GNU Linux-libre 5.19-rc6-gnu
[releases.git] / drivers / firmware / arm_scmi / sensors.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * System Control and Management Interface (SCMI) Sensor Protocol
4  *
5  * Copyright (C) 2018-2022 ARM Ltd.
6  */
7
8 #define pr_fmt(fmt) "SCMI Notifications SENSOR - " fmt
9
10 #include <linux/bitfield.h>
11 #include <linux/module.h>
12 #include <linux/scmi_protocol.h>
13
14 #include "protocols.h"
15 #include "notify.h"
16
17 #define SCMI_MAX_NUM_SENSOR_AXIS        63
18 #define SCMIv2_SENSOR_PROTOCOL          0x10000
19
20 enum scmi_sensor_protocol_cmd {
21         SENSOR_DESCRIPTION_GET = 0x3,
22         SENSOR_TRIP_POINT_NOTIFY = 0x4,
23         SENSOR_TRIP_POINT_CONFIG = 0x5,
24         SENSOR_READING_GET = 0x6,
25         SENSOR_AXIS_DESCRIPTION_GET = 0x7,
26         SENSOR_LIST_UPDATE_INTERVALS = 0x8,
27         SENSOR_CONFIG_GET = 0x9,
28         SENSOR_CONFIG_SET = 0xA,
29         SENSOR_CONTINUOUS_UPDATE_NOTIFY = 0xB,
30         SENSOR_NAME_GET = 0xC,
31         SENSOR_AXIS_NAME_GET = 0xD,
32 };
33
34 struct scmi_msg_resp_sensor_attributes {
35         __le16 num_sensors;
36         u8 max_requests;
37         u8 reserved;
38         __le32 reg_addr_low;
39         __le32 reg_addr_high;
40         __le32 reg_size;
41 };
42
43 /* v3 attributes_low macros */
44 #define SUPPORTS_UPDATE_NOTIFY(x)       FIELD_GET(BIT(30), (x))
45 #define SENSOR_TSTAMP_EXP(x)            FIELD_GET(GENMASK(14, 10), (x))
46 #define SUPPORTS_TIMESTAMP(x)           FIELD_GET(BIT(9), (x))
47 #define SUPPORTS_EXTEND_ATTRS(x)        FIELD_GET(BIT(8), (x))
48
49 /* v2 attributes_high macros */
50 #define SENSOR_UPDATE_BASE(x)           FIELD_GET(GENMASK(31, 27), (x))
51 #define SENSOR_UPDATE_SCALE(x)          FIELD_GET(GENMASK(26, 22), (x))
52
53 /* v3 attributes_high macros */
54 #define SENSOR_AXIS_NUMBER(x)           FIELD_GET(GENMASK(21, 16), (x))
55 #define SUPPORTS_AXIS(x)                FIELD_GET(BIT(8), (x))
56
57 /* v3 resolution macros */
58 #define SENSOR_RES(x)                   FIELD_GET(GENMASK(26, 0), (x))
59 #define SENSOR_RES_EXP(x)               FIELD_GET(GENMASK(31, 27), (x))
60
61 struct scmi_msg_resp_attrs {
62         __le32 min_range_low;
63         __le32 min_range_high;
64         __le32 max_range_low;
65         __le32 max_range_high;
66 };
67
68 struct scmi_msg_sensor_description {
69         __le32 desc_index;
70 };
71
72 struct scmi_msg_resp_sensor_description {
73         __le16 num_returned;
74         __le16 num_remaining;
75         struct scmi_sensor_descriptor {
76                 __le32 id;
77                 __le32 attributes_low;
78 /* Common attributes_low macros */
79 #define SUPPORTS_ASYNC_READ(x)          FIELD_GET(BIT(31), (x))
80 #define SUPPORTS_EXTENDED_NAMES(x)      FIELD_GET(BIT(29), (x))
81 #define NUM_TRIP_POINTS(x)              FIELD_GET(GENMASK(7, 0), (x))
82                 __le32 attributes_high;
83 /* Common attributes_high macros */
84 #define SENSOR_SCALE(x)                 FIELD_GET(GENMASK(15, 11), (x))
85 #define SENSOR_SCALE_SIGN               BIT(4)
86 #define SENSOR_SCALE_EXTEND             GENMASK(31, 5)
87 #define SENSOR_TYPE(x)                  FIELD_GET(GENMASK(7, 0), (x))
88                 u8 name[SCMI_SHORT_NAME_MAX_SIZE];
89                 /* only for version > 2.0 */
90                 __le32 power;
91                 __le32 resolution;
92                 struct scmi_msg_resp_attrs scalar_attrs;
93         } desc[];
94 };
95
96 /* Base scmi_sensor_descriptor size excluding extended attrs after name */
97 #define SCMI_MSG_RESP_SENS_DESCR_BASE_SZ        28
98
99 /* Sign extend to a full s32 */
100 #define S32_EXT(v)                                                      \
101         ({                                                              \
102                 int __v = (v);                                          \
103                                                                         \
104                 if (__v & SENSOR_SCALE_SIGN)                            \
105                         __v |= SENSOR_SCALE_EXTEND;                     \
106                 __v;                                                    \
107         })
108
109 struct scmi_msg_sensor_axis_description_get {
110         __le32 id;
111         __le32 axis_desc_index;
112 };
113
114 struct scmi_msg_resp_sensor_axis_description {
115         __le32 num_axis_flags;
116 #define NUM_AXIS_RETURNED(x)            FIELD_GET(GENMASK(5, 0), (x))
117 #define NUM_AXIS_REMAINING(x)           FIELD_GET(GENMASK(31, 26), (x))
118         struct scmi_axis_descriptor {
119                 __le32 id;
120                 __le32 attributes_low;
121 #define SUPPORTS_EXTENDED_AXIS_NAMES(x) FIELD_GET(BIT(9), (x))
122                 __le32 attributes_high;
123                 u8 name[SCMI_SHORT_NAME_MAX_SIZE];
124                 __le32 resolution;
125                 struct scmi_msg_resp_attrs attrs;
126         } desc[];
127 };
128
129 struct scmi_msg_resp_sensor_axis_names_description {
130         __le32 num_axis_flags;
131         struct scmi_sensor_axis_name_descriptor {
132                 __le32 axis_id;
133                 u8 name[SCMI_MAX_STR_SIZE];
134         } desc[];
135 };
136
137 /* Base scmi_axis_descriptor size excluding extended attrs after name */
138 #define SCMI_MSG_RESP_AXIS_DESCR_BASE_SZ        28
139
140 struct scmi_msg_sensor_list_update_intervals {
141         __le32 id;
142         __le32 index;
143 };
144
145 struct scmi_msg_resp_sensor_list_update_intervals {
146         __le32 num_intervals_flags;
147 #define NUM_INTERVALS_RETURNED(x)       FIELD_GET(GENMASK(11, 0), (x))
148 #define SEGMENTED_INTVL_FORMAT(x)       FIELD_GET(BIT(12), (x))
149 #define NUM_INTERVALS_REMAINING(x)      FIELD_GET(GENMASK(31, 16), (x))
150         __le32 intervals[];
151 };
152
153 struct scmi_msg_sensor_request_notify {
154         __le32 id;
155         __le32 event_control;
156 #define SENSOR_NOTIFY_ALL       BIT(0)
157 };
158
159 struct scmi_msg_set_sensor_trip_point {
160         __le32 id;
161         __le32 event_control;
162 #define SENSOR_TP_EVENT_MASK    (0x3)
163 #define SENSOR_TP_DISABLED      0x0
164 #define SENSOR_TP_POSITIVE      0x1
165 #define SENSOR_TP_NEGATIVE      0x2
166 #define SENSOR_TP_BOTH          0x3
167 #define SENSOR_TP_ID(x)         (((x) & 0xff) << 4)
168         __le32 value_low;
169         __le32 value_high;
170 };
171
172 struct scmi_msg_sensor_config_set {
173         __le32 id;
174         __le32 sensor_config;
175 };
176
177 struct scmi_msg_sensor_reading_get {
178         __le32 id;
179         __le32 flags;
180 #define SENSOR_READ_ASYNC       BIT(0)
181 };
182
183 struct scmi_resp_sensor_reading_complete {
184         __le32 id;
185         __le32 readings_low;
186         __le32 readings_high;
187 };
188
189 struct scmi_sensor_reading_resp {
190         __le32 sensor_value_low;
191         __le32 sensor_value_high;
192         __le32 timestamp_low;
193         __le32 timestamp_high;
194 };
195
196 struct scmi_resp_sensor_reading_complete_v3 {
197         __le32 id;
198         struct scmi_sensor_reading_resp readings[];
199 };
200
201 struct scmi_sensor_trip_notify_payld {
202         __le32 agent_id;
203         __le32 sensor_id;
204         __le32 trip_point_desc;
205 };
206
207 struct scmi_sensor_update_notify_payld {
208         __le32 agent_id;
209         __le32 sensor_id;
210         struct scmi_sensor_reading_resp readings[];
211 };
212
213 struct sensors_info {
214         u32 version;
215         int num_sensors;
216         int max_requests;
217         u64 reg_addr;
218         u32 reg_size;
219         struct scmi_sensor_info *sensors;
220 };
221
222 static int scmi_sensor_attributes_get(const struct scmi_protocol_handle *ph,
223                                       struct sensors_info *si)
224 {
225         int ret;
226         struct scmi_xfer *t;
227         struct scmi_msg_resp_sensor_attributes *attr;
228
229         ret = ph->xops->xfer_get_init(ph, PROTOCOL_ATTRIBUTES,
230                                       0, sizeof(*attr), &t);
231         if (ret)
232                 return ret;
233
234         attr = t->rx.buf;
235
236         ret = ph->xops->do_xfer(ph, t);
237         if (!ret) {
238                 si->num_sensors = le16_to_cpu(attr->num_sensors);
239                 si->max_requests = attr->max_requests;
240                 si->reg_addr = le32_to_cpu(attr->reg_addr_low) |
241                                 (u64)le32_to_cpu(attr->reg_addr_high) << 32;
242                 si->reg_size = le32_to_cpu(attr->reg_size);
243         }
244
245         ph->xops->xfer_put(ph, t);
246         return ret;
247 }
248
249 static inline void scmi_parse_range_attrs(struct scmi_range_attrs *out,
250                                           const struct scmi_msg_resp_attrs *in)
251 {
252         out->min_range = get_unaligned_le64((void *)&in->min_range_low);
253         out->max_range = get_unaligned_le64((void *)&in->max_range_low);
254 }
255
256 struct scmi_sens_ipriv {
257         void *priv;
258         struct device *dev;
259 };
260
261 static void iter_intervals_prepare_message(void *message,
262                                            unsigned int desc_index,
263                                            const void *p)
264 {
265         struct scmi_msg_sensor_list_update_intervals *msg = message;
266         const struct scmi_sensor_info *s;
267
268         s = ((const struct scmi_sens_ipriv *)p)->priv;
269         /* Set the number of sensors to be skipped/already read */
270         msg->id = cpu_to_le32(s->id);
271         msg->index = cpu_to_le32(desc_index);
272 }
273
274 static int iter_intervals_update_state(struct scmi_iterator_state *st,
275                                        const void *response, void *p)
276 {
277         u32 flags;
278         struct scmi_sensor_info *s = ((struct scmi_sens_ipriv *)p)->priv;
279         struct device *dev = ((struct scmi_sens_ipriv *)p)->dev;
280         const struct scmi_msg_resp_sensor_list_update_intervals *r = response;
281
282         flags = le32_to_cpu(r->num_intervals_flags);
283         st->num_returned = NUM_INTERVALS_RETURNED(flags);
284         st->num_remaining = NUM_INTERVALS_REMAINING(flags);
285
286         /*
287          * Max intervals is not declared previously anywhere so we
288          * assume it's returned+remaining on first call.
289          */
290         if (!st->max_resources) {
291                 s->intervals.segmented = SEGMENTED_INTVL_FORMAT(flags);
292                 s->intervals.count = st->num_returned + st->num_remaining;
293                 /* segmented intervals are reported in one triplet */
294                 if (s->intervals.segmented &&
295                     (st->num_remaining || st->num_returned != 3)) {
296                         dev_err(dev,
297                                 "Sensor ID:%d advertises an invalid segmented interval (%d)\n",
298                                 s->id, s->intervals.count);
299                         s->intervals.segmented = false;
300                         s->intervals.count = 0;
301                         return -EINVAL;
302                 }
303                 /* Direct allocation when exceeding pre-allocated */
304                 if (s->intervals.count >= SCMI_MAX_PREALLOC_POOL) {
305                         s->intervals.desc =
306                                 devm_kcalloc(dev,
307                                              s->intervals.count,
308                                              sizeof(*s->intervals.desc),
309                                              GFP_KERNEL);
310                         if (!s->intervals.desc) {
311                                 s->intervals.segmented = false;
312                                 s->intervals.count = 0;
313                                 return -ENOMEM;
314                         }
315                 }
316
317                 st->max_resources = s->intervals.count;
318         }
319
320         return 0;
321 }
322
323 static int
324 iter_intervals_process_response(const struct scmi_protocol_handle *ph,
325                                 const void *response,
326                                 struct scmi_iterator_state *st, void *p)
327 {
328         const struct scmi_msg_resp_sensor_list_update_intervals *r = response;
329         struct scmi_sensor_info *s = ((struct scmi_sens_ipriv *)p)->priv;
330
331         s->intervals.desc[st->desc_index + st->loop_idx] =
332                 le32_to_cpu(r->intervals[st->loop_idx]);
333
334         return 0;
335 }
336
337 static int scmi_sensor_update_intervals(const struct scmi_protocol_handle *ph,
338                                         struct scmi_sensor_info *s)
339 {
340         void *iter;
341         struct scmi_iterator_ops ops = {
342                 .prepare_message = iter_intervals_prepare_message,
343                 .update_state = iter_intervals_update_state,
344                 .process_response = iter_intervals_process_response,
345         };
346         struct scmi_sens_ipriv upriv = {
347                 .priv = s,
348                 .dev = ph->dev,
349         };
350
351         iter = ph->hops->iter_response_init(ph, &ops, s->intervals.count,
352                                             SENSOR_LIST_UPDATE_INTERVALS,
353                                             sizeof(struct scmi_msg_sensor_list_update_intervals),
354                                             &upriv);
355         if (IS_ERR(iter))
356                 return PTR_ERR(iter);
357
358         return ph->hops->iter_response_run(iter);
359 }
360
361 struct scmi_apriv {
362         bool any_axes_support_extended_names;
363         struct scmi_sensor_info *s;
364 };
365
366 static void iter_axes_desc_prepare_message(void *message,
367                                            const unsigned int desc_index,
368                                            const void *priv)
369 {
370         struct scmi_msg_sensor_axis_description_get *msg = message;
371         const struct scmi_apriv *apriv = priv;
372
373         /* Set the number of sensors to be skipped/already read */
374         msg->id = cpu_to_le32(apriv->s->id);
375         msg->axis_desc_index = cpu_to_le32(desc_index);
376 }
377
378 static int
379 iter_axes_desc_update_state(struct scmi_iterator_state *st,
380                             const void *response, void *priv)
381 {
382         u32 flags;
383         const struct scmi_msg_resp_sensor_axis_description *r = response;
384
385         flags = le32_to_cpu(r->num_axis_flags);
386         st->num_returned = NUM_AXIS_RETURNED(flags);
387         st->num_remaining = NUM_AXIS_REMAINING(flags);
388         st->priv = (void *)&r->desc[0];
389
390         return 0;
391 }
392
393 static int
394 iter_axes_desc_process_response(const struct scmi_protocol_handle *ph,
395                                 const void *response,
396                                 struct scmi_iterator_state *st, void *priv)
397 {
398         u32 attrh, attrl;
399         struct scmi_sensor_axis_info *a;
400         size_t dsize = SCMI_MSG_RESP_AXIS_DESCR_BASE_SZ;
401         struct scmi_apriv *apriv = priv;
402         const struct scmi_axis_descriptor *adesc = st->priv;
403
404         attrl = le32_to_cpu(adesc->attributes_low);
405         if (SUPPORTS_EXTENDED_AXIS_NAMES(attrl))
406                 apriv->any_axes_support_extended_names = true;
407
408         a = &apriv->s->axis[st->desc_index + st->loop_idx];
409         a->id = le32_to_cpu(adesc->id);
410         a->extended_attrs = SUPPORTS_EXTEND_ATTRS(attrl);
411
412         attrh = le32_to_cpu(adesc->attributes_high);
413         a->scale = S32_EXT(SENSOR_SCALE(attrh));
414         a->type = SENSOR_TYPE(attrh);
415         strscpy(a->name, adesc->name, SCMI_SHORT_NAME_MAX_SIZE);
416
417         if (a->extended_attrs) {
418                 unsigned int ares = le32_to_cpu(adesc->resolution);
419
420                 a->resolution = SENSOR_RES(ares);
421                 a->exponent = S32_EXT(SENSOR_RES_EXP(ares));
422                 dsize += sizeof(adesc->resolution);
423
424                 scmi_parse_range_attrs(&a->attrs, &adesc->attrs);
425                 dsize += sizeof(adesc->attrs);
426         }
427         st->priv = ((u8 *)adesc + dsize);
428
429         return 0;
430 }
431
432 static int
433 iter_axes_extended_name_update_state(struct scmi_iterator_state *st,
434                                      const void *response, void *priv)
435 {
436         u32 flags;
437         const struct scmi_msg_resp_sensor_axis_names_description *r = response;
438
439         flags = le32_to_cpu(r->num_axis_flags);
440         st->num_returned = NUM_AXIS_RETURNED(flags);
441         st->num_remaining = NUM_AXIS_REMAINING(flags);
442         st->priv = (void *)&r->desc[0];
443
444         return 0;
445 }
446
447 static int
448 iter_axes_extended_name_process_response(const struct scmi_protocol_handle *ph,
449                                          const void *response,
450                                          struct scmi_iterator_state *st,
451                                          void *priv)
452 {
453         struct scmi_sensor_axis_info *a;
454         const struct scmi_apriv *apriv = priv;
455         struct scmi_sensor_axis_name_descriptor *adesc = st->priv;
456         u32 axis_id = le32_to_cpu(adesc->axis_id);
457
458         if (axis_id >= st->max_resources)
459                 return -EPROTO;
460
461         /*
462          * Pick the corresponding descriptor based on the axis_id embedded
463          * in the reply since the list of axes supporting extended names
464          * can be a subset of all the axes.
465          */
466         a = &apriv->s->axis[axis_id];
467         strscpy(a->name, adesc->name, SCMI_MAX_STR_SIZE);
468         st->priv = ++adesc;
469
470         return 0;
471 }
472
473 static int
474 scmi_sensor_axis_extended_names_get(const struct scmi_protocol_handle *ph,
475                                     struct scmi_sensor_info *s)
476 {
477         int ret;
478         void *iter;
479         struct scmi_iterator_ops ops = {
480                 .prepare_message = iter_axes_desc_prepare_message,
481                 .update_state = iter_axes_extended_name_update_state,
482                 .process_response = iter_axes_extended_name_process_response,
483         };
484         struct scmi_apriv apriv = {
485                 .any_axes_support_extended_names = false,
486                 .s = s,
487         };
488
489         iter = ph->hops->iter_response_init(ph, &ops, s->num_axis,
490                                             SENSOR_AXIS_NAME_GET,
491                                             sizeof(struct scmi_msg_sensor_axis_description_get),
492                                             &apriv);
493         if (IS_ERR(iter))
494                 return PTR_ERR(iter);
495
496         /*
497          * Do not cause whole protocol initialization failure when failing to
498          * get extended names for axes.
499          */
500         ret = ph->hops->iter_response_run(iter);
501         if (ret)
502                 dev_warn(ph->dev,
503                          "Failed to get axes extended names for %s (ret:%d).\n",
504                          s->name, ret);
505
506         return 0;
507 }
508
509 static int scmi_sensor_axis_description(const struct scmi_protocol_handle *ph,
510                                         struct scmi_sensor_info *s,
511                                         u32 version)
512 {
513         int ret;
514         void *iter;
515         struct scmi_iterator_ops ops = {
516                 .prepare_message = iter_axes_desc_prepare_message,
517                 .update_state = iter_axes_desc_update_state,
518                 .process_response = iter_axes_desc_process_response,
519         };
520         struct scmi_apriv apriv = {
521                 .any_axes_support_extended_names = false,
522                 .s = s,
523         };
524
525         s->axis = devm_kcalloc(ph->dev, s->num_axis,
526                                sizeof(*s->axis), GFP_KERNEL);
527         if (!s->axis)
528                 return -ENOMEM;
529
530         iter = ph->hops->iter_response_init(ph, &ops, s->num_axis,
531                                             SENSOR_AXIS_DESCRIPTION_GET,
532                                             sizeof(struct scmi_msg_sensor_axis_description_get),
533                                             &apriv);
534         if (IS_ERR(iter))
535                 return PTR_ERR(iter);
536
537         ret = ph->hops->iter_response_run(iter);
538         if (ret)
539                 return ret;
540
541         if (PROTOCOL_REV_MAJOR(version) >= 0x3 &&
542             apriv.any_axes_support_extended_names)
543                 ret = scmi_sensor_axis_extended_names_get(ph, s);
544
545         return ret;
546 }
547
548 static void iter_sens_descr_prepare_message(void *message,
549                                             unsigned int desc_index,
550                                             const void *priv)
551 {
552         struct scmi_msg_sensor_description *msg = message;
553
554         msg->desc_index = cpu_to_le32(desc_index);
555 }
556
557 static int iter_sens_descr_update_state(struct scmi_iterator_state *st,
558                                         const void *response, void *priv)
559 {
560         const struct scmi_msg_resp_sensor_description *r = response;
561
562         st->num_returned = le16_to_cpu(r->num_returned);
563         st->num_remaining = le16_to_cpu(r->num_remaining);
564         st->priv = (void *)&r->desc[0];
565
566         return 0;
567 }
568
569 static int
570 iter_sens_descr_process_response(const struct scmi_protocol_handle *ph,
571                                  const void *response,
572                                  struct scmi_iterator_state *st, void *priv)
573
574 {
575         int ret = 0;
576         u32 attrh, attrl;
577         size_t dsize = SCMI_MSG_RESP_SENS_DESCR_BASE_SZ;
578         struct scmi_sensor_info *s;
579         struct sensors_info *si = priv;
580         const struct scmi_sensor_descriptor *sdesc = st->priv;
581
582         s = &si->sensors[st->desc_index + st->loop_idx];
583         s->id = le32_to_cpu(sdesc->id);
584
585         attrl = le32_to_cpu(sdesc->attributes_low);
586         /* common bitfields parsing */
587         s->async = SUPPORTS_ASYNC_READ(attrl);
588         s->num_trip_points = NUM_TRIP_POINTS(attrl);
589         /**
590          * only SCMIv3.0 specific bitfield below.
591          * Such bitfields are assumed to be zeroed on non
592          * relevant fw versions...assuming fw not buggy !
593          */
594         s->update = SUPPORTS_UPDATE_NOTIFY(attrl);
595         s->timestamped = SUPPORTS_TIMESTAMP(attrl);
596         if (s->timestamped)
597                 s->tstamp_scale = S32_EXT(SENSOR_TSTAMP_EXP(attrl));
598         s->extended_scalar_attrs = SUPPORTS_EXTEND_ATTRS(attrl);
599
600         attrh = le32_to_cpu(sdesc->attributes_high);
601         /* common bitfields parsing */
602         s->scale = S32_EXT(SENSOR_SCALE(attrh));
603         s->type = SENSOR_TYPE(attrh);
604         /* Use pre-allocated pool wherever possible */
605         s->intervals.desc = s->intervals.prealloc_pool;
606         if (si->version == SCMIv2_SENSOR_PROTOCOL) {
607                 s->intervals.segmented = false;
608                 s->intervals.count = 1;
609                 /*
610                  * Convert SCMIv2.0 update interval format to
611                  * SCMIv3.0 to be used as the common exposed
612                  * descriptor, accessible via common macros.
613                  */
614                 s->intervals.desc[0] = (SENSOR_UPDATE_BASE(attrh) << 5) |
615                                         SENSOR_UPDATE_SCALE(attrh);
616         } else {
617                 /*
618                  * From SCMIv3.0 update intervals are retrieved
619                  * via a dedicated (optional) command.
620                  * Since the command is optional, on error carry
621                  * on without any update interval.
622                  */
623                 if (scmi_sensor_update_intervals(ph, s))
624                         dev_dbg(ph->dev,
625                                 "Update Intervals not available for sensor ID:%d\n",
626                                 s->id);
627         }
628         /**
629          * only > SCMIv2.0 specific bitfield below.
630          * Such bitfields are assumed to be zeroed on non
631          * relevant fw versions...assuming fw not buggy !
632          */
633         s->num_axis = min_t(unsigned int,
634                             SUPPORTS_AXIS(attrh) ?
635                             SENSOR_AXIS_NUMBER(attrh) : 0,
636                             SCMI_MAX_NUM_SENSOR_AXIS);
637         strscpy(s->name, sdesc->name, SCMI_SHORT_NAME_MAX_SIZE);
638
639         /*
640          * If supported overwrite short name with the extended
641          * one; on error just carry on and use already provided
642          * short name.
643          */
644         if (PROTOCOL_REV_MAJOR(si->version) >= 0x3 &&
645             SUPPORTS_EXTENDED_NAMES(attrl))
646                 ph->hops->extended_name_get(ph, SENSOR_NAME_GET, s->id,
647                                             s->name, SCMI_MAX_STR_SIZE);
648
649         if (s->extended_scalar_attrs) {
650                 s->sensor_power = le32_to_cpu(sdesc->power);
651                 dsize += sizeof(sdesc->power);
652
653                 /* Only for sensors reporting scalar values */
654                 if (s->num_axis == 0) {
655                         unsigned int sres = le32_to_cpu(sdesc->resolution);
656
657                         s->resolution = SENSOR_RES(sres);
658                         s->exponent = S32_EXT(SENSOR_RES_EXP(sres));
659                         dsize += sizeof(sdesc->resolution);
660
661                         scmi_parse_range_attrs(&s->scalar_attrs,
662                                                &sdesc->scalar_attrs);
663                         dsize += sizeof(sdesc->scalar_attrs);
664                 }
665         }
666
667         if (s->num_axis > 0)
668                 ret = scmi_sensor_axis_description(ph, s, si->version);
669
670         st->priv = ((u8 *)sdesc + dsize);
671
672         return ret;
673 }
674
675 static int scmi_sensor_description_get(const struct scmi_protocol_handle *ph,
676                                        struct sensors_info *si)
677 {
678         void *iter;
679         struct scmi_iterator_ops ops = {
680                 .prepare_message = iter_sens_descr_prepare_message,
681                 .update_state = iter_sens_descr_update_state,
682                 .process_response = iter_sens_descr_process_response,
683         };
684
685         iter = ph->hops->iter_response_init(ph, &ops, si->num_sensors,
686                                             SENSOR_DESCRIPTION_GET,
687                                             sizeof(__le32), si);
688         if (IS_ERR(iter))
689                 return PTR_ERR(iter);
690
691         return ph->hops->iter_response_run(iter);
692 }
693
694 static inline int
695 scmi_sensor_request_notify(const struct scmi_protocol_handle *ph, u32 sensor_id,
696                            u8 message_id, bool enable)
697 {
698         int ret;
699         u32 evt_cntl = enable ? SENSOR_NOTIFY_ALL : 0;
700         struct scmi_xfer *t;
701         struct scmi_msg_sensor_request_notify *cfg;
702
703         ret = ph->xops->xfer_get_init(ph, message_id, sizeof(*cfg), 0, &t);
704         if (ret)
705                 return ret;
706
707         cfg = t->tx.buf;
708         cfg->id = cpu_to_le32(sensor_id);
709         cfg->event_control = cpu_to_le32(evt_cntl);
710
711         ret = ph->xops->do_xfer(ph, t);
712
713         ph->xops->xfer_put(ph, t);
714         return ret;
715 }
716
717 static int scmi_sensor_trip_point_notify(const struct scmi_protocol_handle *ph,
718                                          u32 sensor_id, bool enable)
719 {
720         return scmi_sensor_request_notify(ph, sensor_id,
721                                           SENSOR_TRIP_POINT_NOTIFY,
722                                           enable);
723 }
724
725 static int
726 scmi_sensor_continuous_update_notify(const struct scmi_protocol_handle *ph,
727                                      u32 sensor_id, bool enable)
728 {
729         return scmi_sensor_request_notify(ph, sensor_id,
730                                           SENSOR_CONTINUOUS_UPDATE_NOTIFY,
731                                           enable);
732 }
733
734 static int
735 scmi_sensor_trip_point_config(const struct scmi_protocol_handle *ph,
736                               u32 sensor_id, u8 trip_id, u64 trip_value)
737 {
738         int ret;
739         u32 evt_cntl = SENSOR_TP_BOTH;
740         struct scmi_xfer *t;
741         struct scmi_msg_set_sensor_trip_point *trip;
742
743         ret = ph->xops->xfer_get_init(ph, SENSOR_TRIP_POINT_CONFIG,
744                                       sizeof(*trip), 0, &t);
745         if (ret)
746                 return ret;
747
748         trip = t->tx.buf;
749         trip->id = cpu_to_le32(sensor_id);
750         trip->event_control = cpu_to_le32(evt_cntl | SENSOR_TP_ID(trip_id));
751         trip->value_low = cpu_to_le32(trip_value & 0xffffffff);
752         trip->value_high = cpu_to_le32(trip_value >> 32);
753
754         ret = ph->xops->do_xfer(ph, t);
755
756         ph->xops->xfer_put(ph, t);
757         return ret;
758 }
759
760 static int scmi_sensor_config_get(const struct scmi_protocol_handle *ph,
761                                   u32 sensor_id, u32 *sensor_config)
762 {
763         int ret;
764         struct scmi_xfer *t;
765
766         ret = ph->xops->xfer_get_init(ph, SENSOR_CONFIG_GET,
767                                       sizeof(__le32), sizeof(__le32), &t);
768         if (ret)
769                 return ret;
770
771         put_unaligned_le32(sensor_id, t->tx.buf);
772         ret = ph->xops->do_xfer(ph, t);
773         if (!ret) {
774                 struct sensors_info *si = ph->get_priv(ph);
775                 struct scmi_sensor_info *s = si->sensors + sensor_id;
776
777                 *sensor_config = get_unaligned_le64(t->rx.buf);
778                 s->sensor_config = *sensor_config;
779         }
780
781         ph->xops->xfer_put(ph, t);
782         return ret;
783 }
784
785 static int scmi_sensor_config_set(const struct scmi_protocol_handle *ph,
786                                   u32 sensor_id, u32 sensor_config)
787 {
788         int ret;
789         struct scmi_xfer *t;
790         struct scmi_msg_sensor_config_set *msg;
791
792         ret = ph->xops->xfer_get_init(ph, SENSOR_CONFIG_SET,
793                                       sizeof(*msg), 0, &t);
794         if (ret)
795                 return ret;
796
797         msg = t->tx.buf;
798         msg->id = cpu_to_le32(sensor_id);
799         msg->sensor_config = cpu_to_le32(sensor_config);
800
801         ret = ph->xops->do_xfer(ph, t);
802         if (!ret) {
803                 struct sensors_info *si = ph->get_priv(ph);
804                 struct scmi_sensor_info *s = si->sensors + sensor_id;
805
806                 s->sensor_config = sensor_config;
807         }
808
809         ph->xops->xfer_put(ph, t);
810         return ret;
811 }
812
813 /**
814  * scmi_sensor_reading_get  - Read scalar sensor value
815  * @ph: Protocol handle
816  * @sensor_id: Sensor ID
817  * @value: The 64bit value sensor reading
818  *
819  * This function returns a single 64 bit reading value representing the sensor
820  * value; if the platform SCMI Protocol implementation and the sensor support
821  * multiple axis and timestamped-reads, this just returns the first axis while
822  * dropping the timestamp value.
823  * Use instead the @scmi_sensor_reading_get_timestamped to retrieve the array of
824  * timestamped multi-axis values.
825  *
826  * Return: 0 on Success
827  */
828 static int scmi_sensor_reading_get(const struct scmi_protocol_handle *ph,
829                                    u32 sensor_id, u64 *value)
830 {
831         int ret;
832         struct scmi_xfer *t;
833         struct scmi_msg_sensor_reading_get *sensor;
834         struct sensors_info *si = ph->get_priv(ph);
835         struct scmi_sensor_info *s = si->sensors + sensor_id;
836
837         ret = ph->xops->xfer_get_init(ph, SENSOR_READING_GET,
838                                       sizeof(*sensor), 0, &t);
839         if (ret)
840                 return ret;
841
842         sensor = t->tx.buf;
843         sensor->id = cpu_to_le32(sensor_id);
844         if (s->async) {
845                 sensor->flags = cpu_to_le32(SENSOR_READ_ASYNC);
846                 ret = ph->xops->do_xfer_with_response(ph, t);
847                 if (!ret) {
848                         struct scmi_resp_sensor_reading_complete *resp;
849
850                         resp = t->rx.buf;
851                         if (le32_to_cpu(resp->id) == sensor_id)
852                                 *value =
853                                         get_unaligned_le64(&resp->readings_low);
854                         else
855                                 ret = -EPROTO;
856                 }
857         } else {
858                 sensor->flags = cpu_to_le32(0);
859                 ret = ph->xops->do_xfer(ph, t);
860                 if (!ret)
861                         *value = get_unaligned_le64(t->rx.buf);
862         }
863
864         ph->xops->xfer_put(ph, t);
865         return ret;
866 }
867
868 static inline void
869 scmi_parse_sensor_readings(struct scmi_sensor_reading *out,
870                            const struct scmi_sensor_reading_resp *in)
871 {
872         out->value = get_unaligned_le64((void *)&in->sensor_value_low);
873         out->timestamp = get_unaligned_le64((void *)&in->timestamp_low);
874 }
875
876 /**
877  * scmi_sensor_reading_get_timestamped  - Read multiple-axis timestamped values
878  * @ph: Protocol handle
879  * @sensor_id: Sensor ID
880  * @count: The length of the provided @readings array
881  * @readings: An array of elements each representing a timestamped per-axis
882  *            reading of type @struct scmi_sensor_reading.
883  *            Returned readings are ordered as the @axis descriptors array
884  *            included in @struct scmi_sensor_info and the max number of
885  *            returned elements is min(@count, @num_axis); ideally the provided
886  *            array should be of length @count equal to @num_axis.
887  *
888  * Return: 0 on Success
889  */
890 static int
891 scmi_sensor_reading_get_timestamped(const struct scmi_protocol_handle *ph,
892                                     u32 sensor_id, u8 count,
893                                     struct scmi_sensor_reading *readings)
894 {
895         int ret;
896         struct scmi_xfer *t;
897         struct scmi_msg_sensor_reading_get *sensor;
898         struct sensors_info *si = ph->get_priv(ph);
899         struct scmi_sensor_info *s = si->sensors + sensor_id;
900
901         if (!count || !readings ||
902             (!s->num_axis && count > 1) || (s->num_axis && count > s->num_axis))
903                 return -EINVAL;
904
905         ret = ph->xops->xfer_get_init(ph, SENSOR_READING_GET,
906                                       sizeof(*sensor), 0, &t);
907         if (ret)
908                 return ret;
909
910         sensor = t->tx.buf;
911         sensor->id = cpu_to_le32(sensor_id);
912         if (s->async) {
913                 sensor->flags = cpu_to_le32(SENSOR_READ_ASYNC);
914                 ret = ph->xops->do_xfer_with_response(ph, t);
915                 if (!ret) {
916                         int i;
917                         struct scmi_resp_sensor_reading_complete_v3 *resp;
918
919                         resp = t->rx.buf;
920                         /* Retrieve only the number of requested axis anyway */
921                         if (le32_to_cpu(resp->id) == sensor_id)
922                                 for (i = 0; i < count; i++)
923                                         scmi_parse_sensor_readings(&readings[i],
924                                                                    &resp->readings[i]);
925                         else
926                                 ret = -EPROTO;
927                 }
928         } else {
929                 sensor->flags = cpu_to_le32(0);
930                 ret = ph->xops->do_xfer(ph, t);
931                 if (!ret) {
932                         int i;
933                         struct scmi_sensor_reading_resp *resp_readings;
934
935                         resp_readings = t->rx.buf;
936                         for (i = 0; i < count; i++)
937                                 scmi_parse_sensor_readings(&readings[i],
938                                                            &resp_readings[i]);
939                 }
940         }
941
942         ph->xops->xfer_put(ph, t);
943         return ret;
944 }
945
946 static const struct scmi_sensor_info *
947 scmi_sensor_info_get(const struct scmi_protocol_handle *ph, u32 sensor_id)
948 {
949         struct sensors_info *si = ph->get_priv(ph);
950
951         return si->sensors + sensor_id;
952 }
953
954 static int scmi_sensor_count_get(const struct scmi_protocol_handle *ph)
955 {
956         struct sensors_info *si = ph->get_priv(ph);
957
958         return si->num_sensors;
959 }
960
961 static const struct scmi_sensor_proto_ops sensor_proto_ops = {
962         .count_get = scmi_sensor_count_get,
963         .info_get = scmi_sensor_info_get,
964         .trip_point_config = scmi_sensor_trip_point_config,
965         .reading_get = scmi_sensor_reading_get,
966         .reading_get_timestamped = scmi_sensor_reading_get_timestamped,
967         .config_get = scmi_sensor_config_get,
968         .config_set = scmi_sensor_config_set,
969 };
970
971 static int scmi_sensor_set_notify_enabled(const struct scmi_protocol_handle *ph,
972                                           u8 evt_id, u32 src_id, bool enable)
973 {
974         int ret;
975
976         switch (evt_id) {
977         case SCMI_EVENT_SENSOR_TRIP_POINT_EVENT:
978                 ret = scmi_sensor_trip_point_notify(ph, src_id, enable);
979                 break;
980         case SCMI_EVENT_SENSOR_UPDATE:
981                 ret = scmi_sensor_continuous_update_notify(ph, src_id, enable);
982                 break;
983         default:
984                 ret = -EINVAL;
985                 break;
986         }
987
988         if (ret)
989                 pr_debug("FAIL_ENABLED - evt[%X] dom[%d] - ret:%d\n",
990                          evt_id, src_id, ret);
991
992         return ret;
993 }
994
995 static void *
996 scmi_sensor_fill_custom_report(const struct scmi_protocol_handle *ph,
997                                u8 evt_id, ktime_t timestamp,
998                                const void *payld, size_t payld_sz,
999                                void *report, u32 *src_id)
1000 {
1001         void *rep = NULL;
1002
1003         switch (evt_id) {
1004         case SCMI_EVENT_SENSOR_TRIP_POINT_EVENT:
1005         {
1006                 const struct scmi_sensor_trip_notify_payld *p = payld;
1007                 struct scmi_sensor_trip_point_report *r = report;
1008
1009                 if (sizeof(*p) != payld_sz)
1010                         break;
1011
1012                 r->timestamp = timestamp;
1013                 r->agent_id = le32_to_cpu(p->agent_id);
1014                 r->sensor_id = le32_to_cpu(p->sensor_id);
1015                 r->trip_point_desc = le32_to_cpu(p->trip_point_desc);
1016                 *src_id = r->sensor_id;
1017                 rep = r;
1018                 break;
1019         }
1020         case SCMI_EVENT_SENSOR_UPDATE:
1021         {
1022                 int i;
1023                 struct scmi_sensor_info *s;
1024                 const struct scmi_sensor_update_notify_payld *p = payld;
1025                 struct scmi_sensor_update_report *r = report;
1026                 struct sensors_info *sinfo = ph->get_priv(ph);
1027
1028                 /* payld_sz is variable for this event */
1029                 r->sensor_id = le32_to_cpu(p->sensor_id);
1030                 if (r->sensor_id >= sinfo->num_sensors)
1031                         break;
1032                 r->timestamp = timestamp;
1033                 r->agent_id = le32_to_cpu(p->agent_id);
1034                 s = &sinfo->sensors[r->sensor_id];
1035                 /*
1036                  * The generated report r (@struct scmi_sensor_update_report)
1037                  * was pre-allocated to contain up to SCMI_MAX_NUM_SENSOR_AXIS
1038                  * readings: here it is filled with the effective @num_axis
1039                  * readings defined for this sensor or 1 for scalar sensors.
1040                  */
1041                 r->readings_count = s->num_axis ?: 1;
1042                 for (i = 0; i < r->readings_count; i++)
1043                         scmi_parse_sensor_readings(&r->readings[i],
1044                                                    &p->readings[i]);
1045                 *src_id = r->sensor_id;
1046                 rep = r;
1047                 break;
1048         }
1049         default:
1050                 break;
1051         }
1052
1053         return rep;
1054 }
1055
1056 static int scmi_sensor_get_num_sources(const struct scmi_protocol_handle *ph)
1057 {
1058         struct sensors_info *si = ph->get_priv(ph);
1059
1060         return si->num_sensors;
1061 }
1062
1063 static const struct scmi_event sensor_events[] = {
1064         {
1065                 .id = SCMI_EVENT_SENSOR_TRIP_POINT_EVENT,
1066                 .max_payld_sz = sizeof(struct scmi_sensor_trip_notify_payld),
1067                 .max_report_sz = sizeof(struct scmi_sensor_trip_point_report),
1068         },
1069         {
1070                 .id = SCMI_EVENT_SENSOR_UPDATE,
1071                 .max_payld_sz =
1072                         sizeof(struct scmi_sensor_update_notify_payld) +
1073                          SCMI_MAX_NUM_SENSOR_AXIS *
1074                          sizeof(struct scmi_sensor_reading_resp),
1075                 .max_report_sz = sizeof(struct scmi_sensor_update_report) +
1076                                   SCMI_MAX_NUM_SENSOR_AXIS *
1077                                   sizeof(struct scmi_sensor_reading),
1078         },
1079 };
1080
1081 static const struct scmi_event_ops sensor_event_ops = {
1082         .get_num_sources = scmi_sensor_get_num_sources,
1083         .set_notify_enabled = scmi_sensor_set_notify_enabled,
1084         .fill_custom_report = scmi_sensor_fill_custom_report,
1085 };
1086
1087 static const struct scmi_protocol_events sensor_protocol_events = {
1088         .queue_sz = SCMI_PROTO_QUEUE_SZ,
1089         .ops = &sensor_event_ops,
1090         .evts = sensor_events,
1091         .num_events = ARRAY_SIZE(sensor_events),
1092 };
1093
1094 static int scmi_sensors_protocol_init(const struct scmi_protocol_handle *ph)
1095 {
1096         u32 version;
1097         int ret;
1098         struct sensors_info *sinfo;
1099
1100         ret = ph->xops->version_get(ph, &version);
1101         if (ret)
1102                 return ret;
1103
1104         dev_dbg(ph->dev, "Sensor Version %d.%d\n",
1105                 PROTOCOL_REV_MAJOR(version), PROTOCOL_REV_MINOR(version));
1106
1107         sinfo = devm_kzalloc(ph->dev, sizeof(*sinfo), GFP_KERNEL);
1108         if (!sinfo)
1109                 return -ENOMEM;
1110         sinfo->version = version;
1111
1112         ret = scmi_sensor_attributes_get(ph, sinfo);
1113         if (ret)
1114                 return ret;
1115         sinfo->sensors = devm_kcalloc(ph->dev, sinfo->num_sensors,
1116                                       sizeof(*sinfo->sensors), GFP_KERNEL);
1117         if (!sinfo->sensors)
1118                 return -ENOMEM;
1119
1120         ret = scmi_sensor_description_get(ph, sinfo);
1121         if (ret)
1122                 return ret;
1123
1124         return ph->set_priv(ph, sinfo);
1125 }
1126
1127 static const struct scmi_protocol scmi_sensors = {
1128         .id = SCMI_PROTOCOL_SENSOR,
1129         .owner = THIS_MODULE,
1130         .instance_init = &scmi_sensors_protocol_init,
1131         .ops = &sensor_proto_ops,
1132         .events = &sensor_protocol_events,
1133 };
1134
1135 DEFINE_SCMI_PROTOCOL_REGISTER_UNREGISTER(sensors, scmi_sensors)