GNU Linux-libre 4.14.332-gnu1
[releases.git] / drivers / firmware / efi / libstub / arm32-stub.c
1 /*
2  * Copyright (C) 2013 Linaro Ltd;  <roy.franz@linaro.org>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  */
9 #include <linux/efi.h>
10 #include <asm/efi.h>
11
12 #include "efistub.h"
13
14 efi_status_t check_platform_features(efi_system_table_t *sys_table_arg)
15 {
16         int block;
17
18         /* non-LPAE kernels can run anywhere */
19         if (!IS_ENABLED(CONFIG_ARM_LPAE))
20                 return EFI_SUCCESS;
21
22         /* LPAE kernels need compatible hardware */
23         block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
24         if (block < 5) {
25                 pr_efi_err(sys_table_arg, "This LPAE kernel is not supported by your CPU\n");
26                 return EFI_UNSUPPORTED;
27         }
28         return EFI_SUCCESS;
29 }
30
31 static efi_guid_t screen_info_guid = LINUX_EFI_ARM_SCREEN_INFO_TABLE_GUID;
32
33 struct screen_info *alloc_screen_info(efi_system_table_t *sys_table_arg)
34 {
35         struct screen_info *si;
36         efi_status_t status;
37
38         /*
39          * Unlike on arm64, where we can directly fill out the screen_info
40          * structure from the stub, we need to allocate a buffer to hold
41          * its contents while we hand over to the kernel proper from the
42          * decompressor.
43          */
44         status = efi_call_early(allocate_pool, EFI_RUNTIME_SERVICES_DATA,
45                                 sizeof(*si), (void **)&si);
46
47         if (status != EFI_SUCCESS)
48                 return NULL;
49
50         status = efi_call_early(install_configuration_table,
51                                 &screen_info_guid, si);
52         if (status == EFI_SUCCESS)
53                 return si;
54
55         efi_call_early(free_pool, si);
56         return NULL;
57 }
58
59 void free_screen_info(efi_system_table_t *sys_table_arg, struct screen_info *si)
60 {
61         if (!si)
62                 return;
63
64         efi_call_early(install_configuration_table, &screen_info_guid, NULL);
65         efi_call_early(free_pool, si);
66 }
67
68 static efi_status_t reserve_kernel_base(efi_system_table_t *sys_table_arg,
69                                         unsigned long dram_base,
70                                         unsigned long *reserve_addr,
71                                         unsigned long *reserve_size)
72 {
73         efi_physical_addr_t alloc_addr;
74         efi_memory_desc_t *memory_map;
75         unsigned long nr_pages, map_size, desc_size, buff_size;
76         efi_status_t status;
77         unsigned long l;
78
79         struct efi_boot_memmap map = {
80                 .map            = &memory_map,
81                 .map_size       = &map_size,
82                 .desc_size      = &desc_size,
83                 .desc_ver       = NULL,
84                 .key_ptr        = NULL,
85                 .buff_size      = &buff_size,
86         };
87
88         /*
89          * Reserve memory for the uncompressed kernel image. This is
90          * all that prevents any future allocations from conflicting
91          * with the kernel. Since we can't tell from the compressed
92          * image how much DRAM the kernel actually uses (due to BSS
93          * size uncertainty) we allocate the maximum possible size.
94          * Do this very early, as prints can cause memory allocations
95          * that may conflict with this.
96          */
97         alloc_addr = dram_base + MAX_UNCOMP_KERNEL_SIZE;
98         nr_pages = MAX_UNCOMP_KERNEL_SIZE / EFI_PAGE_SIZE;
99         status = efi_call_early(allocate_pages, EFI_ALLOCATE_MAX_ADDRESS,
100                                 EFI_BOOT_SERVICES_DATA, nr_pages, &alloc_addr);
101         if (status == EFI_SUCCESS) {
102                 if (alloc_addr == dram_base) {
103                         *reserve_addr = alloc_addr;
104                         *reserve_size = MAX_UNCOMP_KERNEL_SIZE;
105                         return EFI_SUCCESS;
106                 }
107                 /*
108                  * If we end up here, the allocation succeeded but starts below
109                  * dram_base. This can only occur if the real base of DRAM is
110                  * not a multiple of 128 MB, in which case dram_base will have
111                  * been rounded up. Since this implies that a part of the region
112                  * was already occupied, we need to fall through to the code
113                  * below to ensure that the existing allocations don't conflict.
114                  * For this reason, we use EFI_BOOT_SERVICES_DATA above and not
115                  * EFI_LOADER_DATA, which we wouldn't able to distinguish from
116                  * allocations that we want to disallow.
117                  */
118         }
119
120         /*
121          * If the allocation above failed, we may still be able to proceed:
122          * if the only allocations in the region are of types that will be
123          * released to the OS after ExitBootServices(), the decompressor can
124          * safely overwrite them.
125          */
126         status = efi_get_memory_map(sys_table_arg, &map);
127         if (status != EFI_SUCCESS) {
128                 pr_efi_err(sys_table_arg,
129                            "reserve_kernel_base(): Unable to retrieve memory map.\n");
130                 return status;
131         }
132
133         for (l = 0; l < map_size; l += desc_size) {
134                 efi_memory_desc_t *desc;
135                 u64 start, end;
136
137                 desc = (void *)memory_map + l;
138                 start = desc->phys_addr;
139                 end = start + desc->num_pages * EFI_PAGE_SIZE;
140
141                 /* Skip if entry does not intersect with region */
142                 if (start >= dram_base + MAX_UNCOMP_KERNEL_SIZE ||
143                     end <= dram_base)
144                         continue;
145
146                 switch (desc->type) {
147                 case EFI_BOOT_SERVICES_CODE:
148                 case EFI_BOOT_SERVICES_DATA:
149                         /* Ignore types that are released to the OS anyway */
150                         continue;
151
152                 case EFI_CONVENTIONAL_MEMORY:
153                         /*
154                          * Reserve the intersection between this entry and the
155                          * region.
156                          */
157                         start = max(start, (u64)dram_base);
158                         end = min(end, (u64)dram_base + MAX_UNCOMP_KERNEL_SIZE);
159
160                         status = efi_call_early(allocate_pages,
161                                                 EFI_ALLOCATE_ADDRESS,
162                                                 EFI_LOADER_DATA,
163                                                 (end - start) / EFI_PAGE_SIZE,
164                                                 &start);
165                         if (status != EFI_SUCCESS) {
166                                 pr_efi_err(sys_table_arg,
167                                         "reserve_kernel_base(): alloc failed.\n");
168                                 goto out;
169                         }
170                         break;
171
172                 case EFI_LOADER_CODE:
173                 case EFI_LOADER_DATA:
174                         /*
175                          * These regions may be released and reallocated for
176                          * another purpose (including EFI_RUNTIME_SERVICE_DATA)
177                          * at any time during the execution of the OS loader,
178                          * so we cannot consider them as safe.
179                          */
180                 default:
181                         /*
182                          * Treat any other allocation in the region as unsafe */
183                         status = EFI_OUT_OF_RESOURCES;
184                         goto out;
185                 }
186         }
187
188         status = EFI_SUCCESS;
189 out:
190         efi_call_early(free_pool, memory_map);
191         return status;
192 }
193
194 efi_status_t handle_kernel_image(efi_system_table_t *sys_table,
195                                  unsigned long *image_addr,
196                                  unsigned long *image_size,
197                                  unsigned long *reserve_addr,
198                                  unsigned long *reserve_size,
199                                  unsigned long dram_base,
200                                  efi_loaded_image_t *image)
201 {
202         efi_status_t status;
203
204         /*
205          * Verify that the DRAM base address is compatible with the ARM
206          * boot protocol, which determines the base of DRAM by masking
207          * off the low 27 bits of the address at which the zImage is
208          * loaded. These assumptions are made by the decompressor,
209          * before any memory map is available.
210          */
211         dram_base = round_up(dram_base, SZ_128M);
212
213         status = reserve_kernel_base(sys_table, dram_base, reserve_addr,
214                                      reserve_size);
215         if (status != EFI_SUCCESS) {
216                 pr_efi_err(sys_table, "Unable to allocate memory for uncompressed kernel.\n");
217                 return status;
218         }
219
220         /*
221          * Relocate the zImage, so that it appears in the lowest 128 MB
222          * memory window.
223          */
224         *image_size = image->image_size;
225         status = efi_relocate_kernel(sys_table, image_addr, *image_size,
226                                      *image_size,
227                                      dram_base + MAX_UNCOMP_KERNEL_SIZE, 0);
228         if (status != EFI_SUCCESS) {
229                 pr_efi_err(sys_table, "Failed to relocate kernel.\n");
230                 efi_free(sys_table, *reserve_size, *reserve_addr);
231                 *reserve_size = 0;
232                 return status;
233         }
234
235         /*
236          * Check to see if we were able to allocate memory low enough
237          * in memory. The kernel determines the base of DRAM from the
238          * address at which the zImage is loaded.
239          */
240         if (*image_addr + *image_size > dram_base + ZIMAGE_OFFSET_LIMIT) {
241                 pr_efi_err(sys_table, "Failed to relocate kernel, no low memory available.\n");
242                 efi_free(sys_table, *reserve_size, *reserve_addr);
243                 *reserve_size = 0;
244                 efi_free(sys_table, *image_size, *image_addr);
245                 *image_size = 0;
246                 return EFI_LOAD_ERROR;
247         }
248         return EFI_SUCCESS;
249 }