GNU Linux-libre 4.19.295-gnu1
[releases.git] / drivers / gpu / drm / amd / amdkfd / kfd_crat.c
1 /*
2  * Copyright 2015-2017 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/acpi.h>
25 #include "kfd_crat.h"
26 #include "kfd_priv.h"
27 #include "kfd_topology.h"
28 #include "kfd_iommu.h"
29
30 /* GPU Processor ID base for dGPUs for which VCRAT needs to be created.
31  * GPU processor ID are expressed with Bit[31]=1.
32  * The base is set to 0x8000_0000 + 0x1000 to avoid collision with GPU IDs
33  * used in the CRAT.
34  */
35 static uint32_t gpu_processor_id_low = 0x80001000;
36
37 /* Return the next available gpu_processor_id and increment it for next GPU
38  *      @total_cu_count - Total CUs present in the GPU including ones
39  *                        masked off
40  */
41 static inline unsigned int get_and_inc_gpu_processor_id(
42                                 unsigned int total_cu_count)
43 {
44         int current_id = gpu_processor_id_low;
45
46         gpu_processor_id_low += total_cu_count;
47         return current_id;
48 }
49
50 /* Static table to describe GPU Cache information */
51 struct kfd_gpu_cache_info {
52         uint32_t        cache_size;
53         uint32_t        cache_level;
54         uint32_t        flags;
55         /* Indicates how many Compute Units share this cache
56          * Value = 1 indicates the cache is not shared
57          */
58         uint32_t        num_cu_shared;
59 };
60
61 static struct kfd_gpu_cache_info kaveri_cache_info[] = {
62         {
63                 /* TCP L1 Cache per CU */
64                 .cache_size = 16,
65                 .cache_level = 1,
66                 .flags = (CRAT_CACHE_FLAGS_ENABLED |
67                                 CRAT_CACHE_FLAGS_DATA_CACHE |
68                                 CRAT_CACHE_FLAGS_SIMD_CACHE),
69                 .num_cu_shared = 1,
70
71         },
72         {
73                 /* Scalar L1 Instruction Cache (in SQC module) per bank */
74                 .cache_size = 16,
75                 .cache_level = 1,
76                 .flags = (CRAT_CACHE_FLAGS_ENABLED |
77                                 CRAT_CACHE_FLAGS_INST_CACHE |
78                                 CRAT_CACHE_FLAGS_SIMD_CACHE),
79                 .num_cu_shared = 2,
80         },
81         {
82                 /* Scalar L1 Data Cache (in SQC module) per bank */
83                 .cache_size = 8,
84                 .cache_level = 1,
85                 .flags = (CRAT_CACHE_FLAGS_ENABLED |
86                                 CRAT_CACHE_FLAGS_DATA_CACHE |
87                                 CRAT_CACHE_FLAGS_SIMD_CACHE),
88                 .num_cu_shared = 2,
89         },
90
91         /* TODO: Add L2 Cache information */
92 };
93
94
95 static struct kfd_gpu_cache_info carrizo_cache_info[] = {
96         {
97                 /* TCP L1 Cache per CU */
98                 .cache_size = 16,
99                 .cache_level = 1,
100                 .flags = (CRAT_CACHE_FLAGS_ENABLED |
101                                 CRAT_CACHE_FLAGS_DATA_CACHE |
102                                 CRAT_CACHE_FLAGS_SIMD_CACHE),
103                 .num_cu_shared = 1,
104         },
105         {
106                 /* Scalar L1 Instruction Cache (in SQC module) per bank */
107                 .cache_size = 8,
108                 .cache_level = 1,
109                 .flags = (CRAT_CACHE_FLAGS_ENABLED |
110                                 CRAT_CACHE_FLAGS_INST_CACHE |
111                                 CRAT_CACHE_FLAGS_SIMD_CACHE),
112                 .num_cu_shared = 4,
113         },
114         {
115                 /* Scalar L1 Data Cache (in SQC module) per bank. */
116                 .cache_size = 4,
117                 .cache_level = 1,
118                 .flags = (CRAT_CACHE_FLAGS_ENABLED |
119                                 CRAT_CACHE_FLAGS_DATA_CACHE |
120                                 CRAT_CACHE_FLAGS_SIMD_CACHE),
121                 .num_cu_shared = 4,
122         },
123
124         /* TODO: Add L2 Cache information */
125 };
126
127 /* NOTE: In future if more information is added to struct kfd_gpu_cache_info
128  * the following ASICs may need a separate table.
129  */
130 #define hawaii_cache_info kaveri_cache_info
131 #define tonga_cache_info carrizo_cache_info
132 #define fiji_cache_info  carrizo_cache_info
133 #define polaris10_cache_info carrizo_cache_info
134 #define polaris11_cache_info carrizo_cache_info
135 /* TODO - check & update Vega10 cache details */
136 #define vega10_cache_info carrizo_cache_info
137 #define raven_cache_info carrizo_cache_info
138
139 static void kfd_populated_cu_info_cpu(struct kfd_topology_device *dev,
140                 struct crat_subtype_computeunit *cu)
141 {
142         dev->node_props.cpu_cores_count = cu->num_cpu_cores;
143         dev->node_props.cpu_core_id_base = cu->processor_id_low;
144         if (cu->hsa_capability & CRAT_CU_FLAGS_IOMMU_PRESENT)
145                 dev->node_props.capability |= HSA_CAP_ATS_PRESENT;
146
147         pr_debug("CU CPU: cores=%d id_base=%d\n", cu->num_cpu_cores,
148                         cu->processor_id_low);
149 }
150
151 static void kfd_populated_cu_info_gpu(struct kfd_topology_device *dev,
152                 struct crat_subtype_computeunit *cu)
153 {
154         dev->node_props.simd_id_base = cu->processor_id_low;
155         dev->node_props.simd_count = cu->num_simd_cores;
156         dev->node_props.lds_size_in_kb = cu->lds_size_in_kb;
157         dev->node_props.max_waves_per_simd = cu->max_waves_simd;
158         dev->node_props.wave_front_size = cu->wave_front_size;
159         dev->node_props.array_count = cu->array_count;
160         dev->node_props.cu_per_simd_array = cu->num_cu_per_array;
161         dev->node_props.simd_per_cu = cu->num_simd_per_cu;
162         dev->node_props.max_slots_scratch_cu = cu->max_slots_scatch_cu;
163         if (cu->hsa_capability & CRAT_CU_FLAGS_HOT_PLUGGABLE)
164                 dev->node_props.capability |= HSA_CAP_HOT_PLUGGABLE;
165         pr_debug("CU GPU: id_base=%d\n", cu->processor_id_low);
166 }
167
168 /* kfd_parse_subtype_cu - parse compute unit subtypes and attach it to correct
169  * topology device present in the device_list
170  */
171 static int kfd_parse_subtype_cu(struct crat_subtype_computeunit *cu,
172                                 struct list_head *device_list)
173 {
174         struct kfd_topology_device *dev;
175
176         pr_debug("Found CU entry in CRAT table with proximity_domain=%d caps=%x\n",
177                         cu->proximity_domain, cu->hsa_capability);
178         list_for_each_entry(dev, device_list, list) {
179                 if (cu->proximity_domain == dev->proximity_domain) {
180                         if (cu->flags & CRAT_CU_FLAGS_CPU_PRESENT)
181                                 kfd_populated_cu_info_cpu(dev, cu);
182
183                         if (cu->flags & CRAT_CU_FLAGS_GPU_PRESENT)
184                                 kfd_populated_cu_info_gpu(dev, cu);
185                         break;
186                 }
187         }
188
189         return 0;
190 }
191
192 static struct kfd_mem_properties *
193 find_subtype_mem(uint32_t heap_type, uint32_t flags, uint32_t width,
194                 struct kfd_topology_device *dev)
195 {
196         struct kfd_mem_properties *props;
197
198         list_for_each_entry(props, &dev->mem_props, list) {
199                 if (props->heap_type == heap_type
200                                 && props->flags == flags
201                                 && props->width == width)
202                         return props;
203         }
204
205         return NULL;
206 }
207 /* kfd_parse_subtype_mem - parse memory subtypes and attach it to correct
208  * topology device present in the device_list
209  */
210 static int kfd_parse_subtype_mem(struct crat_subtype_memory *mem,
211                                 struct list_head *device_list)
212 {
213         struct kfd_mem_properties *props;
214         struct kfd_topology_device *dev;
215         uint32_t heap_type;
216         uint64_t size_in_bytes;
217         uint32_t flags = 0;
218         uint32_t width;
219
220         pr_debug("Found memory entry in CRAT table with proximity_domain=%d\n",
221                         mem->proximity_domain);
222         list_for_each_entry(dev, device_list, list) {
223                 if (mem->proximity_domain == dev->proximity_domain) {
224                         /* We're on GPU node */
225                         if (dev->node_props.cpu_cores_count == 0) {
226                                 /* APU */
227                                 if (mem->visibility_type == 0)
228                                         heap_type =
229                                                 HSA_MEM_HEAP_TYPE_FB_PRIVATE;
230                                 /* dGPU */
231                                 else
232                                         heap_type = mem->visibility_type;
233                         } else
234                                 heap_type = HSA_MEM_HEAP_TYPE_SYSTEM;
235
236                         if (mem->flags & CRAT_MEM_FLAGS_HOT_PLUGGABLE)
237                                 flags |= HSA_MEM_FLAGS_HOT_PLUGGABLE;
238                         if (mem->flags & CRAT_MEM_FLAGS_NON_VOLATILE)
239                                 flags |= HSA_MEM_FLAGS_NON_VOLATILE;
240
241                         size_in_bytes =
242                                 ((uint64_t)mem->length_high << 32) +
243                                                         mem->length_low;
244                         width = mem->width;
245
246                         /* Multiple banks of the same type are aggregated into
247                          * one. User mode doesn't care about multiple physical
248                          * memory segments. It's managed as a single virtual
249                          * heap for user mode.
250                          */
251                         props = find_subtype_mem(heap_type, flags, width, dev);
252                         if (props) {
253                                 props->size_in_bytes += size_in_bytes;
254                                 break;
255                         }
256
257                         props = kfd_alloc_struct(props);
258                         if (!props)
259                                 return -ENOMEM;
260
261                         props->heap_type = heap_type;
262                         props->flags = flags;
263                         props->size_in_bytes = size_in_bytes;
264                         props->width = width;
265
266                         dev->node_props.mem_banks_count++;
267                         list_add_tail(&props->list, &dev->mem_props);
268
269                         break;
270                 }
271         }
272
273         return 0;
274 }
275
276 /* kfd_parse_subtype_cache - parse cache subtypes and attach it to correct
277  * topology device present in the device_list
278  */
279 static int kfd_parse_subtype_cache(struct crat_subtype_cache *cache,
280                         struct list_head *device_list)
281 {
282         struct kfd_cache_properties *props;
283         struct kfd_topology_device *dev;
284         uint32_t id;
285         uint32_t total_num_of_cu;
286
287         id = cache->processor_id_low;
288
289         pr_debug("Found cache entry in CRAT table with processor_id=%d\n", id);
290         list_for_each_entry(dev, device_list, list) {
291                 total_num_of_cu = (dev->node_props.array_count *
292                                         dev->node_props.cu_per_simd_array);
293
294                 /* Cache infomration in CRAT doesn't have proximity_domain
295                  * information as it is associated with a CPU core or GPU
296                  * Compute Unit. So map the cache using CPU core Id or SIMD
297                  * (GPU) ID.
298                  * TODO: This works because currently we can safely assume that
299                  *  Compute Units are parsed before caches are parsed. In
300                  *  future, remove this dependency
301                  */
302                 if ((id >= dev->node_props.cpu_core_id_base &&
303                         id <= dev->node_props.cpu_core_id_base +
304                                 dev->node_props.cpu_cores_count) ||
305                         (id >= dev->node_props.simd_id_base &&
306                         id < dev->node_props.simd_id_base +
307                                 total_num_of_cu)) {
308                         props = kfd_alloc_struct(props);
309                         if (!props)
310                                 return -ENOMEM;
311
312                         props->processor_id_low = id;
313                         props->cache_level = cache->cache_level;
314                         props->cache_size = cache->cache_size;
315                         props->cacheline_size = cache->cache_line_size;
316                         props->cachelines_per_tag = cache->lines_per_tag;
317                         props->cache_assoc = cache->associativity;
318                         props->cache_latency = cache->cache_latency;
319                         memcpy(props->sibling_map, cache->sibling_map,
320                                         sizeof(props->sibling_map));
321
322                         if (cache->flags & CRAT_CACHE_FLAGS_DATA_CACHE)
323                                 props->cache_type |= HSA_CACHE_TYPE_DATA;
324                         if (cache->flags & CRAT_CACHE_FLAGS_INST_CACHE)
325                                 props->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
326                         if (cache->flags & CRAT_CACHE_FLAGS_CPU_CACHE)
327                                 props->cache_type |= HSA_CACHE_TYPE_CPU;
328                         if (cache->flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
329                                 props->cache_type |= HSA_CACHE_TYPE_HSACU;
330
331                         dev->cache_count++;
332                         dev->node_props.caches_count++;
333                         list_add_tail(&props->list, &dev->cache_props);
334
335                         break;
336                 }
337         }
338
339         return 0;
340 }
341
342 /* kfd_parse_subtype_iolink - parse iolink subtypes and attach it to correct
343  * topology device present in the device_list
344  */
345 static int kfd_parse_subtype_iolink(struct crat_subtype_iolink *iolink,
346                                         struct list_head *device_list)
347 {
348         struct kfd_iolink_properties *props = NULL, *props2;
349         struct kfd_topology_device *dev, *cpu_dev;
350         uint32_t id_from;
351         uint32_t id_to;
352
353         id_from = iolink->proximity_domain_from;
354         id_to = iolink->proximity_domain_to;
355
356         pr_debug("Found IO link entry in CRAT table with id_from=%d\n",
357                         id_from);
358         list_for_each_entry(dev, device_list, list) {
359                 if (id_from == dev->proximity_domain) {
360                         props = kfd_alloc_struct(props);
361                         if (!props)
362                                 return -ENOMEM;
363
364                         props->node_from = id_from;
365                         props->node_to = id_to;
366                         props->ver_maj = iolink->version_major;
367                         props->ver_min = iolink->version_minor;
368                         props->iolink_type = iolink->io_interface_type;
369
370                         if (props->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS)
371                                 props->weight = 20;
372                         else
373                                 props->weight = node_distance(id_from, id_to);
374
375                         props->min_latency = iolink->minimum_latency;
376                         props->max_latency = iolink->maximum_latency;
377                         props->min_bandwidth = iolink->minimum_bandwidth_mbs;
378                         props->max_bandwidth = iolink->maximum_bandwidth_mbs;
379                         props->rec_transfer_size =
380                                         iolink->recommended_transfer_size;
381
382                         dev->io_link_count++;
383                         dev->node_props.io_links_count++;
384                         list_add_tail(&props->list, &dev->io_link_props);
385                         break;
386                 }
387         }
388
389         /* CPU topology is created before GPUs are detected, so CPU->GPU
390          * links are not built at that time. If a PCIe type is discovered, it
391          * means a GPU is detected and we are adding GPU->CPU to the topology.
392          * At this time, also add the corresponded CPU->GPU link.
393          */
394         if (props && props->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS) {
395                 cpu_dev = kfd_topology_device_by_proximity_domain(id_to);
396                 if (!cpu_dev)
397                         return -ENODEV;
398                 /* same everything but the other direction */
399                 props2 = kmemdup(props, sizeof(*props2), GFP_KERNEL);
400                 props2->node_from = id_to;
401                 props2->node_to = id_from;
402                 props2->kobj = NULL;
403                 cpu_dev->io_link_count++;
404                 cpu_dev->node_props.io_links_count++;
405                 list_add_tail(&props2->list, &cpu_dev->io_link_props);
406         }
407
408         return 0;
409 }
410
411 /* kfd_parse_subtype - parse subtypes and attach it to correct topology device
412  * present in the device_list
413  *      @sub_type_hdr - subtype section of crat_image
414  *      @device_list - list of topology devices present in this crat_image
415  */
416 static int kfd_parse_subtype(struct crat_subtype_generic *sub_type_hdr,
417                                 struct list_head *device_list)
418 {
419         struct crat_subtype_computeunit *cu;
420         struct crat_subtype_memory *mem;
421         struct crat_subtype_cache *cache;
422         struct crat_subtype_iolink *iolink;
423         int ret = 0;
424
425         switch (sub_type_hdr->type) {
426         case CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY:
427                 cu = (struct crat_subtype_computeunit *)sub_type_hdr;
428                 ret = kfd_parse_subtype_cu(cu, device_list);
429                 break;
430         case CRAT_SUBTYPE_MEMORY_AFFINITY:
431                 mem = (struct crat_subtype_memory *)sub_type_hdr;
432                 ret = kfd_parse_subtype_mem(mem, device_list);
433                 break;
434         case CRAT_SUBTYPE_CACHE_AFFINITY:
435                 cache = (struct crat_subtype_cache *)sub_type_hdr;
436                 ret = kfd_parse_subtype_cache(cache, device_list);
437                 break;
438         case CRAT_SUBTYPE_TLB_AFFINITY:
439                 /*
440                  * For now, nothing to do here
441                  */
442                 pr_debug("Found TLB entry in CRAT table (not processing)\n");
443                 break;
444         case CRAT_SUBTYPE_CCOMPUTE_AFFINITY:
445                 /*
446                  * For now, nothing to do here
447                  */
448                 pr_debug("Found CCOMPUTE entry in CRAT table (not processing)\n");
449                 break;
450         case CRAT_SUBTYPE_IOLINK_AFFINITY:
451                 iolink = (struct crat_subtype_iolink *)sub_type_hdr;
452                 ret = kfd_parse_subtype_iolink(iolink, device_list);
453                 break;
454         default:
455                 pr_warn("Unknown subtype %d in CRAT\n",
456                                 sub_type_hdr->type);
457         }
458
459         return ret;
460 }
461
462 /* kfd_parse_crat_table - parse CRAT table. For each node present in CRAT
463  * create a kfd_topology_device and add in to device_list. Also parse
464  * CRAT subtypes and attach it to appropriate kfd_topology_device
465  *      @crat_image - input image containing CRAT
466  *      @device_list - [OUT] list of kfd_topology_device generated after
467  *                     parsing crat_image
468  *      @proximity_domain - Proximity domain of the first device in the table
469  *
470  *      Return - 0 if successful else -ve value
471  */
472 int kfd_parse_crat_table(void *crat_image, struct list_head *device_list,
473                          uint32_t proximity_domain)
474 {
475         struct kfd_topology_device *top_dev = NULL;
476         struct crat_subtype_generic *sub_type_hdr;
477         uint16_t node_id;
478         int ret = 0;
479         struct crat_header *crat_table = (struct crat_header *)crat_image;
480         uint16_t num_nodes;
481         uint32_t image_len;
482
483         if (!crat_image)
484                 return -EINVAL;
485
486         if (!list_empty(device_list)) {
487                 pr_warn("Error device list should be empty\n");
488                 return -EINVAL;
489         }
490
491         num_nodes = crat_table->num_domains;
492         image_len = crat_table->length;
493
494         pr_info("Parsing CRAT table with %d nodes\n", num_nodes);
495
496         for (node_id = 0; node_id < num_nodes; node_id++) {
497                 top_dev = kfd_create_topology_device(device_list);
498                 if (!top_dev)
499                         break;
500                 top_dev->proximity_domain = proximity_domain++;
501         }
502
503         if (!top_dev) {
504                 ret = -ENOMEM;
505                 goto err;
506         }
507
508         memcpy(top_dev->oem_id, crat_table->oem_id, CRAT_OEMID_LENGTH);
509         memcpy(top_dev->oem_table_id, crat_table->oem_table_id,
510                         CRAT_OEMTABLEID_LENGTH);
511         top_dev->oem_revision = crat_table->oem_revision;
512
513         sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1);
514         while ((char *)sub_type_hdr + sizeof(struct crat_subtype_generic) <
515                         ((char *)crat_image) + image_len) {
516                 if (sub_type_hdr->flags & CRAT_SUBTYPE_FLAGS_ENABLED) {
517                         ret = kfd_parse_subtype(sub_type_hdr, device_list);
518                         if (ret)
519                                 break;
520                 }
521
522                 sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
523                                 sub_type_hdr->length);
524         }
525
526 err:
527         if (ret)
528                 kfd_release_topology_device_list(device_list);
529
530         return ret;
531 }
532
533 /* Helper function. See kfd_fill_gpu_cache_info for parameter description */
534 static int fill_in_pcache(struct crat_subtype_cache *pcache,
535                                 struct kfd_gpu_cache_info *pcache_info,
536                                 struct kfd_cu_info *cu_info,
537                                 int mem_available,
538                                 int cu_bitmask,
539                                 int cache_type, unsigned int cu_processor_id,
540                                 int cu_block)
541 {
542         unsigned int cu_sibling_map_mask;
543         int first_active_cu;
544
545         /* First check if enough memory is available */
546         if (sizeof(struct crat_subtype_cache) > mem_available)
547                 return -ENOMEM;
548
549         cu_sibling_map_mask = cu_bitmask;
550         cu_sibling_map_mask >>= cu_block;
551         cu_sibling_map_mask &=
552                 ((1 << pcache_info[cache_type].num_cu_shared) - 1);
553         first_active_cu = ffs(cu_sibling_map_mask);
554
555         /* CU could be inactive. In case of shared cache find the first active
556          * CU. and incase of non-shared cache check if the CU is inactive. If
557          * inactive active skip it
558          */
559         if (first_active_cu) {
560                 memset(pcache, 0, sizeof(struct crat_subtype_cache));
561                 pcache->type = CRAT_SUBTYPE_CACHE_AFFINITY;
562                 pcache->length = sizeof(struct crat_subtype_cache);
563                 pcache->flags = pcache_info[cache_type].flags;
564                 pcache->processor_id_low = cu_processor_id
565                                          + (first_active_cu - 1);
566                 pcache->cache_level = pcache_info[cache_type].cache_level;
567                 pcache->cache_size = pcache_info[cache_type].cache_size;
568
569                 /* Sibling map is w.r.t processor_id_low, so shift out
570                  * inactive CU
571                  */
572                 cu_sibling_map_mask =
573                         cu_sibling_map_mask >> (first_active_cu - 1);
574
575                 pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF);
576                 pcache->sibling_map[1] =
577                                 (uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
578                 pcache->sibling_map[2] =
579                                 (uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
580                 pcache->sibling_map[3] =
581                                 (uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
582                 return 0;
583         }
584         return 1;
585 }
586
587 /* kfd_fill_gpu_cache_info - Fill GPU cache info using kfd_gpu_cache_info
588  * tables
589  *
590  *      @kdev - [IN] GPU device
591  *      @gpu_processor_id - [IN] GPU processor ID to which these caches
592  *                          associate
593  *      @available_size - [IN] Amount of memory available in pcache
594  *      @cu_info - [IN] Compute Unit info obtained from KGD
595  *      @pcache - [OUT] memory into which cache data is to be filled in.
596  *      @size_filled - [OUT] amount of data used up in pcache.
597  *      @num_of_entries - [OUT] number of caches added
598  */
599 static int kfd_fill_gpu_cache_info(struct kfd_dev *kdev,
600                         int gpu_processor_id,
601                         int available_size,
602                         struct kfd_cu_info *cu_info,
603                         struct crat_subtype_cache *pcache,
604                         int *size_filled,
605                         int *num_of_entries)
606 {
607         struct kfd_gpu_cache_info *pcache_info;
608         int num_of_cache_types = 0;
609         int i, j, k;
610         int ct = 0;
611         int mem_available = available_size;
612         unsigned int cu_processor_id;
613         int ret;
614
615         switch (kdev->device_info->asic_family) {
616         case CHIP_KAVERI:
617                 pcache_info = kaveri_cache_info;
618                 num_of_cache_types = ARRAY_SIZE(kaveri_cache_info);
619                 break;
620         case CHIP_HAWAII:
621                 pcache_info = hawaii_cache_info;
622                 num_of_cache_types = ARRAY_SIZE(hawaii_cache_info);
623                 break;
624         case CHIP_CARRIZO:
625                 pcache_info = carrizo_cache_info;
626                 num_of_cache_types = ARRAY_SIZE(carrizo_cache_info);
627                 break;
628         case CHIP_TONGA:
629                 pcache_info = tonga_cache_info;
630                 num_of_cache_types = ARRAY_SIZE(tonga_cache_info);
631                 break;
632         case CHIP_FIJI:
633                 pcache_info = fiji_cache_info;
634                 num_of_cache_types = ARRAY_SIZE(fiji_cache_info);
635                 break;
636         case CHIP_POLARIS10:
637                 pcache_info = polaris10_cache_info;
638                 num_of_cache_types = ARRAY_SIZE(polaris10_cache_info);
639                 break;
640         case CHIP_POLARIS11:
641                 pcache_info = polaris11_cache_info;
642                 num_of_cache_types = ARRAY_SIZE(polaris11_cache_info);
643                 break;
644         case CHIP_VEGA10:
645                 pcache_info = vega10_cache_info;
646                 num_of_cache_types = ARRAY_SIZE(vega10_cache_info);
647                 break;
648         case CHIP_RAVEN:
649                 pcache_info = raven_cache_info;
650                 num_of_cache_types = ARRAY_SIZE(raven_cache_info);
651                 break;
652         default:
653                 return -EINVAL;
654         }
655
656         *size_filled = 0;
657         *num_of_entries = 0;
658
659         /* For each type of cache listed in the kfd_gpu_cache_info table,
660          * go through all available Compute Units.
661          * The [i,j,k] loop will
662          *              if kfd_gpu_cache_info.num_cu_shared = 1
663          *                      will parse through all available CU
664          *              If (kfd_gpu_cache_info.num_cu_shared != 1)
665          *                      then it will consider only one CU from
666          *                      the shared unit
667          */
668
669         for (ct = 0; ct < num_of_cache_types; ct++) {
670                 cu_processor_id = gpu_processor_id;
671                 for (i = 0; i < cu_info->num_shader_engines; i++) {
672                         for (j = 0; j < cu_info->num_shader_arrays_per_engine;
673                                 j++) {
674                                 for (k = 0; k < cu_info->num_cu_per_sh;
675                                         k += pcache_info[ct].num_cu_shared) {
676
677                                         ret = fill_in_pcache(pcache,
678                                                 pcache_info,
679                                                 cu_info,
680                                                 mem_available,
681                                                 cu_info->cu_bitmap[i][j],
682                                                 ct,
683                                                 cu_processor_id,
684                                                 k);
685
686                                         if (ret < 0)
687                                                 break;
688
689                                         if (!ret) {
690                                                 pcache++;
691                                                 (*num_of_entries)++;
692                                                 mem_available -=
693                                                         sizeof(*pcache);
694                                                 (*size_filled) +=
695                                                         sizeof(*pcache);
696                                         }
697
698                                         /* Move to next CU block */
699                                         cu_processor_id +=
700                                                 pcache_info[ct].num_cu_shared;
701                                 }
702                         }
703                 }
704         }
705
706         pr_debug("Added [%d] GPU cache entries\n", *num_of_entries);
707
708         return 0;
709 }
710
711 /*
712  * kfd_create_crat_image_acpi - Allocates memory for CRAT image and
713  * copies CRAT from ACPI (if available).
714  * NOTE: Call kfd_destroy_crat_image to free CRAT image memory
715  *
716  *      @crat_image: CRAT read from ACPI. If no CRAT in ACPI then
717  *                   crat_image will be NULL
718  *      @size: [OUT] size of crat_image
719  *
720  *      Return 0 if successful else return error code
721  */
722 int kfd_create_crat_image_acpi(void **crat_image, size_t *size)
723 {
724         struct acpi_table_header *crat_table;
725         acpi_status status;
726         void *pcrat_image;
727
728         if (!crat_image)
729                 return -EINVAL;
730
731         *crat_image = NULL;
732
733         /* Fetch the CRAT table from ACPI */
734         status = acpi_get_table(CRAT_SIGNATURE, 0, &crat_table);
735         if (status == AE_NOT_FOUND) {
736                 pr_info("CRAT table not found\n");
737                 return -ENODATA;
738         } else if (ACPI_FAILURE(status)) {
739                 const char *err = acpi_format_exception(status);
740
741                 pr_err("CRAT table error: %s\n", err);
742                 return -EINVAL;
743         }
744
745         if (ignore_crat) {
746                 pr_info("CRAT table disabled by module option\n");
747                 return -ENODATA;
748         }
749
750         pcrat_image = kmalloc(crat_table->length, GFP_KERNEL);
751         if (!pcrat_image)
752                 return -ENOMEM;
753
754         memcpy(pcrat_image, crat_table, crat_table->length);
755
756         *crat_image = pcrat_image;
757         *size = crat_table->length;
758
759         return 0;
760 }
761
762 /* Memory required to create Virtual CRAT.
763  * Since there is no easy way to predict the amount of memory required, the
764  * following amount are allocated for CPU and GPU Virtual CRAT. This is
765  * expected to cover all known conditions. But to be safe additional check
766  * is put in the code to ensure we don't overwrite.
767  */
768 #define VCRAT_SIZE_FOR_CPU      (2 * PAGE_SIZE)
769 #define VCRAT_SIZE_FOR_GPU      (3 * PAGE_SIZE)
770
771 /* kfd_fill_cu_for_cpu - Fill in Compute info for the given CPU NUMA node
772  *
773  *      @numa_node_id: CPU NUMA node id
774  *      @avail_size: Available size in the memory
775  *      @sub_type_hdr: Memory into which compute info will be filled in
776  *
777  *      Return 0 if successful else return -ve value
778  */
779 static int kfd_fill_cu_for_cpu(int numa_node_id, int *avail_size,
780                                 int proximity_domain,
781                                 struct crat_subtype_computeunit *sub_type_hdr)
782 {
783         const struct cpumask *cpumask;
784
785         *avail_size -= sizeof(struct crat_subtype_computeunit);
786         if (*avail_size < 0)
787                 return -ENOMEM;
788
789         memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit));
790
791         /* Fill in subtype header data */
792         sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY;
793         sub_type_hdr->length = sizeof(struct crat_subtype_computeunit);
794         sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
795
796         cpumask = cpumask_of_node(numa_node_id);
797
798         /* Fill in CU data */
799         sub_type_hdr->flags |= CRAT_CU_FLAGS_CPU_PRESENT;
800         sub_type_hdr->proximity_domain = proximity_domain;
801         sub_type_hdr->processor_id_low = kfd_numa_node_to_apic_id(numa_node_id);
802         if (sub_type_hdr->processor_id_low == -1)
803                 return -EINVAL;
804
805         sub_type_hdr->num_cpu_cores = cpumask_weight(cpumask);
806
807         return 0;
808 }
809
810 /* kfd_fill_mem_info_for_cpu - Fill in Memory info for the given CPU NUMA node
811  *
812  *      @numa_node_id: CPU NUMA node id
813  *      @avail_size: Available size in the memory
814  *      @sub_type_hdr: Memory into which compute info will be filled in
815  *
816  *      Return 0 if successful else return -ve value
817  */
818 static int kfd_fill_mem_info_for_cpu(int numa_node_id, int *avail_size,
819                         int proximity_domain,
820                         struct crat_subtype_memory *sub_type_hdr)
821 {
822         uint64_t mem_in_bytes = 0;
823         pg_data_t *pgdat;
824         int zone_type;
825
826         *avail_size -= sizeof(struct crat_subtype_memory);
827         if (*avail_size < 0)
828                 return -ENOMEM;
829
830         memset(sub_type_hdr, 0, sizeof(struct crat_subtype_memory));
831
832         /* Fill in subtype header data */
833         sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY;
834         sub_type_hdr->length = sizeof(struct crat_subtype_memory);
835         sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
836
837         /* Fill in Memory Subunit data */
838
839         /* Unlike si_meminfo, si_meminfo_node is not exported. So
840          * the following lines are duplicated from si_meminfo_node
841          * function
842          */
843         pgdat = NODE_DATA(numa_node_id);
844         for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
845                 mem_in_bytes += pgdat->node_zones[zone_type].managed_pages;
846         mem_in_bytes <<= PAGE_SHIFT;
847
848         sub_type_hdr->length_low = lower_32_bits(mem_in_bytes);
849         sub_type_hdr->length_high = upper_32_bits(mem_in_bytes);
850         sub_type_hdr->proximity_domain = proximity_domain;
851
852         return 0;
853 }
854
855 static int kfd_fill_iolink_info_for_cpu(int numa_node_id, int *avail_size,
856                                 uint32_t *num_entries,
857                                 struct crat_subtype_iolink *sub_type_hdr)
858 {
859         int nid;
860         struct cpuinfo_x86 *c = &cpu_data(0);
861         uint8_t link_type;
862
863         if (c->x86_vendor == X86_VENDOR_AMD)
864                 link_type = CRAT_IOLINK_TYPE_HYPERTRANSPORT;
865         else
866                 link_type = CRAT_IOLINK_TYPE_QPI_1_1;
867
868         *num_entries = 0;
869
870         /* Create IO links from this node to other CPU nodes */
871         for_each_online_node(nid) {
872                 if (nid == numa_node_id) /* node itself */
873                         continue;
874
875                 *avail_size -= sizeof(struct crat_subtype_iolink);
876                 if (*avail_size < 0)
877                         return -ENOMEM;
878
879                 memset(sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));
880
881                 /* Fill in subtype header data */
882                 sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
883                 sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
884                 sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
885
886                 /* Fill in IO link data */
887                 sub_type_hdr->proximity_domain_from = numa_node_id;
888                 sub_type_hdr->proximity_domain_to = nid;
889                 sub_type_hdr->io_interface_type = link_type;
890
891                 (*num_entries)++;
892                 sub_type_hdr++;
893         }
894
895         return 0;
896 }
897
898 /* kfd_create_vcrat_image_cpu - Create Virtual CRAT for CPU
899  *
900  *      @pcrat_image: Fill in VCRAT for CPU
901  *      @size:  [IN] allocated size of crat_image.
902  *              [OUT] actual size of data filled in crat_image
903  */
904 static int kfd_create_vcrat_image_cpu(void *pcrat_image, size_t *size)
905 {
906         struct crat_header *crat_table = (struct crat_header *)pcrat_image;
907         struct acpi_table_header *acpi_table;
908         acpi_status status;
909         struct crat_subtype_generic *sub_type_hdr;
910         int avail_size = *size;
911         int numa_node_id;
912         uint32_t entries = 0;
913         int ret = 0;
914
915         if (!pcrat_image || avail_size < VCRAT_SIZE_FOR_CPU)
916                 return -EINVAL;
917
918         /* Fill in CRAT Header.
919          * Modify length and total_entries as subunits are added.
920          */
921         avail_size -= sizeof(struct crat_header);
922         if (avail_size < 0)
923                 return -ENOMEM;
924
925         memset(crat_table, 0, sizeof(struct crat_header));
926         memcpy(&crat_table->signature, CRAT_SIGNATURE,
927                         sizeof(crat_table->signature));
928         crat_table->length = sizeof(struct crat_header);
929
930         status = acpi_get_table("DSDT", 0, &acpi_table);
931         if (status != AE_OK)
932                 pr_warn("DSDT table not found for OEM information\n");
933         else {
934                 crat_table->oem_revision = acpi_table->revision;
935                 memcpy(crat_table->oem_id, acpi_table->oem_id,
936                                 CRAT_OEMID_LENGTH);
937                 memcpy(crat_table->oem_table_id, acpi_table->oem_table_id,
938                                 CRAT_OEMTABLEID_LENGTH);
939         }
940         crat_table->total_entries = 0;
941         crat_table->num_domains = 0;
942
943         sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1);
944
945         for_each_online_node(numa_node_id) {
946                 if (kfd_numa_node_to_apic_id(numa_node_id) == -1)
947                         continue;
948
949                 /* Fill in Subtype: Compute Unit */
950                 ret = kfd_fill_cu_for_cpu(numa_node_id, &avail_size,
951                         crat_table->num_domains,
952                         (struct crat_subtype_computeunit *)sub_type_hdr);
953                 if (ret < 0)
954                         return ret;
955                 crat_table->length += sub_type_hdr->length;
956                 crat_table->total_entries++;
957
958                 sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
959                         sub_type_hdr->length);
960
961                 /* Fill in Subtype: Memory */
962                 ret = kfd_fill_mem_info_for_cpu(numa_node_id, &avail_size,
963                         crat_table->num_domains,
964                         (struct crat_subtype_memory *)sub_type_hdr);
965                 if (ret < 0)
966                         return ret;
967                 crat_table->length += sub_type_hdr->length;
968                 crat_table->total_entries++;
969
970                 sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
971                         sub_type_hdr->length);
972
973                 /* Fill in Subtype: IO Link */
974                 ret = kfd_fill_iolink_info_for_cpu(numa_node_id, &avail_size,
975                                 &entries,
976                                 (struct crat_subtype_iolink *)sub_type_hdr);
977                 if (ret < 0)
978                         return ret;
979                 crat_table->length += (sub_type_hdr->length * entries);
980                 crat_table->total_entries += entries;
981
982                 sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
983                                 sub_type_hdr->length * entries);
984
985                 crat_table->num_domains++;
986         }
987
988         /* TODO: Add cache Subtype for CPU.
989          * Currently, CPU cache information is available in function
990          * detect_cache_attributes(cpu) defined in the file
991          * ./arch/x86/kernel/cpu/intel_cacheinfo.c. This function is not
992          * exported and to get the same information the code needs to be
993          * duplicated.
994          */
995
996         *size = crat_table->length;
997         pr_info("Virtual CRAT table created for CPU\n");
998
999         return 0;
1000 }
1001
1002 static int kfd_fill_gpu_memory_affinity(int *avail_size,
1003                 struct kfd_dev *kdev, uint8_t type, uint64_t size,
1004                 struct crat_subtype_memory *sub_type_hdr,
1005                 uint32_t proximity_domain,
1006                 const struct kfd_local_mem_info *local_mem_info)
1007 {
1008         *avail_size -= sizeof(struct crat_subtype_memory);
1009         if (*avail_size < 0)
1010                 return -ENOMEM;
1011
1012         memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_memory));
1013         sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY;
1014         sub_type_hdr->length = sizeof(struct crat_subtype_memory);
1015         sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED;
1016
1017         sub_type_hdr->proximity_domain = proximity_domain;
1018
1019         pr_debug("Fill gpu memory affinity - type 0x%x size 0x%llx\n",
1020                         type, size);
1021
1022         sub_type_hdr->length_low = lower_32_bits(size);
1023         sub_type_hdr->length_high = upper_32_bits(size);
1024
1025         sub_type_hdr->width = local_mem_info->vram_width;
1026         sub_type_hdr->visibility_type = type;
1027
1028         return 0;
1029 }
1030
1031 /* kfd_fill_gpu_direct_io_link - Fill in direct io link from GPU
1032  * to its NUMA node
1033  *      @avail_size: Available size in the memory
1034  *      @kdev - [IN] GPU device
1035  *      @sub_type_hdr: Memory into which io link info will be filled in
1036  *      @proximity_domain - proximity domain of the GPU node
1037  *
1038  *      Return 0 if successful else return -ve value
1039  */
1040 static int kfd_fill_gpu_direct_io_link(int *avail_size,
1041                         struct kfd_dev *kdev,
1042                         struct crat_subtype_iolink *sub_type_hdr,
1043                         uint32_t proximity_domain)
1044 {
1045         *avail_size -= sizeof(struct crat_subtype_iolink);
1046         if (*avail_size < 0)
1047                 return -ENOMEM;
1048
1049         memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));
1050
1051         /* Fill in subtype header data */
1052         sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
1053         sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
1054         sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED;
1055
1056         /* Fill in IOLINK subtype.
1057          * TODO: Fill-in other fields of iolink subtype
1058          */
1059         sub_type_hdr->io_interface_type = CRAT_IOLINK_TYPE_PCIEXPRESS;
1060         sub_type_hdr->proximity_domain_from = proximity_domain;
1061 #ifdef CONFIG_NUMA
1062         if (kdev->pdev->dev.numa_node == NUMA_NO_NODE)
1063                 sub_type_hdr->proximity_domain_to = 0;
1064         else
1065                 sub_type_hdr->proximity_domain_to = kdev->pdev->dev.numa_node;
1066 #else
1067         sub_type_hdr->proximity_domain_to = 0;
1068 #endif
1069         return 0;
1070 }
1071
1072 /* kfd_create_vcrat_image_gpu - Create Virtual CRAT for CPU
1073  *
1074  *      @pcrat_image: Fill in VCRAT for GPU
1075  *      @size:  [IN] allocated size of crat_image.
1076  *              [OUT] actual size of data filled in crat_image
1077  */
1078 static int kfd_create_vcrat_image_gpu(void *pcrat_image,
1079                                       size_t *size, struct kfd_dev *kdev,
1080                                       uint32_t proximity_domain)
1081 {
1082         struct crat_header *crat_table = (struct crat_header *)pcrat_image;
1083         struct crat_subtype_generic *sub_type_hdr;
1084         struct crat_subtype_computeunit *cu;
1085         struct kfd_cu_info cu_info;
1086         int avail_size = *size;
1087         uint32_t total_num_of_cu;
1088         int num_of_cache_entries = 0;
1089         int cache_mem_filled = 0;
1090         int ret = 0;
1091         struct kfd_local_mem_info local_mem_info;
1092
1093         if (!pcrat_image || avail_size < VCRAT_SIZE_FOR_GPU)
1094                 return -EINVAL;
1095
1096         /* Fill the CRAT Header.
1097          * Modify length and total_entries as subunits are added.
1098          */
1099         avail_size -= sizeof(struct crat_header);
1100         if (avail_size < 0)
1101                 return -ENOMEM;
1102
1103         memset(crat_table, 0, sizeof(struct crat_header));
1104
1105         memcpy(&crat_table->signature, CRAT_SIGNATURE,
1106                         sizeof(crat_table->signature));
1107         /* Change length as we add more subtypes*/
1108         crat_table->length = sizeof(struct crat_header);
1109         crat_table->num_domains = 1;
1110         crat_table->total_entries = 0;
1111
1112         /* Fill in Subtype: Compute Unit
1113          * First fill in the sub type header and then sub type data
1114          */
1115         avail_size -= sizeof(struct crat_subtype_computeunit);
1116         if (avail_size < 0)
1117                 return -ENOMEM;
1118
1119         sub_type_hdr = (struct crat_subtype_generic *)(crat_table + 1);
1120         memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit));
1121
1122         sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY;
1123         sub_type_hdr->length = sizeof(struct crat_subtype_computeunit);
1124         sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
1125
1126         /* Fill CU subtype data */
1127         cu = (struct crat_subtype_computeunit *)sub_type_hdr;
1128         cu->flags |= CRAT_CU_FLAGS_GPU_PRESENT;
1129         cu->proximity_domain = proximity_domain;
1130
1131         kdev->kfd2kgd->get_cu_info(kdev->kgd, &cu_info);
1132         cu->num_simd_per_cu = cu_info.simd_per_cu;
1133         cu->num_simd_cores = cu_info.simd_per_cu * cu_info.cu_active_number;
1134         cu->max_waves_simd = cu_info.max_waves_per_simd;
1135
1136         cu->wave_front_size = cu_info.wave_front_size;
1137         cu->array_count = cu_info.num_shader_arrays_per_engine *
1138                 cu_info.num_shader_engines;
1139         total_num_of_cu = (cu->array_count * cu_info.num_cu_per_sh);
1140         cu->processor_id_low = get_and_inc_gpu_processor_id(total_num_of_cu);
1141         cu->num_cu_per_array = cu_info.num_cu_per_sh;
1142         cu->max_slots_scatch_cu = cu_info.max_scratch_slots_per_cu;
1143         cu->num_banks = cu_info.num_shader_engines;
1144         cu->lds_size_in_kb = cu_info.lds_size;
1145
1146         cu->hsa_capability = 0;
1147
1148         /* Check if this node supports IOMMU. During parsing this flag will
1149          * translate to HSA_CAP_ATS_PRESENT
1150          */
1151         if (!kfd_iommu_check_device(kdev))
1152                 cu->hsa_capability |= CRAT_CU_FLAGS_IOMMU_PRESENT;
1153
1154         crat_table->length += sub_type_hdr->length;
1155         crat_table->total_entries++;
1156
1157         /* Fill in Subtype: Memory. Only on systems with large BAR (no
1158          * private FB), report memory as public. On other systems
1159          * report the total FB size (public+private) as a single
1160          * private heap.
1161          */
1162         kdev->kfd2kgd->get_local_mem_info(kdev->kgd, &local_mem_info);
1163         sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1164                         sub_type_hdr->length);
1165
1166         if (debug_largebar)
1167                 local_mem_info.local_mem_size_private = 0;
1168
1169         if (local_mem_info.local_mem_size_private == 0)
1170                 ret = kfd_fill_gpu_memory_affinity(&avail_size,
1171                                 kdev, HSA_MEM_HEAP_TYPE_FB_PUBLIC,
1172                                 local_mem_info.local_mem_size_public,
1173                                 (struct crat_subtype_memory *)sub_type_hdr,
1174                                 proximity_domain,
1175                                 &local_mem_info);
1176         else
1177                 ret = kfd_fill_gpu_memory_affinity(&avail_size,
1178                                 kdev, HSA_MEM_HEAP_TYPE_FB_PRIVATE,
1179                                 local_mem_info.local_mem_size_public +
1180                                 local_mem_info.local_mem_size_private,
1181                                 (struct crat_subtype_memory *)sub_type_hdr,
1182                                 proximity_domain,
1183                                 &local_mem_info);
1184         if (ret < 0)
1185                 return ret;
1186
1187         crat_table->length += sizeof(struct crat_subtype_memory);
1188         crat_table->total_entries++;
1189
1190         /* TODO: Fill in cache information. This information is NOT readily
1191          * available in KGD
1192          */
1193         sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1194                 sub_type_hdr->length);
1195         ret = kfd_fill_gpu_cache_info(kdev, cu->processor_id_low,
1196                                 avail_size,
1197                                 &cu_info,
1198                                 (struct crat_subtype_cache *)sub_type_hdr,
1199                                 &cache_mem_filled,
1200                                 &num_of_cache_entries);
1201
1202         if (ret < 0)
1203                 return ret;
1204
1205         crat_table->length += cache_mem_filled;
1206         crat_table->total_entries += num_of_cache_entries;
1207         avail_size -= cache_mem_filled;
1208
1209         /* Fill in Subtype: IO_LINKS
1210          *  Only direct links are added here which is Link from GPU to
1211          *  to its NUMA node. Indirect links are added by userspace.
1212          */
1213         sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1214                 cache_mem_filled);
1215         ret = kfd_fill_gpu_direct_io_link(&avail_size, kdev,
1216                 (struct crat_subtype_iolink *)sub_type_hdr, proximity_domain);
1217
1218         if (ret < 0)
1219                 return ret;
1220
1221         crat_table->length += sub_type_hdr->length;
1222         crat_table->total_entries++;
1223
1224         *size = crat_table->length;
1225         pr_info("Virtual CRAT table created for GPU\n");
1226
1227         return ret;
1228 }
1229
1230 /* kfd_create_crat_image_virtual - Allocates memory for CRAT image and
1231  *              creates a Virtual CRAT (VCRAT) image
1232  *
1233  * NOTE: Call kfd_destroy_crat_image to free CRAT image memory
1234  *
1235  *      @crat_image: VCRAT image created because ACPI does not have a
1236  *                   CRAT for this device
1237  *      @size: [OUT] size of virtual crat_image
1238  *      @flags: COMPUTE_UNIT_CPU - Create VCRAT for CPU device
1239  *              COMPUTE_UNIT_GPU - Create VCRAT for GPU
1240  *              (COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU) - Create VCRAT for APU
1241  *                      -- this option is not currently implemented.
1242  *                      The assumption is that all AMD APUs will have CRAT
1243  *      @kdev: Valid kfd_device required if flags contain COMPUTE_UNIT_GPU
1244  *
1245  *      Return 0 if successful else return -ve value
1246  */
1247 int kfd_create_crat_image_virtual(void **crat_image, size_t *size,
1248                                   int flags, struct kfd_dev *kdev,
1249                                   uint32_t proximity_domain)
1250 {
1251         void *pcrat_image = NULL;
1252         int ret = 0;
1253
1254         if (!crat_image)
1255                 return -EINVAL;
1256
1257         *crat_image = NULL;
1258
1259         /* Allocate one VCRAT_SIZE_FOR_CPU for CPU virtual CRAT image and
1260          * VCRAT_SIZE_FOR_GPU for GPU virtual CRAT image. This should cover
1261          * all the current conditions. A check is put not to overwrite beyond
1262          * allocated size
1263          */
1264         switch (flags) {
1265         case COMPUTE_UNIT_CPU:
1266                 pcrat_image = kmalloc(VCRAT_SIZE_FOR_CPU, GFP_KERNEL);
1267                 if (!pcrat_image)
1268                         return -ENOMEM;
1269                 *size = VCRAT_SIZE_FOR_CPU;
1270                 ret = kfd_create_vcrat_image_cpu(pcrat_image, size);
1271                 break;
1272         case COMPUTE_UNIT_GPU:
1273                 if (!kdev)
1274                         return -EINVAL;
1275                 pcrat_image = kmalloc(VCRAT_SIZE_FOR_GPU, GFP_KERNEL);
1276                 if (!pcrat_image)
1277                         return -ENOMEM;
1278                 *size = VCRAT_SIZE_FOR_GPU;
1279                 ret = kfd_create_vcrat_image_gpu(pcrat_image, size, kdev,
1280                                                  proximity_domain);
1281                 break;
1282         case (COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU):
1283                 /* TODO: */
1284                 ret = -EINVAL;
1285                 pr_err("VCRAT not implemented for APU\n");
1286                 break;
1287         default:
1288                 ret = -EINVAL;
1289         }
1290
1291         if (!ret)
1292                 *crat_image = pcrat_image;
1293         else
1294                 kfree(pcrat_image);
1295
1296         return ret;
1297 }
1298
1299
1300 /* kfd_destroy_crat_image
1301  *
1302  *      @crat_image: [IN] - crat_image from kfd_create_crat_image_xxx(..)
1303  *
1304  */
1305 void kfd_destroy_crat_image(void *crat_image)
1306 {
1307         kfree(crat_image);
1308 }