GNU Linux-libre 4.19.207-gnu1
[releases.git] / drivers / gpu / drm / amd / display / dc / dce120 / dce120_timing_generator.c
1 /*
2  * Copyright 2012-15 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25
26 #include "dm_services.h"
27
28 #include "dce/dce_12_0_offset.h"
29 #include "dce/dce_12_0_sh_mask.h"
30 #include "soc15_hw_ip.h"
31 #include "vega10_ip_offset.h"
32
33 #include "dc_types.h"
34 #include "dc_bios_types.h"
35
36 #include "include/grph_object_id.h"
37 #include "include/logger_interface.h"
38 #include "dce120_timing_generator.h"
39
40 #include "timing_generator.h"
41
42 #define CRTC_REG_UPDATE_N(reg_name, n, ...)     \
43                 generic_reg_update_soc15(tg110->base.ctx, tg110->offsets.crtc, reg_name, n, __VA_ARGS__)
44
45 #define CRTC_REG_SET_N(reg_name, n, ...)        \
46                 generic_reg_set_soc15(tg110->base.ctx, tg110->offsets.crtc, reg_name, n, __VA_ARGS__)
47
48 #define CRTC_REG_UPDATE(reg, field, val)        \
49                 CRTC_REG_UPDATE_N(reg, 1, FD(reg##__##field), val)
50
51 #define CRTC_REG_UPDATE_2(reg, field1, val1, field2, val2)      \
52                 CRTC_REG_UPDATE_N(reg, 2, FD(reg##__##field1), val1, FD(reg##__##field2), val2)
53
54 #define CRTC_REG_UPDATE_3(reg, field1, val1, field2, val2, field3, val3)        \
55                 CRTC_REG_UPDATE_N(reg, 3, FD(reg##__##field1), val1, FD(reg##__##field2), val2, FD(reg##__##field3), val3)
56
57 #define CRTC_REG_UPDATE_4(reg, field1, val1, field2, val2, field3, val3, field4, val4)  \
58                 CRTC_REG_UPDATE_N(reg, 3, FD(reg##__##field1), val1, FD(reg##__##field2), val2, FD(reg##__##field3), val3, FD(reg##__##field4), val4)
59
60 #define CRTC_REG_UPDATE_5(reg, field1, val1, field2, val2, field3, val3, field4, val4, field5, val5)    \
61                 CRTC_REG_UPDATE_N(reg, 3, FD(reg##__##field1), val1, FD(reg##__##field2), val2, FD(reg##__##field3), val3, FD(reg##__##field4), val4, FD(reg##__##field5), val5)
62
63 #define CRTC_REG_SET(reg, field, val)   \
64                 CRTC_REG_SET_N(reg, 1, FD(reg##__##field), val)
65
66 #define CRTC_REG_SET_2(reg, field1, val1, field2, val2) \
67                 CRTC_REG_SET_N(reg, 2, FD(reg##__##field1), val1, FD(reg##__##field2), val2)
68
69 #define CRTC_REG_SET_3(reg, field1, val1, field2, val2, field3, val3)   \
70                 CRTC_REG_SET_N(reg, 3, FD(reg##__##field1), val1, FD(reg##__##field2), val2, FD(reg##__##field3), val3)
71
72 /**
73  *****************************************************************************
74  *  Function: is_in_vertical_blank
75  *
76  *  @brief
77  *     check the current status of CRTC to check if we are in Vertical Blank
78  *     regioneased" state
79  *
80  *  @return
81  *     true if currently in blank region, false otherwise
82  *
83  *****************************************************************************
84  */
85 static bool dce120_timing_generator_is_in_vertical_blank(
86                 struct timing_generator *tg)
87 {
88         uint32_t field = 0;
89         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
90         uint32_t value = dm_read_reg_soc15(
91                                         tg->ctx,
92                                         mmCRTC0_CRTC_STATUS,
93                                         tg110->offsets.crtc);
94
95         field = get_reg_field_value(value, CRTC0_CRTC_STATUS, CRTC_V_BLANK);
96         return field == 1;
97 }
98
99
100 /* determine if given timing can be supported by TG */
101 bool dce120_timing_generator_validate_timing(
102         struct timing_generator *tg,
103         const struct dc_crtc_timing *timing,
104         enum signal_type signal)
105 {
106         uint32_t interlace_factor = timing->flags.INTERLACE ? 2 : 1;
107         uint32_t v_blank =
108                                         (timing->v_total - timing->v_addressable -
109                                         timing->v_border_top - timing->v_border_bottom) *
110                                         interlace_factor;
111         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
112
113         if (!dce110_timing_generator_validate_timing(
114                                         tg,
115                                         timing,
116                                         signal))
117                 return false;
118
119
120         if (v_blank < tg110->min_v_blank        ||
121                  timing->h_sync_width  < tg110->min_h_sync_width ||
122                  timing->v_sync_width  < tg110->min_v_sync_width)
123                 return false;
124
125         return true;
126 }
127
128 bool dce120_tg_validate_timing(struct timing_generator *tg,
129         const struct dc_crtc_timing *timing)
130 {
131         return dce120_timing_generator_validate_timing(tg, timing, SIGNAL_TYPE_NONE);
132 }
133
134 /******** HW programming ************/
135 /* Disable/Enable Timing Generator */
136 bool dce120_timing_generator_enable_crtc(struct timing_generator *tg)
137 {
138         enum bp_result result;
139         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
140
141         /* Set MASTER_UPDATE_MODE to 0
142          * This is needed for DRR, and also suggested to be default value by Syed.*/
143
144         CRTC_REG_UPDATE(CRTC0_CRTC_MASTER_UPDATE_MODE,
145                         MASTER_UPDATE_MODE, 0);
146
147         CRTC_REG_UPDATE(CRTC0_CRTC_MASTER_UPDATE_LOCK,
148                         UNDERFLOW_UPDATE_LOCK, 0);
149
150         /* TODO API for AtomFirmware didn't change*/
151         result = tg->bp->funcs->enable_crtc(tg->bp, tg110->controller_id, true);
152
153         return result == BP_RESULT_OK;
154 }
155
156 void dce120_timing_generator_set_early_control(
157                 struct timing_generator *tg,
158                 uint32_t early_cntl)
159 {
160         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
161
162         CRTC_REG_UPDATE(CRTC0_CRTC_CONTROL,
163                         CRTC_HBLANK_EARLY_CONTROL, early_cntl);
164 }
165
166 /**************** TG current status ******************/
167
168 /* return the current frame counter. Used by Linux kernel DRM */
169 uint32_t dce120_timing_generator_get_vblank_counter(
170                 struct timing_generator *tg)
171 {
172         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
173         uint32_t value = dm_read_reg_soc15(
174                                 tg->ctx,
175                                 mmCRTC0_CRTC_STATUS_FRAME_COUNT,
176                                 tg110->offsets.crtc);
177         uint32_t field = get_reg_field_value(
178                                 value, CRTC0_CRTC_STATUS_FRAME_COUNT, CRTC_FRAME_COUNT);
179
180         return field;
181 }
182
183 /* Get current H and V position */
184 void dce120_timing_generator_get_crtc_position(
185         struct timing_generator *tg,
186         struct crtc_position *position)
187 {
188         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
189         uint32_t value = dm_read_reg_soc15(
190                                 tg->ctx,
191                                 mmCRTC0_CRTC_STATUS_POSITION,
192                                 tg110->offsets.crtc);
193
194         position->horizontal_count = get_reg_field_value(value,
195                         CRTC0_CRTC_STATUS_POSITION, CRTC_HORZ_COUNT);
196
197         position->vertical_count = get_reg_field_value(value,
198                         CRTC0_CRTC_STATUS_POSITION, CRTC_VERT_COUNT);
199
200         value = dm_read_reg_soc15(
201                                 tg->ctx,
202                                 mmCRTC0_CRTC_NOM_VERT_POSITION,
203                                 tg110->offsets.crtc);
204
205         position->nominal_vcount = get_reg_field_value(value,
206                         CRTC0_CRTC_NOM_VERT_POSITION, CRTC_VERT_COUNT_NOM);
207 }
208
209 /* wait until TG is in beginning of vertical blank region */
210 void dce120_timing_generator_wait_for_vblank(struct timing_generator *tg)
211 {
212         /* We want to catch beginning of VBlank here, so if the first try are
213          * in VBlank, we might be very close to Active, in this case wait for
214          * another frame
215          */
216         while (dce120_timing_generator_is_in_vertical_blank(tg)) {
217                 if (!tg->funcs->is_counter_moving(tg)) {
218                         /* error - no point to wait if counter is not moving */
219                         break;
220                 }
221         }
222
223         while (!dce120_timing_generator_is_in_vertical_blank(tg)) {
224                 if (!tg->funcs->is_counter_moving(tg)) {
225                         /* error - no point to wait if counter is not moving */
226                         break;
227                 }
228         }
229 }
230
231 /* wait until TG is in beginning of active region */
232 void dce120_timing_generator_wait_for_vactive(struct timing_generator *tg)
233 {
234         while (dce120_timing_generator_is_in_vertical_blank(tg)) {
235                 if (!tg->funcs->is_counter_moving(tg)) {
236                         /* error - no point to wait if counter is not moving */
237                         break;
238                 }
239         }
240 }
241
242 /*********** Timing Generator Synchronization routines ****/
243
244 /* Setups Global Swap Lock group, TimingServer or TimingClient*/
245 void dce120_timing_generator_setup_global_swap_lock(
246         struct timing_generator *tg,
247         const struct dcp_gsl_params *gsl_params)
248 {
249         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
250         uint32_t value_crtc_vtotal =
251                                                         dm_read_reg_soc15(tg->ctx,
252                                                         mmCRTC0_CRTC_V_TOTAL,
253                                                         tg110->offsets.crtc);
254         /* Checkpoint relative to end of frame */
255         uint32_t check_point =
256                                                         get_reg_field_value(value_crtc_vtotal,
257                                                         CRTC0_CRTC_V_TOTAL,
258                                                         CRTC_V_TOTAL);
259
260
261         dm_write_reg_soc15(tg->ctx, mmCRTC0_CRTC_GSL_WINDOW, tg110->offsets.crtc, 0);
262
263         CRTC_REG_UPDATE_N(DCP0_DCP_GSL_CONTROL, 6,
264                 /* This pipe will belong to GSL Group zero. */
265                 FD(DCP0_DCP_GSL_CONTROL__DCP_GSL0_EN), 1,
266                 FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_MASTER_EN), gsl_params->gsl_master == tg->inst,
267                 FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_HSYNC_FLIP_FORCE_DELAY), HFLIP_READY_DELAY,
268                 /* Keep signal low (pending high) during 6 lines.
269                  * Also defines minimum interval before re-checking signal. */
270                 FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_HSYNC_FLIP_CHECK_DELAY), HFLIP_CHECK_DELAY,
271                 /* DCP_GSL_PURPOSE_SURFACE_FLIP */
272                 FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_SYNC_SOURCE), 0,
273                 FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_DELAY_SURFACE_UPDATE_PENDING), 1);
274
275         CRTC_REG_SET_2(
276                         CRTC0_CRTC_GSL_CONTROL,
277                         CRTC_GSL_CHECK_LINE_NUM, check_point - FLIP_READY_BACK_LOOKUP,
278                         CRTC_GSL_FORCE_DELAY, VFLIP_READY_DELAY);
279 }
280
281 /* Clear all the register writes done by setup_global_swap_lock */
282 void dce120_timing_generator_tear_down_global_swap_lock(
283         struct timing_generator *tg)
284 {
285         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
286
287         /* Settig HW default values from reg specs */
288         CRTC_REG_SET_N(DCP0_DCP_GSL_CONTROL, 6,
289                         FD(DCP0_DCP_GSL_CONTROL__DCP_GSL0_EN), 0,
290                         FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_MASTER_EN), 0,
291                         FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_HSYNC_FLIP_FORCE_DELAY), HFLIP_READY_DELAY,
292                         FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_HSYNC_FLIP_CHECK_DELAY), HFLIP_CHECK_DELAY,
293                         /* DCP_GSL_PURPOSE_SURFACE_FLIP */
294                         FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_SYNC_SOURCE), 0,
295                         FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_DELAY_SURFACE_UPDATE_PENDING), 0);
296
297         CRTC_REG_SET_2(CRTC0_CRTC_GSL_CONTROL,
298                        CRTC_GSL_CHECK_LINE_NUM, 0,
299                        CRTC_GSL_FORCE_DELAY, 0x2); /*TODO Why this value here ?*/
300 }
301
302 /* Reset slave controllers on master VSync */
303 void dce120_timing_generator_enable_reset_trigger(
304         struct timing_generator *tg,
305         int source)
306 {
307         enum trigger_source_select trig_src_select = TRIGGER_SOURCE_SELECT_LOGIC_ZERO;
308         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
309         uint32_t rising_edge = 0;
310         uint32_t falling_edge = 0;
311         /* Setup trigger edge */
312         uint32_t pol_value = dm_read_reg_soc15(
313                                                                         tg->ctx,
314                                                                         mmCRTC0_CRTC_V_SYNC_A_CNTL,
315                                                                         tg110->offsets.crtc);
316
317         /* Register spec has reversed definition:
318          *      0 for positive, 1 for negative */
319         if (get_reg_field_value(pol_value,
320                         CRTC0_CRTC_V_SYNC_A_CNTL,
321                         CRTC_V_SYNC_A_POL) == 0) {
322                 rising_edge = 1;
323         } else {
324                 falling_edge = 1;
325         }
326
327         /* TODO What about other sources ?*/
328         trig_src_select = TRIGGER_SOURCE_SELECT_GSL_GROUP0;
329
330         CRTC_REG_UPDATE_N(CRTC0_CRTC_TRIGB_CNTL, 7,
331                 FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_SOURCE_SELECT), trig_src_select,
332                 FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_POLARITY_SELECT), TRIGGER_POLARITY_SELECT_LOGIC_ZERO,
333                 FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_RISING_EDGE_DETECT_CNTL), rising_edge,
334                 FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_FALLING_EDGE_DETECT_CNTL), falling_edge,
335                 /* send every signal */
336                 FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_FREQUENCY_SELECT), 0,
337                 /* no delay */
338                 FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_DELAY), 0,
339                 /* clear trigger status */
340                 FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_CLEAR), 1);
341
342         CRTC_REG_UPDATE_3(
343                         CRTC0_CRTC_FORCE_COUNT_NOW_CNTL,
344                         CRTC_FORCE_COUNT_NOW_MODE, 2,
345                         CRTC_FORCE_COUNT_NOW_TRIG_SEL, 1,
346                         CRTC_FORCE_COUNT_NOW_CLEAR, 1);
347 }
348
349 /* disabling trigger-reset */
350 void dce120_timing_generator_disable_reset_trigger(
351         struct timing_generator *tg)
352 {
353         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
354
355         CRTC_REG_UPDATE_2(
356                 CRTC0_CRTC_FORCE_COUNT_NOW_CNTL,
357                 CRTC_FORCE_COUNT_NOW_MODE, 0,
358                 CRTC_FORCE_COUNT_NOW_CLEAR, 1);
359
360         CRTC_REG_UPDATE_3(
361                 CRTC0_CRTC_TRIGB_CNTL,
362                 CRTC_TRIGB_SOURCE_SELECT, TRIGGER_SOURCE_SELECT_LOGIC_ZERO,
363                 CRTC_TRIGB_POLARITY_SELECT, TRIGGER_POLARITY_SELECT_LOGIC_ZERO,
364                 /* clear trigger status */
365                 CRTC_TRIGB_CLEAR, 1);
366
367 }
368
369 /* Checks whether CRTC triggered reset occurred */
370 bool dce120_timing_generator_did_triggered_reset_occur(
371         struct timing_generator *tg)
372 {
373         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
374         uint32_t value = dm_read_reg_soc15(
375                         tg->ctx,
376                         mmCRTC0_CRTC_FORCE_COUNT_NOW_CNTL,
377                         tg110->offsets.crtc);
378
379         return get_reg_field_value(value,
380                         CRTC0_CRTC_FORCE_COUNT_NOW_CNTL,
381                         CRTC_FORCE_COUNT_NOW_OCCURRED) != 0;
382 }
383
384
385 /******** Stuff to move to other virtual HW objects *****************/
386 /* Move to enable accelerated mode */
387 void dce120_timing_generator_disable_vga(struct timing_generator *tg)
388 {
389         uint32_t offset = 0;
390         uint32_t value = 0;
391         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
392
393         switch (tg110->controller_id) {
394         case CONTROLLER_ID_D0:
395                 offset = 0;
396                 break;
397         case CONTROLLER_ID_D1:
398                 offset = mmD2VGA_CONTROL - mmD1VGA_CONTROL;
399                 break;
400         case CONTROLLER_ID_D2:
401                 offset = mmD3VGA_CONTROL - mmD1VGA_CONTROL;
402                 break;
403         case CONTROLLER_ID_D3:
404                 offset = mmD4VGA_CONTROL - mmD1VGA_CONTROL;
405                 break;
406         case CONTROLLER_ID_D4:
407                 offset = mmD5VGA_CONTROL - mmD1VGA_CONTROL;
408                 break;
409         case CONTROLLER_ID_D5:
410                 offset = mmD6VGA_CONTROL - mmD1VGA_CONTROL;
411                 break;
412         default:
413                 break;
414         }
415
416         value = dm_read_reg_soc15(tg->ctx, mmD1VGA_CONTROL, offset);
417
418         set_reg_field_value(value, 0, D1VGA_CONTROL, D1VGA_MODE_ENABLE);
419         set_reg_field_value(value, 0, D1VGA_CONTROL, D1VGA_TIMING_SELECT);
420         set_reg_field_value(
421                         value, 0, D1VGA_CONTROL, D1VGA_SYNC_POLARITY_SELECT);
422         set_reg_field_value(value, 0, D1VGA_CONTROL, D1VGA_OVERSCAN_COLOR_EN);
423
424         dm_write_reg_soc15(tg->ctx, mmD1VGA_CONTROL, offset, value);
425 }
426 /* TODO: Should we move it to transform */
427 /* Fully program CRTC timing in timing generator */
428 void dce120_timing_generator_program_blanking(
429         struct timing_generator *tg,
430         const struct dc_crtc_timing *timing)
431 {
432         uint32_t tmp1 = 0;
433         uint32_t tmp2 = 0;
434         uint32_t vsync_offset = timing->v_border_bottom +
435                         timing->v_front_porch;
436         uint32_t v_sync_start = timing->v_addressable + vsync_offset;
437
438         uint32_t hsync_offset = timing->h_border_right +
439                         timing->h_front_porch;
440         uint32_t h_sync_start = timing->h_addressable + hsync_offset;
441         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
442
443         CRTC_REG_UPDATE(
444                 CRTC0_CRTC_H_TOTAL,
445                 CRTC_H_TOTAL,
446                 timing->h_total - 1);
447
448         CRTC_REG_UPDATE(
449                 CRTC0_CRTC_V_TOTAL,
450                 CRTC_V_TOTAL,
451                 timing->v_total - 1);
452
453         /* In case of V_TOTAL_CONTROL is on, make sure V_TOTAL_MAX and
454          * V_TOTAL_MIN are equal to V_TOTAL.
455          */
456         CRTC_REG_UPDATE(
457                 CRTC0_CRTC_V_TOTAL_MAX,
458                 CRTC_V_TOTAL_MAX,
459                 timing->v_total - 1);
460
461         CRTC_REG_UPDATE(
462                 CRTC0_CRTC_V_TOTAL_MIN,
463                 CRTC_V_TOTAL_MIN,
464                 timing->v_total - 1);
465
466         tmp1 = timing->h_total -
467                         (h_sync_start + timing->h_border_left);
468         tmp2 = tmp1 + timing->h_addressable +
469                         timing->h_border_left + timing->h_border_right;
470
471         CRTC_REG_UPDATE_2(
472                         CRTC0_CRTC_H_BLANK_START_END,
473                         CRTC_H_BLANK_END, tmp1,
474                         CRTC_H_BLANK_START, tmp2);
475
476         tmp1 = timing->v_total - (v_sync_start + timing->v_border_top);
477         tmp2 = tmp1 + timing->v_addressable + timing->v_border_top +
478                         timing->v_border_bottom;
479
480         CRTC_REG_UPDATE_2(
481                 CRTC0_CRTC_V_BLANK_START_END,
482                 CRTC_V_BLANK_END, tmp1,
483                 CRTC_V_BLANK_START, tmp2);
484 }
485
486 /* TODO: Should we move it to opp? */
487 /* Combine with below and move YUV/RGB color conversion to SW layer */
488 void dce120_timing_generator_program_blank_color(
489         struct timing_generator *tg,
490         const struct tg_color *black_color)
491 {
492         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
493
494         CRTC_REG_UPDATE_3(
495                 CRTC0_CRTC_BLACK_COLOR,
496                 CRTC_BLACK_COLOR_B_CB, black_color->color_b_cb,
497                 CRTC_BLACK_COLOR_G_Y, black_color->color_g_y,
498                 CRTC_BLACK_COLOR_R_CR, black_color->color_r_cr);
499 }
500 /* Combine with above and move YUV/RGB color conversion to SW layer */
501 void dce120_timing_generator_set_overscan_color_black(
502         struct timing_generator *tg,
503         const struct tg_color *color)
504 {
505         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
506         uint32_t value = 0;
507         CRTC_REG_SET_3(
508                 CRTC0_CRTC_OVERSCAN_COLOR,
509                 CRTC_OVERSCAN_COLOR_BLUE, color->color_b_cb,
510                 CRTC_OVERSCAN_COLOR_GREEN, color->color_g_y,
511                 CRTC_OVERSCAN_COLOR_RED, color->color_r_cr);
512
513         value = dm_read_reg_soc15(
514                         tg->ctx,
515                         mmCRTC0_CRTC_OVERSCAN_COLOR,
516                         tg110->offsets.crtc);
517
518         dm_write_reg_soc15(
519                         tg->ctx,
520                         mmCRTC0_CRTC_BLACK_COLOR,
521                         tg110->offsets.crtc,
522                         value);
523
524         /* This is desirable to have a constant DAC output voltage during the
525          * blank time that is higher than the 0 volt reference level that the
526          * DAC outputs when the NBLANK signal
527          * is asserted low, such as for output to an analog TV. */
528         dm_write_reg_soc15(
529                 tg->ctx,
530                 mmCRTC0_CRTC_BLANK_DATA_COLOR,
531                 tg110->offsets.crtc,
532                 value);
533
534         /* TO DO we have to program EXT registers and we need to know LB DATA
535          * format because it is used when more 10 , i.e. 12 bits per color
536          *
537          * m_mmDxCRTC_OVERSCAN_COLOR_EXT
538          * m_mmDxCRTC_BLACK_COLOR_EXT
539          * m_mmDxCRTC_BLANK_DATA_COLOR_EXT
540          */
541 }
542
543 void dce120_timing_generator_set_drr(
544         struct timing_generator *tg,
545         const struct drr_params *params)
546 {
547
548         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
549
550         if (params != NULL &&
551                 params->vertical_total_max > 0 &&
552                 params->vertical_total_min > 0) {
553
554                 CRTC_REG_UPDATE(
555                                 CRTC0_CRTC_V_TOTAL_MIN,
556                                 CRTC_V_TOTAL_MIN, params->vertical_total_min - 1);
557                 CRTC_REG_UPDATE(
558                                 CRTC0_CRTC_V_TOTAL_MAX,
559                                 CRTC_V_TOTAL_MAX, params->vertical_total_max - 1);
560                 CRTC_REG_SET_N(CRTC0_CRTC_V_TOTAL_CONTROL, 6,
561                                 FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_V_TOTAL_MIN_SEL), 1,
562                                 FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_V_TOTAL_MAX_SEL), 1,
563                                 FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_FORCE_LOCK_ON_EVENT), 0,
564                                 FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_FORCE_LOCK_TO_MASTER_VSYNC), 0,
565                                 FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_SET_V_TOTAL_MIN_MASK_EN), 0,
566                                 FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_SET_V_TOTAL_MIN_MASK), 0);
567                 CRTC_REG_UPDATE(
568                                 CRTC0_CRTC_STATIC_SCREEN_CONTROL,
569                                 CRTC_STATIC_SCREEN_EVENT_MASK,
570                                 0x180);
571
572         } else {
573                 CRTC_REG_SET_N(CRTC0_CRTC_V_TOTAL_CONTROL, 5,
574                                 FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_V_TOTAL_MIN_SEL), 0,
575                                 FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_V_TOTAL_MAX_SEL), 0,
576                                 FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_FORCE_LOCK_ON_EVENT), 0,
577                                 FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_FORCE_LOCK_TO_MASTER_VSYNC), 0,
578                                 FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_SET_V_TOTAL_MIN_MASK), 0);
579                 CRTC_REG_UPDATE(
580                                 CRTC0_CRTC_V_TOTAL_MIN,
581                                 CRTC_V_TOTAL_MIN, 0);
582                 CRTC_REG_UPDATE(
583                                 CRTC0_CRTC_V_TOTAL_MAX,
584                                 CRTC_V_TOTAL_MAX, 0);
585                 CRTC_REG_UPDATE(
586                                 CRTC0_CRTC_STATIC_SCREEN_CONTROL,
587                                 CRTC_STATIC_SCREEN_EVENT_MASK,
588                                 0);
589         }
590 }
591
592 /**
593  *****************************************************************************
594  *  Function: dce120_timing_generator_get_position
595  *
596  *  @brief
597  *     Returns CRTC vertical/horizontal counters
598  *
599  *  @param [out] position
600  *****************************************************************************
601  */
602 void dce120_timing_generator_get_position(struct timing_generator *tg,
603         struct crtc_position *position)
604 {
605         uint32_t value;
606         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
607
608         value = dm_read_reg_soc15(
609                         tg->ctx,
610                         mmCRTC0_CRTC_STATUS_POSITION,
611                         tg110->offsets.crtc);
612
613         position->horizontal_count = get_reg_field_value(
614                         value,
615                         CRTC0_CRTC_STATUS_POSITION,
616                         CRTC_HORZ_COUNT);
617
618         position->vertical_count = get_reg_field_value(
619                         value,
620                         CRTC0_CRTC_STATUS_POSITION,
621                         CRTC_VERT_COUNT);
622
623         value = dm_read_reg_soc15(
624                         tg->ctx,
625                         mmCRTC0_CRTC_NOM_VERT_POSITION,
626                         tg110->offsets.crtc);
627
628         position->nominal_vcount = get_reg_field_value(
629                         value,
630                         CRTC0_CRTC_NOM_VERT_POSITION,
631                         CRTC_VERT_COUNT_NOM);
632 }
633
634
635 void dce120_timing_generator_get_crtc_scanoutpos(
636         struct timing_generator *tg,
637         uint32_t *v_blank_start,
638         uint32_t *v_blank_end,
639         uint32_t *h_position,
640         uint32_t *v_position)
641 {
642         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
643         struct crtc_position position;
644
645         uint32_t v_blank_start_end = dm_read_reg_soc15(
646                         tg->ctx,
647                         mmCRTC0_CRTC_V_BLANK_START_END,
648                         tg110->offsets.crtc);
649
650         *v_blank_start = get_reg_field_value(v_blank_start_end,
651                                              CRTC0_CRTC_V_BLANK_START_END,
652                                              CRTC_V_BLANK_START);
653         *v_blank_end = get_reg_field_value(v_blank_start_end,
654                                            CRTC0_CRTC_V_BLANK_START_END,
655                                            CRTC_V_BLANK_END);
656
657         dce120_timing_generator_get_crtc_position(
658                         tg, &position);
659
660         *h_position = position.horizontal_count;
661         *v_position = position.vertical_count;
662 }
663
664 void dce120_timing_generator_enable_advanced_request(
665         struct timing_generator *tg,
666         bool enable,
667         const struct dc_crtc_timing *timing)
668 {
669         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
670         uint32_t v_sync_width_and_b_porch =
671                                 timing->v_total - timing->v_addressable -
672                                 timing->v_border_bottom - timing->v_front_porch;
673         uint32_t value = dm_read_reg_soc15(
674                                 tg->ctx,
675                                 mmCRTC0_CRTC_START_LINE_CONTROL,
676                                 tg110->offsets.crtc);
677
678         set_reg_field_value(
679                 value,
680                 enable ? 0 : 1,
681                 CRTC0_CRTC_START_LINE_CONTROL,
682                 CRTC_LEGACY_REQUESTOR_EN);
683
684         /* Program advanced line position acc.to the best case from fetching data perspective to hide MC latency
685          * and prefilling Line Buffer in V Blank (to 10 lines as LB can store max 10 lines)
686          */
687         if (v_sync_width_and_b_porch > 10)
688                 v_sync_width_and_b_porch = 10;
689
690         set_reg_field_value(
691                 value,
692                 v_sync_width_and_b_porch,
693                 CRTC0_CRTC_START_LINE_CONTROL,
694                 CRTC_ADVANCED_START_LINE_POSITION);
695
696         dm_write_reg_soc15(tg->ctx,
697                         mmCRTC0_CRTC_START_LINE_CONTROL,
698                         tg110->offsets.crtc,
699                         value);
700 }
701
702 void dce120_tg_program_blank_color(struct timing_generator *tg,
703         const struct tg_color *black_color)
704 {
705         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
706         uint32_t value = 0;
707
708         CRTC_REG_UPDATE_3(
709                 CRTC0_CRTC_BLACK_COLOR,
710                 CRTC_BLACK_COLOR_B_CB, black_color->color_b_cb,
711                 CRTC_BLACK_COLOR_G_Y, black_color->color_g_y,
712                 CRTC_BLACK_COLOR_R_CR, black_color->color_r_cr);
713
714         value = dm_read_reg_soc15(
715                                 tg->ctx,
716                                 mmCRTC0_CRTC_BLACK_COLOR,
717                                 tg110->offsets.crtc);
718         dm_write_reg_soc15(
719                 tg->ctx,
720                 mmCRTC0_CRTC_BLANK_DATA_COLOR,
721                 tg110->offsets.crtc,
722                 value);
723 }
724
725 void dce120_tg_set_overscan_color(struct timing_generator *tg,
726         const struct tg_color *overscan_color)
727 {
728         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
729
730         CRTC_REG_SET_3(
731                 CRTC0_CRTC_OVERSCAN_COLOR,
732                 CRTC_OVERSCAN_COLOR_BLUE, overscan_color->color_b_cb,
733                 CRTC_OVERSCAN_COLOR_GREEN, overscan_color->color_g_y,
734                 CRTC_OVERSCAN_COLOR_RED, overscan_color->color_r_cr);
735 }
736
737 void dce120_tg_program_timing(struct timing_generator *tg,
738         const struct dc_crtc_timing *timing,
739         bool use_vbios)
740 {
741         if (use_vbios)
742                 dce110_timing_generator_program_timing_generator(tg, timing);
743         else
744                 dce120_timing_generator_program_blanking(tg, timing);
745 }
746
747 bool dce120_tg_is_blanked(struct timing_generator *tg)
748 {
749         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
750         uint32_t value = dm_read_reg_soc15(
751                         tg->ctx,
752                         mmCRTC0_CRTC_BLANK_CONTROL,
753                         tg110->offsets.crtc);
754
755         if (get_reg_field_value(
756                 value,
757                 CRTC0_CRTC_BLANK_CONTROL,
758                 CRTC_BLANK_DATA_EN) == 1 &&
759             get_reg_field_value(
760                 value,
761                 CRTC0_CRTC_BLANK_CONTROL,
762                 CRTC_CURRENT_BLANK_STATE) == 1)
763                         return true;
764
765         return false;
766 }
767
768 void dce120_tg_set_blank(struct timing_generator *tg,
769                 bool enable_blanking)
770 {
771         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
772
773         CRTC_REG_SET(
774                 CRTC0_CRTC_DOUBLE_BUFFER_CONTROL,
775                 CRTC_BLANK_DATA_DOUBLE_BUFFER_EN, 1);
776
777         if (enable_blanking)
778                 CRTC_REG_SET(CRTC0_CRTC_BLANK_CONTROL, CRTC_BLANK_DATA_EN, 1);
779         else
780                 dm_write_reg_soc15(tg->ctx, mmCRTC0_CRTC_BLANK_CONTROL,
781                         tg110->offsets.crtc, 0);
782 }
783
784 bool dce120_tg_validate_timing(struct timing_generator *tg,
785         const struct dc_crtc_timing *timing);
786
787 void dce120_tg_wait_for_state(struct timing_generator *tg,
788         enum crtc_state state)
789 {
790         switch (state) {
791         case CRTC_STATE_VBLANK:
792                 dce120_timing_generator_wait_for_vblank(tg);
793                 break;
794
795         case CRTC_STATE_VACTIVE:
796                 dce120_timing_generator_wait_for_vactive(tg);
797                 break;
798
799         default:
800                 break;
801         }
802 }
803
804 void dce120_tg_set_colors(struct timing_generator *tg,
805         const struct tg_color *blank_color,
806         const struct tg_color *overscan_color)
807 {
808         if (blank_color != NULL)
809                 dce120_tg_program_blank_color(tg, blank_color);
810
811         if (overscan_color != NULL)
812                 dce120_tg_set_overscan_color(tg, overscan_color);
813 }
814
815 static void dce120_timing_generator_set_static_screen_control(
816         struct timing_generator *tg,
817         uint32_t value)
818 {
819         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
820
821         CRTC_REG_UPDATE_2(CRTC0_CRTC_STATIC_SCREEN_CONTROL,
822                         CRTC_STATIC_SCREEN_EVENT_MASK, value,
823                         CRTC_STATIC_SCREEN_FRAME_COUNT, 2);
824 }
825
826 void dce120_timing_generator_set_test_pattern(
827         struct timing_generator *tg,
828         /* TODO: replace 'controller_dp_test_pattern' by 'test_pattern_mode'
829          * because this is not DP-specific (which is probably somewhere in DP
830          * encoder) */
831         enum controller_dp_test_pattern test_pattern,
832         enum dc_color_depth color_depth)
833 {
834         struct dc_context *ctx = tg->ctx;
835         uint32_t value;
836         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
837         enum test_pattern_color_format bit_depth;
838         enum test_pattern_dyn_range dyn_range;
839         enum test_pattern_mode mode;
840         /* color ramp generator mixes 16-bits color */
841         uint32_t src_bpc = 16;
842         /* requested bpc */
843         uint32_t dst_bpc;
844         uint32_t index;
845         /* RGB values of the color bars.
846          * Produce two RGB colors: RGB0 - white (all Fs)
847          * and RGB1 - black (all 0s)
848          * (three RGB components for two colors)
849          */
850         uint16_t src_color[6] = {0xFFFF, 0xFFFF, 0xFFFF, 0x0000,
851                                                 0x0000, 0x0000};
852         /* dest color (converted to the specified color format) */
853         uint16_t dst_color[6];
854         uint32_t inc_base;
855
856         /* translate to bit depth */
857         switch (color_depth) {
858         case COLOR_DEPTH_666:
859                 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_6;
860         break;
861         case COLOR_DEPTH_888:
862                 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
863         break;
864         case COLOR_DEPTH_101010:
865                 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_10;
866         break;
867         case COLOR_DEPTH_121212:
868                 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_12;
869         break;
870         default:
871                 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
872         break;
873         }
874
875         switch (test_pattern) {
876         case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES:
877         case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA:
878         {
879                 dyn_range = (test_pattern ==
880                                 CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA ?
881                                 TEST_PATTERN_DYN_RANGE_CEA :
882                                 TEST_PATTERN_DYN_RANGE_VESA);
883                 mode = TEST_PATTERN_MODE_COLORSQUARES_RGB;
884
885                 CRTC_REG_UPDATE_2(CRTC0_CRTC_TEST_PATTERN_PARAMETERS,
886                                 CRTC_TEST_PATTERN_VRES, 6,
887                                 CRTC_TEST_PATTERN_HRES, 6);
888
889                 CRTC_REG_UPDATE_4(CRTC0_CRTC_TEST_PATTERN_CONTROL,
890                                 CRTC_TEST_PATTERN_EN, 1,
891                                 CRTC_TEST_PATTERN_MODE, mode,
892                                 CRTC_TEST_PATTERN_DYNAMIC_RANGE, dyn_range,
893                                 CRTC_TEST_PATTERN_COLOR_FORMAT, bit_depth);
894         }
895         break;
896
897         case CONTROLLER_DP_TEST_PATTERN_VERTICALBARS:
898         case CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS:
899         {
900                 mode = (test_pattern ==
901                         CONTROLLER_DP_TEST_PATTERN_VERTICALBARS ?
902                         TEST_PATTERN_MODE_VERTICALBARS :
903                         TEST_PATTERN_MODE_HORIZONTALBARS);
904
905                 switch (bit_depth) {
906                 case TEST_PATTERN_COLOR_FORMAT_BPC_6:
907                         dst_bpc = 6;
908                 break;
909                 case TEST_PATTERN_COLOR_FORMAT_BPC_8:
910                         dst_bpc = 8;
911                 break;
912                 case TEST_PATTERN_COLOR_FORMAT_BPC_10:
913                         dst_bpc = 10;
914                 break;
915                 default:
916                         dst_bpc = 8;
917                 break;
918                 }
919
920                 /* adjust color to the required colorFormat */
921                 for (index = 0; index < 6; index++) {
922                         /* dst = 2^dstBpc * src / 2^srcBpc = src >>
923                          * (srcBpc - dstBpc);
924                          */
925                         dst_color[index] =
926                                 src_color[index] >> (src_bpc - dst_bpc);
927                 /* CRTC_TEST_PATTERN_DATA has 16 bits,
928                  * lowest 6 are hardwired to ZERO
929                  * color bits should be left aligned aligned to MSB
930                  * XXXXXXXXXX000000 for 10 bit,
931                  * XXXXXXXX00000000 for 8 bit and XXXXXX0000000000 for 6
932                  */
933                         dst_color[index] <<= (16 - dst_bpc);
934                 }
935
936                 dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_PARAMETERS, tg110->offsets.crtc, 0);
937
938                 /* We have to write the mask before data, similar to pipeline.
939                  * For example, for 8 bpc, if we want RGB0 to be magenta,
940                  * and RGB1 to be cyan,
941                  * we need to make 7 writes:
942                  * MASK   DATA
943                  * 000001 00000000 00000000                     set mask to R0
944                  * 000010 11111111 00000000     R0 255, 0xFF00, set mask to G0
945                  * 000100 00000000 00000000     G0 0,   0x0000, set mask to B0
946                  * 001000 11111111 00000000     B0 255, 0xFF00, set mask to R1
947                  * 010000 00000000 00000000     R1 0,   0x0000, set mask to G1
948                  * 100000 11111111 00000000     G1 255, 0xFF00, set mask to B1
949                  * 100000 11111111 00000000     B1 255, 0xFF00
950                  *
951                  * we will make a loop of 6 in which we prepare the mask,
952                  * then write, then prepare the color for next write.
953                  * first iteration will write mask only,
954                  * but each next iteration color prepared in
955                  * previous iteration will be written within new mask,
956                  * the last component will written separately,
957                  * mask is not changing between 6th and 7th write
958                  * and color will be prepared by last iteration
959                  */
960
961                 /* write color, color values mask in CRTC_TEST_PATTERN_MASK
962                  * is B1, G1, R1, B0, G0, R0
963                  */
964                 value = 0;
965                 for (index = 0; index < 6; index++) {
966                         /* prepare color mask, first write PATTERN_DATA
967                          * will have all zeros
968                          */
969                         set_reg_field_value(
970                                 value,
971                                 (1 << index),
972                                 CRTC0_CRTC_TEST_PATTERN_COLOR,
973                                 CRTC_TEST_PATTERN_MASK);
974                         /* write color component */
975                         dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_COLOR, tg110->offsets.crtc, value);
976                         /* prepare next color component,
977                          * will be written in the next iteration
978                          */
979                         set_reg_field_value(
980                                 value,
981                                 dst_color[index],
982                                 CRTC0_CRTC_TEST_PATTERN_COLOR,
983                                 CRTC_TEST_PATTERN_DATA);
984                 }
985                 /* write last color component,
986                  * it's been already prepared in the loop
987                  */
988                 dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_COLOR, tg110->offsets.crtc, value);
989
990                 /* enable test pattern */
991                 CRTC_REG_UPDATE_4(CRTC0_CRTC_TEST_PATTERN_CONTROL,
992                                 CRTC_TEST_PATTERN_EN, 1,
993                                 CRTC_TEST_PATTERN_MODE, mode,
994                                 CRTC_TEST_PATTERN_DYNAMIC_RANGE, 0,
995                                 CRTC_TEST_PATTERN_COLOR_FORMAT, bit_depth);
996         }
997         break;
998
999         case CONTROLLER_DP_TEST_PATTERN_COLORRAMP:
1000         {
1001                 mode = (bit_depth ==
1002                         TEST_PATTERN_COLOR_FORMAT_BPC_10 ?
1003                         TEST_PATTERN_MODE_DUALRAMP_RGB :
1004                         TEST_PATTERN_MODE_SINGLERAMP_RGB);
1005
1006                 switch (bit_depth) {
1007                 case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1008                         dst_bpc = 6;
1009                 break;
1010                 case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1011                         dst_bpc = 8;
1012                 break;
1013                 case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1014                         dst_bpc = 10;
1015                 break;
1016                 default:
1017                         dst_bpc = 8;
1018                 break;
1019                 }
1020
1021                 /* increment for the first ramp for one color gradation
1022                  * 1 gradation for 6-bit color is 2^10
1023                  * gradations in 16-bit color
1024                  */
1025                 inc_base = (src_bpc - dst_bpc);
1026
1027                 switch (bit_depth) {
1028                 case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1029                 {
1030                         CRTC_REG_UPDATE_5(CRTC0_CRTC_TEST_PATTERN_PARAMETERS,
1031                                         CRTC_TEST_PATTERN_INC0, inc_base,
1032                                         CRTC_TEST_PATTERN_INC1, 0,
1033                                         CRTC_TEST_PATTERN_HRES, 6,
1034                                         CRTC_TEST_PATTERN_VRES, 6,
1035                                         CRTC_TEST_PATTERN_RAMP0_OFFSET, 0);
1036                 }
1037                 break;
1038                 case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1039                 {
1040                         CRTC_REG_UPDATE_5(CRTC0_CRTC_TEST_PATTERN_PARAMETERS,
1041                                         CRTC_TEST_PATTERN_INC0, inc_base,
1042                                         CRTC_TEST_PATTERN_INC1, 0,
1043                                         CRTC_TEST_PATTERN_HRES, 8,
1044                                         CRTC_TEST_PATTERN_VRES, 6,
1045                                         CRTC_TEST_PATTERN_RAMP0_OFFSET, 0);
1046                 }
1047                 break;
1048                 case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1049                 {
1050                         CRTC_REG_UPDATE_5(CRTC0_CRTC_TEST_PATTERN_PARAMETERS,
1051                                         CRTC_TEST_PATTERN_INC0, inc_base,
1052                                         CRTC_TEST_PATTERN_INC1, inc_base + 2,
1053                                         CRTC_TEST_PATTERN_HRES, 8,
1054                                         CRTC_TEST_PATTERN_VRES, 5,
1055                                         CRTC_TEST_PATTERN_RAMP0_OFFSET, 384 << 6);
1056                 }
1057                 break;
1058                 default:
1059                 break;
1060                 }
1061
1062                 dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_COLOR, tg110->offsets.crtc, 0);
1063
1064                 /* enable test pattern */
1065                 dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_CONTROL, tg110->offsets.crtc, 0);
1066
1067                 CRTC_REG_UPDATE_4(CRTC0_CRTC_TEST_PATTERN_CONTROL,
1068                                 CRTC_TEST_PATTERN_EN, 1,
1069                                 CRTC_TEST_PATTERN_MODE, mode,
1070                                 CRTC_TEST_PATTERN_DYNAMIC_RANGE, 0,
1071                                 CRTC_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1072         }
1073         break;
1074         case CONTROLLER_DP_TEST_PATTERN_VIDEOMODE:
1075         {
1076                 value = 0;
1077                 dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_CONTROL, tg110->offsets.crtc,  value);
1078                 dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_COLOR, tg110->offsets.crtc, value);
1079                 dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_PARAMETERS, tg110->offsets.crtc, value);
1080         }
1081         break;
1082         default:
1083         break;
1084         }
1085 }
1086
1087 static bool dce120_arm_vert_intr(
1088                 struct timing_generator *tg,
1089                 uint8_t width)
1090 {
1091         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1092         uint32_t v_blank_start, v_blank_end, h_position, v_position;
1093
1094         tg->funcs->get_scanoutpos(
1095                                 tg,
1096                                 &v_blank_start,
1097                                 &v_blank_end,
1098                                 &h_position,
1099                                 &v_position);
1100
1101         if (v_blank_start == 0 || v_blank_end == 0)
1102                 return false;
1103
1104         CRTC_REG_SET_2(
1105                         CRTC0_CRTC_VERTICAL_INTERRUPT0_POSITION,
1106                         CRTC_VERTICAL_INTERRUPT0_LINE_START, v_blank_start,
1107                         CRTC_VERTICAL_INTERRUPT0_LINE_END, v_blank_start + width);
1108
1109         return true;
1110 }
1111
1112 static const struct timing_generator_funcs dce120_tg_funcs = {
1113                 .validate_timing = dce120_tg_validate_timing,
1114                 .program_timing = dce120_tg_program_timing,
1115                 .enable_crtc = dce120_timing_generator_enable_crtc,
1116                 .disable_crtc = dce110_timing_generator_disable_crtc,
1117                 /* used by enable_timing_synchronization. Not need for FPGA */
1118                 .is_counter_moving = dce110_timing_generator_is_counter_moving,
1119                 /* never be called */
1120                 .get_position = dce120_timing_generator_get_crtc_position,
1121                 .get_frame_count = dce120_timing_generator_get_vblank_counter,
1122                 .get_scanoutpos = dce120_timing_generator_get_crtc_scanoutpos,
1123                 .set_early_control = dce120_timing_generator_set_early_control,
1124                 /* used by enable_timing_synchronization. Not need for FPGA */
1125                 .wait_for_state = dce120_tg_wait_for_state,
1126                 .set_blank = dce120_tg_set_blank,
1127                 .is_blanked = dce120_tg_is_blanked,
1128                 /* never be called */
1129                 .set_colors = dce120_tg_set_colors,
1130                 .set_overscan_blank_color = dce120_timing_generator_set_overscan_color_black,
1131                 .set_blank_color = dce120_timing_generator_program_blank_color,
1132                 .disable_vga = dce120_timing_generator_disable_vga,
1133                 .did_triggered_reset_occur = dce120_timing_generator_did_triggered_reset_occur,
1134                 .setup_global_swap_lock = dce120_timing_generator_setup_global_swap_lock,
1135                 .enable_reset_trigger = dce120_timing_generator_enable_reset_trigger,
1136                 .disable_reset_trigger = dce120_timing_generator_disable_reset_trigger,
1137                 .tear_down_global_swap_lock = dce120_timing_generator_tear_down_global_swap_lock,
1138                 .enable_advanced_request = dce120_timing_generator_enable_advanced_request,
1139                 .set_drr = dce120_timing_generator_set_drr,
1140                 .set_static_screen_control = dce120_timing_generator_set_static_screen_control,
1141                 .set_test_pattern = dce120_timing_generator_set_test_pattern,
1142                 .arm_vert_intr = dce120_arm_vert_intr,
1143 };
1144
1145
1146 void dce120_timing_generator_construct(
1147         struct dce110_timing_generator *tg110,
1148         struct dc_context *ctx,
1149         uint32_t instance,
1150         const struct dce110_timing_generator_offsets *offsets)
1151 {
1152         tg110->controller_id = CONTROLLER_ID_D0 + instance;
1153         tg110->base.inst = instance;
1154
1155         tg110->offsets = *offsets;
1156
1157         tg110->base.funcs = &dce120_tg_funcs;
1158
1159         tg110->base.ctx = ctx;
1160         tg110->base.bp = ctx->dc_bios;
1161
1162         tg110->max_h_total = CRTC0_CRTC_H_TOTAL__CRTC_H_TOTAL_MASK + 1;
1163         tg110->max_v_total = CRTC0_CRTC_V_TOTAL__CRTC_V_TOTAL_MASK + 1;
1164
1165         /*//CRTC requires a minimum HBLANK = 32 pixels and o
1166          * Minimum HSYNC = 8 pixels*/
1167         tg110->min_h_blank = 32;
1168         /*DCE12_CRTC_Block_ARch.doc*/
1169         tg110->min_h_front_porch = 0;
1170         tg110->min_h_back_porch = 0;
1171
1172         tg110->min_h_sync_width = 8;
1173         tg110->min_v_sync_width = 1;
1174         tg110->min_v_blank = 3;
1175 }