GNU Linux-libre 4.19.245-gnu1
[releases.git] / drivers / gpu / drm / amd / powerplay / hwmgr / smu_helper.c
1 /*
2  * Copyright 2018 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 #include "hwmgr.h"
24 #include "pp_debug.h"
25 #include "ppatomctrl.h"
26 #include "ppsmc.h"
27 #include "atom.h"
28 #include "ivsrcid/thm/irqsrcs_thm_9_0.h"
29 #include "ivsrcid/smuio/irqsrcs_smuio_9_0.h"
30 #include "ivsrcid/ivsrcid_vislands30.h"
31
32 uint8_t convert_to_vid(uint16_t vddc)
33 {
34         return (uint8_t) ((6200 - (vddc * VOLTAGE_SCALE)) / 25);
35 }
36
37 uint16_t convert_to_vddc(uint8_t vid)
38 {
39         return (uint16_t) ((6200 - (vid * 25)) / VOLTAGE_SCALE);
40 }
41
42 uint32_t phm_set_field_to_u32(u32 offset, u32 original_data, u32 field, u32 size)
43 {
44         u32 mask = 0;
45         u32 shift = 0;
46
47         shift = (offset % 4) << 3;
48         if (size == sizeof(uint8_t))
49                 mask = 0xFF << shift;
50         else if (size == sizeof(uint16_t))
51                 mask = 0xFFFF << shift;
52
53         original_data &= ~mask;
54         original_data |= (field << shift);
55         return original_data;
56 }
57
58 /**
59  * Returns once the part of the register indicated by the mask has
60  * reached the given value.
61  */
62 int phm_wait_on_register(struct pp_hwmgr *hwmgr, uint32_t index,
63                          uint32_t value, uint32_t mask)
64 {
65         uint32_t i;
66         uint32_t cur_value;
67
68         if (hwmgr == NULL || hwmgr->device == NULL) {
69                 pr_err("Invalid Hardware Manager!");
70                 return -EINVAL;
71         }
72
73         for (i = 0; i < hwmgr->usec_timeout; i++) {
74                 cur_value = cgs_read_register(hwmgr->device, index);
75                 if ((cur_value & mask) == (value & mask))
76                         break;
77                 udelay(1);
78         }
79
80         /* timeout means wrong logic*/
81         if (i == hwmgr->usec_timeout)
82                 return -1;
83         return 0;
84 }
85
86
87 /**
88  * Returns once the part of the register indicated by the mask has
89  * reached the given value.The indirect space is described by giving
90  * the memory-mapped index of the indirect index register.
91  */
92 int phm_wait_on_indirect_register(struct pp_hwmgr *hwmgr,
93                                 uint32_t indirect_port,
94                                 uint32_t index,
95                                 uint32_t value,
96                                 uint32_t mask)
97 {
98         if (hwmgr == NULL || hwmgr->device == NULL) {
99                 pr_err("Invalid Hardware Manager!");
100                 return -EINVAL;
101         }
102
103         cgs_write_register(hwmgr->device, indirect_port, index);
104         return phm_wait_on_register(hwmgr, indirect_port + 1, mask, value);
105 }
106
107 int phm_wait_for_register_unequal(struct pp_hwmgr *hwmgr,
108                                         uint32_t index,
109                                         uint32_t value, uint32_t mask)
110 {
111         uint32_t i;
112         uint32_t cur_value;
113
114         if (hwmgr == NULL || hwmgr->device == NULL)
115                 return -EINVAL;
116
117         for (i = 0; i < hwmgr->usec_timeout; i++) {
118                 cur_value = cgs_read_register(hwmgr->device,
119                                                                         index);
120                 if ((cur_value & mask) != (value & mask))
121                         break;
122                 udelay(1);
123         }
124
125         /* timeout means wrong logic */
126         if (i == hwmgr->usec_timeout)
127                 return -ETIME;
128         return 0;
129 }
130
131 int phm_wait_for_indirect_register_unequal(struct pp_hwmgr *hwmgr,
132                                                 uint32_t indirect_port,
133                                                 uint32_t index,
134                                                 uint32_t value,
135                                                 uint32_t mask)
136 {
137         if (hwmgr == NULL || hwmgr->device == NULL)
138                 return -EINVAL;
139
140         cgs_write_register(hwmgr->device, indirect_port, index);
141         return phm_wait_for_register_unequal(hwmgr, indirect_port + 1,
142                                                 value, mask);
143 }
144
145 bool phm_cf_want_uvd_power_gating(struct pp_hwmgr *hwmgr)
146 {
147         return phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UVDPowerGating);
148 }
149
150 bool phm_cf_want_vce_power_gating(struct pp_hwmgr *hwmgr)
151 {
152         return phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_VCEPowerGating);
153 }
154
155
156 int phm_trim_voltage_table(struct pp_atomctrl_voltage_table *vol_table)
157 {
158         uint32_t i, j;
159         uint16_t vvalue;
160         bool found = false;
161         struct pp_atomctrl_voltage_table *table;
162
163         PP_ASSERT_WITH_CODE((NULL != vol_table),
164                         "Voltage Table empty.", return -EINVAL);
165
166         table = kzalloc(sizeof(struct pp_atomctrl_voltage_table),
167                         GFP_KERNEL);
168
169         if (NULL == table)
170                 return -EINVAL;
171
172         table->mask_low = vol_table->mask_low;
173         table->phase_delay = vol_table->phase_delay;
174
175         for (i = 0; i < vol_table->count; i++) {
176                 vvalue = vol_table->entries[i].value;
177                 found = false;
178
179                 for (j = 0; j < table->count; j++) {
180                         if (vvalue == table->entries[j].value) {
181                                 found = true;
182                                 break;
183                         }
184                 }
185
186                 if (!found) {
187                         table->entries[table->count].value = vvalue;
188                         table->entries[table->count].smio_low =
189                                         vol_table->entries[i].smio_low;
190                         table->count++;
191                 }
192         }
193
194         memcpy(vol_table, table, sizeof(struct pp_atomctrl_voltage_table));
195         kfree(table);
196         table = NULL;
197         return 0;
198 }
199
200 int phm_get_svi2_mvdd_voltage_table(struct pp_atomctrl_voltage_table *vol_table,
201                 phm_ppt_v1_clock_voltage_dependency_table *dep_table)
202 {
203         uint32_t i;
204         int result;
205
206         PP_ASSERT_WITH_CODE((0 != dep_table->count),
207                         "Voltage Dependency Table empty.", return -EINVAL);
208
209         PP_ASSERT_WITH_CODE((NULL != vol_table),
210                         "vol_table empty.", return -EINVAL);
211
212         vol_table->mask_low = 0;
213         vol_table->phase_delay = 0;
214         vol_table->count = dep_table->count;
215
216         for (i = 0; i < dep_table->count; i++) {
217                 vol_table->entries[i].value = dep_table->entries[i].mvdd;
218                 vol_table->entries[i].smio_low = 0;
219         }
220
221         result = phm_trim_voltage_table(vol_table);
222         PP_ASSERT_WITH_CODE((0 == result),
223                         "Failed to trim MVDD table.", return result);
224
225         return 0;
226 }
227
228 int phm_get_svi2_vddci_voltage_table(struct pp_atomctrl_voltage_table *vol_table,
229                 phm_ppt_v1_clock_voltage_dependency_table *dep_table)
230 {
231         uint32_t i;
232         int result;
233
234         PP_ASSERT_WITH_CODE((0 != dep_table->count),
235                         "Voltage Dependency Table empty.", return -EINVAL);
236
237         PP_ASSERT_WITH_CODE((NULL != vol_table),
238                         "vol_table empty.", return -EINVAL);
239
240         vol_table->mask_low = 0;
241         vol_table->phase_delay = 0;
242         vol_table->count = dep_table->count;
243
244         for (i = 0; i < dep_table->count; i++) {
245                 vol_table->entries[i].value = dep_table->entries[i].vddci;
246                 vol_table->entries[i].smio_low = 0;
247         }
248
249         result = phm_trim_voltage_table(vol_table);
250         PP_ASSERT_WITH_CODE((0 == result),
251                         "Failed to trim VDDCI table.", return result);
252
253         return 0;
254 }
255
256 int phm_get_svi2_vdd_voltage_table(struct pp_atomctrl_voltage_table *vol_table,
257                 phm_ppt_v1_voltage_lookup_table *lookup_table)
258 {
259         int i = 0;
260
261         PP_ASSERT_WITH_CODE((0 != lookup_table->count),
262                         "Voltage Lookup Table empty.", return -EINVAL);
263
264         PP_ASSERT_WITH_CODE((NULL != vol_table),
265                         "vol_table empty.", return -EINVAL);
266
267         vol_table->mask_low = 0;
268         vol_table->phase_delay = 0;
269
270         vol_table->count = lookup_table->count;
271
272         for (i = 0; i < vol_table->count; i++) {
273                 vol_table->entries[i].value = lookup_table->entries[i].us_vdd;
274                 vol_table->entries[i].smio_low = 0;
275         }
276
277         return 0;
278 }
279
280 void phm_trim_voltage_table_to_fit_state_table(uint32_t max_vol_steps,
281                                 struct pp_atomctrl_voltage_table *vol_table)
282 {
283         unsigned int i, diff;
284
285         if (vol_table->count <= max_vol_steps)
286                 return;
287
288         diff = vol_table->count - max_vol_steps;
289
290         for (i = 0; i < max_vol_steps; i++)
291                 vol_table->entries[i] = vol_table->entries[i + diff];
292
293         vol_table->count = max_vol_steps;
294
295         return;
296 }
297
298 int phm_reset_single_dpm_table(void *table,
299                                 uint32_t count, int max)
300 {
301         int i;
302
303         struct vi_dpm_table *dpm_table = (struct vi_dpm_table *)table;
304
305         dpm_table->count = count > max ? max : count;
306
307         for (i = 0; i < dpm_table->count; i++)
308                 dpm_table->dpm_level[i].enabled = false;
309
310         return 0;
311 }
312
313 void phm_setup_pcie_table_entry(
314         void *table,
315         uint32_t index, uint32_t pcie_gen,
316         uint32_t pcie_lanes)
317 {
318         struct vi_dpm_table *dpm_table = (struct vi_dpm_table *)table;
319         dpm_table->dpm_level[index].value = pcie_gen;
320         dpm_table->dpm_level[index].param1 = pcie_lanes;
321         dpm_table->dpm_level[index].enabled = 1;
322 }
323
324 int32_t phm_get_dpm_level_enable_mask_value(void *table)
325 {
326         int32_t i;
327         int32_t mask = 0;
328         struct vi_dpm_table *dpm_table = (struct vi_dpm_table *)table;
329
330         for (i = dpm_table->count; i > 0; i--) {
331                 mask = mask << 1;
332                 if (dpm_table->dpm_level[i - 1].enabled)
333                         mask |= 0x1;
334                 else
335                         mask &= 0xFFFFFFFE;
336         }
337
338         return mask;
339 }
340
341 uint8_t phm_get_voltage_index(
342                 struct phm_ppt_v1_voltage_lookup_table *lookup_table, uint16_t voltage)
343 {
344         uint8_t count = (uint8_t) (lookup_table->count);
345         uint8_t i;
346
347         PP_ASSERT_WITH_CODE((NULL != lookup_table),
348                         "Lookup Table empty.", return 0);
349         PP_ASSERT_WITH_CODE((0 != count),
350                         "Lookup Table empty.", return 0);
351
352         for (i = 0; i < lookup_table->count; i++) {
353                 /* find first voltage equal or bigger than requested */
354                 if (lookup_table->entries[i].us_vdd >= voltage)
355                         return i;
356         }
357         /* voltage is bigger than max voltage in the table */
358         return i - 1;
359 }
360
361 uint8_t phm_get_voltage_id(pp_atomctrl_voltage_table *voltage_table,
362                 uint32_t voltage)
363 {
364         uint8_t count = (uint8_t) (voltage_table->count);
365         uint8_t i = 0;
366
367         PP_ASSERT_WITH_CODE((NULL != voltage_table),
368                 "Voltage Table empty.", return 0;);
369         PP_ASSERT_WITH_CODE((0 != count),
370                 "Voltage Table empty.", return 0;);
371
372         for (i = 0; i < count; i++) {
373                 /* find first voltage bigger than requested */
374                 if (voltage_table->entries[i].value >= voltage)
375                         return i;
376         }
377
378         /* voltage is bigger than max voltage in the table */
379         return i - 1;
380 }
381
382 uint16_t phm_find_closest_vddci(struct pp_atomctrl_voltage_table *vddci_table, uint16_t vddci)
383 {
384         uint32_t  i;
385
386         for (i = 0; i < vddci_table->count; i++) {
387                 if (vddci_table->entries[i].value >= vddci)
388                         return vddci_table->entries[i].value;
389         }
390
391         pr_debug("vddci is larger than max value in vddci_table\n");
392         return vddci_table->entries[i-1].value;
393 }
394
395 int phm_find_boot_level(void *table,
396                 uint32_t value, uint32_t *boot_level)
397 {
398         int result = -EINVAL;
399         uint32_t i;
400         struct vi_dpm_table *dpm_table = (struct vi_dpm_table *)table;
401
402         for (i = 0; i < dpm_table->count; i++) {
403                 if (value == dpm_table->dpm_level[i].value) {
404                         *boot_level = i;
405                         result = 0;
406                 }
407         }
408
409         return result;
410 }
411
412 int phm_get_sclk_for_voltage_evv(struct pp_hwmgr *hwmgr,
413         phm_ppt_v1_voltage_lookup_table *lookup_table,
414         uint16_t virtual_voltage_id, int32_t *sclk)
415 {
416         uint8_t entry_id;
417         uint8_t voltage_id;
418         struct phm_ppt_v1_information *table_info =
419                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
420
421         PP_ASSERT_WITH_CODE(lookup_table->count != 0, "Lookup table is empty", return -EINVAL);
422
423         /* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */
424         for (entry_id = 0; entry_id < table_info->vdd_dep_on_sclk->count; entry_id++) {
425                 voltage_id = table_info->vdd_dep_on_sclk->entries[entry_id].vddInd;
426                 if (lookup_table->entries[voltage_id].us_vdd == virtual_voltage_id)
427                         break;
428         }
429
430         if (entry_id >= table_info->vdd_dep_on_sclk->count) {
431                 pr_debug("Can't find requested voltage id in vdd_dep_on_sclk table\n");
432                 return -EINVAL;
433         }
434
435         *sclk = table_info->vdd_dep_on_sclk->entries[entry_id].clk;
436
437         return 0;
438 }
439
440 /**
441  * Initialize Dynamic State Adjustment Rule Settings
442  *
443  * @param    hwmgr  the address of the powerplay hardware manager.
444  */
445 int phm_initializa_dynamic_state_adjustment_rule_settings(struct pp_hwmgr *hwmgr)
446 {
447         uint32_t table_size;
448         struct phm_clock_voltage_dependency_table *table_clk_vlt;
449         struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
450
451         /* initialize vddc_dep_on_dal_pwrl table */
452         table_size = sizeof(uint32_t) + 4 * sizeof(struct phm_clock_voltage_dependency_record);
453         table_clk_vlt = kzalloc(table_size, GFP_KERNEL);
454
455         if (NULL == table_clk_vlt) {
456                 pr_err("Can not allocate space for vddc_dep_on_dal_pwrl! \n");
457                 return -ENOMEM;
458         } else {
459                 table_clk_vlt->count = 4;
460                 table_clk_vlt->entries[0].clk = PP_DAL_POWERLEVEL_ULTRALOW;
461                 table_clk_vlt->entries[0].v = 0;
462                 table_clk_vlt->entries[1].clk = PP_DAL_POWERLEVEL_LOW;
463                 table_clk_vlt->entries[1].v = 720;
464                 table_clk_vlt->entries[2].clk = PP_DAL_POWERLEVEL_NOMINAL;
465                 table_clk_vlt->entries[2].v = 810;
466                 table_clk_vlt->entries[3].clk = PP_DAL_POWERLEVEL_PERFORMANCE;
467                 table_clk_vlt->entries[3].v = 900;
468                 if (pptable_info != NULL)
469                         pptable_info->vddc_dep_on_dal_pwrl = table_clk_vlt;
470                 hwmgr->dyn_state.vddc_dep_on_dal_pwrl = table_clk_vlt;
471         }
472
473         return 0;
474 }
475
476 uint32_t phm_get_lowest_enabled_level(struct pp_hwmgr *hwmgr, uint32_t mask)
477 {
478         uint32_t level = 0;
479
480         while (0 == (mask & (1 << level)))
481                 level++;
482
483         return level;
484 }
485
486 void phm_apply_dal_min_voltage_request(struct pp_hwmgr *hwmgr)
487 {
488         struct phm_ppt_v1_information *table_info =
489                         (struct phm_ppt_v1_information *)hwmgr->pptable;
490         struct phm_clock_voltage_dependency_table *table =
491                                 table_info->vddc_dep_on_dal_pwrl;
492         struct phm_ppt_v1_clock_voltage_dependency_table *vddc_table;
493         enum PP_DAL_POWERLEVEL dal_power_level = hwmgr->dal_power_level;
494         uint32_t req_vddc = 0, req_volt, i;
495
496         if (!table || table->count <= 0
497                 || dal_power_level < PP_DAL_POWERLEVEL_ULTRALOW
498                 || dal_power_level > PP_DAL_POWERLEVEL_PERFORMANCE)
499                 return;
500
501         for (i = 0; i < table->count; i++) {
502                 if (dal_power_level == table->entries[i].clk) {
503                         req_vddc = table->entries[i].v;
504                         break;
505                 }
506         }
507
508         vddc_table = table_info->vdd_dep_on_sclk;
509         for (i = 0; i < vddc_table->count; i++) {
510                 if (req_vddc <= vddc_table->entries[i].vddc) {
511                         req_volt = (((uint32_t)vddc_table->entries[i].vddc) * VOLTAGE_SCALE);
512                         smum_send_msg_to_smc_with_parameter(hwmgr,
513                                         PPSMC_MSG_VddC_Request, req_volt);
514                         return;
515                 }
516         }
517         pr_err("DAL requested level can not"
518                         " found a available voltage in VDDC DPM Table \n");
519 }
520
521 int phm_get_voltage_evv_on_sclk(struct pp_hwmgr *hwmgr, uint8_t voltage_type,
522                                 uint32_t sclk, uint16_t id, uint16_t *voltage)
523 {
524         uint32_t vol;
525         int ret = 0;
526
527         if (hwmgr->chip_id < CHIP_TONGA) {
528                 ret = atomctrl_get_voltage_evv(hwmgr, id, voltage);
529         } else if (hwmgr->chip_id < CHIP_POLARIS10) {
530                 ret = atomctrl_get_voltage_evv_on_sclk(hwmgr, voltage_type, sclk, id, voltage);
531                 if (*voltage >= 2000 || *voltage == 0)
532                         *voltage = 1150;
533         } else {
534                 ret = atomctrl_get_voltage_evv_on_sclk_ai(hwmgr, voltage_type, sclk, id, &vol);
535                 *voltage = (uint16_t)(vol/100);
536         }
537         return ret;
538 }
539
540
541 int phm_irq_process(struct amdgpu_device *adev,
542                            struct amdgpu_irq_src *source,
543                            struct amdgpu_iv_entry *entry)
544 {
545         uint32_t client_id = entry->client_id;
546         uint32_t src_id = entry->src_id;
547
548         if (client_id == AMDGPU_IH_CLIENTID_LEGACY) {
549                 if (src_id == VISLANDS30_IV_SRCID_CG_TSS_THERMAL_LOW_TO_HIGH)
550                         pr_warn("GPU over temperature range detected on PCIe %d:%d.%d!\n",
551                                                 PCI_BUS_NUM(adev->pdev->devfn),
552                                                 PCI_SLOT(adev->pdev->devfn),
553                                                 PCI_FUNC(adev->pdev->devfn));
554                 else if (src_id == VISLANDS30_IV_SRCID_CG_TSS_THERMAL_HIGH_TO_LOW)
555                         pr_warn("GPU under temperature range detected on PCIe %d:%d.%d!\n",
556                                         PCI_BUS_NUM(adev->pdev->devfn),
557                                         PCI_SLOT(adev->pdev->devfn),
558                                         PCI_FUNC(adev->pdev->devfn));
559                 else if (src_id == VISLANDS30_IV_SRCID_GPIO_19)
560                         pr_warn("GPU Critical Temperature Fault detected on PCIe %d:%d.%d!\n",
561                                         PCI_BUS_NUM(adev->pdev->devfn),
562                                         PCI_SLOT(adev->pdev->devfn),
563                                         PCI_FUNC(adev->pdev->devfn));
564         } else if (client_id == SOC15_IH_CLIENTID_THM) {
565                 if (src_id == 0)
566                         pr_warn("GPU over temperature range detected on PCIe %d:%d.%d!\n",
567                                                 PCI_BUS_NUM(adev->pdev->devfn),
568                                                 PCI_SLOT(adev->pdev->devfn),
569                                                 PCI_FUNC(adev->pdev->devfn));
570                 else
571                         pr_warn("GPU under temperature range detected on PCIe %d:%d.%d!\n",
572                                         PCI_BUS_NUM(adev->pdev->devfn),
573                                         PCI_SLOT(adev->pdev->devfn),
574                                         PCI_FUNC(adev->pdev->devfn));
575         } else if (client_id == SOC15_IH_CLIENTID_ROM_SMUIO)
576                 pr_warn("GPU Critical Temperature Fault detected on PCIe %d:%d.%d!\n",
577                                 PCI_BUS_NUM(adev->pdev->devfn),
578                                 PCI_SLOT(adev->pdev->devfn),
579                                 PCI_FUNC(adev->pdev->devfn));
580
581         return 0;
582 }
583
584 static const struct amdgpu_irq_src_funcs smu9_irq_funcs = {
585         .process = phm_irq_process,
586 };
587
588 int smu9_register_irq_handlers(struct pp_hwmgr *hwmgr)
589 {
590         struct amdgpu_irq_src *source =
591                 kzalloc(sizeof(struct amdgpu_irq_src), GFP_KERNEL);
592
593         if (!source)
594                 return -ENOMEM;
595
596         source->funcs = &smu9_irq_funcs;
597
598         amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev),
599                         SOC15_IH_CLIENTID_THM,
600                         THM_9_0__SRCID__THM_DIG_THERM_L2H,
601                         source);
602         amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev),
603                         SOC15_IH_CLIENTID_THM,
604                         THM_9_0__SRCID__THM_DIG_THERM_H2L,
605                         source);
606
607         /* Register CTF(GPIO_19) interrupt */
608         amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev),
609                         SOC15_IH_CLIENTID_ROM_SMUIO,
610                         SMUIO_9_0__SRCID__SMUIO_GPIO19,
611                         source);
612
613         return 0;
614 }
615
616 void *smu_atom_get_data_table(void *dev, uint32_t table, uint16_t *size,
617                                                 uint8_t *frev, uint8_t *crev)
618 {
619         struct amdgpu_device *adev = dev;
620         uint16_t data_start;
621
622         if (amdgpu_atom_parse_data_header(
623                     adev->mode_info.atom_context, table, size,
624                     frev, crev, &data_start))
625                 return (uint8_t *)adev->mode_info.atom_context->bios +
626                         data_start;
627
628         return NULL;
629 }
630
631 int smu_get_voltage_dependency_table_ppt_v1(
632                         const struct phm_ppt_v1_clock_voltage_dependency_table *allowed_dep_table,
633                         struct phm_ppt_v1_clock_voltage_dependency_table *dep_table)
634 {
635         uint8_t i = 0;
636         PP_ASSERT_WITH_CODE((0 != allowed_dep_table->count),
637                                 "Voltage Lookup Table empty",
638                                 return -EINVAL);
639
640         dep_table->count = allowed_dep_table->count;
641         for (i=0; i<dep_table->count; i++) {
642                 dep_table->entries[i].clk = allowed_dep_table->entries[i].clk;
643                 dep_table->entries[i].vddInd = allowed_dep_table->entries[i].vddInd;
644                 dep_table->entries[i].vdd_offset = allowed_dep_table->entries[i].vdd_offset;
645                 dep_table->entries[i].vddc = allowed_dep_table->entries[i].vddc;
646                 dep_table->entries[i].vddgfx = allowed_dep_table->entries[i].vddgfx;
647                 dep_table->entries[i].vddci = allowed_dep_table->entries[i].vddci;
648                 dep_table->entries[i].mvdd = allowed_dep_table->entries[i].mvdd;
649                 dep_table->entries[i].phases = allowed_dep_table->entries[i].phases;
650                 dep_table->entries[i].cks_enable = allowed_dep_table->entries[i].cks_enable;
651                 dep_table->entries[i].cks_voffset = allowed_dep_table->entries[i].cks_voffset;
652         }
653
654         return 0;
655 }
656
657 int smu_set_watermarks_for_clocks_ranges(void *wt_table,
658                 struct dm_pp_wm_sets_with_clock_ranges_soc15 *wm_with_clock_ranges)
659 {
660         uint32_t i;
661         struct watermarks *table = wt_table;
662
663         if (!table || !wm_with_clock_ranges)
664                 return -EINVAL;
665
666         if (wm_with_clock_ranges->num_wm_dmif_sets > 4 || wm_with_clock_ranges->num_wm_mcif_sets > 4)
667                 return -EINVAL;
668
669         for (i = 0; i < wm_with_clock_ranges->num_wm_dmif_sets; i++) {
670                 table->WatermarkRow[1][i].MinClock =
671                         cpu_to_le16((uint16_t)
672                         (wm_with_clock_ranges->wm_dmif_clocks_ranges[i].wm_min_dcfclk_clk_in_khz /
673                         1000));
674                 table->WatermarkRow[1][i].MaxClock =
675                         cpu_to_le16((uint16_t)
676                         (wm_with_clock_ranges->wm_dmif_clocks_ranges[i].wm_max_dcfclk_clk_in_khz /
677                         1000));
678                 table->WatermarkRow[1][i].MinUclk =
679                         cpu_to_le16((uint16_t)
680                         (wm_with_clock_ranges->wm_dmif_clocks_ranges[i].wm_min_mem_clk_in_khz /
681                         1000));
682                 table->WatermarkRow[1][i].MaxUclk =
683                         cpu_to_le16((uint16_t)
684                         (wm_with_clock_ranges->wm_dmif_clocks_ranges[i].wm_max_mem_clk_in_khz /
685                         1000));
686                 table->WatermarkRow[1][i].WmSetting = (uint8_t)
687                                 wm_with_clock_ranges->wm_dmif_clocks_ranges[i].wm_set_id;
688         }
689
690         for (i = 0; i < wm_with_clock_ranges->num_wm_mcif_sets; i++) {
691                 table->WatermarkRow[0][i].MinClock =
692                         cpu_to_le16((uint16_t)
693                         (wm_with_clock_ranges->wm_mcif_clocks_ranges[i].wm_min_socclk_clk_in_khz /
694                         1000));
695                 table->WatermarkRow[0][i].MaxClock =
696                         cpu_to_le16((uint16_t)
697                         (wm_with_clock_ranges->wm_mcif_clocks_ranges[i].wm_max_socclk_clk_in_khz /
698                         1000));
699                 table->WatermarkRow[0][i].MinUclk =
700                         cpu_to_le16((uint16_t)
701                         (wm_with_clock_ranges->wm_mcif_clocks_ranges[i].wm_min_mem_clk_in_khz /
702                         1000));
703                 table->WatermarkRow[0][i].MaxUclk =
704                         cpu_to_le16((uint16_t)
705                         (wm_with_clock_ranges->wm_mcif_clocks_ranges[i].wm_max_mem_clk_in_khz /
706                         1000));
707                 table->WatermarkRow[0][i].WmSetting = (uint8_t)
708                                 wm_with_clock_ranges->wm_mcif_clocks_ranges[i].wm_set_id;
709         }
710         return 0;
711 }