 {
2745         kfree(hwmgr->smu_backend);
2746         hwmgr->smu_backend = NULL;
2747         return 0;
2748 }
2749
2750 static int ci_start_smu(struct pp_hwmgr *hwmgr)
2751 {
2752         return 0;
2753 }
2754
2755 static int ci_update_dpm_settings(struct pp_hwmgr *hwmgr,
2756                                 void *profile_setting)
2757 {
2758         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2759         struct ci_smumgr *smu_data = (struct ci_smumgr *)
2760                         (hwmgr->smu_backend);
2761         struct profile_mode_setting *setting;
2762         struct SMU7_Discrete_GraphicsLevel *levels =
2763                         smu_data->smc_state_table.GraphicsLevel;
2764         uint32_t array = smu_data->dpm_table_start +
2765                         offsetof(SMU7_Discrete_DpmTable, GraphicsLevel);
2766
2767         uint32_t mclk_array = smu_data->dpm_table_start +
2768                         offsetof(SMU7_Discrete_DpmTable, MemoryLevel);
2769         struct SMU7_Discrete_MemoryLevel *mclk_levels =
2770                         smu_data->smc_state_table.MemoryLevel;
2771         uint32_t i;
2772         uint32_t offset, up_hyst_offset, down_hyst_offset, clk_activity_offset, tmp;
2773
2774         if (profile_setting == NULL)
2775                 return -EINVAL;
2776
2777         setting = (struct profile_mode_setting *)profile_setting;
2778
2779         if (setting->bupdate_sclk) {
2780                 if (!data->sclk_dpm_key_disabled)
2781                         smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_FreezeLevel);
2782                 for (i = 0; i < smu_data->smc_state_table.GraphicsDpmLevelCount; i++) {
2783                         if (levels[i].ActivityLevel !=
2784                                 cpu_to_be16(setting->sclk_activity)) {
2785                                 levels[i].ActivityLevel = cpu_to_be16(setting->sclk_activity);
2786
2787                                 clk_activity_offset = array + (sizeof(SMU7_Discrete_GraphicsLevel) * i)
2788                                                 + offsetof(SMU7_Discrete_GraphicsLevel, ActivityLevel);
2789                                 offset = clk_activity_offset & ~0x3;
2790                                 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2791                                 tmp = phm_set_field_to_u32(clk_activity_offset, tmp, levels[i].ActivityLevel, sizeof(uint16_t));
2792                                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2793
2794                         }
2795                         if (levels[i].UpH != setting->sclk_up_hyst ||
2796                                 levels[i].DownH != setting->sclk_down_hyst) {
2797                                 levels[i].UpH = setting->sclk_up_hyst;
2798                                 levels[i].DownH = setting->sclk_down_hyst;
2799                                 up_hyst_offset = array + (sizeof(SMU7_Discrete_GraphicsLevel) * i)
2800                                                 + offsetof(SMU7_Discrete_GraphicsLevel, UpH);
2801                                 down_hyst_offset = array + (sizeof(SMU7_Discrete_GraphicsLevel) * i)
2802                                                 + offsetof(SMU7_Discrete_GraphicsLevel, DownH);
2803                                 offset = up_hyst_offset & ~0x3;
2804                                 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2805                                 tmp = phm_set_field_to_u32(up_hyst_offset, tmp, levels[i].UpH, sizeof(uint8_t));
2806                                 tmp = phm_set_field_to_u32(down_hyst_offset, tmp, levels[i].DownH, sizeof(uint8_t));
2807                                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2808                         }
2809                 }
2810                 if (!data->sclk_dpm_key_disabled)
2811                         smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_UnfreezeLevel);
2812         }
2813
2814         if (setting->bupdate_mclk) {
2815                 if (!data->mclk_dpm_key_disabled)
2816                         smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_FreezeLevel);
2817                 for (i = 0; i < smu_data->smc_state_table.MemoryDpmLevelCount; i++) {
2818                         if (mclk_levels[i].ActivityLevel !=
2819                                 cpu_to_be16(setting->mclk_activity)) {
2820                                 mclk_levels[i].ActivityLevel = cpu_to_be16(setting->mclk_activity);
2821
2822                                 clk_activity_offset = mclk_array + (sizeof(SMU7_Discrete_MemoryLevel) * i)
2823                                                 + offsetof(SMU7_Discrete_MemoryLevel, ActivityLevel);
2824                                 offset = clk_activity_offset & ~0x3;
2825                                 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2826                                 tmp = phm_set_field_to_u32(clk_activity_offset, tmp, mclk_levels[i].ActivityLevel, sizeof(uint16_t));
2827                                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2828
2829                         }
2830                         if (mclk_levels[i].UpH != setting->mclk_up_hyst ||
2831                                 mclk_levels[i].DownH != setting->mclk_down_hyst) {
2832                                 mclk_levels[i].UpH = setting->mclk_up_hyst;
2833                                 mclk_levels[i].DownH = setting->mclk_down_hyst;
2834                                 up_hyst_offset = mclk_array + (sizeof(SMU7_Discrete_MemoryLevel) * i)
2835                                                 + offsetof(SMU7_Discrete_MemoryLevel, UpH);
2836                                 down_hyst_offset = mclk_array + (sizeof(SMU7_Discrete_MemoryLevel) * i)
2837                                                 + offsetof(SMU7_Discrete_MemoryLevel, DownH);
2838                                 offset = up_hyst_offset & ~0x3;
2839                                 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2840                                 tmp = phm_set_field_to_u32(up_hyst_offset, tmp, mclk_levels[i].UpH, sizeof(uint8_t));
2841                                 tmp = phm_set_field_to_u32(down_hyst_offset, tmp, mclk_levels[i].DownH, sizeof(uint8_t));
2842                                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2843                         }
2844                 }
2845                 if (!data->mclk_dpm_key_disabled)
2846                         smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_UnfreezeLevel);
2847         }
2848         return 0;
2849 }
2850
2851 static int ci_update_uvd_smc_table(struct pp_hwmgr *hwmgr)
2852 {
2853         struct amdgpu_device *adev = hwmgr->adev;
2854         struct smu7_hwmgr *data = hwmgr->backend;
2855         struct ci_smumgr *smu_data = hwmgr->smu_backend;
2856         struct phm_uvd_clock_voltage_dependency_table *uvd_table =
2857                         hwmgr->dyn_state.uvd_clock_voltage_dependency_table;
2858         uint32_t profile_mode_mask = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD |
2859                                         AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK |
2860                                         AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK |
2861                                         AMD_DPM_FORCED_LEVEL_PROFILE_PEAK;
2862         uint32_t max_vddc = adev->pm.ac_power ? hwmgr->dyn_state.max_clock_voltage_on_ac.vddc :
2863                                                 hwmgr->dyn_state.max_clock_voltage_on_dc.vddc;
2864         int32_t i;
2865
2866         if (PP_CAP(PHM_PlatformCaps_UVDDPM) || uvd_table->count <= 0)
2867                 smu_data->smc_state_table.UvdBootLevel = 0;
2868         else
2869                 smu_data->smc_state_table.UvdBootLevel = uvd_table->count - 1;
2870
2871         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, DPM_TABLE_475,
2872                                 UvdBootLevel, smu_data->smc_state_table.UvdBootLevel);
2873
2874         data->dpm_level_enable_mask.uvd_dpm_enable_mask = 0;
2875
2876         for (i = uvd_table->count - 1; i >= 0; i--) {
2877                 if (uvd_table->entries[i].v <= max_vddc)
2878                         data->dpm_level_enable_mask.uvd_dpm_enable_mask |= 1 << i;
2879                 if (hwmgr->dpm_level & profile_mode_mask || !PP_CAP(PHM_PlatformCaps_UVDDPM))
2880                         break;
2881         }
2882         ci_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_UVDDPM_SetEnabledMask,
2883                                 data->dpm_level_enable_mask.uvd_dpm_enable_mask);
2884
2885         return 0;
2886 }
2887
2888 static int ci_update_vce_smc_table(struct pp_hwmgr *hwmgr)
2889 {
2890         struct amdgpu_device *adev = hwmgr->adev;
2891         struct smu7_hwmgr *data = hwmgr->backend;
2892         struct phm_vce_clock_voltage_dependency_table *vce_table =
2893                         hwmgr->dyn_state.vce_clock_voltage_dependency_table;
2894         uint32_t profile_mode_mask = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD |
2895                                         AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK |
2896                                         AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK |
2897                                         AMD_DPM_FORCED_LEVEL_PROFILE_PEAK;
2898         uint32_t max_vddc = adev->pm.ac_power ? hwmgr->dyn_state.max_clock_voltage_on_ac.vddc :
2899                                                 hwmgr->dyn_state.max_clock_voltage_on_dc.vddc;
2900         int32_t i;
2901
2902         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, DPM_TABLE_475,
2903                                 VceBootLevel, 0); /* temp hard code to level 0, vce can set min evclk*/
2904
2905         data->dpm_level_enable_mask.vce_dpm_enable_mask = 0;
2906
2907         for (i = vce_table->count - 1; i >= 0; i--) {
2908                 if (vce_table->entries[i].v <= max_vddc)
2909                         data->dpm_level_enable_mask.vce_dpm_enable_mask |= 1 << i;
2910                 if (hwmgr->dpm_level & profile_mode_mask || !PP_CAP(PHM_PlatformCaps_VCEDPM))
2911                         break;
2912         }
2913         ci_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_VCEDPM_SetEnabledMask,
2914                                 data->dpm_level_enable_mask.vce_dpm_enable_mask);
2915
2916         return 0;
2917 }
2918
2919 static int ci_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
2920 {
2921         switch (type) {
2922         case SMU_UVD_TABLE:
2923                 ci_update_uvd_smc_table(hwmgr);
2924                 break;
2925         case SMU_VCE_TABLE:
2926                 ci_update_vce_smc_table(hwmgr);
2927                 break;
2928         default:
2929                 break;
2930         }
2931         return 0;
2932 }
2933
2934 static void ci_reset_smc(struct pp_hwmgr *hwmgr)
2935 {
2936         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
2937                                   SMC_SYSCON_RESET_CNTL,
2938                                   rst_reg, 1);
2939 }
2940
2941
2942 static void ci_stop_smc_clock(struct pp_hwmgr *hwmgr)
2943 {
2944         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
2945                                   SMC_SYSCON_CLOCK_CNTL_0,
2946                                   ck_disable, 1);
2947 }
2948
2949 static int ci_stop_smc(struct pp_hwmgr *hwmgr)
2950 {
2951         ci_reset_smc(hwmgr);
2952         ci_stop_smc_clock(hwmgr);
2953
2954         return 0;
2955 }
2956
2957 const struct pp_smumgr_func ci_smu_funcs = {
2958         .smu_init = ci_smu_init,
2959         .smu_fini = ci_smu_fini,
2960         .start_smu = ci_start_smu,
2961         .check_fw_load_finish = NULL,
2962         .request_smu_load_fw = NULL,
2963         .request_smu_load_specific_fw = NULL,
2964         .send_msg_to_smc = ci_send_msg_to_smc,
2965         .send_msg_to_smc_with_parameter = ci_send_msg_to_smc_with_parameter,
2966         .download_pptable_settings = NULL,
2967         .upload_pptable_settings = NULL,
2968         .get_offsetof = ci_get_offsetof,
2969         .process_firmware_header = ci_process_firmware_header,
2970         .init_smc_table = ci_init_smc_table,
2971         .update_sclk_threshold = ci_update_sclk_threshold,
2972         .thermal_setup_fan_table = ci_thermal_setup_fan_table,
2973         .populate_all_graphic_levels = ci_populate_all_graphic_levels,
2974         .populate_all_memory_levels = ci_populate_all_memory_levels,
2975         .get_mac_definition = ci_get_mac_definition,
2976         .initialize_mc_reg_table = ci_initialize_mc_reg_table,
2977         .is_dpm_running = ci_is_dpm_running,
2978         .update_dpm_settings = ci_update_dpm_settings,
2979         .update_smc_table = ci_update_smc_table,
2980         .stop_smc = ci_stop_smc,
2981 };