GNU Linux-libre 4.19.314-gnu1
[releases.git] / drivers / firewire / core-device.c
1 /*
2  * Device probing and sysfs code.
3  *
4  * Copyright (C) 2005-2006  Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/bug.h>
22 #include <linux/ctype.h>
23 #include <linux/delay.h>
24 #include <linux/device.h>
25 #include <linux/errno.h>
26 #include <linux/firewire.h>
27 #include <linux/firewire-constants.h>
28 #include <linux/idr.h>
29 #include <linux/jiffies.h>
30 #include <linux/kobject.h>
31 #include <linux/list.h>
32 #include <linux/mod_devicetable.h>
33 #include <linux/module.h>
34 #include <linux/mutex.h>
35 #include <linux/random.h>
36 #include <linux/rwsem.h>
37 #include <linux/slab.h>
38 #include <linux/spinlock.h>
39 #include <linux/string.h>
40 #include <linux/workqueue.h>
41
42 #include <linux/atomic.h>
43 #include <asm/byteorder.h>
44
45 #include "core.h"
46
47 void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
48 {
49         ci->p = p + 1;
50         ci->end = ci->p + (p[0] >> 16);
51 }
52 EXPORT_SYMBOL(fw_csr_iterator_init);
53
54 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
55 {
56         *key = *ci->p >> 24;
57         *value = *ci->p & 0xffffff;
58
59         return ci->p++ < ci->end;
60 }
61 EXPORT_SYMBOL(fw_csr_iterator_next);
62
63 static const u32 *search_leaf(const u32 *directory, int search_key)
64 {
65         struct fw_csr_iterator ci;
66         int last_key = 0, key, value;
67
68         fw_csr_iterator_init(&ci, directory);
69         while (fw_csr_iterator_next(&ci, &key, &value)) {
70                 if (last_key == search_key &&
71                     key == (CSR_DESCRIPTOR | CSR_LEAF))
72                         return ci.p - 1 + value;
73
74                 last_key = key;
75         }
76
77         return NULL;
78 }
79
80 static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
81 {
82         unsigned int quadlets, i;
83         char c;
84
85         if (!size || !buf)
86                 return -EINVAL;
87
88         quadlets = min(block[0] >> 16, 256U);
89         if (quadlets < 2)
90                 return -ENODATA;
91
92         if (block[1] != 0 || block[2] != 0)
93                 /* unknown language/character set */
94                 return -ENODATA;
95
96         block += 3;
97         quadlets -= 2;
98         for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
99                 c = block[i / 4] >> (24 - 8 * (i % 4));
100                 if (c == '\0')
101                         break;
102                 buf[i] = c;
103         }
104         buf[i] = '\0';
105
106         return i;
107 }
108
109 /**
110  * fw_csr_string() - reads a string from the configuration ROM
111  * @directory:  e.g. root directory or unit directory
112  * @key:        the key of the preceding directory entry
113  * @buf:        where to put the string
114  * @size:       size of @buf, in bytes
115  *
116  * The string is taken from a minimal ASCII text descriptor leaf just after the entry with the
117  * @key. The string is zero-terminated. An overlong string is silently truncated such that it
118  * and the zero byte fit into @size.
119  *
120  * Returns strlen(buf) or a negative error code.
121  */
122 int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
123 {
124         const u32 *leaf = search_leaf(directory, key);
125         if (!leaf)
126                 return -ENOENT;
127
128         return textual_leaf_to_string(leaf, buf, size);
129 }
130 EXPORT_SYMBOL(fw_csr_string);
131
132 static void get_ids(const u32 *directory, int *id)
133 {
134         struct fw_csr_iterator ci;
135         int key, value;
136
137         fw_csr_iterator_init(&ci, directory);
138         while (fw_csr_iterator_next(&ci, &key, &value)) {
139                 switch (key) {
140                 case CSR_VENDOR:        id[0] = value; break;
141                 case CSR_MODEL:         id[1] = value; break;
142                 case CSR_SPECIFIER_ID:  id[2] = value; break;
143                 case CSR_VERSION:       id[3] = value; break;
144                 }
145         }
146 }
147
148 static void get_modalias_ids(struct fw_unit *unit, int *id)
149 {
150         get_ids(&fw_parent_device(unit)->config_rom[5], id);
151         get_ids(unit->directory, id);
152 }
153
154 static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
155 {
156         int match = 0;
157
158         if (id[0] == id_table->vendor_id)
159                 match |= IEEE1394_MATCH_VENDOR_ID;
160         if (id[1] == id_table->model_id)
161                 match |= IEEE1394_MATCH_MODEL_ID;
162         if (id[2] == id_table->specifier_id)
163                 match |= IEEE1394_MATCH_SPECIFIER_ID;
164         if (id[3] == id_table->version)
165                 match |= IEEE1394_MATCH_VERSION;
166
167         return (match & id_table->match_flags) == id_table->match_flags;
168 }
169
170 static const struct ieee1394_device_id *unit_match(struct device *dev,
171                                                    struct device_driver *drv)
172 {
173         const struct ieee1394_device_id *id_table =
174                         container_of(drv, struct fw_driver, driver)->id_table;
175         int id[] = {0, 0, 0, 0};
176
177         get_modalias_ids(fw_unit(dev), id);
178
179         for (; id_table->match_flags != 0; id_table++)
180                 if (match_ids(id_table, id))
181                         return id_table;
182
183         return NULL;
184 }
185
186 static bool is_fw_unit(struct device *dev);
187
188 static int fw_unit_match(struct device *dev, struct device_driver *drv)
189 {
190         /* We only allow binding to fw_units. */
191         return is_fw_unit(dev) && unit_match(dev, drv) != NULL;
192 }
193
194 static int fw_unit_probe(struct device *dev)
195 {
196         struct fw_driver *driver =
197                         container_of(dev->driver, struct fw_driver, driver);
198
199         return driver->probe(fw_unit(dev), unit_match(dev, dev->driver));
200 }
201
202 static int fw_unit_remove(struct device *dev)
203 {
204         struct fw_driver *driver =
205                         container_of(dev->driver, struct fw_driver, driver);
206
207         return driver->remove(fw_unit(dev)), 0;
208 }
209
210 static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
211 {
212         int id[] = {0, 0, 0, 0};
213
214         get_modalias_ids(unit, id);
215
216         return snprintf(buffer, buffer_size,
217                         "ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
218                         id[0], id[1], id[2], id[3]);
219 }
220
221 static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
222 {
223         struct fw_unit *unit = fw_unit(dev);
224         char modalias[64];
225
226         get_modalias(unit, modalias, sizeof(modalias));
227
228         if (add_uevent_var(env, "MODALIAS=%s", modalias))
229                 return -ENOMEM;
230
231         return 0;
232 }
233
234 struct bus_type fw_bus_type = {
235         .name = "firewire",
236         .match = fw_unit_match,
237         .probe = fw_unit_probe,
238         .remove = fw_unit_remove,
239 };
240 EXPORT_SYMBOL(fw_bus_type);
241
242 int fw_device_enable_phys_dma(struct fw_device *device)
243 {
244         int generation = device->generation;
245
246         /* device->node_id, accessed below, must not be older than generation */
247         smp_rmb();
248
249         return device->card->driver->enable_phys_dma(device->card,
250                                                      device->node_id,
251                                                      generation);
252 }
253 EXPORT_SYMBOL(fw_device_enable_phys_dma);
254
255 struct config_rom_attribute {
256         struct device_attribute attr;
257         u32 key;
258 };
259
260 static ssize_t show_immediate(struct device *dev,
261                               struct device_attribute *dattr, char *buf)
262 {
263         struct config_rom_attribute *attr =
264                 container_of(dattr, struct config_rom_attribute, attr);
265         struct fw_csr_iterator ci;
266         const u32 *dir;
267         int key, value, ret = -ENOENT;
268
269         down_read(&fw_device_rwsem);
270
271         if (is_fw_unit(dev))
272                 dir = fw_unit(dev)->directory;
273         else
274                 dir = fw_device(dev)->config_rom + 5;
275
276         fw_csr_iterator_init(&ci, dir);
277         while (fw_csr_iterator_next(&ci, &key, &value))
278                 if (attr->key == key) {
279                         ret = snprintf(buf, buf ? PAGE_SIZE : 0,
280                                        "0x%06x\n", value);
281                         break;
282                 }
283
284         up_read(&fw_device_rwsem);
285
286         return ret;
287 }
288
289 #define IMMEDIATE_ATTR(name, key)                               \
290         { __ATTR(name, S_IRUGO, show_immediate, NULL), key }
291
292 static ssize_t show_text_leaf(struct device *dev,
293                               struct device_attribute *dattr, char *buf)
294 {
295         struct config_rom_attribute *attr =
296                 container_of(dattr, struct config_rom_attribute, attr);
297         const u32 *dir;
298         size_t bufsize;
299         char dummy_buf[2];
300         int ret;
301
302         down_read(&fw_device_rwsem);
303
304         if (is_fw_unit(dev))
305                 dir = fw_unit(dev)->directory;
306         else
307                 dir = fw_device(dev)->config_rom + 5;
308
309         if (buf) {
310                 bufsize = PAGE_SIZE - 1;
311         } else {
312                 buf = dummy_buf;
313                 bufsize = 1;
314         }
315
316         ret = fw_csr_string(dir, attr->key, buf, bufsize);
317
318         if (ret >= 0) {
319                 /* Strip trailing whitespace and add newline. */
320                 while (ret > 0 && isspace(buf[ret - 1]))
321                         ret--;
322                 strcpy(buf + ret, "\n");
323                 ret++;
324         }
325
326         up_read(&fw_device_rwsem);
327
328         return ret;
329 }
330
331 #define TEXT_LEAF_ATTR(name, key)                               \
332         { __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
333
334 static struct config_rom_attribute config_rom_attributes[] = {
335         IMMEDIATE_ATTR(vendor, CSR_VENDOR),
336         IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
337         IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
338         IMMEDIATE_ATTR(version, CSR_VERSION),
339         IMMEDIATE_ATTR(model, CSR_MODEL),
340         TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
341         TEXT_LEAF_ATTR(model_name, CSR_MODEL),
342         TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
343 };
344
345 static void init_fw_attribute_group(struct device *dev,
346                                     struct device_attribute *attrs,
347                                     struct fw_attribute_group *group)
348 {
349         struct device_attribute *attr;
350         int i, j;
351
352         for (j = 0; attrs[j].attr.name != NULL; j++)
353                 group->attrs[j] = &attrs[j].attr;
354
355         for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
356                 attr = &config_rom_attributes[i].attr;
357                 if (attr->show(dev, attr, NULL) < 0)
358                         continue;
359                 group->attrs[j++] = &attr->attr;
360         }
361
362         group->attrs[j] = NULL;
363         group->groups[0] = &group->group;
364         group->groups[1] = NULL;
365         group->group.attrs = group->attrs;
366         dev->groups = (const struct attribute_group **) group->groups;
367 }
368
369 static ssize_t modalias_show(struct device *dev,
370                              struct device_attribute *attr, char *buf)
371 {
372         struct fw_unit *unit = fw_unit(dev);
373         int length;
374
375         length = get_modalias(unit, buf, PAGE_SIZE);
376         strcpy(buf + length, "\n");
377
378         return length + 1;
379 }
380
381 static ssize_t rom_index_show(struct device *dev,
382                               struct device_attribute *attr, char *buf)
383 {
384         struct fw_device *device = fw_device(dev->parent);
385         struct fw_unit *unit = fw_unit(dev);
386
387         return snprintf(buf, PAGE_SIZE, "%d\n",
388                         (int)(unit->directory - device->config_rom));
389 }
390
391 static struct device_attribute fw_unit_attributes[] = {
392         __ATTR_RO(modalias),
393         __ATTR_RO(rom_index),
394         __ATTR_NULL,
395 };
396
397 static ssize_t config_rom_show(struct device *dev,
398                                struct device_attribute *attr, char *buf)
399 {
400         struct fw_device *device = fw_device(dev);
401         size_t length;
402
403         down_read(&fw_device_rwsem);
404         length = device->config_rom_length * 4;
405         memcpy(buf, device->config_rom, length);
406         up_read(&fw_device_rwsem);
407
408         return length;
409 }
410
411 static ssize_t guid_show(struct device *dev,
412                          struct device_attribute *attr, char *buf)
413 {
414         struct fw_device *device = fw_device(dev);
415         int ret;
416
417         down_read(&fw_device_rwsem);
418         ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
419                        device->config_rom[3], device->config_rom[4]);
420         up_read(&fw_device_rwsem);
421
422         return ret;
423 }
424
425 static ssize_t is_local_show(struct device *dev,
426                              struct device_attribute *attr, char *buf)
427 {
428         struct fw_device *device = fw_device(dev);
429
430         return sprintf(buf, "%u\n", device->is_local);
431 }
432
433 static int units_sprintf(char *buf, const u32 *directory)
434 {
435         struct fw_csr_iterator ci;
436         int key, value;
437         int specifier_id = 0;
438         int version = 0;
439
440         fw_csr_iterator_init(&ci, directory);
441         while (fw_csr_iterator_next(&ci, &key, &value)) {
442                 switch (key) {
443                 case CSR_SPECIFIER_ID:
444                         specifier_id = value;
445                         break;
446                 case CSR_VERSION:
447                         version = value;
448                         break;
449                 }
450         }
451
452         return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
453 }
454
455 static ssize_t units_show(struct device *dev,
456                           struct device_attribute *attr, char *buf)
457 {
458         struct fw_device *device = fw_device(dev);
459         struct fw_csr_iterator ci;
460         int key, value, i = 0;
461
462         down_read(&fw_device_rwsem);
463         fw_csr_iterator_init(&ci, &device->config_rom[5]);
464         while (fw_csr_iterator_next(&ci, &key, &value)) {
465                 if (key != (CSR_UNIT | CSR_DIRECTORY))
466                         continue;
467                 i += units_sprintf(&buf[i], ci.p + value - 1);
468                 if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
469                         break;
470         }
471         up_read(&fw_device_rwsem);
472
473         if (i)
474                 buf[i - 1] = '\n';
475
476         return i;
477 }
478
479 static struct device_attribute fw_device_attributes[] = {
480         __ATTR_RO(config_rom),
481         __ATTR_RO(guid),
482         __ATTR_RO(is_local),
483         __ATTR_RO(units),
484         __ATTR_NULL,
485 };
486
487 static int read_rom(struct fw_device *device,
488                     int generation, int index, u32 *data)
489 {
490         u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4;
491         int i, rcode;
492
493         /* device->node_id, accessed below, must not be older than generation */
494         smp_rmb();
495
496         for (i = 10; i < 100; i += 10) {
497                 rcode = fw_run_transaction(device->card,
498                                 TCODE_READ_QUADLET_REQUEST, device->node_id,
499                                 generation, device->max_speed, offset, data, 4);
500                 if (rcode != RCODE_BUSY)
501                         break;
502                 msleep(i);
503         }
504         be32_to_cpus(data);
505
506         return rcode;
507 }
508
509 #define MAX_CONFIG_ROM_SIZE 256
510
511 /*
512  * Read the bus info block, perform a speed probe, and read all of the rest of
513  * the config ROM.  We do all this with a cached bus generation.  If the bus
514  * generation changes under us, read_config_rom will fail and get retried.
515  * It's better to start all over in this case because the node from which we
516  * are reading the ROM may have changed the ROM during the reset.
517  * Returns either a result code or a negative error code.
518  */
519 static int read_config_rom(struct fw_device *device, int generation)
520 {
521         struct fw_card *card = device->card;
522         const u32 *old_rom, *new_rom;
523         u32 *rom, *stack;
524         u32 sp, key;
525         int i, end, length, ret;
526
527         rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
528                       sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
529         if (rom == NULL)
530                 return -ENOMEM;
531
532         stack = &rom[MAX_CONFIG_ROM_SIZE];
533         memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
534
535         device->max_speed = SCODE_100;
536
537         /* First read the bus info block. */
538         for (i = 0; i < 5; i++) {
539                 ret = read_rom(device, generation, i, &rom[i]);
540                 if (ret != RCODE_COMPLETE)
541                         goto out;
542                 /*
543                  * As per IEEE1212 7.2, during initialization, devices can
544                  * reply with a 0 for the first quadlet of the config
545                  * rom to indicate that they are booting (for example,
546                  * if the firmware is on the disk of a external
547                  * harddisk).  In that case we just fail, and the
548                  * retry mechanism will try again later.
549                  */
550                 if (i == 0 && rom[i] == 0) {
551                         ret = RCODE_BUSY;
552                         goto out;
553                 }
554         }
555
556         device->max_speed = device->node->max_speed;
557
558         /*
559          * Determine the speed of
560          *   - devices with link speed less than PHY speed,
561          *   - devices with 1394b PHY (unless only connected to 1394a PHYs),
562          *   - all devices if there are 1394b repeaters.
563          * Note, we cannot use the bus info block's link_spd as starting point
564          * because some buggy firmwares set it lower than necessary and because
565          * 1394-1995 nodes do not have the field.
566          */
567         if ((rom[2] & 0x7) < device->max_speed ||
568             device->max_speed == SCODE_BETA ||
569             card->beta_repeaters_present) {
570                 u32 dummy;
571
572                 /* for S1600 and S3200 */
573                 if (device->max_speed == SCODE_BETA)
574                         device->max_speed = card->link_speed;
575
576                 while (device->max_speed > SCODE_100) {
577                         if (read_rom(device, generation, 0, &dummy) ==
578                             RCODE_COMPLETE)
579                                 break;
580                         device->max_speed--;
581                 }
582         }
583
584         /*
585          * Now parse the config rom.  The config rom is a recursive
586          * directory structure so we parse it using a stack of
587          * references to the blocks that make up the structure.  We
588          * push a reference to the root directory on the stack to
589          * start things off.
590          */
591         length = i;
592         sp = 0;
593         stack[sp++] = 0xc0000005;
594         while (sp > 0) {
595                 /*
596                  * Pop the next block reference of the stack.  The
597                  * lower 24 bits is the offset into the config rom,
598                  * the upper 8 bits are the type of the reference the
599                  * block.
600                  */
601                 key = stack[--sp];
602                 i = key & 0xffffff;
603                 if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) {
604                         ret = -ENXIO;
605                         goto out;
606                 }
607
608                 /* Read header quadlet for the block to get the length. */
609                 ret = read_rom(device, generation, i, &rom[i]);
610                 if (ret != RCODE_COMPLETE)
611                         goto out;
612                 end = i + (rom[i] >> 16) + 1;
613                 if (end > MAX_CONFIG_ROM_SIZE) {
614                         /*
615                          * This block extends outside the config ROM which is
616                          * a firmware bug.  Ignore this whole block, i.e.
617                          * simply set a fake block length of 0.
618                          */
619                         fw_err(card, "skipped invalid ROM block %x at %llx\n",
620                                rom[i],
621                                i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
622                         rom[i] = 0;
623                         end = i;
624                 }
625                 i++;
626
627                 /*
628                  * Now read in the block.  If this is a directory
629                  * block, check the entries as we read them to see if
630                  * it references another block, and push it in that case.
631                  */
632                 for (; i < end; i++) {
633                         ret = read_rom(device, generation, i, &rom[i]);
634                         if (ret != RCODE_COMPLETE)
635                                 goto out;
636
637                         if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
638                                 continue;
639                         /*
640                          * Offset points outside the ROM.  May be a firmware
641                          * bug or an Extended ROM entry (IEEE 1212-2001 clause
642                          * 7.7.18).  Simply overwrite this pointer here by a
643                          * fake immediate entry so that later iterators over
644                          * the ROM don't have to check offsets all the time.
645                          */
646                         if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
647                                 fw_err(card,
648                                        "skipped unsupported ROM entry %x at %llx\n",
649                                        rom[i],
650                                        i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
651                                 rom[i] = 0;
652                                 continue;
653                         }
654                         stack[sp++] = i + rom[i];
655                 }
656                 if (length < i)
657                         length = i;
658         }
659
660         old_rom = device->config_rom;
661         new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
662         if (new_rom == NULL) {
663                 ret = -ENOMEM;
664                 goto out;
665         }
666
667         down_write(&fw_device_rwsem);
668         device->config_rom = new_rom;
669         device->config_rom_length = length;
670         up_write(&fw_device_rwsem);
671
672         kfree(old_rom);
673         ret = RCODE_COMPLETE;
674         device->max_rec = rom[2] >> 12 & 0xf;
675         device->cmc     = rom[2] >> 30 & 1;
676         device->irmc    = rom[2] >> 31 & 1;
677  out:
678         kfree(rom);
679
680         return ret;
681 }
682
683 static void fw_unit_release(struct device *dev)
684 {
685         struct fw_unit *unit = fw_unit(dev);
686
687         fw_device_put(fw_parent_device(unit));
688         kfree(unit);
689 }
690
691 static struct device_type fw_unit_type = {
692         .uevent         = fw_unit_uevent,
693         .release        = fw_unit_release,
694 };
695
696 static bool is_fw_unit(struct device *dev)
697 {
698         return dev->type == &fw_unit_type;
699 }
700
701 static void create_units(struct fw_device *device)
702 {
703         struct fw_csr_iterator ci;
704         struct fw_unit *unit;
705         int key, value, i;
706
707         i = 0;
708         fw_csr_iterator_init(&ci, &device->config_rom[5]);
709         while (fw_csr_iterator_next(&ci, &key, &value)) {
710                 if (key != (CSR_UNIT | CSR_DIRECTORY))
711                         continue;
712
713                 /*
714                  * Get the address of the unit directory and try to
715                  * match the drivers id_tables against it.
716                  */
717                 unit = kzalloc(sizeof(*unit), GFP_KERNEL);
718                 if (unit == NULL)
719                         continue;
720
721                 unit->directory = ci.p + value - 1;
722                 unit->device.bus = &fw_bus_type;
723                 unit->device.type = &fw_unit_type;
724                 unit->device.parent = &device->device;
725                 dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
726
727                 BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
728                                 ARRAY_SIZE(fw_unit_attributes) +
729                                 ARRAY_SIZE(config_rom_attributes));
730                 init_fw_attribute_group(&unit->device,
731                                         fw_unit_attributes,
732                                         &unit->attribute_group);
733
734                 fw_device_get(device);
735                 if (device_register(&unit->device) < 0) {
736                         put_device(&unit->device);
737                         continue;
738                 }
739         }
740 }
741
742 static int shutdown_unit(struct device *device, void *data)
743 {
744         device_unregister(device);
745
746         return 0;
747 }
748
749 /*
750  * fw_device_rwsem acts as dual purpose mutex:
751  *   - serializes accesses to fw_device_idr,
752  *   - serializes accesses to fw_device.config_rom/.config_rom_length and
753  *     fw_unit.directory, unless those accesses happen at safe occasions
754  */
755 DECLARE_RWSEM(fw_device_rwsem);
756
757 DEFINE_IDR(fw_device_idr);
758 int fw_cdev_major;
759
760 struct fw_device *fw_device_get_by_devt(dev_t devt)
761 {
762         struct fw_device *device;
763
764         down_read(&fw_device_rwsem);
765         device = idr_find(&fw_device_idr, MINOR(devt));
766         if (device)
767                 fw_device_get(device);
768         up_read(&fw_device_rwsem);
769
770         return device;
771 }
772
773 struct workqueue_struct *fw_workqueue;
774 EXPORT_SYMBOL(fw_workqueue);
775
776 static void fw_schedule_device_work(struct fw_device *device,
777                                     unsigned long delay)
778 {
779         queue_delayed_work(fw_workqueue, &device->work, delay);
780 }
781
782 /*
783  * These defines control the retry behavior for reading the config
784  * rom.  It shouldn't be necessary to tweak these; if the device
785  * doesn't respond to a config rom read within 10 seconds, it's not
786  * going to respond at all.  As for the initial delay, a lot of
787  * devices will be able to respond within half a second after bus
788  * reset.  On the other hand, it's not really worth being more
789  * aggressive than that, since it scales pretty well; if 10 devices
790  * are plugged in, they're all getting read within one second.
791  */
792
793 #define MAX_RETRIES     10
794 #define RETRY_DELAY     (3 * HZ)
795 #define INITIAL_DELAY   (HZ / 2)
796 #define SHUTDOWN_DELAY  (2 * HZ)
797
798 static void fw_device_shutdown(struct work_struct *work)
799 {
800         struct fw_device *device =
801                 container_of(work, struct fw_device, work.work);
802         int minor = MINOR(device->device.devt);
803
804         if (time_before64(get_jiffies_64(),
805                           device->card->reset_jiffies + SHUTDOWN_DELAY)
806             && !list_empty(&device->card->link)) {
807                 fw_schedule_device_work(device, SHUTDOWN_DELAY);
808                 return;
809         }
810
811         if (atomic_cmpxchg(&device->state,
812                            FW_DEVICE_GONE,
813                            FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
814                 return;
815
816         fw_device_cdev_remove(device);
817         device_for_each_child(&device->device, NULL, shutdown_unit);
818         device_unregister(&device->device);
819
820         down_write(&fw_device_rwsem);
821         idr_remove(&fw_device_idr, minor);
822         up_write(&fw_device_rwsem);
823
824         fw_device_put(device);
825 }
826
827 static void fw_device_release(struct device *dev)
828 {
829         struct fw_device *device = fw_device(dev);
830         struct fw_card *card = device->card;
831         unsigned long flags;
832
833         /*
834          * Take the card lock so we don't set this to NULL while a
835          * FW_NODE_UPDATED callback is being handled or while the
836          * bus manager work looks at this node.
837          */
838         spin_lock_irqsave(&card->lock, flags);
839         device->node->data = NULL;
840         spin_unlock_irqrestore(&card->lock, flags);
841
842         fw_node_put(device->node);
843         kfree(device->config_rom);
844         kfree(device);
845         fw_card_put(card);
846 }
847
848 static struct device_type fw_device_type = {
849         .release = fw_device_release,
850 };
851
852 static bool is_fw_device(struct device *dev)
853 {
854         return dev->type == &fw_device_type;
855 }
856
857 static int update_unit(struct device *dev, void *data)
858 {
859         struct fw_unit *unit = fw_unit(dev);
860         struct fw_driver *driver = (struct fw_driver *)dev->driver;
861
862         if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
863                 device_lock(dev);
864                 driver->update(unit);
865                 device_unlock(dev);
866         }
867
868         return 0;
869 }
870
871 static void fw_device_update(struct work_struct *work)
872 {
873         struct fw_device *device =
874                 container_of(work, struct fw_device, work.work);
875
876         fw_device_cdev_update(device);
877         device_for_each_child(&device->device, NULL, update_unit);
878 }
879
880 /*
881  * If a device was pending for deletion because its node went away but its
882  * bus info block and root directory header matches that of a newly discovered
883  * device, revive the existing fw_device.
884  * The newly allocated fw_device becomes obsolete instead.
885  */
886 static int lookup_existing_device(struct device *dev, void *data)
887 {
888         struct fw_device *old = fw_device(dev);
889         struct fw_device *new = data;
890         struct fw_card *card = new->card;
891         int match = 0;
892
893         if (!is_fw_device(dev))
894                 return 0;
895
896         down_read(&fw_device_rwsem); /* serialize config_rom access */
897         spin_lock_irq(&card->lock);  /* serialize node access */
898
899         if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
900             atomic_cmpxchg(&old->state,
901                            FW_DEVICE_GONE,
902                            FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
903                 struct fw_node *current_node = new->node;
904                 struct fw_node *obsolete_node = old->node;
905
906                 new->node = obsolete_node;
907                 new->node->data = new;
908                 old->node = current_node;
909                 old->node->data = old;
910
911                 old->max_speed = new->max_speed;
912                 old->node_id = current_node->node_id;
913                 smp_wmb();  /* update node_id before generation */
914                 old->generation = card->generation;
915                 old->config_rom_retries = 0;
916                 fw_notice(card, "rediscovered device %s\n", dev_name(dev));
917
918                 old->workfn = fw_device_update;
919                 fw_schedule_device_work(old, 0);
920
921                 if (current_node == card->root_node)
922                         fw_schedule_bm_work(card, 0);
923
924                 match = 1;
925         }
926
927         spin_unlock_irq(&card->lock);
928         up_read(&fw_device_rwsem);
929
930         return match;
931 }
932
933 enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
934
935 static void set_broadcast_channel(struct fw_device *device, int generation)
936 {
937         struct fw_card *card = device->card;
938         __be32 data;
939         int rcode;
940
941         if (!card->broadcast_channel_allocated)
942                 return;
943
944         /*
945          * The Broadcast_Channel Valid bit is required by nodes which want to
946          * transmit on this channel.  Such transmissions are practically
947          * exclusive to IP over 1394 (RFC 2734).  IP capable nodes are required
948          * to be IRM capable and have a max_rec of 8 or more.  We use this fact
949          * to narrow down to which nodes we send Broadcast_Channel updates.
950          */
951         if (!device->irmc || device->max_rec < 8)
952                 return;
953
954         /*
955          * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
956          * Perform a read test first.
957          */
958         if (device->bc_implemented == BC_UNKNOWN) {
959                 rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
960                                 device->node_id, generation, device->max_speed,
961                                 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
962                                 &data, 4);
963                 switch (rcode) {
964                 case RCODE_COMPLETE:
965                         if (data & cpu_to_be32(1 << 31)) {
966                                 device->bc_implemented = BC_IMPLEMENTED;
967                                 break;
968                         }
969                         /* else fall through to case address error */
970                 case RCODE_ADDRESS_ERROR:
971                         device->bc_implemented = BC_UNIMPLEMENTED;
972                 }
973         }
974
975         if (device->bc_implemented == BC_IMPLEMENTED) {
976                 data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
977                                    BROADCAST_CHANNEL_VALID);
978                 fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
979                                 device->node_id, generation, device->max_speed,
980                                 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
981                                 &data, 4);
982         }
983 }
984
985 int fw_device_set_broadcast_channel(struct device *dev, void *gen)
986 {
987         if (is_fw_device(dev))
988                 set_broadcast_channel(fw_device(dev), (long)gen);
989
990         return 0;
991 }
992
993 static void fw_device_init(struct work_struct *work)
994 {
995         struct fw_device *device =
996                 container_of(work, struct fw_device, work.work);
997         struct fw_card *card = device->card;
998         struct device *revived_dev;
999         int minor, ret;
1000
1001         /*
1002          * All failure paths here set node->data to NULL, so that we
1003          * don't try to do device_for_each_child() on a kfree()'d
1004          * device.
1005          */
1006
1007         ret = read_config_rom(device, device->generation);
1008         if (ret != RCODE_COMPLETE) {
1009                 if (device->config_rom_retries < MAX_RETRIES &&
1010                     atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1011                         device->config_rom_retries++;
1012                         fw_schedule_device_work(device, RETRY_DELAY);
1013                 } else {
1014                         if (device->node->link_on)
1015                                 fw_notice(card, "giving up on node %x: reading config rom failed: %s\n",
1016                                           device->node_id,
1017                                           fw_rcode_string(ret));
1018                         if (device->node == card->root_node)
1019                                 fw_schedule_bm_work(card, 0);
1020                         fw_device_release(&device->device);
1021                 }
1022                 return;
1023         }
1024
1025         revived_dev = device_find_child(card->device,
1026                                         device, lookup_existing_device);
1027         if (revived_dev) {
1028                 put_device(revived_dev);
1029                 fw_device_release(&device->device);
1030
1031                 return;
1032         }
1033
1034         device_initialize(&device->device);
1035
1036         fw_device_get(device);
1037         down_write(&fw_device_rwsem);
1038         minor = idr_alloc(&fw_device_idr, device, 0, 1 << MINORBITS,
1039                         GFP_KERNEL);
1040         up_write(&fw_device_rwsem);
1041
1042         if (minor < 0)
1043                 goto error;
1044
1045         device->device.bus = &fw_bus_type;
1046         device->device.type = &fw_device_type;
1047         device->device.parent = card->device;
1048         device->device.devt = MKDEV(fw_cdev_major, minor);
1049         dev_set_name(&device->device, "fw%d", minor);
1050
1051         BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
1052                         ARRAY_SIZE(fw_device_attributes) +
1053                         ARRAY_SIZE(config_rom_attributes));
1054         init_fw_attribute_group(&device->device,
1055                                 fw_device_attributes,
1056                                 &device->attribute_group);
1057
1058         if (device_add(&device->device)) {
1059                 fw_err(card, "failed to add device\n");
1060                 goto error_with_cdev;
1061         }
1062
1063         create_units(device);
1064
1065         /*
1066          * Transition the device to running state.  If it got pulled
1067          * out from under us while we did the initialization work, we
1068          * have to shut down the device again here.  Normally, though,
1069          * fw_node_event will be responsible for shutting it down when
1070          * necessary.  We have to use the atomic cmpxchg here to avoid
1071          * racing with the FW_NODE_DESTROYED case in
1072          * fw_node_event().
1073          */
1074         if (atomic_cmpxchg(&device->state,
1075                            FW_DEVICE_INITIALIZING,
1076                            FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1077                 device->workfn = fw_device_shutdown;
1078                 fw_schedule_device_work(device, SHUTDOWN_DELAY);
1079         } else {
1080                 fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n",
1081                           dev_name(&device->device),
1082                           device->config_rom[3], device->config_rom[4],
1083                           1 << device->max_speed);
1084                 device->config_rom_retries = 0;
1085
1086                 set_broadcast_channel(device, device->generation);
1087
1088                 add_device_randomness(&device->config_rom[3], 8);
1089         }
1090
1091         /*
1092          * Reschedule the IRM work if we just finished reading the
1093          * root node config rom.  If this races with a bus reset we
1094          * just end up running the IRM work a couple of extra times -
1095          * pretty harmless.
1096          */
1097         if (device->node == card->root_node)
1098                 fw_schedule_bm_work(card, 0);
1099
1100         return;
1101
1102  error_with_cdev:
1103         down_write(&fw_device_rwsem);
1104         idr_remove(&fw_device_idr, minor);
1105         up_write(&fw_device_rwsem);
1106  error:
1107         fw_device_put(device);          /* fw_device_idr's reference */
1108
1109         put_device(&device->device);    /* our reference */
1110 }
1111
1112 /* Reread and compare bus info block and header of root directory */
1113 static int reread_config_rom(struct fw_device *device, int generation,
1114                              bool *changed)
1115 {
1116         u32 q;
1117         int i, rcode;
1118
1119         for (i = 0; i < 6; i++) {
1120                 rcode = read_rom(device, generation, i, &q);
1121                 if (rcode != RCODE_COMPLETE)
1122                         return rcode;
1123
1124                 if (i == 0 && q == 0)
1125                         /* inaccessible (see read_config_rom); retry later */
1126                         return RCODE_BUSY;
1127
1128                 if (q != device->config_rom[i]) {
1129                         *changed = true;
1130                         return RCODE_COMPLETE;
1131                 }
1132         }
1133
1134         *changed = false;
1135         return RCODE_COMPLETE;
1136 }
1137
1138 static void fw_device_refresh(struct work_struct *work)
1139 {
1140         struct fw_device *device =
1141                 container_of(work, struct fw_device, work.work);
1142         struct fw_card *card = device->card;
1143         int ret, node_id = device->node_id;
1144         bool changed;
1145
1146         ret = reread_config_rom(device, device->generation, &changed);
1147         if (ret != RCODE_COMPLETE)
1148                 goto failed_config_rom;
1149
1150         if (!changed) {
1151                 if (atomic_cmpxchg(&device->state,
1152                                    FW_DEVICE_INITIALIZING,
1153                                    FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1154                         goto gone;
1155
1156                 fw_device_update(work);
1157                 device->config_rom_retries = 0;
1158                 goto out;
1159         }
1160
1161         /*
1162          * Something changed.  We keep things simple and don't investigate
1163          * further.  We just destroy all previous units and create new ones.
1164          */
1165         device_for_each_child(&device->device, NULL, shutdown_unit);
1166
1167         ret = read_config_rom(device, device->generation);
1168         if (ret != RCODE_COMPLETE)
1169                 goto failed_config_rom;
1170
1171         fw_device_cdev_update(device);
1172         create_units(device);
1173
1174         /* Userspace may want to re-read attributes. */
1175         kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
1176
1177         if (atomic_cmpxchg(&device->state,
1178                            FW_DEVICE_INITIALIZING,
1179                            FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1180                 goto gone;
1181
1182         fw_notice(card, "refreshed device %s\n", dev_name(&device->device));
1183         device->config_rom_retries = 0;
1184         goto out;
1185
1186  failed_config_rom:
1187         if (device->config_rom_retries < MAX_RETRIES &&
1188             atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1189                 device->config_rom_retries++;
1190                 fw_schedule_device_work(device, RETRY_DELAY);
1191                 return;
1192         }
1193
1194         fw_notice(card, "giving up on refresh of device %s: %s\n",
1195                   dev_name(&device->device), fw_rcode_string(ret));
1196  gone:
1197         atomic_set(&device->state, FW_DEVICE_GONE);
1198         device->workfn = fw_device_shutdown;
1199         fw_schedule_device_work(device, SHUTDOWN_DELAY);
1200  out:
1201         if (node_id == card->root_node->node_id)
1202                 fw_schedule_bm_work(card, 0);
1203 }
1204
1205 static void fw_device_workfn(struct work_struct *work)
1206 {
1207         struct fw_device *device = container_of(to_delayed_work(work),
1208                                                 struct fw_device, work);
1209         device->workfn(work);
1210 }
1211
1212 void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
1213 {
1214         struct fw_device *device;
1215
1216         switch (event) {
1217         case FW_NODE_CREATED:
1218                 /*
1219                  * Attempt to scan the node, regardless whether its self ID has
1220                  * the L (link active) flag set or not.  Some broken devices
1221                  * send L=0 but have an up-and-running link; others send L=1
1222                  * without actually having a link.
1223                  */
1224  create:
1225                 device = kzalloc(sizeof(*device), GFP_ATOMIC);
1226                 if (device == NULL)
1227                         break;
1228
1229                 /*
1230                  * Do minimal initialization of the device here, the
1231                  * rest will happen in fw_device_init().
1232                  *
1233                  * Attention:  A lot of things, even fw_device_get(),
1234                  * cannot be done before fw_device_init() finished!
1235                  * You can basically just check device->state and
1236                  * schedule work until then, but only while holding
1237                  * card->lock.
1238                  */
1239                 atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1240                 device->card = fw_card_get(card);
1241                 device->node = fw_node_get(node);
1242                 device->node_id = node->node_id;
1243                 device->generation = card->generation;
1244                 device->is_local = node == card->local_node;
1245                 mutex_init(&device->client_list_mutex);
1246                 INIT_LIST_HEAD(&device->client_list);
1247
1248                 /*
1249                  * Set the node data to point back to this device so
1250                  * FW_NODE_UPDATED callbacks can update the node_id
1251                  * and generation for the device.
1252                  */
1253                 node->data = device;
1254
1255                 /*
1256                  * Many devices are slow to respond after bus resets,
1257                  * especially if they are bus powered and go through
1258                  * power-up after getting plugged in.  We schedule the
1259                  * first config rom scan half a second after bus reset.
1260                  */
1261                 device->workfn = fw_device_init;
1262                 INIT_DELAYED_WORK(&device->work, fw_device_workfn);
1263                 fw_schedule_device_work(device, INITIAL_DELAY);
1264                 break;
1265
1266         case FW_NODE_INITIATED_RESET:
1267         case FW_NODE_LINK_ON:
1268                 device = node->data;
1269                 if (device == NULL)
1270                         goto create;
1271
1272                 device->node_id = node->node_id;
1273                 smp_wmb();  /* update node_id before generation */
1274                 device->generation = card->generation;
1275                 if (atomic_cmpxchg(&device->state,
1276                             FW_DEVICE_RUNNING,
1277                             FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
1278                         device->workfn = fw_device_refresh;
1279                         fw_schedule_device_work(device,
1280                                 device->is_local ? 0 : INITIAL_DELAY);
1281                 }
1282                 break;
1283
1284         case FW_NODE_UPDATED:
1285                 device = node->data;
1286                 if (device == NULL)
1287                         break;
1288
1289                 device->node_id = node->node_id;
1290                 smp_wmb();  /* update node_id before generation */
1291                 device->generation = card->generation;
1292                 if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1293                         device->workfn = fw_device_update;
1294                         fw_schedule_device_work(device, 0);
1295                 }
1296                 break;
1297
1298         case FW_NODE_DESTROYED:
1299         case FW_NODE_LINK_OFF:
1300                 if (!node->data)
1301                         break;
1302
1303                 /*
1304                  * Destroy the device associated with the node.  There
1305                  * are two cases here: either the device is fully
1306                  * initialized (FW_DEVICE_RUNNING) or we're in the
1307                  * process of reading its config rom
1308                  * (FW_DEVICE_INITIALIZING).  If it is fully
1309                  * initialized we can reuse device->work to schedule a
1310                  * full fw_device_shutdown().  If not, there's work
1311                  * scheduled to read it's config rom, and we just put
1312                  * the device in shutdown state to have that code fail
1313                  * to create the device.
1314                  */
1315                 device = node->data;
1316                 if (atomic_xchg(&device->state,
1317                                 FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1318                         device->workfn = fw_device_shutdown;
1319                         fw_schedule_device_work(device,
1320                                 list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1321                 }
1322                 break;
1323         }
1324 }