GNU Linux-libre 6.8.9-gnu
[releases.git] / drivers / firewire / ohci.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for OHCI 1394 controllers
4  *
5  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6  */
7
8 #include <linux/bitops.h>
9 #include <linux/bug.h>
10 #include <linux/compiler.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/firewire.h>
15 #include <linux/firewire-constants.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/mutex.h>
25 #include <linux/pci.h>
26 #include <linux/pci_ids.h>
27 #include <linux/slab.h>
28 #include <linux/spinlock.h>
29 #include <linux/string.h>
30 #include <linux/time.h>
31 #include <linux/vmalloc.h>
32 #include <linux/workqueue.h>
33
34 #include <asm/byteorder.h>
35 #include <asm/page.h>
36
37 #ifdef CONFIG_PPC_PMAC
38 #include <asm/pmac_feature.h>
39 #endif
40
41 #include "core.h"
42 #include "ohci.h"
43
44 #define ohci_info(ohci, f, args...)     dev_info(ohci->card.device, f, ##args)
45 #define ohci_notice(ohci, f, args...)   dev_notice(ohci->card.device, f, ##args)
46 #define ohci_err(ohci, f, args...)      dev_err(ohci->card.device, f, ##args)
47
48 #define DESCRIPTOR_OUTPUT_MORE          0
49 #define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
50 #define DESCRIPTOR_INPUT_MORE           (2 << 12)
51 #define DESCRIPTOR_INPUT_LAST           (3 << 12)
52 #define DESCRIPTOR_STATUS               (1 << 11)
53 #define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
54 #define DESCRIPTOR_PING                 (1 << 7)
55 #define DESCRIPTOR_YY                   (1 << 6)
56 #define DESCRIPTOR_NO_IRQ               (0 << 4)
57 #define DESCRIPTOR_IRQ_ERROR            (1 << 4)
58 #define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
59 #define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
60 #define DESCRIPTOR_WAIT                 (3 << 0)
61
62 #define DESCRIPTOR_CMD                  (0xf << 12)
63
64 struct descriptor {
65         __le16 req_count;
66         __le16 control;
67         __le32 data_address;
68         __le32 branch_address;
69         __le16 res_count;
70         __le16 transfer_status;
71 } __attribute__((aligned(16)));
72
73 #define CONTROL_SET(regs)       (regs)
74 #define CONTROL_CLEAR(regs)     ((regs) + 4)
75 #define COMMAND_PTR(regs)       ((regs) + 12)
76 #define CONTEXT_MATCH(regs)     ((regs) + 16)
77
78 #define AR_BUFFER_SIZE  (32*1024)
79 #define AR_BUFFERS_MIN  DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
80 /* we need at least two pages for proper list management */
81 #define AR_BUFFERS      (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
82
83 #define MAX_ASYNC_PAYLOAD       4096
84 #define MAX_AR_PACKET_SIZE      (16 + MAX_ASYNC_PAYLOAD + 4)
85 #define AR_WRAPAROUND_PAGES     DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
86
87 struct ar_context {
88         struct fw_ohci *ohci;
89         struct page *pages[AR_BUFFERS];
90         void *buffer;
91         struct descriptor *descriptors;
92         dma_addr_t descriptors_bus;
93         void *pointer;
94         unsigned int last_buffer_index;
95         u32 regs;
96         struct tasklet_struct tasklet;
97 };
98
99 struct context;
100
101 typedef int (*descriptor_callback_t)(struct context *ctx,
102                                      struct descriptor *d,
103                                      struct descriptor *last);
104
105 /*
106  * A buffer that contains a block of DMA-able coherent memory used for
107  * storing a portion of a DMA descriptor program.
108  */
109 struct descriptor_buffer {
110         struct list_head list;
111         dma_addr_t buffer_bus;
112         size_t buffer_size;
113         size_t used;
114         struct descriptor buffer[];
115 };
116
117 struct context {
118         struct fw_ohci *ohci;
119         u32 regs;
120         int total_allocation;
121         u32 current_bus;
122         bool running;
123         bool flushing;
124
125         /*
126          * List of page-sized buffers for storing DMA descriptors.
127          * Head of list contains buffers in use and tail of list contains
128          * free buffers.
129          */
130         struct list_head buffer_list;
131
132         /*
133          * Pointer to a buffer inside buffer_list that contains the tail
134          * end of the current DMA program.
135          */
136         struct descriptor_buffer *buffer_tail;
137
138         /*
139          * The descriptor containing the branch address of the first
140          * descriptor that has not yet been filled by the device.
141          */
142         struct descriptor *last;
143
144         /*
145          * The last descriptor block in the DMA program. It contains the branch
146          * address that must be updated upon appending a new descriptor.
147          */
148         struct descriptor *prev;
149         int prev_z;
150
151         descriptor_callback_t callback;
152
153         struct tasklet_struct tasklet;
154 };
155
156 #define IT_HEADER_SY(v)          ((v) <<  0)
157 #define IT_HEADER_TCODE(v)       ((v) <<  4)
158 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
159 #define IT_HEADER_TAG(v)         ((v) << 14)
160 #define IT_HEADER_SPEED(v)       ((v) << 16)
161 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
162
163 struct iso_context {
164         struct fw_iso_context base;
165         struct context context;
166         void *header;
167         size_t header_length;
168         unsigned long flushing_completions;
169         u32 mc_buffer_bus;
170         u16 mc_completed;
171         u16 last_timestamp;
172         u8 sync;
173         u8 tags;
174 };
175
176 #define CONFIG_ROM_SIZE 1024
177
178 struct fw_ohci {
179         struct fw_card card;
180
181         __iomem char *registers;
182         int node_id;
183         int generation;
184         int request_generation; /* for timestamping incoming requests */
185         unsigned quirks;
186         unsigned int pri_req_max;
187         u32 bus_time;
188         bool bus_time_running;
189         bool is_root;
190         bool csr_state_setclear_abdicate;
191         int n_ir;
192         int n_it;
193         /*
194          * Spinlock for accessing fw_ohci data.  Never call out of
195          * this driver with this lock held.
196          */
197         spinlock_t lock;
198
199         struct mutex phy_reg_mutex;
200
201         void *misc_buffer;
202         dma_addr_t misc_buffer_bus;
203
204         struct ar_context ar_request_ctx;
205         struct ar_context ar_response_ctx;
206         struct context at_request_ctx;
207         struct context at_response_ctx;
208
209         u32 it_context_support;
210         u32 it_context_mask;     /* unoccupied IT contexts */
211         struct iso_context *it_context_list;
212         u64 ir_context_channels; /* unoccupied channels */
213         u32 ir_context_support;
214         u32 ir_context_mask;     /* unoccupied IR contexts */
215         struct iso_context *ir_context_list;
216         u64 mc_channels; /* channels in use by the multichannel IR context */
217         bool mc_allocated;
218
219         __be32    *config_rom;
220         dma_addr_t config_rom_bus;
221         __be32    *next_config_rom;
222         dma_addr_t next_config_rom_bus;
223         __be32     next_header;
224
225         __le32    *self_id;
226         dma_addr_t self_id_bus;
227         struct work_struct bus_reset_work;
228
229         u32 self_id_buffer[512];
230 };
231
232 static struct workqueue_struct *selfid_workqueue;
233
234 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
235 {
236         return container_of(card, struct fw_ohci, card);
237 }
238
239 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
240 #define IR_CONTEXT_BUFFER_FILL          0x80000000
241 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
242 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
243 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
244 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
245
246 #define CONTEXT_RUN     0x8000
247 #define CONTEXT_WAKE    0x1000
248 #define CONTEXT_DEAD    0x0800
249 #define CONTEXT_ACTIVE  0x0400
250
251 #define OHCI1394_MAX_AT_REQ_RETRIES     0xf
252 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
253 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
254
255 #define OHCI1394_REGISTER_SIZE          0x800
256 #define OHCI1394_PCI_HCI_Control        0x40
257 #define SELF_ID_BUF_SIZE                0x800
258 #define OHCI_TCODE_PHY_PACKET           0x0e
259 #define OHCI_VERSION_1_1                0x010010
260
261 static char ohci_driver_name[] = KBUILD_MODNAME;
262
263 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS  0x11bd
264 #define PCI_DEVICE_ID_AGERE_FW643       0x5901
265 #define PCI_DEVICE_ID_CREATIVE_SB1394   0x4001
266 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
267 #define PCI_DEVICE_ID_TI_TSB12LV22      0x8009
268 #define PCI_DEVICE_ID_TI_TSB12LV26      0x8020
269 #define PCI_DEVICE_ID_TI_TSB82AA2       0x8025
270 #define PCI_DEVICE_ID_VIA_VT630X        0x3044
271 #define PCI_REV_ID_VIA_VT6306           0x46
272 #define PCI_DEVICE_ID_VIA_VT6315        0x3403
273
274 #define QUIRK_CYCLE_TIMER               0x1
275 #define QUIRK_RESET_PACKET              0x2
276 #define QUIRK_BE_HEADERS                0x4
277 #define QUIRK_NO_1394A                  0x8
278 #define QUIRK_NO_MSI                    0x10
279 #define QUIRK_TI_SLLZ059                0x20
280 #define QUIRK_IR_WAKE                   0x40
281
282 // On PCI Express Root Complex in any type of AMD Ryzen machine, VIA VT6306/6307/6308 with Asmedia
283 // ASM1083/1085 brings an inconvenience that the read accesses to 'Isochronous Cycle Timer' register
284 // (at offset 0xf0 in PCI I/O space) often causes unexpected system reboot. The mechanism is not
285 // clear, since the read access to the other registers is enough safe; e.g. 'Node ID' register,
286 // while it is probable due to detection of any type of PCIe error.
287 #define QUIRK_REBOOT_BY_CYCLE_TIMER_READ        0x80000000
288
289 #if IS_ENABLED(CONFIG_X86)
290
291 static bool has_reboot_by_cycle_timer_read_quirk(const struct fw_ohci *ohci)
292 {
293         return !!(ohci->quirks & QUIRK_REBOOT_BY_CYCLE_TIMER_READ);
294 }
295
296 #define PCI_DEVICE_ID_ASMEDIA_ASM108X   0x1080
297
298 static bool detect_vt630x_with_asm1083_on_amd_ryzen_machine(const struct pci_dev *pdev)
299 {
300         const struct pci_dev *pcie_to_pci_bridge;
301
302         // Detect any type of AMD Ryzen machine.
303         if (!static_cpu_has(X86_FEATURE_ZEN))
304                 return false;
305
306         // Detect VIA VT6306/6307/6308.
307         if (pdev->vendor != PCI_VENDOR_ID_VIA)
308                 return false;
309         if (pdev->device != PCI_DEVICE_ID_VIA_VT630X)
310                 return false;
311
312         // Detect Asmedia ASM1083/1085.
313         pcie_to_pci_bridge = pdev->bus->self;
314         if (pcie_to_pci_bridge->vendor != PCI_VENDOR_ID_ASMEDIA)
315                 return false;
316         if (pcie_to_pci_bridge->device != PCI_DEVICE_ID_ASMEDIA_ASM108X)
317                 return false;
318
319         return true;
320 }
321
322 #else
323 #define has_reboot_by_cycle_timer_read_quirk(ohci) false
324 #define detect_vt630x_with_asm1083_on_amd_ryzen_machine(pdev)   false
325 #endif
326
327 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
328 static const struct {
329         unsigned short vendor, device, revision, flags;
330 } ohci_quirks[] = {
331         {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
332                 QUIRK_CYCLE_TIMER},
333
334         {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
335                 QUIRK_BE_HEADERS},
336
337         {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
338                 QUIRK_NO_MSI},
339
340         {PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
341                 QUIRK_RESET_PACKET},
342
343         {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
344                 QUIRK_NO_MSI},
345
346         {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
347                 QUIRK_CYCLE_TIMER},
348
349         {PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
350                 QUIRK_NO_MSI},
351
352         {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
353                 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
354
355         {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
356                 QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
357
358         {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
359                 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
360
361         {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
362                 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
363
364         {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
365                 QUIRK_RESET_PACKET},
366
367         {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
368                 QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},
369
370         {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, 0,
371                 QUIRK_CYCLE_TIMER /* FIXME: necessary? */ | QUIRK_NO_MSI},
372
373         {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, PCI_ANY_ID,
374                 QUIRK_NO_MSI},
375
376         {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
377                 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
378 };
379
380 /* This overrides anything that was found in ohci_quirks[]. */
381 static int param_quirks;
382 module_param_named(quirks, param_quirks, int, 0644);
383 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
384         ", nonatomic cycle timer = "    __stringify(QUIRK_CYCLE_TIMER)
385         ", reset packet generation = "  __stringify(QUIRK_RESET_PACKET)
386         ", AR/selfID endianness = "     __stringify(QUIRK_BE_HEADERS)
387         ", no 1394a enhancements = "    __stringify(QUIRK_NO_1394A)
388         ", disable MSI = "              __stringify(QUIRK_NO_MSI)
389         ", TI SLLZ059 erratum = "       __stringify(QUIRK_TI_SLLZ059)
390         ", IR wake unreliable = "       __stringify(QUIRK_IR_WAKE)
391         ")");
392
393 #define OHCI_PARAM_DEBUG_AT_AR          1
394 #define OHCI_PARAM_DEBUG_SELFIDS        2
395 #define OHCI_PARAM_DEBUG_IRQS           4
396 #define OHCI_PARAM_DEBUG_BUSRESETS      8 /* only effective before chip init */
397
398 static int param_debug;
399 module_param_named(debug, param_debug, int, 0644);
400 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
401         ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
402         ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
403         ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
404         ", busReset events = "  __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
405         ", or a combination, or all = -1)");
406
407 static bool param_remote_dma;
408 module_param_named(remote_dma, param_remote_dma, bool, 0444);
409 MODULE_PARM_DESC(remote_dma, "Enable unfiltered remote DMA (default = N)");
410
411 static void log_irqs(struct fw_ohci *ohci, u32 evt)
412 {
413         if (likely(!(param_debug &
414                         (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
415                 return;
416
417         if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
418             !(evt & OHCI1394_busReset))
419                 return;
420
421         ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
422             evt & OHCI1394_selfIDComplete       ? " selfID"             : "",
423             evt & OHCI1394_RQPkt                ? " AR_req"             : "",
424             evt & OHCI1394_RSPkt                ? " AR_resp"            : "",
425             evt & OHCI1394_reqTxComplete        ? " AT_req"             : "",
426             evt & OHCI1394_respTxComplete       ? " AT_resp"            : "",
427             evt & OHCI1394_isochRx              ? " IR"                 : "",
428             evt & OHCI1394_isochTx              ? " IT"                 : "",
429             evt & OHCI1394_postedWriteErr       ? " postedWriteErr"     : "",
430             evt & OHCI1394_cycleTooLong         ? " cycleTooLong"       : "",
431             evt & OHCI1394_cycle64Seconds       ? " cycle64Seconds"     : "",
432             evt & OHCI1394_cycleInconsistent    ? " cycleInconsistent"  : "",
433             evt & OHCI1394_regAccessFail        ? " regAccessFail"      : "",
434             evt & OHCI1394_unrecoverableError   ? " unrecoverableError" : "",
435             evt & OHCI1394_busReset             ? " busReset"           : "",
436             evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
437                     OHCI1394_RSPkt | OHCI1394_reqTxComplete |
438                     OHCI1394_respTxComplete | OHCI1394_isochRx |
439                     OHCI1394_isochTx | OHCI1394_postedWriteErr |
440                     OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
441                     OHCI1394_cycleInconsistent |
442                     OHCI1394_regAccessFail | OHCI1394_busReset)
443                                                 ? " ?"                  : "");
444 }
445
446 static const char *speed[] = {
447         [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
448 };
449 static const char *power[] = {
450         [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
451         [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
452 };
453 static const char port[] = { '.', '-', 'p', 'c', };
454
455 static char _p(u32 *s, int shift)
456 {
457         return port[*s >> shift & 3];
458 }
459
460 static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
461 {
462         u32 *s;
463
464         if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
465                 return;
466
467         ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n",
468                     self_id_count, generation, ohci->node_id);
469
470         for (s = ohci->self_id_buffer; self_id_count--; ++s)
471                 if ((*s & 1 << 23) == 0)
472                         ohci_notice(ohci,
473                             "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
474                             *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
475                             speed[*s >> 14 & 3], *s >> 16 & 63,
476                             power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
477                             *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
478                 else
479                         ohci_notice(ohci,
480                             "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
481                             *s, *s >> 24 & 63,
482                             _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
483                             _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
484 }
485
486 static const char *evts[] = {
487         [0x00] = "evt_no_status",       [0x01] = "-reserved-",
488         [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
489         [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
490         [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
491         [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
492         [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
493         [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
494         [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
495         [0x10] = "-reserved-",          [0x11] = "ack_complete",
496         [0x12] = "ack_pending ",        [0x13] = "-reserved-",
497         [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
498         [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
499         [0x18] = "-reserved-",          [0x19] = "-reserved-",
500         [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
501         [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
502         [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
503         [0x20] = "pending/cancelled",
504 };
505 static const char *tcodes[] = {
506         [0x0] = "QW req",               [0x1] = "BW req",
507         [0x2] = "W resp",               [0x3] = "-reserved-",
508         [0x4] = "QR req",               [0x5] = "BR req",
509         [0x6] = "QR resp",              [0x7] = "BR resp",
510         [0x8] = "cycle start",          [0x9] = "Lk req",
511         [0xa] = "async stream packet",  [0xb] = "Lk resp",
512         [0xc] = "-reserved-",           [0xd] = "-reserved-",
513         [0xe] = "link internal",        [0xf] = "-reserved-",
514 };
515
516 static void log_ar_at_event(struct fw_ohci *ohci,
517                             char dir, int speed, u32 *header, int evt)
518 {
519         int tcode = header[0] >> 4 & 0xf;
520         char specific[12];
521
522         if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
523                 return;
524
525         if (unlikely(evt >= ARRAY_SIZE(evts)))
526                         evt = 0x1f;
527
528         if (evt == OHCI1394_evt_bus_reset) {
529                 ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n",
530                             dir, (header[2] >> 16) & 0xff);
531                 return;
532         }
533
534         switch (tcode) {
535         case 0x0: case 0x6: case 0x8:
536                 snprintf(specific, sizeof(specific), " = %08x",
537                          be32_to_cpu((__force __be32)header[3]));
538                 break;
539         case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
540                 snprintf(specific, sizeof(specific), " %x,%x",
541                          header[3] >> 16, header[3] & 0xffff);
542                 break;
543         default:
544                 specific[0] = '\0';
545         }
546
547         switch (tcode) {
548         case 0xa:
549                 ohci_notice(ohci, "A%c %s, %s\n",
550                             dir, evts[evt], tcodes[tcode]);
551                 break;
552         case 0xe:
553                 ohci_notice(ohci, "A%c %s, PHY %08x %08x\n",
554                             dir, evts[evt], header[1], header[2]);
555                 break;
556         case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
557                 ohci_notice(ohci,
558                             "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %04x%08x%s\n",
559                             dir, speed, header[0] >> 10 & 0x3f,
560                             header[1] >> 16, header[0] >> 16, evts[evt],
561                             tcodes[tcode], header[1] & 0xffff, header[2], specific);
562                 break;
563         default:
564                 ohci_notice(ohci,
565                             "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
566                             dir, speed, header[0] >> 10 & 0x3f,
567                             header[1] >> 16, header[0] >> 16, evts[evt],
568                             tcodes[tcode], specific);
569         }
570 }
571
572 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
573 {
574         writel(data, ohci->registers + offset);
575 }
576
577 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
578 {
579         return readl(ohci->registers + offset);
580 }
581
582 static inline void flush_writes(const struct fw_ohci *ohci)
583 {
584         /* Do a dummy read to flush writes. */
585         reg_read(ohci, OHCI1394_Version);
586 }
587
588 /*
589  * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
590  * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
591  * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
592  * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
593  */
594 static int read_phy_reg(struct fw_ohci *ohci, int addr)
595 {
596         u32 val;
597         int i;
598
599         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
600         for (i = 0; i < 3 + 100; i++) {
601                 val = reg_read(ohci, OHCI1394_PhyControl);
602                 if (!~val)
603                         return -ENODEV; /* Card was ejected. */
604
605                 if (val & OHCI1394_PhyControl_ReadDone)
606                         return OHCI1394_PhyControl_ReadData(val);
607
608                 /*
609                  * Try a few times without waiting.  Sleeping is necessary
610                  * only when the link/PHY interface is busy.
611                  */
612                 if (i >= 3)
613                         msleep(1);
614         }
615         ohci_err(ohci, "failed to read phy reg %d\n", addr);
616         dump_stack();
617
618         return -EBUSY;
619 }
620
621 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
622 {
623         int i;
624
625         reg_write(ohci, OHCI1394_PhyControl,
626                   OHCI1394_PhyControl_Write(addr, val));
627         for (i = 0; i < 3 + 100; i++) {
628                 val = reg_read(ohci, OHCI1394_PhyControl);
629                 if (!~val)
630                         return -ENODEV; /* Card was ejected. */
631
632                 if (!(val & OHCI1394_PhyControl_WritePending))
633                         return 0;
634
635                 if (i >= 3)
636                         msleep(1);
637         }
638         ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
639         dump_stack();
640
641         return -EBUSY;
642 }
643
644 static int update_phy_reg(struct fw_ohci *ohci, int addr,
645                           int clear_bits, int set_bits)
646 {
647         int ret = read_phy_reg(ohci, addr);
648         if (ret < 0)
649                 return ret;
650
651         /*
652          * The interrupt status bits are cleared by writing a one bit.
653          * Avoid clearing them unless explicitly requested in set_bits.
654          */
655         if (addr == 5)
656                 clear_bits |= PHY_INT_STATUS_BITS;
657
658         return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
659 }
660
661 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
662 {
663         int ret;
664
665         ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
666         if (ret < 0)
667                 return ret;
668
669         return read_phy_reg(ohci, addr);
670 }
671
672 static int ohci_read_phy_reg(struct fw_card *card, int addr)
673 {
674         struct fw_ohci *ohci = fw_ohci(card);
675         int ret;
676
677         mutex_lock(&ohci->phy_reg_mutex);
678         ret = read_phy_reg(ohci, addr);
679         mutex_unlock(&ohci->phy_reg_mutex);
680
681         return ret;
682 }
683
684 static int ohci_update_phy_reg(struct fw_card *card, int addr,
685                                int clear_bits, int set_bits)
686 {
687         struct fw_ohci *ohci = fw_ohci(card);
688         int ret;
689
690         mutex_lock(&ohci->phy_reg_mutex);
691         ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
692         mutex_unlock(&ohci->phy_reg_mutex);
693
694         return ret;
695 }
696
697 static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
698 {
699         return page_private(ctx->pages[i]);
700 }
701
702 static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
703 {
704         struct descriptor *d;
705
706         d = &ctx->descriptors[index];
707         d->branch_address  &= cpu_to_le32(~0xf);
708         d->res_count       =  cpu_to_le16(PAGE_SIZE);
709         d->transfer_status =  0;
710
711         wmb(); /* finish init of new descriptors before branch_address update */
712         d = &ctx->descriptors[ctx->last_buffer_index];
713         d->branch_address  |= cpu_to_le32(1);
714
715         ctx->last_buffer_index = index;
716
717         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
718 }
719
720 static void ar_context_release(struct ar_context *ctx)
721 {
722         struct device *dev = ctx->ohci->card.device;
723         unsigned int i;
724
725         if (!ctx->buffer)
726                 return;
727
728         vunmap(ctx->buffer);
729
730         for (i = 0; i < AR_BUFFERS; i++) {
731                 if (ctx->pages[i])
732                         dma_free_pages(dev, PAGE_SIZE, ctx->pages[i],
733                                        ar_buffer_bus(ctx, i), DMA_FROM_DEVICE);
734         }
735 }
736
737 static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
738 {
739         struct fw_ohci *ohci = ctx->ohci;
740
741         if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
742                 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
743                 flush_writes(ohci);
744
745                 ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
746         }
747         /* FIXME: restart? */
748 }
749
750 static inline unsigned int ar_next_buffer_index(unsigned int index)
751 {
752         return (index + 1) % AR_BUFFERS;
753 }
754
755 static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
756 {
757         return ar_next_buffer_index(ctx->last_buffer_index);
758 }
759
760 /*
761  * We search for the buffer that contains the last AR packet DMA data written
762  * by the controller.
763  */
764 static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
765                                                  unsigned int *buffer_offset)
766 {
767         unsigned int i, next_i, last = ctx->last_buffer_index;
768         __le16 res_count, next_res_count;
769
770         i = ar_first_buffer_index(ctx);
771         res_count = READ_ONCE(ctx->descriptors[i].res_count);
772
773         /* A buffer that is not yet completely filled must be the last one. */
774         while (i != last && res_count == 0) {
775
776                 /* Peek at the next descriptor. */
777                 next_i = ar_next_buffer_index(i);
778                 rmb(); /* read descriptors in order */
779                 next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
780                 /*
781                  * If the next descriptor is still empty, we must stop at this
782                  * descriptor.
783                  */
784                 if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
785                         /*
786                          * The exception is when the DMA data for one packet is
787                          * split over three buffers; in this case, the middle
788                          * buffer's descriptor might be never updated by the
789                          * controller and look still empty, and we have to peek
790                          * at the third one.
791                          */
792                         if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
793                                 next_i = ar_next_buffer_index(next_i);
794                                 rmb();
795                                 next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
796                                 if (next_res_count != cpu_to_le16(PAGE_SIZE))
797                                         goto next_buffer_is_active;
798                         }
799
800                         break;
801                 }
802
803 next_buffer_is_active:
804                 i = next_i;
805                 res_count = next_res_count;
806         }
807
808         rmb(); /* read res_count before the DMA data */
809
810         *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
811         if (*buffer_offset > PAGE_SIZE) {
812                 *buffer_offset = 0;
813                 ar_context_abort(ctx, "corrupted descriptor");
814         }
815
816         return i;
817 }
818
819 static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
820                                     unsigned int end_buffer_index,
821                                     unsigned int end_buffer_offset)
822 {
823         unsigned int i;
824
825         i = ar_first_buffer_index(ctx);
826         while (i != end_buffer_index) {
827                 dma_sync_single_for_cpu(ctx->ohci->card.device,
828                                         ar_buffer_bus(ctx, i),
829                                         PAGE_SIZE, DMA_FROM_DEVICE);
830                 i = ar_next_buffer_index(i);
831         }
832         if (end_buffer_offset > 0)
833                 dma_sync_single_for_cpu(ctx->ohci->card.device,
834                                         ar_buffer_bus(ctx, i),
835                                         end_buffer_offset, DMA_FROM_DEVICE);
836 }
837
838 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
839 #define cond_le32_to_cpu(v) \
840         (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
841 #else
842 #define cond_le32_to_cpu(v) le32_to_cpu(v)
843 #endif
844
845 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
846 {
847         struct fw_ohci *ohci = ctx->ohci;
848         struct fw_packet p;
849         u32 status, length, tcode;
850         int evt;
851
852         p.header[0] = cond_le32_to_cpu(buffer[0]);
853         p.header[1] = cond_le32_to_cpu(buffer[1]);
854         p.header[2] = cond_le32_to_cpu(buffer[2]);
855
856         tcode = (p.header[0] >> 4) & 0x0f;
857         switch (tcode) {
858         case TCODE_WRITE_QUADLET_REQUEST:
859         case TCODE_READ_QUADLET_RESPONSE:
860                 p.header[3] = (__force __u32) buffer[3];
861                 p.header_length = 16;
862                 p.payload_length = 0;
863                 break;
864
865         case TCODE_READ_BLOCK_REQUEST :
866                 p.header[3] = cond_le32_to_cpu(buffer[3]);
867                 p.header_length = 16;
868                 p.payload_length = 0;
869                 break;
870
871         case TCODE_WRITE_BLOCK_REQUEST:
872         case TCODE_READ_BLOCK_RESPONSE:
873         case TCODE_LOCK_REQUEST:
874         case TCODE_LOCK_RESPONSE:
875                 p.header[3] = cond_le32_to_cpu(buffer[3]);
876                 p.header_length = 16;
877                 p.payload_length = p.header[3] >> 16;
878                 if (p.payload_length > MAX_ASYNC_PAYLOAD) {
879                         ar_context_abort(ctx, "invalid packet length");
880                         return NULL;
881                 }
882                 break;
883
884         case TCODE_WRITE_RESPONSE:
885         case TCODE_READ_QUADLET_REQUEST:
886         case OHCI_TCODE_PHY_PACKET:
887                 p.header_length = 12;
888                 p.payload_length = 0;
889                 break;
890
891         default:
892                 ar_context_abort(ctx, "invalid tcode");
893                 return NULL;
894         }
895
896         p.payload = (void *) buffer + p.header_length;
897
898         /* FIXME: What to do about evt_* errors? */
899         length = (p.header_length + p.payload_length + 3) / 4;
900         status = cond_le32_to_cpu(buffer[length]);
901         evt    = (status >> 16) & 0x1f;
902
903         p.ack        = evt - 16;
904         p.speed      = (status >> 21) & 0x7;
905         p.timestamp  = status & 0xffff;
906         p.generation = ohci->request_generation;
907
908         log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
909
910         /*
911          * Several controllers, notably from NEC and VIA, forget to
912          * write ack_complete status at PHY packet reception.
913          */
914         if (evt == OHCI1394_evt_no_status &&
915             (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
916                 p.ack = ACK_COMPLETE;
917
918         /*
919          * The OHCI bus reset handler synthesizes a PHY packet with
920          * the new generation number when a bus reset happens (see
921          * section 8.4.2.3).  This helps us determine when a request
922          * was received and make sure we send the response in the same
923          * generation.  We only need this for requests; for responses
924          * we use the unique tlabel for finding the matching
925          * request.
926          *
927          * Alas some chips sometimes emit bus reset packets with a
928          * wrong generation.  We set the correct generation for these
929          * at a slightly incorrect time (in bus_reset_work).
930          */
931         if (evt == OHCI1394_evt_bus_reset) {
932                 if (!(ohci->quirks & QUIRK_RESET_PACKET))
933                         ohci->request_generation = (p.header[2] >> 16) & 0xff;
934         } else if (ctx == &ohci->ar_request_ctx) {
935                 fw_core_handle_request(&ohci->card, &p);
936         } else {
937                 fw_core_handle_response(&ohci->card, &p);
938         }
939
940         return buffer + length + 1;
941 }
942
943 static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
944 {
945         void *next;
946
947         while (p < end) {
948                 next = handle_ar_packet(ctx, p);
949                 if (!next)
950                         return p;
951                 p = next;
952         }
953
954         return p;
955 }
956
957 static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
958 {
959         unsigned int i;
960
961         i = ar_first_buffer_index(ctx);
962         while (i != end_buffer) {
963                 dma_sync_single_for_device(ctx->ohci->card.device,
964                                            ar_buffer_bus(ctx, i),
965                                            PAGE_SIZE, DMA_FROM_DEVICE);
966                 ar_context_link_page(ctx, i);
967                 i = ar_next_buffer_index(i);
968         }
969 }
970
971 static void ar_context_tasklet(unsigned long data)
972 {
973         struct ar_context *ctx = (struct ar_context *)data;
974         unsigned int end_buffer_index, end_buffer_offset;
975         void *p, *end;
976
977         p = ctx->pointer;
978         if (!p)
979                 return;
980
981         end_buffer_index = ar_search_last_active_buffer(ctx,
982                                                         &end_buffer_offset);
983         ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
984         end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
985
986         if (end_buffer_index < ar_first_buffer_index(ctx)) {
987                 /*
988                  * The filled part of the overall buffer wraps around; handle
989                  * all packets up to the buffer end here.  If the last packet
990                  * wraps around, its tail will be visible after the buffer end
991                  * because the buffer start pages are mapped there again.
992                  */
993                 void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
994                 p = handle_ar_packets(ctx, p, buffer_end);
995                 if (p < buffer_end)
996                         goto error;
997                 /* adjust p to point back into the actual buffer */
998                 p -= AR_BUFFERS * PAGE_SIZE;
999         }
1000
1001         p = handle_ar_packets(ctx, p, end);
1002         if (p != end) {
1003                 if (p > end)
1004                         ar_context_abort(ctx, "inconsistent descriptor");
1005                 goto error;
1006         }
1007
1008         ctx->pointer = p;
1009         ar_recycle_buffers(ctx, end_buffer_index);
1010
1011         return;
1012
1013 error:
1014         ctx->pointer = NULL;
1015 }
1016
1017 static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
1018                            unsigned int descriptors_offset, u32 regs)
1019 {
1020         struct device *dev = ohci->card.device;
1021         unsigned int i;
1022         dma_addr_t dma_addr;
1023         struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
1024         struct descriptor *d;
1025
1026         ctx->regs        = regs;
1027         ctx->ohci        = ohci;
1028         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
1029
1030         for (i = 0; i < AR_BUFFERS; i++) {
1031                 ctx->pages[i] = dma_alloc_pages(dev, PAGE_SIZE, &dma_addr,
1032                                                 DMA_FROM_DEVICE, GFP_KERNEL);
1033                 if (!ctx->pages[i])
1034                         goto out_of_memory;
1035                 set_page_private(ctx->pages[i], dma_addr);
1036                 dma_sync_single_for_device(dev, dma_addr, PAGE_SIZE,
1037                                            DMA_FROM_DEVICE);
1038         }
1039
1040         for (i = 0; i < AR_BUFFERS; i++)
1041                 pages[i]              = ctx->pages[i];
1042         for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
1043                 pages[AR_BUFFERS + i] = ctx->pages[i];
1044         ctx->buffer = vmap(pages, ARRAY_SIZE(pages), VM_MAP, PAGE_KERNEL);
1045         if (!ctx->buffer)
1046                 goto out_of_memory;
1047
1048         ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
1049         ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1050
1051         for (i = 0; i < AR_BUFFERS; i++) {
1052                 d = &ctx->descriptors[i];
1053                 d->req_count      = cpu_to_le16(PAGE_SIZE);
1054                 d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1055                                                 DESCRIPTOR_STATUS |
1056                                                 DESCRIPTOR_BRANCH_ALWAYS);
1057                 d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
1058                 d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1059                         ar_next_buffer_index(i) * sizeof(struct descriptor));
1060         }
1061
1062         return 0;
1063
1064 out_of_memory:
1065         ar_context_release(ctx);
1066
1067         return -ENOMEM;
1068 }
1069
1070 static void ar_context_run(struct ar_context *ctx)
1071 {
1072         unsigned int i;
1073
1074         for (i = 0; i < AR_BUFFERS; i++)
1075                 ar_context_link_page(ctx, i);
1076
1077         ctx->pointer = ctx->buffer;
1078
1079         reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1080         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1081 }
1082
1083 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1084 {
1085         __le16 branch;
1086
1087         branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1088
1089         /* figure out which descriptor the branch address goes in */
1090         if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1091                 return d;
1092         else
1093                 return d + z - 1;
1094 }
1095
1096 static void context_tasklet(unsigned long data)
1097 {
1098         struct context *ctx = (struct context *) data;
1099         struct descriptor *d, *last;
1100         u32 address;
1101         int z;
1102         struct descriptor_buffer *desc;
1103
1104         desc = list_entry(ctx->buffer_list.next,
1105                         struct descriptor_buffer, list);
1106         last = ctx->last;
1107         while (last->branch_address != 0) {
1108                 struct descriptor_buffer *old_desc = desc;
1109                 address = le32_to_cpu(last->branch_address);
1110                 z = address & 0xf;
1111                 address &= ~0xf;
1112                 ctx->current_bus = address;
1113
1114                 /* If the branch address points to a buffer outside of the
1115                  * current buffer, advance to the next buffer. */
1116                 if (address < desc->buffer_bus ||
1117                                 address >= desc->buffer_bus + desc->used)
1118                         desc = list_entry(desc->list.next,
1119                                         struct descriptor_buffer, list);
1120                 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1121                 last = find_branch_descriptor(d, z);
1122
1123                 if (!ctx->callback(ctx, d, last))
1124                         break;
1125
1126                 if (old_desc != desc) {
1127                         /* If we've advanced to the next buffer, move the
1128                          * previous buffer to the free list. */
1129                         unsigned long flags;
1130                         old_desc->used = 0;
1131                         spin_lock_irqsave(&ctx->ohci->lock, flags);
1132                         list_move_tail(&old_desc->list, &ctx->buffer_list);
1133                         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1134                 }
1135                 ctx->last = last;
1136         }
1137 }
1138
1139 /*
1140  * Allocate a new buffer and add it to the list of free buffers for this
1141  * context.  Must be called with ohci->lock held.
1142  */
1143 static int context_add_buffer(struct context *ctx)
1144 {
1145         struct descriptor_buffer *desc;
1146         dma_addr_t bus_addr;
1147         int offset;
1148
1149         /*
1150          * 16MB of descriptors should be far more than enough for any DMA
1151          * program.  This will catch run-away userspace or DoS attacks.
1152          */
1153         if (ctx->total_allocation >= 16*1024*1024)
1154                 return -ENOMEM;
1155
1156         desc = dmam_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE, &bus_addr, GFP_ATOMIC);
1157         if (!desc)
1158                 return -ENOMEM;
1159
1160         offset = (void *)&desc->buffer - (void *)desc;
1161         /*
1162          * Some controllers, like JMicron ones, always issue 0x20-byte DMA reads
1163          * for descriptors, even 0x10-byte ones. This can cause page faults when
1164          * an IOMMU is in use and the oversized read crosses a page boundary.
1165          * Work around this by always leaving at least 0x10 bytes of padding.
1166          */
1167         desc->buffer_size = PAGE_SIZE - offset - 0x10;
1168         desc->buffer_bus = bus_addr + offset;
1169         desc->used = 0;
1170
1171         list_add_tail(&desc->list, &ctx->buffer_list);
1172         ctx->total_allocation += PAGE_SIZE;
1173
1174         return 0;
1175 }
1176
1177 static int context_init(struct context *ctx, struct fw_ohci *ohci,
1178                         u32 regs, descriptor_callback_t callback)
1179 {
1180         ctx->ohci = ohci;
1181         ctx->regs = regs;
1182         ctx->total_allocation = 0;
1183
1184         INIT_LIST_HEAD(&ctx->buffer_list);
1185         if (context_add_buffer(ctx) < 0)
1186                 return -ENOMEM;
1187
1188         ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1189                         struct descriptor_buffer, list);
1190
1191         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1192         ctx->callback = callback;
1193
1194         /*
1195          * We put a dummy descriptor in the buffer that has a NULL
1196          * branch address and looks like it's been sent.  That way we
1197          * have a descriptor to append DMA programs to.
1198          */
1199         memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1200         ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1201         ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1202         ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1203         ctx->last = ctx->buffer_tail->buffer;
1204         ctx->prev = ctx->buffer_tail->buffer;
1205         ctx->prev_z = 1;
1206
1207         return 0;
1208 }
1209
1210 static void context_release(struct context *ctx)
1211 {
1212         struct fw_card *card = &ctx->ohci->card;
1213         struct descriptor_buffer *desc, *tmp;
1214
1215         list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list) {
1216                 dmam_free_coherent(card->device, PAGE_SIZE, desc,
1217                                    desc->buffer_bus - ((void *)&desc->buffer - (void *)desc));
1218         }
1219 }
1220
1221 /* Must be called with ohci->lock held */
1222 static struct descriptor *context_get_descriptors(struct context *ctx,
1223                                                   int z, dma_addr_t *d_bus)
1224 {
1225         struct descriptor *d = NULL;
1226         struct descriptor_buffer *desc = ctx->buffer_tail;
1227
1228         if (z * sizeof(*d) > desc->buffer_size)
1229                 return NULL;
1230
1231         if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1232                 /* No room for the descriptor in this buffer, so advance to the
1233                  * next one. */
1234
1235                 if (desc->list.next == &ctx->buffer_list) {
1236                         /* If there is no free buffer next in the list,
1237                          * allocate one. */
1238                         if (context_add_buffer(ctx) < 0)
1239                                 return NULL;
1240                 }
1241                 desc = list_entry(desc->list.next,
1242                                 struct descriptor_buffer, list);
1243                 ctx->buffer_tail = desc;
1244         }
1245
1246         d = desc->buffer + desc->used / sizeof(*d);
1247         memset(d, 0, z * sizeof(*d));
1248         *d_bus = desc->buffer_bus + desc->used;
1249
1250         return d;
1251 }
1252
1253 static void context_run(struct context *ctx, u32 extra)
1254 {
1255         struct fw_ohci *ohci = ctx->ohci;
1256
1257         reg_write(ohci, COMMAND_PTR(ctx->regs),
1258                   le32_to_cpu(ctx->last->branch_address));
1259         reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1260         reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1261         ctx->running = true;
1262         flush_writes(ohci);
1263 }
1264
1265 static void context_append(struct context *ctx,
1266                            struct descriptor *d, int z, int extra)
1267 {
1268         dma_addr_t d_bus;
1269         struct descriptor_buffer *desc = ctx->buffer_tail;
1270         struct descriptor *d_branch;
1271
1272         d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1273
1274         desc->used += (z + extra) * sizeof(*d);
1275
1276         wmb(); /* finish init of new descriptors before branch_address update */
1277
1278         d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
1279         d_branch->branch_address = cpu_to_le32(d_bus | z);
1280
1281         /*
1282          * VT6306 incorrectly checks only the single descriptor at the
1283          * CommandPtr when the wake bit is written, so if it's a
1284          * multi-descriptor block starting with an INPUT_MORE, put a copy of
1285          * the branch address in the first descriptor.
1286          *
1287          * Not doing this for transmit contexts since not sure how it interacts
1288          * with skip addresses.
1289          */
1290         if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
1291             d_branch != ctx->prev &&
1292             (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
1293              cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
1294                 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1295         }
1296
1297         ctx->prev = d;
1298         ctx->prev_z = z;
1299 }
1300
1301 static void context_stop(struct context *ctx)
1302 {
1303         struct fw_ohci *ohci = ctx->ohci;
1304         u32 reg;
1305         int i;
1306
1307         reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1308         ctx->running = false;
1309
1310         for (i = 0; i < 1000; i++) {
1311                 reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1312                 if ((reg & CONTEXT_ACTIVE) == 0)
1313                         return;
1314
1315                 if (i)
1316                         udelay(10);
1317         }
1318         ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1319 }
1320
1321 struct driver_data {
1322         u8 inline_data[8];
1323         struct fw_packet *packet;
1324 };
1325
1326 /*
1327  * This function apppends a packet to the DMA queue for transmission.
1328  * Must always be called with the ochi->lock held to ensure proper
1329  * generation handling and locking around packet queue manipulation.
1330  */
1331 static int at_context_queue_packet(struct context *ctx,
1332                                    struct fw_packet *packet)
1333 {
1334         struct fw_ohci *ohci = ctx->ohci;
1335         dma_addr_t d_bus, payload_bus;
1336         struct driver_data *driver_data;
1337         struct descriptor *d, *last;
1338         __le32 *header;
1339         int z, tcode;
1340
1341         d = context_get_descriptors(ctx, 4, &d_bus);
1342         if (d == NULL) {
1343                 packet->ack = RCODE_SEND_ERROR;
1344                 return -1;
1345         }
1346
1347         d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1348         d[0].res_count = cpu_to_le16(packet->timestamp);
1349
1350         /*
1351          * The DMA format for asynchronous link packets is different
1352          * from the IEEE1394 layout, so shift the fields around
1353          * accordingly.
1354          */
1355
1356         tcode = (packet->header[0] >> 4) & 0x0f;
1357         header = (__le32 *) &d[1];
1358         switch (tcode) {
1359         case TCODE_WRITE_QUADLET_REQUEST:
1360         case TCODE_WRITE_BLOCK_REQUEST:
1361         case TCODE_WRITE_RESPONSE:
1362         case TCODE_READ_QUADLET_REQUEST:
1363         case TCODE_READ_BLOCK_REQUEST:
1364         case TCODE_READ_QUADLET_RESPONSE:
1365         case TCODE_READ_BLOCK_RESPONSE:
1366         case TCODE_LOCK_REQUEST:
1367         case TCODE_LOCK_RESPONSE:
1368                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1369                                         (packet->speed << 16));
1370                 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1371                                         (packet->header[0] & 0xffff0000));
1372                 header[2] = cpu_to_le32(packet->header[2]);
1373
1374                 if (TCODE_IS_BLOCK_PACKET(tcode))
1375                         header[3] = cpu_to_le32(packet->header[3]);
1376                 else
1377                         header[3] = (__force __le32) packet->header[3];
1378
1379                 d[0].req_count = cpu_to_le16(packet->header_length);
1380                 break;
1381
1382         case TCODE_LINK_INTERNAL:
1383                 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1384                                         (packet->speed << 16));
1385                 header[1] = cpu_to_le32(packet->header[1]);
1386                 header[2] = cpu_to_le32(packet->header[2]);
1387                 d[0].req_count = cpu_to_le16(12);
1388
1389                 if (is_ping_packet(&packet->header[1]))
1390                         d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1391                 break;
1392
1393         case TCODE_STREAM_DATA:
1394                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1395                                         (packet->speed << 16));
1396                 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1397                 d[0].req_count = cpu_to_le16(8);
1398                 break;
1399
1400         default:
1401                 /* BUG(); */
1402                 packet->ack = RCODE_SEND_ERROR;
1403                 return -1;
1404         }
1405
1406         BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1407         driver_data = (struct driver_data *) &d[3];
1408         driver_data->packet = packet;
1409         packet->driver_data = driver_data;
1410
1411         if (packet->payload_length > 0) {
1412                 if (packet->payload_length > sizeof(driver_data->inline_data)) {
1413                         payload_bus = dma_map_single(ohci->card.device,
1414                                                      packet->payload,
1415                                                      packet->payload_length,
1416                                                      DMA_TO_DEVICE);
1417                         if (dma_mapping_error(ohci->card.device, payload_bus)) {
1418                                 packet->ack = RCODE_SEND_ERROR;
1419                                 return -1;
1420                         }
1421                         packet->payload_bus     = payload_bus;
1422                         packet->payload_mapped  = true;
1423                 } else {
1424                         memcpy(driver_data->inline_data, packet->payload,
1425                                packet->payload_length);
1426                         payload_bus = d_bus + 3 * sizeof(*d);
1427                 }
1428
1429                 d[2].req_count    = cpu_to_le16(packet->payload_length);
1430                 d[2].data_address = cpu_to_le32(payload_bus);
1431                 last = &d[2];
1432                 z = 3;
1433         } else {
1434                 last = &d[0];
1435                 z = 2;
1436         }
1437
1438         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1439                                      DESCRIPTOR_IRQ_ALWAYS |
1440                                      DESCRIPTOR_BRANCH_ALWAYS);
1441
1442         /* FIXME: Document how the locking works. */
1443         if (ohci->generation != packet->generation) {
1444                 if (packet->payload_mapped)
1445                         dma_unmap_single(ohci->card.device, payload_bus,
1446                                          packet->payload_length, DMA_TO_DEVICE);
1447                 packet->ack = RCODE_GENERATION;
1448                 return -1;
1449         }
1450
1451         context_append(ctx, d, z, 4 - z);
1452
1453         if (ctx->running)
1454                 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1455         else
1456                 context_run(ctx, 0);
1457
1458         return 0;
1459 }
1460
1461 static void at_context_flush(struct context *ctx)
1462 {
1463         tasklet_disable(&ctx->tasklet);
1464
1465         ctx->flushing = true;
1466         context_tasklet((unsigned long)ctx);
1467         ctx->flushing = false;
1468
1469         tasklet_enable(&ctx->tasklet);
1470 }
1471
1472 static int handle_at_packet(struct context *context,
1473                             struct descriptor *d,
1474                             struct descriptor *last)
1475 {
1476         struct driver_data *driver_data;
1477         struct fw_packet *packet;
1478         struct fw_ohci *ohci = context->ohci;
1479         int evt;
1480
1481         if (last->transfer_status == 0 && !context->flushing)
1482                 /* This descriptor isn't done yet, stop iteration. */
1483                 return 0;
1484
1485         driver_data = (struct driver_data *) &d[3];
1486         packet = driver_data->packet;
1487         if (packet == NULL)
1488                 /* This packet was cancelled, just continue. */
1489                 return 1;
1490
1491         if (packet->payload_mapped)
1492                 dma_unmap_single(ohci->card.device, packet->payload_bus,
1493                                  packet->payload_length, DMA_TO_DEVICE);
1494
1495         evt = le16_to_cpu(last->transfer_status) & 0x1f;
1496         packet->timestamp = le16_to_cpu(last->res_count);
1497
1498         log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1499
1500         switch (evt) {
1501         case OHCI1394_evt_timeout:
1502                 /* Async response transmit timed out. */
1503                 packet->ack = RCODE_CANCELLED;
1504                 break;
1505
1506         case OHCI1394_evt_flushed:
1507                 /*
1508                  * The packet was flushed should give same error as
1509                  * when we try to use a stale generation count.
1510                  */
1511                 packet->ack = RCODE_GENERATION;
1512                 break;
1513
1514         case OHCI1394_evt_missing_ack:
1515                 if (context->flushing)
1516                         packet->ack = RCODE_GENERATION;
1517                 else {
1518                         /*
1519                          * Using a valid (current) generation count, but the
1520                          * node is not on the bus or not sending acks.
1521                          */
1522                         packet->ack = RCODE_NO_ACK;
1523                 }
1524                 break;
1525
1526         case ACK_COMPLETE + 0x10:
1527         case ACK_PENDING + 0x10:
1528         case ACK_BUSY_X + 0x10:
1529         case ACK_BUSY_A + 0x10:
1530         case ACK_BUSY_B + 0x10:
1531         case ACK_DATA_ERROR + 0x10:
1532         case ACK_TYPE_ERROR + 0x10:
1533                 packet->ack = evt - 0x10;
1534                 break;
1535
1536         case OHCI1394_evt_no_status:
1537                 if (context->flushing) {
1538                         packet->ack = RCODE_GENERATION;
1539                         break;
1540                 }
1541                 fallthrough;
1542
1543         default:
1544                 packet->ack = RCODE_SEND_ERROR;
1545                 break;
1546         }
1547
1548         packet->callback(packet, &ohci->card, packet->ack);
1549
1550         return 1;
1551 }
1552
1553 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
1554 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
1555 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
1556 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
1557 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
1558
1559 static void handle_local_rom(struct fw_ohci *ohci,
1560                              struct fw_packet *packet, u32 csr)
1561 {
1562         struct fw_packet response;
1563         int tcode, length, i;
1564
1565         tcode = HEADER_GET_TCODE(packet->header[0]);
1566         if (TCODE_IS_BLOCK_PACKET(tcode))
1567                 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1568         else
1569                 length = 4;
1570
1571         i = csr - CSR_CONFIG_ROM;
1572         if (i + length > CONFIG_ROM_SIZE) {
1573                 fw_fill_response(&response, packet->header,
1574                                  RCODE_ADDRESS_ERROR, NULL, 0);
1575         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1576                 fw_fill_response(&response, packet->header,
1577                                  RCODE_TYPE_ERROR, NULL, 0);
1578         } else {
1579                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1580                                  (void *) ohci->config_rom + i, length);
1581         }
1582
1583         fw_core_handle_response(&ohci->card, &response);
1584 }
1585
1586 static void handle_local_lock(struct fw_ohci *ohci,
1587                               struct fw_packet *packet, u32 csr)
1588 {
1589         struct fw_packet response;
1590         int tcode, length, ext_tcode, sel, try;
1591         __be32 *payload, lock_old;
1592         u32 lock_arg, lock_data;
1593
1594         tcode = HEADER_GET_TCODE(packet->header[0]);
1595         length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1596         payload = packet->payload;
1597         ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1598
1599         if (tcode == TCODE_LOCK_REQUEST &&
1600             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1601                 lock_arg = be32_to_cpu(payload[0]);
1602                 lock_data = be32_to_cpu(payload[1]);
1603         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1604                 lock_arg = 0;
1605                 lock_data = 0;
1606         } else {
1607                 fw_fill_response(&response, packet->header,
1608                                  RCODE_TYPE_ERROR, NULL, 0);
1609                 goto out;
1610         }
1611
1612         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1613         reg_write(ohci, OHCI1394_CSRData, lock_data);
1614         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1615         reg_write(ohci, OHCI1394_CSRControl, sel);
1616
1617         for (try = 0; try < 20; try++)
1618                 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1619                         lock_old = cpu_to_be32(reg_read(ohci,
1620                                                         OHCI1394_CSRData));
1621                         fw_fill_response(&response, packet->header,
1622                                          RCODE_COMPLETE,
1623                                          &lock_old, sizeof(lock_old));
1624                         goto out;
1625                 }
1626
1627         ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1628         fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1629
1630  out:
1631         fw_core_handle_response(&ohci->card, &response);
1632 }
1633
1634 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1635 {
1636         u64 offset, csr;
1637
1638         if (ctx == &ctx->ohci->at_request_ctx) {
1639                 packet->ack = ACK_PENDING;
1640                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1641         }
1642
1643         offset =
1644                 ((unsigned long long)
1645                  HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1646                 packet->header[2];
1647         csr = offset - CSR_REGISTER_BASE;
1648
1649         /* Handle config rom reads. */
1650         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1651                 handle_local_rom(ctx->ohci, packet, csr);
1652         else switch (csr) {
1653         case CSR_BUS_MANAGER_ID:
1654         case CSR_BANDWIDTH_AVAILABLE:
1655         case CSR_CHANNELS_AVAILABLE_HI:
1656         case CSR_CHANNELS_AVAILABLE_LO:
1657                 handle_local_lock(ctx->ohci, packet, csr);
1658                 break;
1659         default:
1660                 if (ctx == &ctx->ohci->at_request_ctx)
1661                         fw_core_handle_request(&ctx->ohci->card, packet);
1662                 else
1663                         fw_core_handle_response(&ctx->ohci->card, packet);
1664                 break;
1665         }
1666
1667         if (ctx == &ctx->ohci->at_response_ctx) {
1668                 packet->ack = ACK_COMPLETE;
1669                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1670         }
1671 }
1672
1673 static u32 get_cycle_time(struct fw_ohci *ohci);
1674
1675 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1676 {
1677         unsigned long flags;
1678         int ret;
1679
1680         spin_lock_irqsave(&ctx->ohci->lock, flags);
1681
1682         if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1683             ctx->ohci->generation == packet->generation) {
1684                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1685
1686                 // Timestamping on behalf of the hardware.
1687                 packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ctx->ohci));
1688
1689                 handle_local_request(ctx, packet);
1690                 return;
1691         }
1692
1693         ret = at_context_queue_packet(ctx, packet);
1694         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1695
1696         if (ret < 0) {
1697                 // Timestamping on behalf of the hardware.
1698                 packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ctx->ohci));
1699
1700                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1701         }
1702 }
1703
1704 static void detect_dead_context(struct fw_ohci *ohci,
1705                                 const char *name, unsigned int regs)
1706 {
1707         u32 ctl;
1708
1709         ctl = reg_read(ohci, CONTROL_SET(regs));
1710         if (ctl & CONTEXT_DEAD)
1711                 ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
1712                         name, evts[ctl & 0x1f]);
1713 }
1714
1715 static void handle_dead_contexts(struct fw_ohci *ohci)
1716 {
1717         unsigned int i;
1718         char name[8];
1719
1720         detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1721         detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1722         detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1723         detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1724         for (i = 0; i < 32; ++i) {
1725                 if (!(ohci->it_context_support & (1 << i)))
1726                         continue;
1727                 sprintf(name, "IT%u", i);
1728                 detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1729         }
1730         for (i = 0; i < 32; ++i) {
1731                 if (!(ohci->ir_context_support & (1 << i)))
1732                         continue;
1733                 sprintf(name, "IR%u", i);
1734                 detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1735         }
1736         /* TODO: maybe try to flush and restart the dead contexts */
1737 }
1738
1739 static u32 cycle_timer_ticks(u32 cycle_timer)
1740 {
1741         u32 ticks;
1742
1743         ticks = cycle_timer & 0xfff;
1744         ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1745         ticks += (3072 * 8000) * (cycle_timer >> 25);
1746
1747         return ticks;
1748 }
1749
1750 /*
1751  * Some controllers exhibit one or more of the following bugs when updating the
1752  * iso cycle timer register:
1753  *  - When the lowest six bits are wrapping around to zero, a read that happens
1754  *    at the same time will return garbage in the lowest ten bits.
1755  *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1756  *    not incremented for about 60 ns.
1757  *  - Occasionally, the entire register reads zero.
1758  *
1759  * To catch these, we read the register three times and ensure that the
1760  * difference between each two consecutive reads is approximately the same, i.e.
1761  * less than twice the other.  Furthermore, any negative difference indicates an
1762  * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1763  * execute, so we have enough precision to compute the ratio of the differences.)
1764  */
1765 static u32 get_cycle_time(struct fw_ohci *ohci)
1766 {
1767         u32 c0, c1, c2;
1768         u32 t0, t1, t2;
1769         s32 diff01, diff12;
1770         int i;
1771
1772         if (has_reboot_by_cycle_timer_read_quirk(ohci))
1773                 return 0;
1774
1775         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1776
1777         if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1778                 i = 0;
1779                 c1 = c2;
1780                 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1781                 do {
1782                         c0 = c1;
1783                         c1 = c2;
1784                         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1785                         t0 = cycle_timer_ticks(c0);
1786                         t1 = cycle_timer_ticks(c1);
1787                         t2 = cycle_timer_ticks(c2);
1788                         diff01 = t1 - t0;
1789                         diff12 = t2 - t1;
1790                 } while ((diff01 <= 0 || diff12 <= 0 ||
1791                           diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1792                          && i++ < 20);
1793         }
1794
1795         return c2;
1796 }
1797
1798 /*
1799  * This function has to be called at least every 64 seconds.  The bus_time
1800  * field stores not only the upper 25 bits of the BUS_TIME register but also
1801  * the most significant bit of the cycle timer in bit 6 so that we can detect
1802  * changes in this bit.
1803  */
1804 static u32 update_bus_time(struct fw_ohci *ohci)
1805 {
1806         u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1807
1808         if (unlikely(!ohci->bus_time_running)) {
1809                 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1810                 ohci->bus_time = (lower_32_bits(ktime_get_seconds()) & ~0x7f) |
1811                                  (cycle_time_seconds & 0x40);
1812                 ohci->bus_time_running = true;
1813         }
1814
1815         if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1816                 ohci->bus_time += 0x40;
1817
1818         return ohci->bus_time | cycle_time_seconds;
1819 }
1820
1821 static int get_status_for_port(struct fw_ohci *ohci, int port_index)
1822 {
1823         int reg;
1824
1825         mutex_lock(&ohci->phy_reg_mutex);
1826         reg = write_phy_reg(ohci, 7, port_index);
1827         if (reg >= 0)
1828                 reg = read_phy_reg(ohci, 8);
1829         mutex_unlock(&ohci->phy_reg_mutex);
1830         if (reg < 0)
1831                 return reg;
1832
1833         switch (reg & 0x0f) {
1834         case 0x06:
1835                 return 2;       /* is child node (connected to parent node) */
1836         case 0x0e:
1837                 return 3;       /* is parent node (connected to child node) */
1838         }
1839         return 1;               /* not connected */
1840 }
1841
1842 static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1843         int self_id_count)
1844 {
1845         int i;
1846         u32 entry;
1847
1848         for (i = 0; i < self_id_count; i++) {
1849                 entry = ohci->self_id_buffer[i];
1850                 if ((self_id & 0xff000000) == (entry & 0xff000000))
1851                         return -1;
1852                 if ((self_id & 0xff000000) < (entry & 0xff000000))
1853                         return i;
1854         }
1855         return i;
1856 }
1857
1858 static int initiated_reset(struct fw_ohci *ohci)
1859 {
1860         int reg;
1861         int ret = 0;
1862
1863         mutex_lock(&ohci->phy_reg_mutex);
1864         reg = write_phy_reg(ohci, 7, 0xe0); /* Select page 7 */
1865         if (reg >= 0) {
1866                 reg = read_phy_reg(ohci, 8);
1867                 reg |= 0x40;
1868                 reg = write_phy_reg(ohci, 8, reg); /* set PMODE bit */
1869                 if (reg >= 0) {
1870                         reg = read_phy_reg(ohci, 12); /* read register 12 */
1871                         if (reg >= 0) {
1872                                 if ((reg & 0x08) == 0x08) {
1873                                         /* bit 3 indicates "initiated reset" */
1874                                         ret = 0x2;
1875                                 }
1876                         }
1877                 }
1878         }
1879         mutex_unlock(&ohci->phy_reg_mutex);
1880         return ret;
1881 }
1882
1883 /*
1884  * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1885  * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1886  * Construct the selfID from phy register contents.
1887  */
1888 static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1889 {
1890         int reg, i, pos, status;
1891         /* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1892         u32 self_id = 0x8040c800;
1893
1894         reg = reg_read(ohci, OHCI1394_NodeID);
1895         if (!(reg & OHCI1394_NodeID_idValid)) {
1896                 ohci_notice(ohci,
1897                             "node ID not valid, new bus reset in progress\n");
1898                 return -EBUSY;
1899         }
1900         self_id |= ((reg & 0x3f) << 24); /* phy ID */
1901
1902         reg = ohci_read_phy_reg(&ohci->card, 4);
1903         if (reg < 0)
1904                 return reg;
1905         self_id |= ((reg & 0x07) << 8); /* power class */
1906
1907         reg = ohci_read_phy_reg(&ohci->card, 1);
1908         if (reg < 0)
1909                 return reg;
1910         self_id |= ((reg & 0x3f) << 16); /* gap count */
1911
1912         for (i = 0; i < 3; i++) {
1913                 status = get_status_for_port(ohci, i);
1914                 if (status < 0)
1915                         return status;
1916                 self_id |= ((status & 0x3) << (6 - (i * 2)));
1917         }
1918
1919         self_id |= initiated_reset(ohci);
1920
1921         pos = get_self_id_pos(ohci, self_id, self_id_count);
1922         if (pos >= 0) {
1923                 memmove(&(ohci->self_id_buffer[pos+1]),
1924                         &(ohci->self_id_buffer[pos]),
1925                         (self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1926                 ohci->self_id_buffer[pos] = self_id;
1927                 self_id_count++;
1928         }
1929         return self_id_count;
1930 }
1931
1932 static void bus_reset_work(struct work_struct *work)
1933 {
1934         struct fw_ohci *ohci =
1935                 container_of(work, struct fw_ohci, bus_reset_work);
1936         int self_id_count, generation, new_generation, i, j;
1937         u32 reg;
1938         void *free_rom = NULL;
1939         dma_addr_t free_rom_bus = 0;
1940         bool is_new_root;
1941
1942         reg = reg_read(ohci, OHCI1394_NodeID);
1943         if (!(reg & OHCI1394_NodeID_idValid)) {
1944                 ohci_notice(ohci,
1945                             "node ID not valid, new bus reset in progress\n");
1946                 return;
1947         }
1948         if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1949                 ohci_notice(ohci, "malconfigured bus\n");
1950                 return;
1951         }
1952         ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1953                                OHCI1394_NodeID_nodeNumber);
1954
1955         is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1956         if (!(ohci->is_root && is_new_root))
1957                 reg_write(ohci, OHCI1394_LinkControlSet,
1958                           OHCI1394_LinkControl_cycleMaster);
1959         ohci->is_root = is_new_root;
1960
1961         reg = reg_read(ohci, OHCI1394_SelfIDCount);
1962         if (reg & OHCI1394_SelfIDCount_selfIDError) {
1963                 ohci_notice(ohci, "self ID receive error\n");
1964                 return;
1965         }
1966         /*
1967          * The count in the SelfIDCount register is the number of
1968          * bytes in the self ID receive buffer.  Since we also receive
1969          * the inverted quadlets and a header quadlet, we shift one
1970          * bit extra to get the actual number of self IDs.
1971          */
1972         self_id_count = (reg >> 3) & 0xff;
1973
1974         if (self_id_count > 252) {
1975                 ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
1976                 return;
1977         }
1978
1979         generation = (cond_le32_to_cpu(ohci->self_id[0]) >> 16) & 0xff;
1980         rmb();
1981
1982         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1983                 u32 id  = cond_le32_to_cpu(ohci->self_id[i]);
1984                 u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1]);
1985
1986                 if (id != ~id2) {
1987                         /*
1988                          * If the invalid data looks like a cycle start packet,
1989                          * it's likely to be the result of the cycle master
1990                          * having a wrong gap count.  In this case, the self IDs
1991                          * so far are valid and should be processed so that the
1992                          * bus manager can then correct the gap count.
1993                          */
1994                         if (id == 0xffff008f) {
1995                                 ohci_notice(ohci, "ignoring spurious self IDs\n");
1996                                 self_id_count = j;
1997                                 break;
1998                         }
1999
2000                         ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
2001                                     j, self_id_count, id, id2);
2002                         return;
2003                 }
2004                 ohci->self_id_buffer[j] = id;
2005         }
2006
2007         if (ohci->quirks & QUIRK_TI_SLLZ059) {
2008                 self_id_count = find_and_insert_self_id(ohci, self_id_count);
2009                 if (self_id_count < 0) {
2010                         ohci_notice(ohci,
2011                                     "could not construct local self ID\n");
2012                         return;
2013                 }
2014         }
2015
2016         if (self_id_count == 0) {
2017                 ohci_notice(ohci, "no self IDs\n");
2018                 return;
2019         }
2020         rmb();
2021
2022         /*
2023          * Check the consistency of the self IDs we just read.  The
2024          * problem we face is that a new bus reset can start while we
2025          * read out the self IDs from the DMA buffer. If this happens,
2026          * the DMA buffer will be overwritten with new self IDs and we
2027          * will read out inconsistent data.  The OHCI specification
2028          * (section 11.2) recommends a technique similar to
2029          * linux/seqlock.h, where we remember the generation of the
2030          * self IDs in the buffer before reading them out and compare
2031          * it to the current generation after reading them out.  If
2032          * the two generations match we know we have a consistent set
2033          * of self IDs.
2034          */
2035
2036         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
2037         if (new_generation != generation) {
2038                 ohci_notice(ohci, "new bus reset, discarding self ids\n");
2039                 return;
2040         }
2041
2042         /* FIXME: Document how the locking works. */
2043         spin_lock_irq(&ohci->lock);
2044
2045         ohci->generation = -1; /* prevent AT packet queueing */
2046         context_stop(&ohci->at_request_ctx);
2047         context_stop(&ohci->at_response_ctx);
2048
2049         spin_unlock_irq(&ohci->lock);
2050
2051         /*
2052          * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
2053          * packets in the AT queues and software needs to drain them.
2054          * Some OHCI 1.1 controllers (JMicron) apparently require this too.
2055          */
2056         at_context_flush(&ohci->at_request_ctx);
2057         at_context_flush(&ohci->at_response_ctx);
2058
2059         spin_lock_irq(&ohci->lock);
2060
2061         ohci->generation = generation;
2062         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2063
2064         if (ohci->quirks & QUIRK_RESET_PACKET)
2065                 ohci->request_generation = generation;
2066
2067         /*
2068          * This next bit is unrelated to the AT context stuff but we
2069          * have to do it under the spinlock also.  If a new config rom
2070          * was set up before this reset, the old one is now no longer
2071          * in use and we can free it. Update the config rom pointers
2072          * to point to the current config rom and clear the
2073          * next_config_rom pointer so a new update can take place.
2074          */
2075
2076         if (ohci->next_config_rom != NULL) {
2077                 if (ohci->next_config_rom != ohci->config_rom) {
2078                         free_rom      = ohci->config_rom;
2079                         free_rom_bus  = ohci->config_rom_bus;
2080                 }
2081                 ohci->config_rom      = ohci->next_config_rom;
2082                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
2083                 ohci->next_config_rom = NULL;
2084
2085                 /*
2086                  * Restore config_rom image and manually update
2087                  * config_rom registers.  Writing the header quadlet
2088                  * will indicate that the config rom is ready, so we
2089                  * do that last.
2090                  */
2091                 reg_write(ohci, OHCI1394_BusOptions,
2092                           be32_to_cpu(ohci->config_rom[2]));
2093                 ohci->config_rom[0] = ohci->next_header;
2094                 reg_write(ohci, OHCI1394_ConfigROMhdr,
2095                           be32_to_cpu(ohci->next_header));
2096         }
2097
2098         if (param_remote_dma) {
2099                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
2100                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
2101         }
2102
2103         spin_unlock_irq(&ohci->lock);
2104
2105         if (free_rom)
2106                 dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, free_rom, free_rom_bus);
2107
2108         log_selfids(ohci, generation, self_id_count);
2109
2110         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2111                                  self_id_count, ohci->self_id_buffer,
2112                                  ohci->csr_state_setclear_abdicate);
2113         ohci->csr_state_setclear_abdicate = false;
2114 }
2115
2116 static irqreturn_t irq_handler(int irq, void *data)
2117 {
2118         struct fw_ohci *ohci = data;
2119         u32 event, iso_event;
2120         int i;
2121
2122         event = reg_read(ohci, OHCI1394_IntEventClear);
2123
2124         if (!event || !~event)
2125                 return IRQ_NONE;
2126
2127         /*
2128          * busReset and postedWriteErr must not be cleared yet
2129          * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2130          */
2131         reg_write(ohci, OHCI1394_IntEventClear,
2132                   event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2133         log_irqs(ohci, event);
2134
2135         if (event & OHCI1394_selfIDComplete)
2136                 queue_work(selfid_workqueue, &ohci->bus_reset_work);
2137
2138         if (event & OHCI1394_RQPkt)
2139                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2140
2141         if (event & OHCI1394_RSPkt)
2142                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2143
2144         if (event & OHCI1394_reqTxComplete)
2145                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
2146
2147         if (event & OHCI1394_respTxComplete)
2148                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
2149
2150         if (event & OHCI1394_isochRx) {
2151                 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2152                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2153
2154                 while (iso_event) {
2155                         i = ffs(iso_event) - 1;
2156                         tasklet_schedule(
2157                                 &ohci->ir_context_list[i].context.tasklet);
2158                         iso_event &= ~(1 << i);
2159                 }
2160         }
2161
2162         if (event & OHCI1394_isochTx) {
2163                 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2164                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2165
2166                 while (iso_event) {
2167                         i = ffs(iso_event) - 1;
2168                         tasklet_schedule(
2169                                 &ohci->it_context_list[i].context.tasklet);
2170                         iso_event &= ~(1 << i);
2171                 }
2172         }
2173
2174         if (unlikely(event & OHCI1394_regAccessFail))
2175                 ohci_err(ohci, "register access failure\n");
2176
2177         if (unlikely(event & OHCI1394_postedWriteErr)) {
2178                 reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2179                 reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2180                 reg_write(ohci, OHCI1394_IntEventClear,
2181                           OHCI1394_postedWriteErr);
2182                 if (printk_ratelimit())
2183                         ohci_err(ohci, "PCI posted write error\n");
2184         }
2185
2186         if (unlikely(event & OHCI1394_cycleTooLong)) {
2187                 if (printk_ratelimit())
2188                         ohci_notice(ohci, "isochronous cycle too long\n");
2189                 reg_write(ohci, OHCI1394_LinkControlSet,
2190                           OHCI1394_LinkControl_cycleMaster);
2191         }
2192
2193         if (unlikely(event & OHCI1394_cycleInconsistent)) {
2194                 /*
2195                  * We need to clear this event bit in order to make
2196                  * cycleMatch isochronous I/O work.  In theory we should
2197                  * stop active cycleMatch iso contexts now and restart
2198                  * them at least two cycles later.  (FIXME?)
2199                  */
2200                 if (printk_ratelimit())
2201                         ohci_notice(ohci, "isochronous cycle inconsistent\n");
2202         }
2203
2204         if (unlikely(event & OHCI1394_unrecoverableError))
2205                 handle_dead_contexts(ohci);
2206
2207         if (event & OHCI1394_cycle64Seconds) {
2208                 spin_lock(&ohci->lock);
2209                 update_bus_time(ohci);
2210                 spin_unlock(&ohci->lock);
2211         } else
2212                 flush_writes(ohci);
2213
2214         return IRQ_HANDLED;
2215 }
2216
2217 static int software_reset(struct fw_ohci *ohci)
2218 {
2219         u32 val;
2220         int i;
2221
2222         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2223         for (i = 0; i < 500; i++) {
2224                 val = reg_read(ohci, OHCI1394_HCControlSet);
2225                 if (!~val)
2226                         return -ENODEV; /* Card was ejected. */
2227
2228                 if (!(val & OHCI1394_HCControl_softReset))
2229                         return 0;
2230
2231                 msleep(1);
2232         }
2233
2234         return -EBUSY;
2235 }
2236
2237 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2238 {
2239         size_t size = length * 4;
2240
2241         memcpy(dest, src, size);
2242         if (size < CONFIG_ROM_SIZE)
2243                 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2244 }
2245
2246 static int configure_1394a_enhancements(struct fw_ohci *ohci)
2247 {
2248         bool enable_1394a;
2249         int ret, clear, set, offset;
2250
2251         /* Check if the driver should configure link and PHY. */
2252         if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2253               OHCI1394_HCControl_programPhyEnable))
2254                 return 0;
2255
2256         /* Paranoia: check whether the PHY supports 1394a, too. */
2257         enable_1394a = false;
2258         ret = read_phy_reg(ohci, 2);
2259         if (ret < 0)
2260                 return ret;
2261         if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2262                 ret = read_paged_phy_reg(ohci, 1, 8);
2263                 if (ret < 0)
2264                         return ret;
2265                 if (ret >= 1)
2266                         enable_1394a = true;
2267         }
2268
2269         if (ohci->quirks & QUIRK_NO_1394A)
2270                 enable_1394a = false;
2271
2272         /* Configure PHY and link consistently. */
2273         if (enable_1394a) {
2274                 clear = 0;
2275                 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2276         } else {
2277                 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2278                 set = 0;
2279         }
2280         ret = update_phy_reg(ohci, 5, clear, set);
2281         if (ret < 0)
2282                 return ret;
2283
2284         if (enable_1394a)
2285                 offset = OHCI1394_HCControlSet;
2286         else
2287                 offset = OHCI1394_HCControlClear;
2288         reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2289
2290         /* Clean up: configuration has been taken care of. */
2291         reg_write(ohci, OHCI1394_HCControlClear,
2292                   OHCI1394_HCControl_programPhyEnable);
2293
2294         return 0;
2295 }
2296
2297 static int probe_tsb41ba3d(struct fw_ohci *ohci)
2298 {
2299         /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2300         static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2301         int reg, i;
2302
2303         reg = read_phy_reg(ohci, 2);
2304         if (reg < 0)
2305                 return reg;
2306         if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2307                 return 0;
2308
2309         for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2310                 reg = read_paged_phy_reg(ohci, 1, i + 10);
2311                 if (reg < 0)
2312                         return reg;
2313                 if (reg != id[i])
2314                         return 0;
2315         }
2316         return 1;
2317 }
2318
2319 static int ohci_enable(struct fw_card *card,
2320                        const __be32 *config_rom, size_t length)
2321 {
2322         struct fw_ohci *ohci = fw_ohci(card);
2323         u32 lps, version, irqs;
2324         int i, ret;
2325
2326         ret = software_reset(ohci);
2327         if (ret < 0) {
2328                 ohci_err(ohci, "failed to reset ohci card\n");
2329                 return ret;
2330         }
2331
2332         /*
2333          * Now enable LPS, which we need in order to start accessing
2334          * most of the registers.  In fact, on some cards (ALI M5251),
2335          * accessing registers in the SClk domain without LPS enabled
2336          * will lock up the machine.  Wait 50msec to make sure we have
2337          * full link enabled.  However, with some cards (well, at least
2338          * a JMicron PCIe card), we have to try again sometimes.
2339          *
2340          * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2341          * cannot actually use the phy at that time.  These need tens of
2342          * millisecods pause between LPS write and first phy access too.
2343          */
2344
2345         reg_write(ohci, OHCI1394_HCControlSet,
2346                   OHCI1394_HCControl_LPS |
2347                   OHCI1394_HCControl_postedWriteEnable);
2348         flush_writes(ohci);
2349
2350         for (lps = 0, i = 0; !lps && i < 3; i++) {
2351                 msleep(50);
2352                 lps = reg_read(ohci, OHCI1394_HCControlSet) &
2353                       OHCI1394_HCControl_LPS;
2354         }
2355
2356         if (!lps) {
2357                 ohci_err(ohci, "failed to set Link Power Status\n");
2358                 return -EIO;
2359         }
2360
2361         if (ohci->quirks & QUIRK_TI_SLLZ059) {
2362                 ret = probe_tsb41ba3d(ohci);
2363                 if (ret < 0)
2364                         return ret;
2365                 if (ret)
2366                         ohci_notice(ohci, "local TSB41BA3D phy\n");
2367                 else
2368                         ohci->quirks &= ~QUIRK_TI_SLLZ059;
2369         }
2370
2371         reg_write(ohci, OHCI1394_HCControlClear,
2372                   OHCI1394_HCControl_noByteSwapData);
2373
2374         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2375         reg_write(ohci, OHCI1394_LinkControlSet,
2376                   OHCI1394_LinkControl_cycleTimerEnable |
2377                   OHCI1394_LinkControl_cycleMaster);
2378
2379         reg_write(ohci, OHCI1394_ATRetries,
2380                   OHCI1394_MAX_AT_REQ_RETRIES |
2381                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2382                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2383                   (200 << 16));
2384
2385         ohci->bus_time_running = false;
2386
2387         for (i = 0; i < 32; i++)
2388                 if (ohci->ir_context_support & (1 << i))
2389                         reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2390                                   IR_CONTEXT_MULTI_CHANNEL_MODE);
2391
2392         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2393         if (version >= OHCI_VERSION_1_1) {
2394                 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2395                           0xfffffffe);
2396                 card->broadcast_channel_auto_allocated = true;
2397         }
2398
2399         /* Get implemented bits of the priority arbitration request counter. */
2400         reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2401         ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2402         reg_write(ohci, OHCI1394_FairnessControl, 0);
2403         card->priority_budget_implemented = ohci->pri_req_max != 0;
2404
2405         reg_write(ohci, OHCI1394_PhyUpperBound, FW_MAX_PHYSICAL_RANGE >> 16);
2406         reg_write(ohci, OHCI1394_IntEventClear, ~0);
2407         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2408
2409         ret = configure_1394a_enhancements(ohci);
2410         if (ret < 0)
2411                 return ret;
2412
2413         /* Activate link_on bit and contender bit in our self ID packets.*/
2414         ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2415         if (ret < 0)
2416                 return ret;
2417
2418         /*
2419          * When the link is not yet enabled, the atomic config rom
2420          * update mechanism described below in ohci_set_config_rom()
2421          * is not active.  We have to update ConfigRomHeader and
2422          * BusOptions manually, and the write to ConfigROMmap takes
2423          * effect immediately.  We tie this to the enabling of the
2424          * link, so we have a valid config rom before enabling - the
2425          * OHCI requires that ConfigROMhdr and BusOptions have valid
2426          * values before enabling.
2427          *
2428          * However, when the ConfigROMmap is written, some controllers
2429          * always read back quadlets 0 and 2 from the config rom to
2430          * the ConfigRomHeader and BusOptions registers on bus reset.
2431          * They shouldn't do that in this initial case where the link
2432          * isn't enabled.  This means we have to use the same
2433          * workaround here, setting the bus header to 0 and then write
2434          * the right values in the bus reset tasklet.
2435          */
2436
2437         if (config_rom) {
2438                 ohci->next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2439                                                             &ohci->next_config_rom_bus, GFP_KERNEL);
2440                 if (ohci->next_config_rom == NULL)
2441                         return -ENOMEM;
2442
2443                 copy_config_rom(ohci->next_config_rom, config_rom, length);
2444         } else {
2445                 /*
2446                  * In the suspend case, config_rom is NULL, which
2447                  * means that we just reuse the old config rom.
2448                  */
2449                 ohci->next_config_rom = ohci->config_rom;
2450                 ohci->next_config_rom_bus = ohci->config_rom_bus;
2451         }
2452
2453         ohci->next_header = ohci->next_config_rom[0];
2454         ohci->next_config_rom[0] = 0;
2455         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2456         reg_write(ohci, OHCI1394_BusOptions,
2457                   be32_to_cpu(ohci->next_config_rom[2]));
2458         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2459
2460         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2461
2462         irqs =  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2463                 OHCI1394_RQPkt | OHCI1394_RSPkt |
2464                 OHCI1394_isochTx | OHCI1394_isochRx |
2465                 OHCI1394_postedWriteErr |
2466                 OHCI1394_selfIDComplete |
2467                 OHCI1394_regAccessFail |
2468                 OHCI1394_cycleInconsistent |
2469                 OHCI1394_unrecoverableError |
2470                 OHCI1394_cycleTooLong |
2471                 OHCI1394_masterIntEnable;
2472         if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2473                 irqs |= OHCI1394_busReset;
2474         reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2475
2476         reg_write(ohci, OHCI1394_HCControlSet,
2477                   OHCI1394_HCControl_linkEnable |
2478                   OHCI1394_HCControl_BIBimageValid);
2479
2480         reg_write(ohci, OHCI1394_LinkControlSet,
2481                   OHCI1394_LinkControl_rcvSelfID |
2482                   OHCI1394_LinkControl_rcvPhyPkt);
2483
2484         ar_context_run(&ohci->ar_request_ctx);
2485         ar_context_run(&ohci->ar_response_ctx);
2486
2487         flush_writes(ohci);
2488
2489         /* We are ready to go, reset bus to finish initialization. */
2490         fw_schedule_bus_reset(&ohci->card, false, true);
2491
2492         return 0;
2493 }
2494
2495 static int ohci_set_config_rom(struct fw_card *card,
2496                                const __be32 *config_rom, size_t length)
2497 {
2498         struct fw_ohci *ohci;
2499         __be32 *next_config_rom;
2500         dma_addr_t next_config_rom_bus;
2501
2502         ohci = fw_ohci(card);
2503
2504         /*
2505          * When the OHCI controller is enabled, the config rom update
2506          * mechanism is a bit tricky, but easy enough to use.  See
2507          * section 5.5.6 in the OHCI specification.
2508          *
2509          * The OHCI controller caches the new config rom address in a
2510          * shadow register (ConfigROMmapNext) and needs a bus reset
2511          * for the changes to take place.  When the bus reset is
2512          * detected, the controller loads the new values for the
2513          * ConfigRomHeader and BusOptions registers from the specified
2514          * config rom and loads ConfigROMmap from the ConfigROMmapNext
2515          * shadow register. All automatically and atomically.
2516          *
2517          * Now, there's a twist to this story.  The automatic load of
2518          * ConfigRomHeader and BusOptions doesn't honor the
2519          * noByteSwapData bit, so with a be32 config rom, the
2520          * controller will load be32 values in to these registers
2521          * during the atomic update, even on litte endian
2522          * architectures.  The workaround we use is to put a 0 in the
2523          * header quadlet; 0 is endian agnostic and means that the
2524          * config rom isn't ready yet.  In the bus reset tasklet we
2525          * then set up the real values for the two registers.
2526          *
2527          * We use ohci->lock to avoid racing with the code that sets
2528          * ohci->next_config_rom to NULL (see bus_reset_work).
2529          */
2530
2531         next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2532                                               &next_config_rom_bus, GFP_KERNEL);
2533         if (next_config_rom == NULL)
2534                 return -ENOMEM;
2535
2536         spin_lock_irq(&ohci->lock);
2537
2538         /*
2539          * If there is not an already pending config_rom update,
2540          * push our new allocation into the ohci->next_config_rom
2541          * and then mark the local variable as null so that we
2542          * won't deallocate the new buffer.
2543          *
2544          * OTOH, if there is a pending config_rom update, just
2545          * use that buffer with the new config_rom data, and
2546          * let this routine free the unused DMA allocation.
2547          */
2548
2549         if (ohci->next_config_rom == NULL) {
2550                 ohci->next_config_rom = next_config_rom;
2551                 ohci->next_config_rom_bus = next_config_rom_bus;
2552                 next_config_rom = NULL;
2553         }
2554
2555         copy_config_rom(ohci->next_config_rom, config_rom, length);
2556
2557         ohci->next_header = config_rom[0];
2558         ohci->next_config_rom[0] = 0;
2559
2560         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2561
2562         spin_unlock_irq(&ohci->lock);
2563
2564         /* If we didn't use the DMA allocation, delete it. */
2565         if (next_config_rom != NULL) {
2566                 dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, next_config_rom,
2567                                    next_config_rom_bus);
2568         }
2569
2570         /*
2571          * Now initiate a bus reset to have the changes take
2572          * effect. We clean up the old config rom memory and DMA
2573          * mappings in the bus reset tasklet, since the OHCI
2574          * controller could need to access it before the bus reset
2575          * takes effect.
2576          */
2577
2578         fw_schedule_bus_reset(&ohci->card, true, true);
2579
2580         return 0;
2581 }
2582
2583 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2584 {
2585         struct fw_ohci *ohci = fw_ohci(card);
2586
2587         at_context_transmit(&ohci->at_request_ctx, packet);
2588 }
2589
2590 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2591 {
2592         struct fw_ohci *ohci = fw_ohci(card);
2593
2594         at_context_transmit(&ohci->at_response_ctx, packet);
2595 }
2596
2597 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2598 {
2599         struct fw_ohci *ohci = fw_ohci(card);
2600         struct context *ctx = &ohci->at_request_ctx;
2601         struct driver_data *driver_data = packet->driver_data;
2602         int ret = -ENOENT;
2603
2604         tasklet_disable_in_atomic(&ctx->tasklet);
2605
2606         if (packet->ack != 0)
2607                 goto out;
2608
2609         if (packet->payload_mapped)
2610                 dma_unmap_single(ohci->card.device, packet->payload_bus,
2611                                  packet->payload_length, DMA_TO_DEVICE);
2612
2613         log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2614         driver_data->packet = NULL;
2615         packet->ack = RCODE_CANCELLED;
2616
2617         // Timestamping on behalf of the hardware.
2618         packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
2619
2620         packet->callback(packet, &ohci->card, packet->ack);
2621         ret = 0;
2622  out:
2623         tasklet_enable(&ctx->tasklet);
2624
2625         return ret;
2626 }
2627
2628 static int ohci_enable_phys_dma(struct fw_card *card,
2629                                 int node_id, int generation)
2630 {
2631         struct fw_ohci *ohci = fw_ohci(card);
2632         unsigned long flags;
2633         int n, ret = 0;
2634
2635         if (param_remote_dma)
2636                 return 0;
2637
2638         /*
2639          * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2640          * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2641          */
2642
2643         spin_lock_irqsave(&ohci->lock, flags);
2644
2645         if (ohci->generation != generation) {
2646                 ret = -ESTALE;
2647                 goto out;
2648         }
2649
2650         /*
2651          * Note, if the node ID contains a non-local bus ID, physical DMA is
2652          * enabled for _all_ nodes on remote buses.
2653          */
2654
2655         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2656         if (n < 32)
2657                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2658         else
2659                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2660
2661         flush_writes(ohci);
2662  out:
2663         spin_unlock_irqrestore(&ohci->lock, flags);
2664
2665         return ret;
2666 }
2667
2668 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2669 {
2670         struct fw_ohci *ohci = fw_ohci(card);
2671         unsigned long flags;
2672         u32 value;
2673
2674         switch (csr_offset) {
2675         case CSR_STATE_CLEAR:
2676         case CSR_STATE_SET:
2677                 if (ohci->is_root &&
2678                     (reg_read(ohci, OHCI1394_LinkControlSet) &
2679                      OHCI1394_LinkControl_cycleMaster))
2680                         value = CSR_STATE_BIT_CMSTR;
2681                 else
2682                         value = 0;
2683                 if (ohci->csr_state_setclear_abdicate)
2684                         value |= CSR_STATE_BIT_ABDICATE;
2685
2686                 return value;
2687
2688         case CSR_NODE_IDS:
2689                 return reg_read(ohci, OHCI1394_NodeID) << 16;
2690
2691         case CSR_CYCLE_TIME:
2692                 return get_cycle_time(ohci);
2693
2694         case CSR_BUS_TIME:
2695                 /*
2696                  * We might be called just after the cycle timer has wrapped
2697                  * around but just before the cycle64Seconds handler, so we
2698                  * better check here, too, if the bus time needs to be updated.
2699                  */
2700                 spin_lock_irqsave(&ohci->lock, flags);
2701                 value = update_bus_time(ohci);
2702                 spin_unlock_irqrestore(&ohci->lock, flags);
2703                 return value;
2704
2705         case CSR_BUSY_TIMEOUT:
2706                 value = reg_read(ohci, OHCI1394_ATRetries);
2707                 return (value >> 4) & 0x0ffff00f;
2708
2709         case CSR_PRIORITY_BUDGET:
2710                 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2711                         (ohci->pri_req_max << 8);
2712
2713         default:
2714                 WARN_ON(1);
2715                 return 0;
2716         }
2717 }
2718
2719 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2720 {
2721         struct fw_ohci *ohci = fw_ohci(card);
2722         unsigned long flags;
2723
2724         switch (csr_offset) {
2725         case CSR_STATE_CLEAR:
2726                 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2727                         reg_write(ohci, OHCI1394_LinkControlClear,
2728                                   OHCI1394_LinkControl_cycleMaster);
2729                         flush_writes(ohci);
2730                 }
2731                 if (value & CSR_STATE_BIT_ABDICATE)
2732                         ohci->csr_state_setclear_abdicate = false;
2733                 break;
2734
2735         case CSR_STATE_SET:
2736                 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2737                         reg_write(ohci, OHCI1394_LinkControlSet,
2738                                   OHCI1394_LinkControl_cycleMaster);
2739                         flush_writes(ohci);
2740                 }
2741                 if (value & CSR_STATE_BIT_ABDICATE)
2742                         ohci->csr_state_setclear_abdicate = true;
2743                 break;
2744
2745         case CSR_NODE_IDS:
2746                 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2747                 flush_writes(ohci);
2748                 break;
2749
2750         case CSR_CYCLE_TIME:
2751                 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2752                 reg_write(ohci, OHCI1394_IntEventSet,
2753                           OHCI1394_cycleInconsistent);
2754                 flush_writes(ohci);
2755                 break;
2756
2757         case CSR_BUS_TIME:
2758                 spin_lock_irqsave(&ohci->lock, flags);
2759                 ohci->bus_time = (update_bus_time(ohci) & 0x40) |
2760                                  (value & ~0x7f);
2761                 spin_unlock_irqrestore(&ohci->lock, flags);
2762                 break;
2763
2764         case CSR_BUSY_TIMEOUT:
2765                 value = (value & 0xf) | ((value & 0xf) << 4) |
2766                         ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2767                 reg_write(ohci, OHCI1394_ATRetries, value);
2768                 flush_writes(ohci);
2769                 break;
2770
2771         case CSR_PRIORITY_BUDGET:
2772                 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2773                 flush_writes(ohci);
2774                 break;
2775
2776         default:
2777                 WARN_ON(1);
2778                 break;
2779         }
2780 }
2781
2782 static void flush_iso_completions(struct iso_context *ctx)
2783 {
2784         ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2785                               ctx->header_length, ctx->header,
2786                               ctx->base.callback_data);
2787         ctx->header_length = 0;
2788 }
2789
2790 static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2791 {
2792         u32 *ctx_hdr;
2793
2794         if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
2795                 if (ctx->base.drop_overflow_headers)
2796                         return;
2797                 flush_iso_completions(ctx);
2798         }
2799
2800         ctx_hdr = ctx->header + ctx->header_length;
2801         ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2802
2803         /*
2804          * The two iso header quadlets are byteswapped to little
2805          * endian by the controller, but we want to present them
2806          * as big endian for consistency with the bus endianness.
2807          */
2808         if (ctx->base.header_size > 0)
2809                 ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2810         if (ctx->base.header_size > 4)
2811                 ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2812         if (ctx->base.header_size > 8)
2813                 memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2814         ctx->header_length += ctx->base.header_size;
2815 }
2816
2817 static int handle_ir_packet_per_buffer(struct context *context,
2818                                        struct descriptor *d,
2819                                        struct descriptor *last)
2820 {
2821         struct iso_context *ctx =
2822                 container_of(context, struct iso_context, context);
2823         struct descriptor *pd;
2824         u32 buffer_dma;
2825
2826         for (pd = d; pd <= last; pd++)
2827                 if (pd->transfer_status)
2828                         break;
2829         if (pd > last)
2830                 /* Descriptor(s) not done yet, stop iteration */
2831                 return 0;
2832
2833         while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2834                 d++;
2835                 buffer_dma = le32_to_cpu(d->data_address);
2836                 dma_sync_single_range_for_cpu(context->ohci->card.device,
2837                                               buffer_dma & PAGE_MASK,
2838                                               buffer_dma & ~PAGE_MASK,
2839                                               le16_to_cpu(d->req_count),
2840                                               DMA_FROM_DEVICE);
2841         }
2842
2843         copy_iso_headers(ctx, (u32 *) (last + 1));
2844
2845         if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2846                 flush_iso_completions(ctx);
2847
2848         return 1;
2849 }
2850
2851 /* d == last because each descriptor block is only a single descriptor. */
2852 static int handle_ir_buffer_fill(struct context *context,
2853                                  struct descriptor *d,
2854                                  struct descriptor *last)
2855 {
2856         struct iso_context *ctx =
2857                 container_of(context, struct iso_context, context);
2858         unsigned int req_count, res_count, completed;
2859         u32 buffer_dma;
2860
2861         req_count = le16_to_cpu(last->req_count);
2862         res_count = le16_to_cpu(READ_ONCE(last->res_count));
2863         completed = req_count - res_count;
2864         buffer_dma = le32_to_cpu(last->data_address);
2865
2866         if (completed > 0) {
2867                 ctx->mc_buffer_bus = buffer_dma;
2868                 ctx->mc_completed = completed;
2869         }
2870
2871         if (res_count != 0)
2872                 /* Descriptor(s) not done yet, stop iteration */
2873                 return 0;
2874
2875         dma_sync_single_range_for_cpu(context->ohci->card.device,
2876                                       buffer_dma & PAGE_MASK,
2877                                       buffer_dma & ~PAGE_MASK,
2878                                       completed, DMA_FROM_DEVICE);
2879
2880         if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2881                 ctx->base.callback.mc(&ctx->base,
2882                                       buffer_dma + completed,
2883                                       ctx->base.callback_data);
2884                 ctx->mc_completed = 0;
2885         }
2886
2887         return 1;
2888 }
2889
2890 static void flush_ir_buffer_fill(struct iso_context *ctx)
2891 {
2892         dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2893                                       ctx->mc_buffer_bus & PAGE_MASK,
2894                                       ctx->mc_buffer_bus & ~PAGE_MASK,
2895                                       ctx->mc_completed, DMA_FROM_DEVICE);
2896
2897         ctx->base.callback.mc(&ctx->base,
2898                               ctx->mc_buffer_bus + ctx->mc_completed,
2899                               ctx->base.callback_data);
2900         ctx->mc_completed = 0;
2901 }
2902
2903 static inline void sync_it_packet_for_cpu(struct context *context,
2904                                           struct descriptor *pd)
2905 {
2906         __le16 control;
2907         u32 buffer_dma;
2908
2909         /* only packets beginning with OUTPUT_MORE* have data buffers */
2910         if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2911                 return;
2912
2913         /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2914         pd += 2;
2915
2916         /*
2917          * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2918          * data buffer is in the context program's coherent page and must not
2919          * be synced.
2920          */
2921         if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2922             (context->current_bus          & PAGE_MASK)) {
2923                 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2924                         return;
2925                 pd++;
2926         }
2927
2928         do {
2929                 buffer_dma = le32_to_cpu(pd->data_address);
2930                 dma_sync_single_range_for_cpu(context->ohci->card.device,
2931                                               buffer_dma & PAGE_MASK,
2932                                               buffer_dma & ~PAGE_MASK,
2933                                               le16_to_cpu(pd->req_count),
2934                                               DMA_TO_DEVICE);
2935                 control = pd->control;
2936                 pd++;
2937         } while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2938 }
2939
2940 static int handle_it_packet(struct context *context,
2941                             struct descriptor *d,
2942                             struct descriptor *last)
2943 {
2944         struct iso_context *ctx =
2945                 container_of(context, struct iso_context, context);
2946         struct descriptor *pd;
2947         __be32 *ctx_hdr;
2948
2949         for (pd = d; pd <= last; pd++)
2950                 if (pd->transfer_status)
2951                         break;
2952         if (pd > last)
2953                 /* Descriptor(s) not done yet, stop iteration */
2954                 return 0;
2955
2956         sync_it_packet_for_cpu(context, d);
2957
2958         if (ctx->header_length + 4 > PAGE_SIZE) {
2959                 if (ctx->base.drop_overflow_headers)
2960                         return 1;
2961                 flush_iso_completions(ctx);
2962         }
2963
2964         ctx_hdr = ctx->header + ctx->header_length;
2965         ctx->last_timestamp = le16_to_cpu(last->res_count);
2966         /* Present this value as big-endian to match the receive code */
2967         *ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
2968                                le16_to_cpu(pd->res_count));
2969         ctx->header_length += 4;
2970
2971         if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2972                 flush_iso_completions(ctx);
2973
2974         return 1;
2975 }
2976
2977 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2978 {
2979         u32 hi = channels >> 32, lo = channels;
2980
2981         reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2982         reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2983         reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2984         reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2985         ohci->mc_channels = channels;
2986 }
2987
2988 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2989                                 int type, int channel, size_t header_size)
2990 {
2991         struct fw_ohci *ohci = fw_ohci(card);
2992         struct iso_context *ctx;
2993         descriptor_callback_t callback;
2994         u64 *channels;
2995         u32 *mask, regs;
2996         int index, ret = -EBUSY;
2997
2998         spin_lock_irq(&ohci->lock);
2999
3000         switch (type) {
3001         case FW_ISO_CONTEXT_TRANSMIT:
3002                 mask     = &ohci->it_context_mask;
3003                 callback = handle_it_packet;
3004                 index    = ffs(*mask) - 1;
3005                 if (index >= 0) {
3006                         *mask &= ~(1 << index);
3007                         regs = OHCI1394_IsoXmitContextBase(index);
3008                         ctx  = &ohci->it_context_list[index];
3009                 }
3010                 break;
3011
3012         case FW_ISO_CONTEXT_RECEIVE:
3013                 channels = &ohci->ir_context_channels;
3014                 mask     = &ohci->ir_context_mask;
3015                 callback = handle_ir_packet_per_buffer;
3016                 index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
3017                 if (index >= 0) {
3018                         *channels &= ~(1ULL << channel);
3019                         *mask     &= ~(1 << index);
3020                         regs = OHCI1394_IsoRcvContextBase(index);
3021                         ctx  = &ohci->ir_context_list[index];
3022                 }
3023                 break;
3024
3025         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3026                 mask     = &ohci->ir_context_mask;
3027                 callback = handle_ir_buffer_fill;
3028                 index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
3029                 if (index >= 0) {
3030                         ohci->mc_allocated = true;
3031                         *mask &= ~(1 << index);
3032                         regs = OHCI1394_IsoRcvContextBase(index);
3033                         ctx  = &ohci->ir_context_list[index];
3034                 }
3035                 break;
3036
3037         default:
3038                 index = -1;
3039                 ret = -ENOSYS;
3040         }
3041
3042         spin_unlock_irq(&ohci->lock);
3043
3044         if (index < 0)
3045                 return ERR_PTR(ret);
3046
3047         memset(ctx, 0, sizeof(*ctx));
3048         ctx->header_length = 0;
3049         ctx->header = (void *) __get_free_page(GFP_KERNEL);
3050         if (ctx->header == NULL) {
3051                 ret = -ENOMEM;
3052                 goto out;
3053         }
3054         ret = context_init(&ctx->context, ohci, regs, callback);
3055         if (ret < 0)
3056                 goto out_with_header;
3057
3058         if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
3059                 set_multichannel_mask(ohci, 0);
3060                 ctx->mc_completed = 0;
3061         }
3062
3063         return &ctx->base;
3064
3065  out_with_header:
3066         free_page((unsigned long)ctx->header);
3067  out:
3068         spin_lock_irq(&ohci->lock);
3069
3070         switch (type) {
3071         case FW_ISO_CONTEXT_RECEIVE:
3072                 *channels |= 1ULL << channel;
3073                 break;
3074
3075         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3076                 ohci->mc_allocated = false;
3077                 break;
3078         }
3079         *mask |= 1 << index;
3080
3081         spin_unlock_irq(&ohci->lock);
3082
3083         return ERR_PTR(ret);
3084 }
3085
3086 static int ohci_start_iso(struct fw_iso_context *base,
3087                           s32 cycle, u32 sync, u32 tags)
3088 {
3089         struct iso_context *ctx = container_of(base, struct iso_context, base);
3090         struct fw_ohci *ohci = ctx->context.ohci;
3091         u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3092         int index;
3093
3094         /* the controller cannot start without any queued packets */
3095         if (ctx->context.last->branch_address == 0)
3096                 return -ENODATA;
3097
3098         switch (ctx->base.type) {
3099         case FW_ISO_CONTEXT_TRANSMIT:
3100                 index = ctx - ohci->it_context_list;
3101                 match = 0;
3102                 if (cycle >= 0)
3103                         match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3104                                 (cycle & 0x7fff) << 16;
3105
3106                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3107                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3108                 context_run(&ctx->context, match);
3109                 break;
3110
3111         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3112                 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3113                 fallthrough;
3114         case FW_ISO_CONTEXT_RECEIVE:
3115                 index = ctx - ohci->ir_context_list;
3116                 match = (tags << 28) | (sync << 8) | ctx->base.channel;
3117                 if (cycle >= 0) {
3118                         match |= (cycle & 0x07fff) << 12;
3119                         control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3120                 }
3121
3122                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3123                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3124                 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3125                 context_run(&ctx->context, control);
3126
3127                 ctx->sync = sync;
3128                 ctx->tags = tags;
3129
3130                 break;
3131         }
3132
3133         return 0;
3134 }
3135
3136 static int ohci_stop_iso(struct fw_iso_context *base)
3137 {
3138         struct fw_ohci *ohci = fw_ohci(base->card);
3139         struct iso_context *ctx = container_of(base, struct iso_context, base);
3140         int index;
3141
3142         switch (ctx->base.type) {
3143         case FW_ISO_CONTEXT_TRANSMIT:
3144                 index = ctx - ohci->it_context_list;
3145                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3146                 break;
3147
3148         case FW_ISO_CONTEXT_RECEIVE:
3149         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3150                 index = ctx - ohci->ir_context_list;
3151                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3152                 break;
3153         }
3154         flush_writes(ohci);
3155         context_stop(&ctx->context);
3156         tasklet_kill(&ctx->context.tasklet);
3157
3158         return 0;
3159 }
3160
3161 static void ohci_free_iso_context(struct fw_iso_context *base)
3162 {
3163         struct fw_ohci *ohci = fw_ohci(base->card);
3164         struct iso_context *ctx = container_of(base, struct iso_context, base);
3165         unsigned long flags;
3166         int index;
3167
3168         ohci_stop_iso(base);
3169         context_release(&ctx->context);
3170         free_page((unsigned long)ctx->header);
3171
3172         spin_lock_irqsave(&ohci->lock, flags);
3173
3174         switch (base->type) {
3175         case FW_ISO_CONTEXT_TRANSMIT:
3176                 index = ctx - ohci->it_context_list;
3177                 ohci->it_context_mask |= 1 << index;
3178                 break;
3179
3180         case FW_ISO_CONTEXT_RECEIVE:
3181                 index = ctx - ohci->ir_context_list;
3182                 ohci->ir_context_mask |= 1 << index;
3183                 ohci->ir_context_channels |= 1ULL << base->channel;
3184                 break;
3185
3186         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3187                 index = ctx - ohci->ir_context_list;
3188                 ohci->ir_context_mask |= 1 << index;
3189                 ohci->ir_context_channels |= ohci->mc_channels;
3190                 ohci->mc_channels = 0;
3191                 ohci->mc_allocated = false;
3192                 break;
3193         }
3194
3195         spin_unlock_irqrestore(&ohci->lock, flags);
3196 }
3197
3198 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3199 {
3200         struct fw_ohci *ohci = fw_ohci(base->card);
3201         unsigned long flags;
3202         int ret;
3203
3204         switch (base->type) {
3205         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3206
3207                 spin_lock_irqsave(&ohci->lock, flags);
3208
3209                 /* Don't allow multichannel to grab other contexts' channels. */
3210                 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3211                         *channels = ohci->ir_context_channels;
3212                         ret = -EBUSY;
3213                 } else {
3214                         set_multichannel_mask(ohci, *channels);
3215                         ret = 0;
3216                 }
3217
3218                 spin_unlock_irqrestore(&ohci->lock, flags);
3219
3220                 break;
3221         default:
3222                 ret = -EINVAL;
3223         }
3224
3225         return ret;
3226 }
3227
3228 #ifdef CONFIG_PM
3229 static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3230 {
3231         int i;
3232         struct iso_context *ctx;
3233
3234         for (i = 0 ; i < ohci->n_ir ; i++) {
3235                 ctx = &ohci->ir_context_list[i];
3236                 if (ctx->context.running)
3237                         ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3238         }
3239
3240         for (i = 0 ; i < ohci->n_it ; i++) {
3241                 ctx = &ohci->it_context_list[i];
3242                 if (ctx->context.running)
3243                         ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3244         }
3245 }
3246 #endif
3247
3248 static int queue_iso_transmit(struct iso_context *ctx,
3249                               struct fw_iso_packet *packet,
3250                               struct fw_iso_buffer *buffer,
3251                               unsigned long payload)
3252 {
3253         struct descriptor *d, *last, *pd;
3254         struct fw_iso_packet *p;
3255         __le32 *header;
3256         dma_addr_t d_bus, page_bus;
3257         u32 z, header_z, payload_z, irq;
3258         u32 payload_index, payload_end_index, next_page_index;
3259         int page, end_page, i, length, offset;
3260
3261         p = packet;
3262         payload_index = payload;
3263
3264         if (p->skip)
3265                 z = 1;
3266         else
3267                 z = 2;
3268         if (p->header_length > 0)
3269                 z++;
3270
3271         /* Determine the first page the payload isn't contained in. */
3272         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3273         if (p->payload_length > 0)
3274                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
3275         else
3276                 payload_z = 0;
3277
3278         z += payload_z;
3279
3280         /* Get header size in number of descriptors. */
3281         header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3282
3283         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3284         if (d == NULL)
3285                 return -ENOMEM;
3286
3287         if (!p->skip) {
3288                 d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3289                 d[0].req_count = cpu_to_le16(8);
3290                 /*
3291                  * Link the skip address to this descriptor itself.  This causes
3292                  * a context to skip a cycle whenever lost cycles or FIFO
3293                  * overruns occur, without dropping the data.  The application
3294                  * should then decide whether this is an error condition or not.
3295                  * FIXME:  Make the context's cycle-lost behaviour configurable?
3296                  */
3297                 d[0].branch_address = cpu_to_le32(d_bus | z);
3298
3299                 header = (__le32 *) &d[1];
3300                 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3301                                         IT_HEADER_TAG(p->tag) |
3302                                         IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3303                                         IT_HEADER_CHANNEL(ctx->base.channel) |
3304                                         IT_HEADER_SPEED(ctx->base.speed));
3305                 header[1] =
3306                         cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3307                                                           p->payload_length));
3308         }
3309
3310         if (p->header_length > 0) {
3311                 d[2].req_count    = cpu_to_le16(p->header_length);
3312                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3313                 memcpy(&d[z], p->header, p->header_length);
3314         }
3315
3316         pd = d + z - payload_z;
3317         payload_end_index = payload_index + p->payload_length;
3318         for (i = 0; i < payload_z; i++) {
3319                 page               = payload_index >> PAGE_SHIFT;
3320                 offset             = payload_index & ~PAGE_MASK;
3321                 next_page_index    = (page + 1) << PAGE_SHIFT;
3322                 length             =
3323                         min(next_page_index, payload_end_index) - payload_index;
3324                 pd[i].req_count    = cpu_to_le16(length);
3325
3326                 page_bus = page_private(buffer->pages[page]);
3327                 pd[i].data_address = cpu_to_le32(page_bus + offset);
3328
3329                 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3330                                                  page_bus, offset, length,
3331                                                  DMA_TO_DEVICE);
3332
3333                 payload_index += length;
3334         }
3335
3336         if (p->interrupt)
3337                 irq = DESCRIPTOR_IRQ_ALWAYS;
3338         else
3339                 irq = DESCRIPTOR_NO_IRQ;
3340
3341         last = z == 2 ? d : d + z - 1;
3342         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3343                                      DESCRIPTOR_STATUS |
3344                                      DESCRIPTOR_BRANCH_ALWAYS |
3345                                      irq);
3346
3347         context_append(&ctx->context, d, z, header_z);
3348
3349         return 0;
3350 }
3351
3352 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3353                                        struct fw_iso_packet *packet,
3354                                        struct fw_iso_buffer *buffer,
3355                                        unsigned long payload)
3356 {
3357         struct device *device = ctx->context.ohci->card.device;
3358         struct descriptor *d, *pd;
3359         dma_addr_t d_bus, page_bus;
3360         u32 z, header_z, rest;
3361         int i, j, length;
3362         int page, offset, packet_count, header_size, payload_per_buffer;
3363
3364         /*
3365          * The OHCI controller puts the isochronous header and trailer in the
3366          * buffer, so we need at least 8 bytes.
3367          */
3368         packet_count = packet->header_length / ctx->base.header_size;
3369         header_size  = max(ctx->base.header_size, (size_t)8);
3370
3371         /* Get header size in number of descriptors. */
3372         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3373         page     = payload >> PAGE_SHIFT;
3374         offset   = payload & ~PAGE_MASK;
3375         payload_per_buffer = packet->payload_length / packet_count;
3376
3377         for (i = 0; i < packet_count; i++) {
3378                 /* d points to the header descriptor */
3379                 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3380                 d = context_get_descriptors(&ctx->context,
3381                                 z + header_z, &d_bus);
3382                 if (d == NULL)
3383                         return -ENOMEM;
3384
3385                 d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
3386                                               DESCRIPTOR_INPUT_MORE);
3387                 if (packet->skip && i == 0)
3388                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3389                 d->req_count    = cpu_to_le16(header_size);
3390                 d->res_count    = d->req_count;
3391                 d->transfer_status = 0;
3392                 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3393
3394                 rest = payload_per_buffer;
3395                 pd = d;
3396                 for (j = 1; j < z; j++) {
3397                         pd++;
3398                         pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3399                                                   DESCRIPTOR_INPUT_MORE);
3400
3401                         if (offset + rest < PAGE_SIZE)
3402                                 length = rest;
3403                         else
3404                                 length = PAGE_SIZE - offset;
3405                         pd->req_count = cpu_to_le16(length);
3406                         pd->res_count = pd->req_count;
3407                         pd->transfer_status = 0;
3408
3409                         page_bus = page_private(buffer->pages[page]);
3410                         pd->data_address = cpu_to_le32(page_bus + offset);
3411
3412                         dma_sync_single_range_for_device(device, page_bus,
3413                                                          offset, length,
3414                                                          DMA_FROM_DEVICE);
3415
3416                         offset = (offset + length) & ~PAGE_MASK;
3417                         rest -= length;
3418                         if (offset == 0)
3419                                 page++;
3420                 }
3421                 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3422                                           DESCRIPTOR_INPUT_LAST |
3423                                           DESCRIPTOR_BRANCH_ALWAYS);
3424                 if (packet->interrupt && i == packet_count - 1)
3425                         pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3426
3427                 context_append(&ctx->context, d, z, header_z);
3428         }
3429
3430         return 0;
3431 }
3432
3433 static int queue_iso_buffer_fill(struct iso_context *ctx,
3434                                  struct fw_iso_packet *packet,
3435                                  struct fw_iso_buffer *buffer,
3436                                  unsigned long payload)
3437 {
3438         struct descriptor *d;
3439         dma_addr_t d_bus, page_bus;
3440         int page, offset, rest, z, i, length;
3441
3442         page   = payload >> PAGE_SHIFT;
3443         offset = payload & ~PAGE_MASK;
3444         rest   = packet->payload_length;
3445
3446         /* We need one descriptor for each page in the buffer. */
3447         z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3448
3449         if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3450                 return -EFAULT;
3451
3452         for (i = 0; i < z; i++) {
3453                 d = context_get_descriptors(&ctx->context, 1, &d_bus);
3454                 if (d == NULL)
3455                         return -ENOMEM;
3456
3457                 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3458                                          DESCRIPTOR_BRANCH_ALWAYS);
3459                 if (packet->skip && i == 0)
3460                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3461                 if (packet->interrupt && i == z - 1)
3462                         d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3463
3464                 if (offset + rest < PAGE_SIZE)
3465                         length = rest;
3466                 else
3467                         length = PAGE_SIZE - offset;
3468                 d->req_count = cpu_to_le16(length);
3469                 d->res_count = d->req_count;
3470                 d->transfer_status = 0;
3471
3472                 page_bus = page_private(buffer->pages[page]);
3473                 d->data_address = cpu_to_le32(page_bus + offset);
3474
3475                 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3476                                                  page_bus, offset, length,
3477                                                  DMA_FROM_DEVICE);
3478
3479                 rest -= length;
3480                 offset = 0;
3481                 page++;
3482
3483                 context_append(&ctx->context, d, 1, 0);
3484         }
3485
3486         return 0;
3487 }
3488
3489 static int ohci_queue_iso(struct fw_iso_context *base,
3490                           struct fw_iso_packet *packet,
3491                           struct fw_iso_buffer *buffer,
3492                           unsigned long payload)
3493 {
3494         struct iso_context *ctx = container_of(base, struct iso_context, base);
3495         unsigned long flags;
3496         int ret = -ENOSYS;
3497
3498         spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3499         switch (base->type) {
3500         case FW_ISO_CONTEXT_TRANSMIT:
3501                 ret = queue_iso_transmit(ctx, packet, buffer, payload);
3502                 break;
3503         case FW_ISO_CONTEXT_RECEIVE:
3504                 ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3505                 break;
3506         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3507                 ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3508                 break;
3509         }
3510         spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3511
3512         return ret;
3513 }
3514
3515 static void ohci_flush_queue_iso(struct fw_iso_context *base)
3516 {
3517         struct context *ctx =
3518                         &container_of(base, struct iso_context, base)->context;
3519
3520         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3521 }
3522
3523 static int ohci_flush_iso_completions(struct fw_iso_context *base)
3524 {
3525         struct iso_context *ctx = container_of(base, struct iso_context, base);
3526         int ret = 0;
3527
3528         tasklet_disable_in_atomic(&ctx->context.tasklet);
3529
3530         if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3531                 context_tasklet((unsigned long)&ctx->context);
3532
3533                 switch (base->type) {
3534                 case FW_ISO_CONTEXT_TRANSMIT:
3535                 case FW_ISO_CONTEXT_RECEIVE:
3536                         if (ctx->header_length != 0)
3537                                 flush_iso_completions(ctx);
3538                         break;
3539                 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3540                         if (ctx->mc_completed != 0)
3541                                 flush_ir_buffer_fill(ctx);
3542                         break;
3543                 default:
3544                         ret = -ENOSYS;
3545                 }
3546
3547                 clear_bit_unlock(0, &ctx->flushing_completions);
3548                 smp_mb__after_atomic();
3549         }
3550
3551         tasklet_enable(&ctx->context.tasklet);
3552
3553         return ret;
3554 }
3555
3556 static const struct fw_card_driver ohci_driver = {
3557         .enable                 = ohci_enable,
3558         .read_phy_reg           = ohci_read_phy_reg,
3559         .update_phy_reg         = ohci_update_phy_reg,
3560         .set_config_rom         = ohci_set_config_rom,
3561         .send_request           = ohci_send_request,
3562         .send_response          = ohci_send_response,
3563         .cancel_packet          = ohci_cancel_packet,
3564         .enable_phys_dma        = ohci_enable_phys_dma,
3565         .read_csr               = ohci_read_csr,
3566         .write_csr              = ohci_write_csr,
3567
3568         .allocate_iso_context   = ohci_allocate_iso_context,
3569         .free_iso_context       = ohci_free_iso_context,
3570         .set_iso_channels       = ohci_set_iso_channels,
3571         .queue_iso              = ohci_queue_iso,
3572         .flush_queue_iso        = ohci_flush_queue_iso,
3573         .flush_iso_completions  = ohci_flush_iso_completions,
3574         .start_iso              = ohci_start_iso,
3575         .stop_iso               = ohci_stop_iso,
3576 };
3577
3578 #ifdef CONFIG_PPC_PMAC
3579 static void pmac_ohci_on(struct pci_dev *dev)
3580 {
3581         if (machine_is(powermac)) {
3582                 struct device_node *ofn = pci_device_to_OF_node(dev);
3583
3584                 if (ofn) {
3585                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3586                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3587                 }
3588         }
3589 }
3590
3591 static void pmac_ohci_off(struct pci_dev *dev)
3592 {
3593         if (machine_is(powermac)) {
3594                 struct device_node *ofn = pci_device_to_OF_node(dev);
3595
3596                 if (ofn) {
3597                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3598                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3599                 }
3600         }
3601 }
3602 #else
3603 static inline void pmac_ohci_on(struct pci_dev *dev) {}
3604 static inline void pmac_ohci_off(struct pci_dev *dev) {}
3605 #endif /* CONFIG_PPC_PMAC */
3606
3607 static void release_ohci(struct device *dev, void *data)
3608 {
3609         struct pci_dev *pdev = to_pci_dev(dev);
3610         struct fw_ohci *ohci = pci_get_drvdata(pdev);
3611
3612         pmac_ohci_off(pdev);
3613
3614         ar_context_release(&ohci->ar_response_ctx);
3615         ar_context_release(&ohci->ar_request_ctx);
3616
3617         dev_notice(dev, "removed fw-ohci device\n");
3618 }
3619
3620 static int pci_probe(struct pci_dev *dev,
3621                                const struct pci_device_id *ent)
3622 {
3623         struct fw_ohci *ohci;
3624         u32 bus_options, max_receive, link_speed, version;
3625         u64 guid;
3626         int i, err;
3627         size_t size;
3628
3629         if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3630                 dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3631                 return -ENOSYS;
3632         }
3633
3634         ohci = devres_alloc(release_ohci, sizeof(*ohci), GFP_KERNEL);
3635         if (ohci == NULL)
3636                 return -ENOMEM;
3637         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3638         pci_set_drvdata(dev, ohci);
3639         pmac_ohci_on(dev);
3640         devres_add(&dev->dev, ohci);
3641
3642         err = pcim_enable_device(dev);
3643         if (err) {
3644                 dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3645                 return err;
3646         }
3647
3648         pci_set_master(dev);
3649         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3650
3651         spin_lock_init(&ohci->lock);
3652         mutex_init(&ohci->phy_reg_mutex);
3653
3654         INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3655
3656         if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3657             pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3658                 ohci_err(ohci, "invalid MMIO resource\n");
3659                 return -ENXIO;
3660         }
3661
3662         err = pcim_iomap_regions(dev, 1 << 0, ohci_driver_name);
3663         if (err) {
3664                 ohci_err(ohci, "request and map MMIO resource unavailable\n");
3665                 return -ENXIO;
3666         }
3667         ohci->registers = pcim_iomap_table(dev)[0];
3668
3669         for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3670                 if ((ohci_quirks[i].vendor == dev->vendor) &&
3671                     (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3672                      ohci_quirks[i].device == dev->device) &&
3673                     (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3674                      ohci_quirks[i].revision >= dev->revision)) {
3675                         ohci->quirks = ohci_quirks[i].flags;
3676                         break;
3677                 }
3678         if (param_quirks)
3679                 ohci->quirks = param_quirks;
3680
3681         if (detect_vt630x_with_asm1083_on_amd_ryzen_machine(dev))
3682                 ohci->quirks |= QUIRK_REBOOT_BY_CYCLE_TIMER_READ;
3683
3684         /*
3685          * Because dma_alloc_coherent() allocates at least one page,
3686          * we save space by using a common buffer for the AR request/
3687          * response descriptors and the self IDs buffer.
3688          */
3689         BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3690         BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3691         ohci->misc_buffer = dmam_alloc_coherent(&dev->dev, PAGE_SIZE, &ohci->misc_buffer_bus,
3692                                                 GFP_KERNEL);
3693         if (!ohci->misc_buffer)
3694                 return -ENOMEM;
3695
3696         err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3697                               OHCI1394_AsReqRcvContextControlSet);
3698         if (err < 0)
3699                 return err;
3700
3701         err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3702                               OHCI1394_AsRspRcvContextControlSet);
3703         if (err < 0)
3704                 return err;
3705
3706         err = context_init(&ohci->at_request_ctx, ohci,
3707                            OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3708         if (err < 0)
3709                 return err;
3710
3711         err = context_init(&ohci->at_response_ctx, ohci,
3712                            OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3713         if (err < 0)
3714                 return err;
3715
3716         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3717         ohci->ir_context_channels = ~0ULL;
3718         ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3719         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3720         ohci->ir_context_mask = ohci->ir_context_support;
3721         ohci->n_ir = hweight32(ohci->ir_context_mask);
3722         size = sizeof(struct iso_context) * ohci->n_ir;
3723         ohci->ir_context_list = devm_kzalloc(&dev->dev, size, GFP_KERNEL);
3724         if (!ohci->ir_context_list)
3725                 return -ENOMEM;
3726
3727         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3728         ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3729         /* JMicron JMB38x often shows 0 at first read, just ignore it */
3730         if (!ohci->it_context_support) {
3731                 ohci_notice(ohci, "overriding IsoXmitIntMask\n");
3732                 ohci->it_context_support = 0xf;
3733         }
3734         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3735         ohci->it_context_mask = ohci->it_context_support;
3736         ohci->n_it = hweight32(ohci->it_context_mask);
3737         size = sizeof(struct iso_context) * ohci->n_it;
3738         ohci->it_context_list = devm_kzalloc(&dev->dev, size, GFP_KERNEL);
3739         if (!ohci->it_context_list)
3740                 return -ENOMEM;
3741
3742         ohci->self_id     = ohci->misc_buffer     + PAGE_SIZE/2;
3743         ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3744
3745         bus_options = reg_read(ohci, OHCI1394_BusOptions);
3746         max_receive = (bus_options >> 12) & 0xf;
3747         link_speed = bus_options & 0x7;
3748         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3749                 reg_read(ohci, OHCI1394_GUIDLo);
3750
3751         if (!(ohci->quirks & QUIRK_NO_MSI))
3752                 pci_enable_msi(dev);
3753         err = devm_request_irq(&dev->dev, dev->irq, irq_handler,
3754                                pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED, ohci_driver_name, ohci);
3755         if (err < 0) {
3756                 ohci_err(ohci, "failed to allocate interrupt %d\n", dev->irq);
3757                 goto fail_msi;
3758         }
3759
3760         err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3761         if (err)
3762                 goto fail_msi;
3763
3764         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3765         ohci_notice(ohci,
3766                     "added OHCI v%x.%x device as card %d, "
3767                     "%d IR + %d IT contexts, quirks 0x%x%s\n",
3768                     version >> 16, version & 0xff, ohci->card.index,
3769                     ohci->n_ir, ohci->n_it, ohci->quirks,
3770                     reg_read(ohci, OHCI1394_PhyUpperBound) ?
3771                         ", physUB" : "");
3772
3773         return 0;
3774
3775  fail_msi:
3776         devm_free_irq(&dev->dev, dev->irq, ohci);
3777         pci_disable_msi(dev);
3778
3779         return err;
3780 }
3781
3782 static void pci_remove(struct pci_dev *dev)
3783 {
3784         struct fw_ohci *ohci = pci_get_drvdata(dev);
3785
3786         /*
3787          * If the removal is happening from the suspend state, LPS won't be
3788          * enabled and host registers (eg., IntMaskClear) won't be accessible.
3789          */
3790         if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) {
3791                 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3792                 flush_writes(ohci);
3793         }
3794         cancel_work_sync(&ohci->bus_reset_work);
3795         fw_core_remove_card(&ohci->card);
3796
3797         /*
3798          * FIXME: Fail all pending packets here, now that the upper
3799          * layers can't queue any more.
3800          */
3801
3802         software_reset(ohci);
3803
3804         devm_free_irq(&dev->dev, dev->irq, ohci);
3805         pci_disable_msi(dev);
3806
3807         dev_notice(&dev->dev, "removing fw-ohci device\n");
3808 }
3809
3810 #ifdef CONFIG_PM
3811 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3812 {
3813         struct fw_ohci *ohci = pci_get_drvdata(dev);
3814         int err;
3815
3816         software_reset(ohci);
3817         err = pci_save_state(dev);
3818         if (err) {
3819                 ohci_err(ohci, "pci_save_state failed\n");
3820                 return err;
3821         }
3822         err = pci_set_power_state(dev, pci_choose_state(dev, state));
3823         if (err)
3824                 ohci_err(ohci, "pci_set_power_state failed with %d\n", err);
3825         pmac_ohci_off(dev);
3826
3827         return 0;
3828 }
3829
3830 static int pci_resume(struct pci_dev *dev)
3831 {
3832         struct fw_ohci *ohci = pci_get_drvdata(dev);
3833         int err;
3834
3835         pmac_ohci_on(dev);
3836         pci_set_power_state(dev, PCI_D0);
3837         pci_restore_state(dev);
3838         err = pci_enable_device(dev);
3839         if (err) {
3840                 ohci_err(ohci, "pci_enable_device failed\n");
3841                 return err;
3842         }
3843
3844         /* Some systems don't setup GUID register on resume from ram  */
3845         if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3846                                         !reg_read(ohci, OHCI1394_GUIDHi)) {
3847                 reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3848                 reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3849         }
3850
3851         err = ohci_enable(&ohci->card, NULL, 0);
3852         if (err)
3853                 return err;
3854
3855         ohci_resume_iso_dma(ohci);
3856
3857         return 0;
3858 }
3859 #endif
3860
3861 static const struct pci_device_id pci_table[] = {
3862         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3863         { }
3864 };
3865
3866 MODULE_DEVICE_TABLE(pci, pci_table);
3867
3868 static struct pci_driver fw_ohci_pci_driver = {
3869         .name           = ohci_driver_name,
3870         .id_table       = pci_table,
3871         .probe          = pci_probe,
3872         .remove         = pci_remove,
3873 #ifdef CONFIG_PM
3874         .resume         = pci_resume,
3875         .suspend        = pci_suspend,
3876 #endif
3877 };
3878
3879 static int __init fw_ohci_init(void)
3880 {
3881         selfid_workqueue = alloc_workqueue(KBUILD_MODNAME, WQ_MEM_RECLAIM, 0);
3882         if (!selfid_workqueue)
3883                 return -ENOMEM;
3884
3885         return pci_register_driver(&fw_ohci_pci_driver);
3886 }
3887
3888 static void __exit fw_ohci_cleanup(void)
3889 {
3890         pci_unregister_driver(&fw_ohci_pci_driver);
3891         destroy_workqueue(selfid_workqueue);
3892 }
3893
3894 module_init(fw_ohci_init);
3895 module_exit(fw_ohci_cleanup);
3896
3897 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3898 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3899 MODULE_LICENSE("GPL");
3900
3901 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3902 MODULE_ALIAS("ohci1394");